
OOAD 9. Components and Deployment Diagrams 1

Components and

Deployment Diagrams

Design and Implementation

Components and Component Packages

Dependencies

Processors and Devices

Connections

Examples

Bibliography
Basic

 Roger S. Pressman. Software Engineering : A Practitioner's
Approach, 8th edition (2014), McGraw Hill, ISBN-10:
0078022126

 Ian Sommerville. Software Engineering, 10th edition (2015),
Addison-Wesley Pub Co; ISBN-10: 0133943038

 Dennis A, Wixom BH, Tegarden D. Systems Analysis and
Design, UML Version 2.0. Wiley; 2009

Additional

 Software Engineering : Theory and Practice, by S. Pfleeger
and J. Atlee, 4th edition (2009), Pearson International Edition,
ISBN-10: 0136061699

 SDLC (Software Development Life Cycle) Phases,
Methodologies, Process, And Models,
https://www.softwaretestinghelp.com/software-development-
life-cycle-sdlc/

2

Stages of a typical Software

Development Life Cycle (SDLC)

3

Design and implementation

 Software implementation is the stage in the

software engineering process at which an

executable software system is developed.

 Software design and implementation activities are

invariably inter-leaved:

 Software design is a creative activity in which you

identify software components and their relationships,

based on a customer’s requirements.

 Implementation is the process of realizing the design

as a program.
4

Build or buy

 In a wide range of domains, it is now possible to buy

component off-the-shelf systems (COTS) that can be

adapted and tailored to the users’ requirements.

 For example, if you want to implement a medical records

system, you can buy a package that is already used in

hospitals. It can be cheaper and faster to use this approach

rather than developing a system in a conventional

programming language.

 When you develop an application in this way, the

design process becomes concerned with how to use

the configuration features of that system to deliver

the system requirements. 5

An object-oriented design

process

 Structured object-oriented design processes
involve developing a number of different
system models.

 They require a lot of effort for development
and maintenance of these models and, for
small systems, this may not be cost-effective.

 However, for large systems developed by
different groups design models are an
important communication mechanism.

6

Process stages

 There are a variety of different object-oriented design

processes that depend on the organization using the

process.

 Common activities in these processes include:

 Define the context and modes of use of the system;

 Design the system architecture;

 Identify the principal system objects;

 Develop design models;

 Specify object interfaces.

 Process illustrated here using a design for a

wilderness weather station.
7

4+1 Software architecture views
(by Kruchten)

8

the so-called conceptual

view - describes the object

model of the design

describes the aspects of

competitiveness and

synchronization

describes the static

organization or structure

of the code in the

development environment

describes the deployment

of the software on the

hardware
UML use cases

System context and interactions

 Understanding the relationships between the software

that is being designed and its external environment is

essential for:

 deciding how to provide the required system functionality and

 how to structure the system to communicate with its environment.

 Understanding of the context also lets you establish the

boundaries of the system. Setting the system boundaries

helps you decide:

 what features are implemented in the system being designed and

 what features are in other associated systems.
9

Context and interaction models

 A system context model is a structural model

that demonstrates the other systems in the

environment of the system being developed.

 An interaction model is a dynamic model that

shows how the system interacts with its

environment as it is used.

10

System context for a weather

station

11

Weather station use cases

12

Use case description

—Report weather

System Weather station

Use case Report weather

Actors Weather information system, Weather station

Description The weather station sends a summary of the weather data that has

been collected from the instruments in the collection period to the

weather information system. The data sent are the maximum, minimum,

and average ground and air temperatures; the maximum, minimum,

and average air pressures; the maximum, minimum, and average

wind speeds; the total rainfall; and the wind direction as sampled at

five-minute intervals.

Stimulus The weather information system establishes a satellite communication

link with the weather station and requests transmission of the data.

Response The summarized data is sent to the weather information system.

Comments Weather stations are usually asked to report once per hour but this

frequency may differ from one station to another and may be modified in

the future. 13

Architectural design

 Once interactions between the system and its environment

have been understood, you use this information for designing

the system architecture:

 You identify the major components that make up the system and

their interactions, and then

 You may organize the components using an architectural pattern

such as a layered or client-server model.

 The weather station is composed of independent subsystems

that communicate by broadcasting messages on a common

infrastructure.

