Components and
Deployment Diagrams

Design and Implementation
Components and Component Packages
Dependencies

Processors and Devices

Connections

_Examples

9. Components and Deployment

Bibliography

Basic

e Roger S. Pressman. Software Engineering : A Practitioner's
Approach, 8™ edition (2014), McGraw Hill, ISBN-10:
0078022126

e lan Sommerville. Software Engineering, 10t edition (2015),
Addison-Wesley Pub Co; ISBN-10: 0133943038

e Dennis A, Wixom BH, Tegarden D. Systems Analysis and
Design, UML Version 2.0. Wiley; 2009

Additional

e Software Engineering : Theory and Practice, by S. Pfleeger
and J. Atlee, 4" edition (2009), Pearson International Edition,
ISBN-10: 0136061699

e SDLC (Software Development Life Cycle) Phases,
Methodologies, Process, And Models,
https://www.softwaretestinghelp.com/software-development- .
life-cycle-sdic/

Stages of a typical Software
Development Life Cycle (SDLC)

Design and implementation

e Software implementation is the stage in the
software engineering process at which an
executable software system is developed.

e Software design and implementation activities are
Invariably inter-leaved:
Software design is a creative activity in which you

identify software components and their relationships,
based on a customer’s requirements.

Implementation is the process of realizing the design
as a program.

Build or buy

e In a wide range of domains, it is now possible to buy
component off-the-shelf systems (COTS) that can be
adapted and tailored to the users’ requirements.

For example, if you want to implement a medical records
system, you can buy a package that is already used in
hospitals. It can be cheaper and faster to use this approach
rather than developing a system in a conventional
programming language.

e When you develop an application in this way, the

t
t

design process becomes concerned with how to use

ne configuration features of that system to deliver

ne system requirements.

An object-oriented design
Process

e Structured object-oriented design processes
iInvolve developing a number of different
system models.

e They require a lot of effort for development
and maintenance of these models and, for
small systems, this may not be cost-effective.

e However, for large systems developed by
different groups design models are an
Important communication mechanism.

Process stages

e There are a variety of different object-oriented design
processes that depend on the organization using the
Process.

e Common activities in these processes include:
Define the context and modes of use of the system;
Design the system architecture;
ldentify the principal system objects;

Develop design models;
Specify object interfaces.

e Process Illustrated here using a design for a
wilderness weather station.

00
0000
o0 o0
. . o0 0
4+1 Software architecture views | e:
®
by Kruchten
(y) describes the static
the so-called conceptual organization or structure
view - describes the object of the code in the
model of the design development environment
~
(Object oriente% position) u%ecomposmon)
Logical View — + Developmeént View
Scenarios
(Putting it all
together)
Process View » —\ 1 Physical
(The Process d%sition) (Mapping the re to Hardware)

describes the aspects of \ escrlbes the deployment
competitiveness and [UML use cases of the software on the

synchronization hardware

System context and interactions

e Understanding the relationships between the software
that Is being designed and its external environment is
essential for:

deciding how to provide the required system functionality and
how to structure the system to communicate with its environment.

e Understanding of the context also lets you establish the
boundaries of the system. Setting the system boundaries
helps you decide:

what features are implemented in the system being designed and
what features are in other associated systems.

Context and interaction models

e A system context model is a structural model
that demonstrates the other systems in the
environment of the system being developed.

e An interaction model Is a dynamic model that
shows how the system interacts with its
environment as it Is used.

10

System context for a weather
station

Weather
information 1.n “gﬁﬁ}gﬁr
system

I l..n

| Satellite :

11

Weather station use cases

Control
1 system 1
I 1.n
Weather
information |} 1.n U:faat%gﬁr
system
I\ / 1.n
Satellite

Report
weather

Report status

_ Weather
information
system

4

Reconfigure
Powersave

Remote
control

Control
system

12

Report
% l=> weather

system

Use case description o,

—Report weather

Use case
Actors

Description

Stimulus

Response

Comments

Control
system

Report weather
Weather information system, Weather station

The weather station sends a summary of the weather data that has
been collected from the instruments in the collection period to the
weather information system. The data sent are the maximum, minimum,
and average ground and air temperatures; the maximum, minimum,
and average air pressures; the maximum, minimum, and average
wind speeds; the total rainfall; and the wind direction as sampled at
five-minute intervals.

