
OOAD 8. OCL & Timing Diagrams 1

Object Constraint Language

(OCL)

Timing Diagrams

Model Driven Architecture (MDA)

OCL

Characters of OCL

Timing diagrams

Examples

Literature

 OCL website: http://www.omg.org/uml/

 Textbook: “The Objection Constraint

Language: Precise Modeling with UML”, by

Jos Warmer and Anneke Kleppe

 This presentation includes some slides by:

 Yong He

 Tevfik Bultan

 Brian Lings

 Lieber.
OOAD 8. OCL & Timing Diagrams 2

OOAD 8. OCL & Timing Diagrams 3

Model Driven Architecture

(MDA)
 In Model Driven Architecture (MDA), the software

development process is driven by the activity of modeling.

 MDA approach separates the specification of system

functionalities from the specification of the implementation of

these functionalities on a particular technological platform.

 The MDA framework defines how to specify and transform

models at different abstraction levels.

 MDA is under supervision of the Object Management Group

(OMG).

 More info:
 MDA Explained: The Model Driven Architecture: Practice and Promise,

Addison-Wesley, 2003.

 O. Pastor, J.C. Molina. Model-Driven Architecture in Practice: A Software

Production Environment Based on Conceptual Modeling, 2007

OOAD 8. OCL & Timing Diagrams 4

The MDA Process – year 2003

The MDA process consists of
three steps:

 Build a model with a high level of
abstraction, called Platform
Independent Model (PIM).

 Transform the PIM into one or
more Platform Specific Models
(PSMs), i.e., models that are
specified in some specific
implementation technology.

 Transform the PSMs to code.

The MDA Process –

Modern Version

OOAD 8. OCL & Timing Diagrams 5

• CIM does not show details of the

system structure. CIM always uses a

vocabulary that is familiar to the

practitioners of the domain.

• PIM represents the business model to

be implemented by an information

system. PIM describes processes and

structure of the system without

reference to the delivery platforms.

PIM ignores operating system,

programming languages, hardware

and networking.

• PSM combines specifications in the

PIM with details that specify how a

system uses a particular type of

platform.

→
 →

 →

A

b
s
tr

a
c
ti
o
n

 →

 →
 →

→
 →

 →
 C

o
m

p
le

x
ity

→

 →
 →

OOAD 8. OCL & Timing Diagrams 6

MDA Elements
 Modeling languages describe models. Models must be

consistent and precise, and contain as much information as
possible.

 CIM is a requirements model for the future application with
its services offered to other entities with which it interacts.

 PIM represents the system-specific business logic or the
design model. It represents the functioning of entities and
services. It must be durable and lasting over time.

 PSM - the system model is linked to an execution platform

 PIM-to-PSM is more challenging than PSM-to-Code.

 Transformation definitions map one model to another.

 These definitions must be independent on the tools.

OOAD 8. OCL & Timing Diagrams 7

MDA Benefits

 Transformation tools do the dirty work.

 Portability - PIMs can be transformed to different PSMs.

 Productivity - developers work at a higher level
abstraction.

 Cross-platform interoperability - PIMs serve as a bridge
between different PSMs.

 Easier maintenance and documentation

 Maintaining PIMs is much easier than maintaining code.

OOAD 8. OCL & Timing Diagrams 8

Maturity Levels

The maturity level indicates the gap between the
model and the system.

 Level 0: No specification - Everything is in mind.

 Level 1: Textual description - Informal English
description.

 Level 2: Text with Diagrams - Use diagrams to help
understanding.

 Level 3: Models with Text - Models have well-
defined meaning

 Level 4: Precise models - Precise enough to enable
automatic model-to-code transformation.

 Level 5: Models only - Code is invisible.

OOAD 8. OCL & Timing Diagrams 9

UML, OCL, and MDA

 UML uses diagrams to express software design.

 Diagrams are easier to understand, but many
properties cannot be expressed using diagrams
alone.

 The use of OCL (Object Constraint Language) can
add additional and necessary info to UML diagrams.

 OCL uses expressions that have solid mathematic
foundation but still maintains the ease of use.

 Combining UML and OCL is necessary to construct
models at maturity level 4 - models precise enough
to enable automatic model-to-code transformation.

 The application of MDA relies on Level 4 models.