14

High-level architecture of the

weather station

15

Architecture of data collection

system

16

Analysis object/class

identification

 Identifying object classes is often a difficult part of

object-oriented design.

 There is no 'magic formula' for object

identification. It relies on the skill, experience

and domain knowledge of system designers.

 Object identification is an iterative process. You

are unlikely to get it right first time.

17

Approaches to identification

 Use a grammatical approach based on a natural

language description of the system (by a hierarchical

decomposition of the software problem).

 Base the identification on tangible things in the

application domain.

 Use a behavioural approach and identify objects

based on what participates in what behaviour.

 Use a scenario-based analysis. The objects,

attributes and methods in each scenario are

identified.
18

Weather station description

A weather station is a package of software controlled

instruments which collects data, performs some data

processing and transmits this data for further processing.

The instruments include air and ground thermometers, an

anemometer (for measuring the speed of the wind), a wind

vane (showing the direction of the wind), a barometer and

a rain gauge (pluviometer). Data is collected periodically.

When a command is issued to transmit the weather data,

the weather station processes and summarises the

collected data. The summarised data is transmitted to the

mapping computer when a request is received.
19

Weather station measuring

devices

20

Weather station analysis classes

 Object class identification in the weather station system may

be based on the tangible hardware and data in the

system:

 Ground Thermometer, Anemometer, Barometer
 Application domain objects that are ‘hardware’ objects related to the

instruments in the system.

 Weather station
 The basic interface of the weather station to its environment. It

therefore reflects the interactions identified in the use-case model.

 Weather data
 Encapsulates the summarized data from the instruments.

21

Weather station object classes

22

Design models

 Design models show the objects and object

classes and relationships between these

entities.

 Static models describe the static structure of

the system in terms of object classes and

relationships.

 Dynamic models describe the dynamic

interactions between objects.
23

Examples of design models

 Subsystem models that show logical groupings of

objects into coherent subsystems.

 Sequence models that show the sequence of

object interactions.

 State machine models that show how individual

objects change their state in response to events.

 Other models include use-case models,

aggregation models, generalisation models, etc.

24

Subsystem models

 Shows how the design is organised into logically

related groups of objects.

 In the UML, these are shown using packages - an

encapsulation construct. This is a logical model.

The actual organisation of objects in the system

may be different.

25

Sequence models

 Sequence models show the sequence of object
interactions that take place

 Objects are arranged horizontally across the top;

 Time is represented vertically so models are read top
to bottom;

 Interactions are represented by labelled arrows,
Different styles of arrow represent different types of
interaction;

 A thin rectangle in an object lifeline represents the time
when the object is the controlling object in the system.

26

Sequence diagram describing

data collection

27

asynchro

nous

synchron

ous

State diagrams

 State diagrams are used to show how objects
respond to different service requests and the
state transitions triggered by these requests.

 State diagrams are useful high-level models of a
system or an object’s run-time behavior.

 You don’t usually need a state diagram for all of
the objects in the system. Many of the objects in
a system are relatively simple and a state model
adds unnecessary detail to the design.

28

Weather station state diagram

29

Interface specification

 Object interfaces have to be specified so that the

objects and other components can be designed in

parallel.

 Designers should avoid designing the interface

representation but should hide this in the object

itself.

 Objects may have several interfaces which are

viewpoints on the methods provided.

 The UML uses class diagrams for interface

specification but Java may also be used.
30

Weather station interfaces

31

Key points

 Software design and implementation are inter-leaved activities.

The level of detail in the design depends on the type of system

and whether you are using a plan-driven or agile approach.

 The process of object-oriented design includes activities to

design the system architecture, identify objects in the system,

describe the design using different object models and

document the component interfaces.

 A range of different models may be produced during an object-

oriented design process. These include static models (class

models, generalization models, association models) and

dynamic models (sequence models, state machine models).

 Component interfaces (+ their stereotypes) must be defined

precisely so that other objects can use them.
32

OOAD 9. Components and Deployment Diagrams 33

The Implementation Model

in the Component View

An implementation model is a

collection of components, and the

implementation subsystems which

contain them.

A component diagram has a higher

level of abstraction than a Class

Diagram - usually a component is

implemented by one or more classes

(or objects at runtime).