The weather information system establishes a satellite communication
link with the weather station and requests transmission of the data.

The summarized data is sent to the weather information system.

Weather stations are usually asked to report once per hour but this

frequency may differ from one station to another and may be modified in
the future. 13

Architectural design

e Once interactions between the system and its environment
have been understood, you use this information for designing
the system architecture:

You identify the major components that make up the system and
their interactions, and then

You may organize the components using an architectural pattern
such as a layered or client-server model.

e The weather station is composed of independent subsystems
that communicate by broadcasting messages on a common
Infrastructure.

14

High-level architecture of the

weather station

asubsystemy
Fault manager

«asubsystemn»
Configuration manager

asubsystem»
Power manager

‘ Communication link \

«subsystemy
Communications

«subsystemn»
Data collection

«subsystemy
Instruments

15

Architecture of data collection

system

Data collection

Transmitter

Receiver

WeatherData

16

Analysis object/class
Identification

e ldentifying object classes Is often a difficult part of
object-oriented design.

e There is no 'magic formula' for object
identification. It relies on the skill, experience
and domain knowledge of system designers.

e Object identification Is an iterative process. You
are unlikely to get it right first time.

17

Approaches to identification

e Use a grammatical approach based on a natural
language description of the system (by a hierarchical
decomposition of the software problem).

e Base the identification on tangible things in the
application domain.

e Use a behavioural approach and identify objects
based on what participates in what behaviour.

e Use a scenario-based analysis. The objects,
attributes and methods in each scenario are
Identified.

18

Weather station description

A weather station is a package of software controlled
Instruments which collects data, performs some data
processing and transmits this data for further processing.

The instruments include air and ground thermometers, an
anemometer (for measuring the speed of the wind), a wind
vane (showing the direction of the wind), a barometer and
a rain gauge (pluviometer). Data is collected periodically.

When a command is issued to transmit the weather data,
the weather station processes and summarises the
collected data. The summarised data is transmitted to the
mapping computer when arequest is received.

Weather station measuring
devices

vy

5 B
o O

e e e e e et e A
0000000000000

.

20

Weather station analysis classes

e Object class identification in the weather station system may
be based on the tangible hardware and data in the
system:

Ground Thermometer, Anemometer, Barometer
Application domain objects that are ‘hardware’ objects related to the
Instruments in the system.

Weather station

The basic interface of the weather station to its environment. It
therefore reflects the interactions identified in the use-case model.

Weather data

Encapsulates the summarized data from the instruments.

21

Weather station object classes

WeatherStation WeatherData

identifier airTemperatures
roundTemperatures
reportWeather () E.lindﬂp - EdE
reportStatus () windDirections
powerSave (instruments) pressures
remoteControl {(commands) .
rainfall

reconfigure (commands)
restart (instruments) collect ()
shutdown (instruments) summarize {)

Ground
thermometer

gt_ldent
temperature

get ()
test ()

Anemometer

an_ldent
windSpeed
windDirection
get ()

test ()

Barometer

bar Ident
pressure

height
get ()
test ()

22

Design models

e Design models show the objects and object
classes and relationships between these
entities.

e Static models describe the static structure of
the system In terms of object classes and
relationships.

e Dynamic models describe the dynamic
Interactions between objects.

23

Examples of design models

e Subsystem models that show logical groupings of
objects into coherent subsystems.

e Seguence models that show the sequence of
object interactions.

e State machine models that show how individual
objects change their state in response to events.

e Other models include use-case models,
aggregation models, generalisation models, etc.

24

Subsystem models

e Shows how the design Is organised into logically
related groups of objects.

e In the UML, these are shown using packages - an
encapsulation construct. This is a logical model.
The actual organisation of objects in the system
may be different.