OCL Language Description

(SOURCE: Object Constraint Language, OMG Spec. Ver.2.0)

 OCL - a formal language that remains easy to read

and write

 OCL is a pure specification language - no side

effects (an OCL expression simply returns a value

and change anything in the model)

 OCL is not a programming but modeling language -

it is not possible to write program logic or flow

control in OCL

 The evaluation of an OCL expression is

instantaneous. This means that the states of objects

in a model cannot change during evaluation
OOAD 8. OCL & Timing Diagrams 10

Advantages of Formal

Constraints

 Better documentation

 Constraints add information about the model elements and their

relationships to the visual models used in UML

 It is way of documenting the model

 More precision OCL constraints have formal semantics,

hence, can be used to reduce the ambiguity in the UML

models

 Communication without misunderstanding

 UML models are used to communicate between developers

 Using OCL constraints modelers can communicate

unambiguously

OOAD 8. OCL & Timing Diagrams 11

OCL - History

 First developed in 1995 as IBEL by IBM’s

Insurance division for business modelling

 IBM proposed it to the OMG’s call for an

object-oriented analysis and design standard.

OCL was then merged into UML 1.1.

 OCL was used to define UML 1.2 itself.

 Supported by OMG, Microsoft, HP, IBM,

Oracle, Sterling, Unisys, ICON, IntelliCorp,

Softeam …
OOAD 8. OCL & Timing Diagrams 12

Where to use OCL?

 Specify invariants for classes and types

 Specify pre- and post-conditions for methods

 Guard conditions

 As a navigation language – specifies targets

for messages and actions

 To specify constraints on operations

 Test requirements and specifications

OOAD 8. OCL & Timing Diagrams 13

OCL Context

 “Intuitive” syntax – reminds OO programming languages

 The context keyword introduces the context for the

expression – class, attribute, operation, operation param., ...

 The keyword inv, pre, and post denote the stereotypes,

respectively «invariant», «precondition», and

«postcondition» of the constraint.

 The actual OCL expression comes after the colon.

context TypeName inv:

'this is an OCL expression with stereotype <<invariant>>

in the context of TypeName’ = 'another string'
OOAD 8. OCL & Timing Diagrams 14

Invariants 1/2

 The OCL expression can be part of an Invariant

which is a constraint stereotyped as an

«invariant».

 An OCL expression is an invariant of the type

and must be true for all instances of that type at

any time.

 All OCL expressions that express invariants are

of type Boolean.

OOAD 8. OCL & Timing Diagrams 15

Invariants 2/2

 in the context of the

Company type, the following

expression would specify an

invariant that the number of

employees must always

exceed 50:

context Company inv:

self.numberOfEmployees > 50

-- self is an instance of type

Company (refers to the

contextual instance)
OOAD 8. OCL & Timing Diagrams 16

context Company inv:

self.numberOfEmployees > 50

OOAD 8. OCL & Timing Diagrams 17

Omitting self

context Company inv:

self.numberOfEmployees > 50

context c : Company inv:

c.numberOfEmployees > 50

context c : Company inv enoughEmployees:

c.numberOfEmployees > 50

OOAD 8. OCL & Timing Diagrams 18

Named

constraint

More examples

OOAD 8. OCL & Timing Diagrams 19

Pre- and Post-Conditions

 The OCL expression can be part of a Precondition or

Postcondition, corresponding to «precondition» and

«postcondition» stereotypes of Constraint associated with

an Operation or other behavioral feature.

context Typename::operationName(param1 : Type1, ...):

ReturnType

pre : param1 > 5

post: result = 55

 The name self can be used in the expression referring to

the object on which the operation was called.

 The reserved word result denotes the result of the

operation, if there is one.
OOAD 8. OCL & Timing Diagrams 20

Example of a static UML Model

1/2
Problem story:

 A company handles loyalty programs (class

LoyaltyProgram) for companies (class ProgramPartner)

that offer their customers various kinds of bonuses.

 Often, the extras take the form of bonus points or air

miles, but other bonuses are possible.

 Anything a company is willing to offer can be a service

(class Service) rendered in a loyalty program.

 Every customer can enter the loyalty program by

obtaining a membership card (class CustomerCard).

 The objects of class Customer represent the persons

who have entered the program.
OOAD 8. OCL & Timing Diagrams 21

Example of a static UML Model

2/2

 A membership card is issued to one person, but can be

used for an entire family or business.

 Loyalty programs can allow customers to save bonus

points (class loyaltyAccount), with which they can “buy”

services from program partners.

 A loyalty account is issued per customer membership in a

loyalty program (association class Membership).

 Transactions (class Transaction) on loyalty accounts

involve various services provided by the program partners

and are performed per single card. There are two kinds of

transactions: earning and burning. Membership durations

determine various levels of services (class serviceLevel).
OOAD 8. OCL & Timing Diagrams 22

OOAD 8. OCL & Timing Diagrams 23

Objects and Properties

 OCL expressions can refer to classifiers, e.g., types,

classes, interfaces, associations (acting as types), and

datatypes. Also all attributes, association-ends, methods,

and operations without side-effects that are defined on

these types, etc. can be used.

