
The Engineering

Process

Software Development Process

Unified Process

Round-Trip Engineering

Reverse Engineering

Examples

Software Engineering

 The seminal definition (by Fritz Bauer):

 Software Engineering (SE) is “the establishment and

use of sound engineering principles in order to obtain

economically software that is reliable and works

efficiently on real machines”.

 The IEEE definition:

 Software Engineering (SE) is: (1) The application of a

systematic, disciplined, quantifiable approach to the

development, operation, and maintenance of software;

that is, the application of engineering to software; (2)

The study of approaches as in (1). 2

Software evolution
 The process of developing a software product using

software engineering principles and methods is referred

to as software evolution. This includes the initial

development of software and its maintenance and

updates, till desired software product is developed, which

satisfies the expected requirements.

3

Critics to SE

Most software development is a chaotic activity, often

characterized by the phrase ‘code and fix.’

The software is written without much of an underlying plan,

and the design of the system is cobbled together from

many short term decisions.

This works pretty well if the system is small, but as the

system grows it becomes increasingly difficult to add new

features to the system.

Furthermore, bugs have become increasingly prevalent

and increasingly difficult to fix.

A typical sign of such a system is a long test phase after

the system is ‘feature complete.’
4

Martin Fowler, Chief Scientist of ThoughtWorks (2005)

Solution: the software process

 A process is a collection of activities, actions and tasks

that are performed when some work product is to be

created.

 There is not a rigid prescription for how to build

computer software. Rather, it is an adaptable approach

that enables the people doing the work to pick and

choose the appropriate set of work actions and tasks.

 Purpose of process is to deliver software in a timely

manner and with sufficient quality to satisfy those who

have sponsored its creation and those who will use it.

5

What?/Who?/Why? in process

models?
 What: a road map with series of predictable steps, for a

timely, high-quality results.

 Who: Software engineers, their managers, and clients –
adapt the process to their needs and follow it.

 Why: for stability, control, and organization to activities, but
modern software engineering approaches must be agile –
with such activities, controls and work products that are
appropriate.

 What:
 work products such as programs, documents, and data

 the steps of the process you adopt depends on the software that you
we are building.

 How: software process assessment mechanisms enable us
to determine the maturity of the software process – here,
quality, timeliness and long-term viability of the software are
the best indicators of the process efficacy. 6

Definition of software

process

 A framework for the activities,

actions, and tasks that are required

to build high-quality software.

 SP defines the approach

containing related activities that

leads to the production of the

software.

 Is not equal to software

engineering, which also

encompasses technologies that

populate the process – technical

methods and automated tools.
7

Software development process

 The software development process is a general term

describing the over-arching process of developing a software

product

 Companies often select a development process that fits their

personnel and resources. Several development process

methods are in existence, and a growing body of software

development standardizing organizations are currently

implementing and rating different methods.

8

Source: https://www.techopedia.com/definition/13295/software-

development-process

Software Development Life Cycle

 Software Development Life Cycle (SDLC) is a process

used by the software industry to design, develop and test

high quality software.

 The SDLC aims to produce a high-quality software that

meets or exceeds customer expectations, reaches

completion within times and cost estimates.

 SDLC is also called as Software Development Process.

 SDLC is a framework defining tasks performed at each

step in the software development process.

 ISO/IEC 12207 is an international standard for software

life-cycle processes. It aims to be the standard that

defines all the tasks required for developing and

maintaining software.
9

https://www.tutorialspoint.com/sdlc/sdlc_overview.htm

Stages of a typical SDLC

10

Types of process flows 1/2

11

Types of process flows 2/2

12

The software development

process

 The software development process is the process of

dividing software development work into distinct phases to

improve design, product management, and project

management.

 Known as well as a software development life cycle.

 The methodology may include the pre-definition of

specific deliverables and artifacts that are created and

completed by a project team to develop or maintain an

application.

OOAD The Engineering Process 13

Source: Suryanarayana, Girish (2015). "Software

Process versus Design Quality: Tug of War?". IEEE

Software. 32 (4): 7–11.

OOAD 14

The SW Dev. Process Itself

New or changed

requirements

New or changed

system

Software Engineering

Process

What Is a Process?

 DefinesDefines Who is doing What, When to do it, and How
to reach a certain goal.

The Engineering Process

Phases of Software Development

– Analysis

 Requirements analysis - specifying the functional capabilities

needed in the software. Use-cases are an important tool for

communication about requirements between software developers

and their clients.

Products: software requirements documents for the software

Objectives: capture the client's needs and wants

 Domain analysis - developing concepts, terminology, and

relationships essential to the client's model of the software and its

behavior. Conceptual-level class diagrams and interaction

diagrams are important tools of domain analysis.