25

Seqguence models

e Sequence models show the sequence of object
Interactions that take place

Objects are arranged horizontally across the top;

Time Is represented vertically so models are read top
to bottom;

Interactions are represented by labelled arrows,
Different styles of arrow represent different types of
Interaction;

A thin rectangle in an object lifeline represents the time
when the object is the controlling object in the system.

26

Sequence diagram describing
data collection

Weather
information system
/’E SatComms WeatherStation :Commslink WeatherData
. request [lepurl']x‘i
ackmowl |
—| | reportWeather {}“ K
< acknowledge | | get (summary) _* summarize ()
- oo
1O ULS send (report)
acknowledge
reply (report) >L
‘ 1
knowled
_ SCRNOWECEE .,

27

State diagrams

e State diagrams are used to show how objects
respond to different service requests and the
state transitions triggered by these requests.

e State diagrams are useful high-level models of a
system or an object’s run-time behavior.

e You don’t usually need a state diagram for all of
the objects in the system. Many of the objects In
a system are relatively simple and a state model
adds unnecessary detail to the design.

28

Weather station state diagram

g ™
| Controlled |
'-"'H-\.‘__ __'_,-"I
A
Operation
I shutdown() remoteControl ()
™ s ~. reportStatus() _
| Shutdown i restart) - Running] - Testing)
I"-._‘ r II'\"- _d.-'": ll""w-h_ ___.-"'
] - . A f transmission done test complete
configuration done |
IECDHHSEUIEG :'; Transmitting)
y P =) dock collection A A
' ™ done reportWeather()
| Configuring — | " weather summary
- vy — L —. |ff5ummarizing | Sl
F h J
. Collecting)
LH)

29

Interface specification

Object interfaces have to be specified so that the
objects and other components can be designed in
parallel.

Designers should avoid designing the interface
representation but should hide this in the object
itself.

Objects may have several interfaces which are
viewpoints on the methods provided.

The UML uses class diagrams for interface
specification but Java may also be used.

30

Weather station interfaces

sinterfaces
Reporting

weatherReport (W5-ident): Wreport
statusReport (WS-ldent): Sreport

sinterfaces
Remote Control

startinstrument{instrument): i5tatus
stopinstrument (instrument): iStatus
collectData (instrument); 15tatus
provideData (instrument): string

31

Key points

Software design and implementation are inter-leaved activities.
The level of detail in the design depends on the type of system
and whether you are using a plan-driven or agile approach.

The process of object-oriented design includes activities to
design the system architecture, identify objects in the system,
describe the design using different object models and
document the component interfaces.

A range of different models may be produced during an object-
oriented design process. These include static models (class
models, generalization models, association models) and
dynamic models (sequence models, state machine models).

Component interfaces (+ their stereotypes) must be defined
precisely so that other objects can use them.

32

The Implementation Model
In the Component View

An implementation model is a
collection of components, and the

= Implementation subsystems which
=1 II,r = contain them.
H‘“- - A component diagram has a higher

level of abstraction than a Class
Diagram - usually a component is
Implemented by one or more classes
(or objects at runtime).

OOAD 9. Components and Deployment Diagrams 33

Components

e Components are building blocks so a
component can eventually encompass a large
portion of a system.

e Components include both deliverable
components, such as executables, and
components from which the deliverables are
produced, such as source code files.

OOAD 9. Components and Deployment Diagrams 34

Implementation Model ooe
in the Component View °
The implementation model is a hierarchy of
implementation subsystems, with leaves (1
that are components. There is a package
that serves as the top-level (root) node in Top-Level Package
the implementation model. A subsystem is a —
collection of components and other = =] ”
subsystems. e | =]
The implementation model can be divided Implementation Subsystems
Into components that are deliverables, such
as executables that are delivered to .
customers; and those components from
which the deliverables are produced, such Components

as source code.

OOAD 9. Components and Deployment Diagrams 35

Implementation Model - Example

Example: In a banking system the implementation subsystems are
organized as a flat structure in the top-level node of the
implementation model. Another way of viewing the subsystems in

the implementation model is in layers.