Components

 Components are building blocks so a

component can eventually encompass a large

portion of a system.

 Components include both deliverable

components, such as executables, and

components from which the deliverables are

produced, such as source code files.

OOAD 9. Components and Deployment Diagrams 34

OOAD 9. Components and Deployment Diagrams 35

Implementation Model

in the Component View

The implementation model is a hierarchy of
implementation subsystems, with leaves
that are components. There is a package
that serves as the top-level (root) node in
the implementation model. A subsystem is a
collection of components and other
subsystems.

The implementation model can be divided

into components that are deliverables, such

as executables that are delivered to

customers; and those components from

which the deliverables are produced, such

as source code.

OOAD 9. Components and Deployment Diagrams 36

Implementation Model - Example

Example: In a banking system the implementation subsystems are
organized as a flat structure in the top-level node of the
implementation model. Another way of viewing the subsystems in

the implementation model is in layers.

The implementation model for a banking system, showing the

ownership hierarchy.

OOAD 9. Components and Deployment Diagrams 37

Implementation Subsystems.

Component Packages.

Subsystems take the form of directories, with additional structural
or management information. For example, a subsystem can be
created as a directory or a folder in a file system, or a subsystems
in Rational for C++ or Ada, or packages using Java.
Component packages represent clusters of logically related
components, or major pieces of your system. Component packages
parallel the role played by logical packages for class diagrams.
They allow you to partition the physical model of the system.

An implementation subsystem is a

collection of components and other

implementation subsystems that are used to

structure the implementation model by

dividing it into smaller parts.

OOAD 9. Components and Deployment Diagrams 38

Components

A component represents a piece of

software code (source, binary or

executable, relational schema), or a file

containing information.

A component can also be an aggregate

of other components (i.e., an application

consisting of several executables can be

a component).

Components may have stereotypes:

<<component>>, <<subsystem>>, ….

OOAD 9. Components and Deployment Diagrams 39

Components - examples

Examples of deliverable components

Executables .exe files

Load libraries .dll files

Applets .class for Java

Database tables SQL scripts

Examples of components from which deliverables are produced

Source code files .h, .cpp and .hpp files for C++,

CORBA IDL, or .java for Java

Binary files .o files that are linked into

executables

Components and packages

 Components are similar in practice to package

diagrams, as they define boundaries and are used to

group elements into logical structures.

 The difference between package diagrams and

component diagrams is that Component Diagrams

offer a more semantically-rich grouping mechanism.

OOAD 9. Components and Deployment Diagrams 40

OOAD 9. Components and Deployment Diagrams 41

Components – presentation and

specification

An interface circle attached to the component icon means that the
component supports that particular interface. There is no explicit
relationship arrow between a component and its interfaces.

Component Specification contains tabs such as:
 General – stereotypes (Main Program, Package Body,

Package Specification, Subprogram Body, Subprogram
Specification, Task Body, and Task Specification) and language

 Detail – declarations (as #Include)

 Realizes – classes building the component
 Files - attached files or URLs

OOAD 9. Components and Deployment Diagrams 42

Component Diagrams. Dependencies

A component diagram shows a collection of

declarative (static) model elements, such as

components, and implementation subsystems,

and their relationships.

A dependency from a component A to a

component B indicates component A has a

compilation dependency, or a run-time

dependency to B.

A compilation dependency exists from one
component to the components that are needed to
compile the component (i.e., #include

statements in C++, or import in Java).
Example: Invoicing_UI (the top), requires Invoice,

which requires Order to compile.

OOAD 9. Components and Deployment Diagrams 43

Import Dependency Among Packages

• An import dependency in the implementation model is a
stereotyped dependency whose source is an implementation
subsystem and whose target is another implementation subsystem.
• A component in a client subsystem can only compile against
components in a supplier subsystem, if the client subsystem imports
the supplier subsystem.

The subsystem Telephone

Banking has an import

dependency to the

subsystem Trading

Services, allowing

components in Telephone

Banking to compile against

public (visible) components

in Trading Services.

Assembly connectors (UML 2.*)

 The assembly connector bridges a component’s required

interface (Component1) with the provided interface of

another component (Component2);

 The assembly connector allows one component to provide

the services (the boll) that another component requires

(the socket).