Products: client-oriented model for the software and its components

Objectives: capture the client's knowledge framework

OOAD The Engineering Process 15

Source: G. Shute, UMN

Phases of Software Development

– Design
 Client-oriented design - specifying components of the software that

are visible to the client and its' behavior in terms of their attributes,

methods, and relationships to other components. Specification-level

class diagrams and interaction diagrams are important tools

here.

Products: client-oriented specifications for components

Objectives: define the structure of interactions with the client,

providing methods that satisfy the client's needs and wants,

operating within the client's knowledge framework

 Implementation-oriented design - determining internal features and

method algorithms for the software. Usage of component diagrams.

Products: implementation-oriented specifications for components

Objectives: define internal structure and algorithms for components

that meet client-oriented specificationsOOAD The Engineering Process 16

Source: G. Shute, UMN

Phases of Software Development –

Implementation and Integration

 Implementation - writing and compiling code for the individual

software components.

Products: source/binary code for software components and their test

software

Objectives: to produce coded components that accurately implement

the implementation-oriented design

 Integration - putting the software components into a context with

each other and with client software. Usage of software integration

tools (https://code-maze.com/top-8-continuous-integration-tools/)

Products: integrated software components

Objectives: test the integrated software components in the context in

which they will be used

OOAD The Engineering Process 17Source: G. Shute, UMN

https://code-maze.com/top-8-continuous-integration-tools/

Phases of Software Development –

Packaging

 Packaging - bundling the software and its documentation into a

deliverable form. Usage of package diagrams.

Products: software and documentation in an easily installed form

Objectives: to manage the software in an efficient way

OOAD The Engineering Process 18Source: G. Shute, UMN

Ongoing Activities in Software

Development 1/2

 Risk analysis - management activities that attempt to identify

aspects of the development process that have a significant

chance of failing.

 Planning - management activities that determine the specific

goals and allocate adequate resources for the various phases

of development. Resources include time, work and meeting

space, people, and developmental hardware and software.

Risk analysis can be viewed as preparation for planning.

OOAD The Engineering Process 19Source: G. Shute, UMN

OOAD The Engineering Process 20Source: https://www.mitre.org/publications/systems-

engineering-guide/acquisition-systems-engineering/risk-

management/risk-impact-assessment-and-prioritization

https://www.mitre.org/publications/systems-engineering-guide/acquisition-systems-engineering/risk-management/risk-impact-assessment-and-prioritization

Ongoing Activities in Software

Development 2/2
 Software verification – to assure that software fully satisfies all the

expected requirements, with activities directed at ensuring that the

products of the various phases of development meet their

objectives. Testing is an important part of verification that takes

place during implementation and integration. Two kinds of testing:

 Black-box testing is testing how software meets its client-oriented

specifications, without regard to implementation.

 White-box testing uses knowledge of implementation to determine a testing

plan that all paths of control have been exercised.

 Software validation – the process of checking whether the

specification captures the customer's needs

 Documentation - providing instructions and information needed for

the installation, use, and maintenance of software.
OOAD The Engineering Process 21

Source: G. Shute, UMN

Software Verification vs

Validation

OOAD The Engineering Process 22

Source: https://www.easterbrook.ca/steve/2010/11/the-

difference-between-verification-and-validation/

Some software development

methodologies
1990s

 Rapid application development (RAD), since 1991

 Dynamic systems development method (DSDM), since 1994

 Scrum, since 1995

 Team software process, since 1998

 Rational Unified Process (RUP), maintained by IBM since 1998

 eXtreme Programming (XP), since 1999

2000s

 Agile Unified Process (AUP) maintained since 2005 by Scott Ambler

 Disciplined Agile Delivery (DAD) supersedes AUP

2010s

 Scaled Agile Framework (SAFe)

 Large-Scale Scrum (LeSS)
OOAD The Engineering Process 23

OOAD The Engineering Process 24

The Rational/IBM Unified Process

The Unified Process is a Process Framework

There is NO Universal Process!