"o p—lnlavelfm ot"

1 1 1 1 1 1 1 1 1

Telephone ... Trading . Relatanal Operating
BEanlking Ser‘r*il:es Database SyStem
fanagement

-t 1rtr 1l
Components (source code files and executables)

The implementation model for a banking system, showing the
ownership hierarchy.

OOAD 9. Components and Deployment Diagrams 36

Implementation Subsystems. sss.
Component Packages. 13
An implementation subsystem is a

collection of components and other
Implementation subsystems that are used to
structure the implementation model by

dividing it into smaller parts.

Subsystems take the form of directories, with additional structural
or management information. For example, a subsystem can be
created as a directory or a folder in a file system, or a subsystems
in Rational for C++ or Ada, or packages using Java.

Component packages represent clusters of logically related
components, or major pieces of your system. Component packages
parallel the role played by logical packages for class diagrams.
They allow you to partition the physical model of the system.

OOAD 9. Components and Deployment Diagrams 37

Components

A component represents a piece of
software code (source, binary or
executable, relational schema), or a file
containing information.

A component can also be an aggregate
of other components (i.e., an application
consisting of several executables can be
a component).

Components may have stereotypes:
<<component>>, <<subsystem>>,

OOAD 9. Components and Deployment Diagrams 38

Components - examples ’

Examples of deliverable components

Executables .exe files

Load libraries dll files
Applets .class for Java
Database tables SQL scripts

Examples of components from wh

ich deliverables are produced

Source code files

.n, .cpp and .hpp files for C++,
CORBA IDL, or .java for Java

Binary files

.0 files that are linked Into
executables

OOAD

9. Components and Deployment Diagrams

39

Components and packages

e Components are similar in practice to package
diagrams, as they define boundaries and are used to
group elements into logical structures.

e The difference between package diagrams and
component diagrams is that Component Diagrams
offer a more semantically-rich grouping mechanism.

OOAD 9. Components and Deployment Diagrams 40

Components — presentation and
specification

An interface circle attached to the component icon means that the
component supports that particular interface. There is no explicit
relationship arrow between a component and its interfaces.

! -
I | IE}

Int=

I CCaOarmipoaornne s

Component Specification contains tabs such as:

o General — stereotypes (Main Program, Package Body,
Package Specification, Subprogram Body, Subprogram
Specification, Task Body, and Task Specification) and /language

® Detail — declarations (as #Include)

o Realizes — classes building the component

® Files - attached files or URLs

OOAD 9. Components and Deployment Diagrams 41

Component Diagrams. Dependencies

A component diagram shows a collection of
declarative (static) model elements, such as

é_rd T +HT1| | components, and implementation subsystems,
EJ_‘I and their relationships.

A dependency from a component Ato a
__________ , | component B indicates component A has a
compilation dependency, or a run-time
dependency to B.

A compilation dependency exists from one

component to the components that are needed to§ M

compile the component (i.e., #include _
statements in C++, or import in Java). = mvoice

Example: Invoicing_UlI (the top), requires Invoice, I

which requires Order to compile. % Order

OOAD 9. Components and Deployment Diagrams 42

Import Dependency Among Packages

* An import dependency in the implementation model is a
stereotyped dependency whose source is an /implementation
subsystem and whose target is another implementation subsystem.
* A component in a client subsystem can only compile against
components in a supplier subsystem, if the client subsystem imports
the supplier subsystem.

The subsystem Telephone

Telephone Banking Banking has an import
% A dependency to the
| ; subsystem Trading
==lmport=:= ==compilation== SerViceS, aIIOWing
Trading Services components in Telephone
e Banking to compile against
% = public (visible) components

in Trading Services.

OOAD 9. Components and Deployment Diagrams

Assembly connectors (UML 2.%)

e The assembly connector bridges a component’s required
Interface (Componentl) with the provided interface of
another.component (Component?2);

e The assembly connector allows one component to provide
the services (the boll) that another component requires
(the socket).

id Required Interfaces /

3] 3]

v
Componenti Q Component2

OOAD 9. Components and Deployment Diagrams 44

Components with ports (UML 2.%)

Ports model related interfaces

They allow for a service or behavior to
be specified to its environment as well
as a service or behavior that a 7]
component requires. rderrrosess

Ports may specify inputs and outputs
as they can operate bi-directionally. g (y OreerEnty, Tracing

id Component with Ports /

Example: a component with a port for Fﬁrﬂ
online services along with two

ling Services
provided interfaces order entry and
tracking as well as a required interface
payment.