OOAD 9. Components and Deployment Diagrams 44

Components with ports (UML 2.*)

 Ports model related interfaces

 They allow for a service or behavior to

be specified to its environment as well

as a service or behavior that a

component requires.

 Ports may specify inputs and outputs

as they can operate bi-directionally.

 Example: a component with a port for

online services along with two

provided interfaces order entry and

tracking as well as a required interface

payment.
OOAD 9. Components and Deployment Diagrams 45

Focusing on the key components

and interfaces

OOAD 9. Components and Deployment Diagrams 46

Source: Learning UML 2.0,

by Kim Hamilton and Russell Miles,

O’Reilly 2006.

Focusing on component

dependencies and manifesting

interfaces

OOAD 9. Components and Deployment Diagrams 47

Source: Learning UML 2.0,

by Kim Hamilton and

Russell Miles,

O’Reilly 2006.

Classes realizing a component –

alternative views

OOAD 9. Components and Deployment Diagrams 48

OOAD 9. Components and Deployment Diagrams 49

Case Study: ATM example

(IBM Rose XDE)

ATM Use Cases and Actors – Global View

OOAD 9. Components and Deployment Diagrams 50

ATM Example – Use Cases Local Views

OOAD 9. Components and Deployment Diagrams 51

ATM Example – Component View

The implementation model is built by three subsystems

OOAD 9. Components and Deployment Diagrams 52

ATM Example:

Component Specification

OOAD 9. Components and Deployment Diagrams 53

ATM Example:

Component Specification - 2

The Fuel Dispenser component realizes one interface and three classes

OOAD 9. Components and Deployment Diagrams 54

ATM Example: Class Specification shows Built

Components

The Fuel Sensor is one of the classes building the Fuel Dispenser
component

OOAD 9. Components and Deployment Diagrams 55

ATM Example:

Code Generation

Note: first specify the Classpath etc. in the “Project

Specification…” menu

OOAD 9. Components and Deployment Diagrams 56

Deployment Diagrams
The deployment architectural view shows the configuration of run-
time processing elements and the software processes living in them.
Deployment diagrams are created to show the different nodes
along with their connections in the system. They represent system
topology and mapping executable subsystems to processors.

Issues concerned:

 processor architecture

 speed

 inter-process communication and synchronization

 etc.

A deployment diagram shows processors, devices, and connections.
Each model contains a single deployment diagram which shows the
connections between its processors and devices, and the allocation
of its processes to processors.

Nodes

hardware nodes execution environment nodes

Server

Desktop PC

Disk drives

Operating system

J2EE container

Web server

Application server

OOAD 9. Components and Deployment Diagrams 57

A node is a hardware or software resource that can

host software or related files. You can think of a

software node as an application context; generally not

part of the software you developed, but a third-party

environment that provides services to your software

Artifacts within nodes

 Drawing an artifact inside a node shows that the artifact is

deployed to the node

 But where is JVM? ->

 Your deployment diagrams should contain details about your

system that are important to your audience. If it is important to

show the hardware, firmware, operating system, runtime

environments, or even device drivers of your system, then you

should include these in your deployment diagram.
OOAD 9. Components and Deployment Diagrams 58

OOAD 9. Components and Deployment Diagrams 59

Processors, Devices and Connections

Processor - identify its processes
and specify the type of process
scheduling (preemptive, non-
preemptive, cyclic, executive,
manual).

Device – in some models: a
hardware component with no or
restricted computing power (i.e.,
"modem" or "terminal”); in others:
specialization of node.

Connection - represents some
type of hardware coupling between
two entities. An entity is either a
processor or a device. The
hardware coupling can be direct,
such as an RS232 cable, or
indirect, such as satellite-to-ground
communication.

OOAD 9. Components and Deployment Diagrams 60

ATM Example:

Deployment Diagram

OOAD 9. Components and Deployment Diagrams 61

UML deployment diagram [Bruegge & Dutoit]

OOAD 9. Components and Deployment Diagrams 62

The refined diagram [Bruegge & Dutoit]

OOAD 9. Components and Deployment Diagrams 63

The MyTrip example [Bruegge & Dutoit]

A real

example

OOAD 9. Components and Deployment Diagrams 64

UML 2.x Diagrams

OOAD
8. OCL & Timing Diagrams

65