 OCL refers to attributes, association-ends, and side-effect-

free methods/operations as being properties. A property is

one of:

 an Attribute

 an AssociationEnd

 an Operation with isQuery being true

OOAD 8. OCL & Timing Diagrams 24

Invariants on Attributes

 Invariants on attributes:
context Customer

invariant ageRestriction: age >= 18

context CustomerCard

invariant correctDates:

validFrom.isBefore(goodThru)

//The type of validFrom and goodThru is Date.

//isBefore(Date):Boolean is a Date operation.

 The class on which the invariant must be put is the

invariant context.

 For the above example, this means that the expression

is an invariant of the Customer class.
OOAD 8. OCL & Timing Diagrams 25

Invariants using Navigation

over Association Ends – Roles

 Navigation over associations is used to refer to

associated objects, starting from the context object:

context CustomerCard invariant:

owner.age >= 18

//owner is a Customer instance.

//owner.age is an Integer.

 Note: This is not the “right” context for this constraint! If

the role name is missing – use the class name at the

other end of the association, starting with a lowercase

letter.

 Preferred: Always give role names.
OOAD 8. OCL & Timing Diagrams 26

OOAD 8. OCL & Timing Diagrams 27

Invariants using Navigation

through Association Classes

 Navigation from a class through an association class uses the

association class name to obtain all tuples of an object:

“The cards of the memberships of a customer are only the customer’s

cards”:

context Customer

invariant correctCard:

cards->includesAll(Membership.card)

 This is exactly the same as this constraint:

“The owner of the card of a membership must be the customer in the

membership”:

context Membership

invariant correctCard:

card.owner = customer

 The Membership correctCard constraint is better
OOAD 8. OCL & Timing Diagrams 28

Invariants using Navigation through

Associations with “Many” Multiplicity

 Navigation over associations roles with multiplicity greater than 1

yields a Collection type.

 Operations on collections are accessed using an arrow ->, followed

by the operation name.

“A customer card belongs only to a membership of its owner”:

context CustomerCard

invariant correctCard:

owner.Membership->includes(membership)

owner -> is a Customer instance.

owner.Membership -> is a set of Membership instances.

membership -> is a Membership instance.

includes is an operation of the OCL Collection type.

OOAD 8. OCL & Timing Diagrams 29

The OCL Collection Types

OOAD 8. OCL & Timing Diagrams 30

Navigating to collections

OOAD 8. OCL & Timing Diagrams 31

Navigation to Collections 1/2

“The partners of a loyalty program have at least one

delivered service”:
context LoyaltyProgram

invariant minServices:

partners.deliveredservices->size() >= 1

“The number of a customer’s programs is equal to that of

his/her valid cards”:
context Customer

invariant sizesAgree:

program->size() = card->select(valid=true)->size()

OOAD 8. OCL & Timing Diagrams 32

Navigation to Collections 2/2

“When a loyalty program does not offer the possibility to earn

or burn points, the members of the loyalty program do not

have loyalty accounts. That is, the loyalty accounts

associated with the Memberships must be empty”:

context LoyaltyProgram

invariant noAccounts:

partners.deliveredservices->

forAll(pointsEarned = 0 and pointsBurned = 0)

implies Membership.account->isEmpty()

//and, or, not, implies, xor are logical connectives.

OOAD 8. OCL & Timing Diagrams 33

Collection Operations

OOAD 8. OCL & Timing Diagrams 34

Example UML diagram

OOAD 8. OCL & Timing Diagrams 35

Constraints

Students must register for 120 credits each year
context Student invariant:

takes.credit -> sum() = 120

Students must take at least 90 credits of CS modules each year

context Student

invariant: takes -> select(code.substring(1,2) =

‘CS’).credit -> sum() >= 90

OOAD 8. OCL & Timing Diagrams 36

Modules can be taken iff they have more than

seven students registered

context Module

invariant: taken_by -> size > 7

The assessments for a module must total 100%

context Module

invariant: set_work.weight -> sum() = 100

OCL (Object Constraint Language) –

The Mortgage Example

OOAD 8. OCL & Timing Diagrams 37

OOAD 8. OCL & Timing Diagrams 38

OCL (Object Constraint Language) –

The Mortgage Example

OOAD 8. OCL & Timing Diagrams 39

How to express constraints?

Can we express the following info on the diagrams?