OOAD 9. Components and Deployment Diagrams 45

Focusing on the key components
and interfaces

: FeedProvider
< <COMmponent=-> . .D — Databource
BroadcastEngine : > << (OMponent>= a:] T, S <<(omponent>> EZI
eed Provider ConversionManagement BlogDataSource

—70— DataSource

» 1
< <omponents> E:l .ot iy Coerter o
i DisplayConverter i
" v/
? Logger
f:-:mn'-punent::::il

Source: Learning UML 2.0, Log4)
by Kim Hamilton and Russell Miles,

O'Reilly 2006.

OOAD 9. Components and Deployment Diagrams 46

Focusing on component
dependencies and manifesting

Interfaces

< <component>> Hj gl
L —(--3 Oﬁ DataSource
BroadcastEngine y > <<component>> a:] ¢-->0 <<¢°Wﬂfﬂt>>aj
FeedProvider ConversionManagement < BlogDataSource
DataSource
DisplayCanverter l
<<component>> E:I .
BlogViewer ¢ :
DisplayConverter v
?
<<component>> ﬂ
Log4j

Source: Learning UML 2.0,
by Kim Hamilton and
Russell Miles,

O’Reilly 2006.

OOAD

<<omponent>>
BroadcastEngine

< <required interfaces>>
FeedProvider

< <artifacts s
broadcastEngine jar

< <required interfaces>>
DisplayConverter

<< artifacts s

blogViewer jar

<<tomponent>>
(onversionManagement E

<< provided interfaces >
FeadProvider
DisplayConverter
<<required interfages>>
DataSource

<<atifacts>> _
conversionManagement jar

v

<<component>>
BlogDataSource

<<provided interfaces>>
DataSource

<<fequired interfaces>>

Logger

<< artifacts >
blogdata.jar

9. Components and Deployment Diagrams

<<component>>
Logd)

8]

<< provided interfaces>>»
Logger

< <artifacts> >
logd].jar

47

Classes realizing a component —

alternative views

<<(0mponent>>
BlogDataSource E

DataSource

O———-

1

OOAD

Blog

<< omponent> E
BlogDataSource
+ LY
J‘ I"'n-
; *J "r‘ i

|<:%

< << CoOmponent>>
BlogDataSource

= < provided interfaces >
DataSource

< <required interfaces= >
Logger

< < realizations ==
Blog,
Entry

< << artifacts=>
blogData.jar

9. Components and Deployment Diagrams

Entry

48

Case Study: ATM example
(IBM Rose XDE)

= 3 Use Case View AI
= 3 Use-Case Model

<

S
ABC
=2-0 /;dz;?M % & % Authenticate User
[CS 3 etwor F22 | e
2 Customer — T . il
= _5:“ Operator — % S
=, Associations 2 N
=3 Use Cases - o T Conduct Transactions A e Mo
= 3 Conduct Transactions = - T i D
= <<= Conduct Transactions i
€2 Local View - Conduct Trans_| =4
<> theCustomer { Customer)
S theAuthenticate User ({ Auths
T theAThM Network { AT Net Q
< theConduct Transactions (
3’ theConduct Transactions (jinquire into Balances Deposit Funds Dispense Value Transfer Funds
< theCustomer Profile { Custo Qrom hquire hD S3tces) VoM Depos RF1aa) Mom DEpeire Walie) . (Pom Tas®s Fuaa

—_— SR
— Associations
D

08
00

2 Local View - Dispense Cas
< theDispense Cash (Disper Dispense Cash
=, Associations
= 3 Dispense Fuel

&, 2

Dispens= Fuel
oo DEpesse Foel

0
U
(0]
T
0
3
[0)]
0
0
o
0
J

vom Dipesse T3

T his use case is also

= [Dispense VYalue abstract and represents
a framewsodk for

=3 Included Use Cases S anglin Rl I
= 3 Inquire into Balances account for something
=3 Maintain System sl he Dyelain o8n
= 3 Transfer Funds s =