1. A person may have a mortgage on a house only if
that house is owned by himself.

2. The start date for any mortgage must be before
the end date.

3. The social security number of all persons must be
unique.

4. A new mortgage will be allowed only when the
person’s income is sufficient.

5. A new mortgage will be allowed only when the
counter value of the house is sufficient.

OOAD 8. OCL & Timing Diagrams 40

context Mortgage

inv: security.owner = borrower

/* A person may have a mortgage on a house only if that

house is owned by himself.*/

OOAD 8. OCL & Timing Diagrams 41

context Mortgage

inv: startDate < endDate

/* The start date for any mortgage must be before the end

date.*/

OOAD 8. OCL & Timing Diagrams 42

context Person

inv: Person::allInstances() -> isUnique (socSecNr)

/* The social security number of all persons must be

unique.*/

OOAD 8. OCL & Timing Diagrams 43

context Person::getMortgage(sum: Money, security: House)

Pre: self.mortgages.monthlyPayment -> sum() <=

self.salary * 0.30

/* A new mortgage will be allowed only when the person’s

income is sufficient.*/

OOAD 8. OCL & Timing Diagrams 44

context Person::getMortgage(sum: Money, security:

House)

Pre: security.value >= self.mortgages.principal->sum()

/* A new mortgage will be allowed only when the counter

value of the house is sufficient.*/

OOAD 8. OCL & Timing Diagrams 45

Constraints Usage

 Avoid any potential misunderstandings

 Not everyone is aware of these constraints

 People may make different assumptions.

 Enable automatic model analysis/transform.

 Computer has no “intuition”.

 Software tools are possible only if the model

contains complete information.

 Document your design decisions.

OOAD 8. OCL & Timing Diagrams 46

Characteristics of OCL 1/2

 OCL is a constraint and query language

 A constraint is a restriction on one or more values of

a model.

 OCL can be used to write not only constraints, but

any query expression.

 It is proved that OCL has the same capability as

SQL.

 OCL has a formal foundation, but maintain the

ease of use.

 The result is a precise language that should be

easily read and written by average developers.

OOAD 8. OCL & Timing Diagrams 47

Characteristics of OCL 2/2

 OCL is strongly-typed

 This allows OCL expressions can be checked

during modeling, before execution.

 What is the benefit?

 OCL is a declarative language

 OCL expressions state what should be done, but

not how.

OCL

in VP

OOAD 8. OCL & Timing Diagrams 48

OCL for age and

setMeritalStatus

OOAD 8. OCL & Timing Diagrams 49

More about OCL

 UML 2.0 OCL Specification -

http://www.lri.fr/~wolff/teach-material/2008-

09/IFIPS-VnV/UML2.0OCL-specification.pdf

 The university model - An UML/OCL example

- http://dresden-

ocl.sourceforge.net/usage/ocl22sql/modelexplan

ation.html

 Verification of UML/OCL Class Diagrams

using Constraint Programming, by J. Cabot
OOAD 8. OCL & Timing Diagrams 50

Timing Diagrams

(UML 2.0)

Source for these slides:

Learning UML 2.0,

by Kim Hamilton, Russell Miles

...

Publisher: O'Reilly

Pub. Date: April 2006

OOAD 8. OCL & Timing Diagrams 51

 Interaction diagrams:

 sequence diagrams focus on message order

 communication diagrams show the links

between participants

 But: we need interaction diagrams to model

detailed timing information!

 In timing diagrams:

 each event has timing information associated

with it

Event Timing Information:

 Describes:

 when the event is invoked,

 how long it takes for another participant to

receive the event, and

 how long the receiving participant is expected

to be in a particular state.

 Event timing could be expressed within activity

diagrams (UML 2.x).

OOAD 8. OCL & Timing Diagrams 52

Time Events (slide from

previous lesson)

 A time event with no incoming flows models a

repeating time event

OOAD 7. State and Activity Diagrams 53

Need of Timing Diagrams

 Although sequence diagrams and

communication diagrams are very similar,

 timing diagrams add completely new information

 that is not easily expressed on any other form of

UML interaction diagram.

OOAD 8. OCL & Timing Diagrams 54

Introducing timing:

osciloscope views

OOAD 8. OCL & Timing Diagrams 55

A logic analyzer captures a sequence of events

as they occur on an electronic circuit board

Events and states on

timing diagrams

 On a timing diagram:

 events are the logic analyzer's signals, and

 states are the states that a participant is placed in

when an event is received.

OOAD 8. OCL & Timing Diagrams 56
Sample timing diagram for a mail server

Source: UML 2.0 in a Nutshell (O'Reilly).