€2 Architecturally Significant Use-Cas

=, Associations % R %
s | Global View of Actors and Use Casesl S

- l — . — l % > Ogpaerator Maintain System AT M MNebwod
avom Scoen Kpvcm WE I Sy Sl om Aoy

ATM Use Cases ancf Actors — Global View

OOAD 9. Components and Deployment Diagrams 49

ATM Example — Use Cases Local Views

Dam «CreItorModMoItos e -

FPOOroued Dy = pames
OIe : =approual e

:
0
| X

< >

Authenticate User

=<include>=>

A > s X

Conduct Transactions AT Network

it: Use Case Diagram: Dispense Cash / Local View

C reTRCHOCINET Dy < 2Ie >

Foprcoea e
% '}'Q >% oazcwgfo:-c-r—
Customer Conduct Transactions AT 0 Nebwo
i rom Cosde AN ICVDONE) avom Seores

Dispense Yalue Dispense Cash

Orom D Epe sse Valee) ~

< | 1 > [

ATM Example — Component View

(1)

=-3 Domain-specific Layer
= B3 Dispenser
8 Domain-specific Layer Depend:
@ B Transaction Coordinator
=, Associations
33 Process View
-3 System Services Layer
;-0 Use-Case Realizations
B Architecturally Significant Model Ele
8] Architecture Overview - Package al
=, Associations
8] Logical View Dependencies
= Associations
= 3 Component View
= 3 Implementation Model
= (3 <<subsystem>> Automated Teller
£ ATM
#] <<EXE>> ATM
] <<DLL>> CashDispenser
=3 <<subsystem>> Fuel Pump
€ Fuel Pump
£] <<EXE>> Fuel Pump
%] <<DLL>> FuelDispenser
= (3 System Services
2] <<DLL>> ATM Network
£] <<DLL>> Card Reader

L*] &8

£] <<DLL>> Card Validator

=0 Deployment View
9 ATM Network Gateway
= [ATM Node
& ATM Network Interface
~=

<«

=l

YMemomo. DA DEr

=

<<subsystem>>

Fuel Pump

I

[ty System Services

<<subsystem=>>
Automated
Teller

- - - - - Dt
| >

ATM

Card Reader

<«

CashDisp
enser

Card
Validator

ATM
Network

:5 ATM
Network

The implementation model is built by three subsystems

OOAD

9. Components and Deployment Diagrams

51

N

ATM Example:
Component Specification

Component Specification for Card Readler

ZixI] i a3l =
Conoral = : =<=subsystem>=>>= —rs
'Detenl l Rea.llzesl Files l Aatornated
Name: IEard Reader --- Teller
Stereotype: |[SIEE ~| Language: |Java el |
Documentatif=-"— = _—
Generic Package - | _@'
Genernic Subprogr =
Main Program e —
Package Body = ;lg.l_ﬁl
Package Specific ™ A'
CashDisp
enser
I O I Cancel l Apphs l Browse v l Help]
3 e ATM
: Card _ W Network
é Reader 2
AT
Card Reader Nebwork ==
L1 I []
OOAD 9. Components and Deployment Diagrams

52

00
o000
ATM Example:
Xample. oo
L X
Component Specification - 2 -

X e
| & =
ABC

Card
= % 2= | = — =, stitiator
-2 ~ S Card~alidat
= ._' ‘\‘\ or E
(= : -
= - -
O =z AThA
£1 R s o e we X Network
=1
ATrA
=7 MNetwork
=
[t y FuelDispenser
- I : 5|
L I~
Fuel - -3 =
Card Dispenser
Card Reader EE]I Hewxies
?' ><

< |

General I Detail

I Show all classes

Realizes Il-ules I

Class Name

l Logical Package

l Language

—= Fuel Dispenser
B FPump Controller
B rump

E Fuel Sensor

Fuel Dispenser Anabsrsis
Anabyrsis
Anabyrsis

Analbysis

Fuel Dispenser
Fuel Dispenser
Fuel Dispenser

The Fuel Dispenser component realizes one interface and three cIasses

9. Components and Deployment Diagrams

OOAD

<

ATM Example: Class Specification shows Built

Components

Fuel Sensor

Rfuellevel - Number = 0O

SrankEmpty)
SoverFloww()

Sensor

==realize== 1..1 N
controlier Pump Controller prmp Eliiraiz,
Q ‘Ol"l()
1.9 SpumpOn 1.7
Fuel [S P) o)
Dispenser
BEN class Specification for Fuel Sensor 21>
General l Detail | Operations | Attributes
Relations Components Nested | Files |

I~ Show all components

Component Nam= l Package Name

1 Langusasge |

|
The Fuel Sensor is one of the classes building the Fuel Dispenser
component

OOAD

SMFuelDispenser Fusl Pump

E=EIATERA Automated Teller
= JjCashDispenser Automated Teller
= jFueel Pump Fuel Pump

= JCard Validator System Services
= JAT M Network System Services
= JCard Reader System Services

Anabrsis
Anabrsis
Analbysis
Anabrsis
Analbrsis
Analbyvsis
Anabrsis

9. Components and Deployment Diagrams

> [

54

ATM Example:
_Code Generation

>

ABC 2T hA

= =Sl . .

=1 : T Cardvalidat

= : St or

= s -

D ‘\

- “‘\

O e

= e

- £ \\

=7 -
= =1 =

) C\i\} q I ;) CardReader
1
L]

Open Specificaton...

Open Standard Specificaton...
Select In Browser

Stereotype Dbisplay

Formatc

CardReader

Cata Modeler

OOAD

| X N J
o000
(X NN
o0 0
| X J
@
=1
CashDisp
enser
Card
Yalhidator
- -
% : AT
\:\é Netvwwork
T
Dwvork
>
»
Project Specificaton...
" Syntax Check
Browse Java Sowrce
Reverse Engineer 3ava...
~|
» <™

, |
Note: first specify the Classpath etc. in the "Project

9. Components and Deployment Diagrams

Specification...” menu

55

Deployment Diagrams

The deployment architectural view shows the configuration of run-
time processing elements and the software processes living in them.
Deployment diagrams are created to show the different nodes
along with their connections in the system. They represent system
topology and mapping executable subsystems to processors.

Issues concerned:
processor architecture
Speed
Inter-process communication and synchronization
etc.

A deployment diagram shows processors, devices, and connections.
Each model contains a single deployment dlagram which shows the

connections between its processors and devices, and the allocation

of Its processes to processors.

OOAD 9. Components and Deployment Diagrams 56

Nodes

A node is a hardware or software resource that can
host software or related files. You can think of a
software node as an application context; generally not
part of the software you developed, but a third-party
environment that provides services to your software

hardware nodes execution environment nodes
Server Operating system
Desktop PC J2EE container
Disk drives Web server

Application server

OOAD 9. Components and Deployment Diagrams 57

Artifacts within nodes

e Drawing an artifact inside a node shows that the artifact is
deployed to the node

o BUt Where |S \]VM’) -> < < devie s>
Desktop PC

O

<<artifact=>
ddpacman.jar

e Your deployment diagrams should contain details about your
system that are important to your audience. If it is important to
show the hardware, firmware, operating system, runtime
environments, or even device drivers of your system, then you
should include these in your deployment diagram.

OOAD 9. Components and Deployment Diagrams 58

Processors, Devices and Connections

Processor - identify its processes
and specify the type of process

scheduling (preemptive, non- seneauning [
preemptive, cyclic, executive, Process e [72

manual).

Device — in some models: a
hardware component with no or
restricted computing power (i.e.,
"modem"” or "terminal”); in others:
specialization of node.