From use case and

requirements…

Sample use case: Create a new Regular

Blog Account

Requirement A.2

 The content management system shall allow

an administrator to create a new regular blog

account, provided the personal details of the

author are verified using the Author

Credentials Database.
OOAD 8. OCL & Timing Diagrams 57

…To sequence diagrams –

sequential ordering…

OOAD 8. OCL & Timing Diagrams 58

Create a new Regular Blog Account interaction

…Through Adding Timing Constraints

in System Requirements…

Requirement A.2 (Updated)

 The content management system shall allow

an administrator to create a new regular blog

account within five seconds of the information

being entered,

 provided the personal details of the author

are verified using the Author Credentials

Database.

OOAD 8. OCL & Timing Diagrams 59

…To a Timing Diagram – first

define the Participants

OOAD 8. OCL & Timing Diagrams 60

Next – add States

OOAD 8. OCL & Timing Diagrams 61

States are

written

horizontally

on a timing

diagram and

next to the

participant

that they are

associated

with

Exact Time Measurements and

Relative Time Indicators

OOAD 8. OCL & Timing Diagrams 62

• Time measurements are

placed on a timing

diagram as a ruler along

the bottom of the page

• Relative time indicators

are particularly useful

when you have timing

considerations such as

"ParticipantA will be in

State1 for half of the time

that ParticipantB is in

State2"

The Participant's State-Line

1/2

OOAD 8. OCL & Timing Diagrams 63

The Participant's

State-Line 2/2

 Create a new Regular Blog Account timing

diagram - updated to show the state of each

participant at a given time during the interaction.

 p1:Participant's state-line indicates that it is in

State1 for 1 unit of time, State2 for three units of

time, and State3 for roughly five units of time

(before returning to State1 at the end of the

interaction)

 In practice, you would probably add both events

and states to a timing diagram at the same time.
OOAD 8. OCL & Timing Diagrams 64

OOAD 8. OCL & Timing Diagrams 65

Create a new Regular

Blog Account timing

diagram

(the single t value

below represents a

single second

wherever it is

mentioned on any

further timing

constraints on the

diagram)

Adding events and

messages

OOAD 8. OCL & Timing Diagrams 66

Events on a timing diagram can even have their own durations, as shown

by event1 taking 1 unit of time from invocation by p1:Participant1 and

reception by p2:Participant2

Participant

state

changes

make much

more sense

when you

can see the

events that

cause them

OOAD 8. OCL & Timing Diagrams 67

Timing Constraints

OOAD 8. OCL & Timing Diagrams 68

Timing constraints can be associated with an

event or a state and may or may not be

accompanied by constraint boundary arrows

Timing Constraints Format

OOAD 8. OCL & Timing Diagrams 69

Timing

Constraint
Description

{t..t+5s} The duration of the event or state should be 5 seconds or less.

{<5s}
The duration of the event or state should be less than 5 seconds.

This is a slightly less formal than {t..t+5s}.

{>5s, <10s}
The duration of the event or state should be greater than 5

seconds, but less than 10 seconds.

{t}
The duration of the event or state should be equal to the value of

t. This is a relative measure, where t could be any value of time.

{t..t*5}

The duration of the event or state should be the value of t

multiplied 5 times. This is another relative measure (t could be

any value of time).

OOAD 8. OCL & Timing Diagrams 70

From when the

:Administrator

clicks on submit

until the point at

which the

system has

created a new

account, no

more than five

seconds have

passed

OOAD 8. OCL & Timing Diagrams 71

• The regular timing

diagram notation (over)

does not scale well

when you have many

participants that can be

put in many different

states during an

interaction's lifetime.

• If a participant is

placed in many different

states during the course

of the interaction, then it

is worth considering

using the alternative

notation (below).

OOAD 8. OCL & Timing Diagrams 72

Note:

the alternate

notation is more

compact and

manageable in a

situation where

there are many

states per

participant

Conclusions
 Interaction timing is most commonly associated with real-time

or embedded systems, but it certainly is not limited to these

domains.

 In a timing diagram, each event has timing information

associated with it that accurately describes:

1. when the event is invoked,

2. how long it takes for another participant to receive the event, and

3. how long the receiving participant is expected to be in a particular

state.

 Although sequence diagrams and communication diagrams

are very similar, timing diagrams add completely new

information that is not easily expressed on any other form of

UML interaction diagram.
OOAD 8. OCL & Timing Diagrams 73

UML 2.x Diagrams

OOAD
8. OCL & Timing Diagrams

74

OOAD 75