Connection - represents some
type of hardware coupling between
two entities. An entity Is either a
processor or a device. The
hardware coupling can be direct,
such as an RS232 cable, or

Computer

indirect, such as satellite-to-ground
C®m m u n |Cat|0n . 9. Components and Deployment Diagrams

T

Connection

Dizplay

59

ATM Example:
Deployment Diagram

R
=3 <<subsystem>> Auto - |
& ATM o
=] <<EXE>> ATM E
7

Cash Display

#£] <<DLL>> CashDis . Log Di
ispenser

=3 <<subsystem>> Fuel (= Device
€] Fuel Pump
=] <<EXE>> Fuel Pur)
=] <<DLL>> FuelDisg
=3 System Services Receipt
=] <<DLL>> ATM Ne Printer ATM Node Keypad

ERE<<DLL>> Card Re

£] <<DLL>> Card Va /
€ Implementation Mods E[r%cessor ATM Node]

€ Main Card v

=10 Deployment View Reader .

3 ATM Network Gateway Network

= (P ATM Node £ loreempave Interface

& ATM Network Interft 2]

B CustomerInterface ATM Main
- Customer Interface

& Device Controller Processor: ATM Network Interface
& ATM Main * 200 Mhz Pentium Device Controller T-1 network ﬁ

Fuel Pump Memaory: connection

Card Reader * 64 Mb

()

(1

() Cash Dispenser

(3 Display

g Keypad ATM Network
(=

()

(=

T
Network
Interface

Network Interface

Pump
Receipt Printer
&3 Model Properties =

presmptive
| | s

UML deployment diagram [Bruegge & Dutoit’

——

myMac :Mac :UnixHost
: :Safari i s :% :WebServer
£ !
/
/
apPC:PC / | :UnixHost
/7 |

[A
:IExpliorer / :Database

Figure 7-2 A UML deployment diagram representing the allocation of components to different nodcs.and
the dependencics among components. Web browsers on PCs and Macs can access a WebServer that provides

information from a Database,
OOAD 9. Components and Deployment Diagrams 61

——

The refined diagram [Bruegge & Dutoit]

The deplovment diagram in Figure 7-2 focuses on the allocation of components (o nodes
and provides a high-level view of cach component. Components can be refined to include
information about the interfaces they provide and the classes they contain. Figure 7-3 illustrates
the GET and POST interfaces of the WebServer component and its containing classes.

A wWebServer |
URT e) GET

e

[j‘_. - — —<O POST
P ——— OBQuery
[HupRequcstJ
[’ File DEResu It
|

Figure 7-1 Refined view of the webSe rver component (UML deployment diagram). WebServer provides
two interfaces a browser can either CEY the content of a file referred by a URL or POST a form.

OOAD 9. Components and Deployment Diagrams 62

The MyTrip example [Bruegge & Dutoit]

In MyTrip, we deduce from the requirements that PlanningSubsystem and
RoutingSubsystem run on two different nodes: the former is a Web-based service on an Internet
host, the latter runs on the onboard computer. Figure 7-4 illustrates the hardware allocation for
MyTrip with two nodes called :0nBoardComputer and :WebServer.

{Onsoardeer :WebServer

% RoutingSubsystem ¥ T T E PlanningSubsystes

ﬂgu:'r 7-4 Allocation of MyTrip subsystems 1o hardware (UML deployment diagram).
RoutingSubsystem runs on the OnBoardComputer; PlanningSubsystem runs on a WebServer.

OOAD 9. Components and Deployment Diagrams 63

Visud Pamdigm for UML Standad Edion

A real
example

nopaeaHe 1 cnegeHe
Ha oHNallH 3aaBkK
3a BNMCBaHWA

aHOHWMHW OH NaiH CNpaekn

othnaitH cain

OOAD 9. Components and Deployment Diagrams 64

UML 2.x Diagrams
Diagram
[|
Behaviour structure
Diagram Diagram
2 i
Activity State Machine Class Component Object
Diagram Diagram Diagram Diagram Diagram
—— - orpeste Deployment Package
[ce (3% SIMUCIL S .
. . i Diagram Diagram
Diagram Diagram — J J
Profile
Diagram
Communication plerachon Sequence Timing
. UVETVIEW . .
Diagram Diagram Diagram Diagram
OOAD

8. OCL & Timing Diagrams