• The Unified Process is designed for flexibility and extensibility

» allows a variety of lifecycle strategies

» selects what artifacts to produce

» defines activities and workers

» models concepts

OOAD The Engineering Process 25

The Unified Process

for SW Engineering

OOAD The Engineering Process 26

The Unified Process is

Architecture-Centric

OOAD The Engineering Process 27

Architecture and Models

Architecture embodies a collection of views of the models

Views

Models

Use Case
Model

Design
Model

Depl.
Model

Impl.
Model

Test
Model

Analysis
Model

OOAD The Engineering Process 28

The Unified Process is Use-Case Driven

Use Case Driven

Req.ts Impl. Test

Use Cases bind these workflows together

Analysis Design

OOAD The Engineering Process 29

The Unified Process is

Iterative and Incremental

OOAD The Engineering Process 30

OOAD The Engineering Process 31

Milestones, Phases and Releases

 Milestone - the point at which an iteration formally
ends; corresponds to a release point. Major and minor
milestones.

Major Milestones

time

Vision Baseline
Architecture

Initial
Capability

Product
Release

Inception Elaboration Construction Transition

Phase - the time between two major project milestones,
during which a well-defined set of objectives is met,
artifacts are completed, and decisions are made to move
or not move into the next phase.

Release - a subset of the end-product that is the object
of evaluation at a major milestone.

Workload during the Phases and

Workflows (Disciplines)

OOAD The Engineering Process 32
Source: https://larion.com/

OOAD The Engineering Process 33

Phases are not identical

in terms of schedule and effort
 A typical initial development cycle for a medium-sized project

should anticipate the following distribution between effort and
schedule:

Inception Elaboration Construction Transition

Effort ~5 % 20 % 65 % 10%

Schedule 10 % 30 % 50 % 10%

Project plan: a time-sequence set of activities and task,
assigned to resources, containing task dependencies, for the
project. Iteration Plan.

Determining the number of iterations and the length of each
iteration

OOAD The Engineering Process 34

A Risk-Driven Approach

 A risk is a variable that, within its normal distribution, can take a
value that endangers or eliminates success for a project

 Attributes of a risks:
1. Probability of occurrence
2. Impact on the project (severity)
3. Magnitude indicator: High, Significant, Moderate, Minor, Low.

Initial Project Risks

Initial Project Scope

Revise Overall

Project Plan

Cost

Schedule

Scope/Content

Plan Iteration N

Cost

Schedule

Risks

Eliminated
Revise Project Risks

Reprioritize

Develop Iteration N

• Collect cost and

quality metrics

Define scenarios to

address highest risks

Iteration N

OOAD The Engineering Process 35

Risks in Iterative and Waterfall Development Processes

↑Risk Profile Comparison ↓Coding Comparison

Risk

Transition

Inception

Elaboration

Construction

Preliminary

Iteration

Architect.

Iteration

Architect.

Iteration

Devel.

Iteration

Devel.

Iteration

Devel.

Iteration

Transition

Iteration

Transition

Iteration
Post-

deployment

Waterfall

Time

Progress
90%

80%

70%

60% WP
50%

40%

30% UP
20%

10%

Time

(weeks)

5 10 15 20 25 30 35 40 45 50

Integration starts here

(waterfall proc.)

Quality tests

OOAD The Engineering Process 36

Types of Risks

 Resource risks (organization, funding, people, time)
 Business risks (contract type, client, competitors)
 Technical risks (scope, technology, external

dependency)
 Schedule risks

Iteration 1 Iteration 2 Iteration 3

Iteration Planning

Rqmts Capture

Analysis & Design

Implementation

Test

Prepare Release

“Mini-Waterfall” Process• Results of previous iterations

• Up-to-date risk assessment

• Controlled libraries of models, code, and tests

Release description

Updated risk assessment

Controlled libraries

OOAD The Engineering Process 37

Resulting Benefits

 Planning and monitoring

 No “90% done with 90% remaining” effect

 Can incorporate problems/issues/changes into

future iterations rather than disrupting ongoing

production

 The project’s elements (testers, writers, tool-

smiths, QA, etc.) can better schedule their work

OOAD The Engineering Process 38

Software Engineering

Taxonomy

Taxonomy Project of the IEEE-CS Technical Council on
Software Engineering (TCSE) has developed a unified taxonomy.
Here, they present definitions of:

Forward engineering

Reverse engineering

Reengineering

Round Trip Engineering

OOAD The Engineering Process 39

Forward, Reverse and

Reengineering

Forward engineering - "the traditional process of moving from
high-level abstractions and logical, implementation-independent
designs to the physical implementation of a system."

Reverse engineering - "the process of analyzing a subject
system with two goals in mind:
(1) to identify the system's components and their
interrelationships; and,
(2) to create representations of the system in another form or at a
higher level of abstraction."

Reengineering - "the examination of a subject system to
reconstitute it in a new form and the subsequent implementation
of the new form."

OOAD The Engineering Process 40

Round Trip Engineering

With Round Trip Engineering you can incrementally develop

software, starting either from a new design or from an existing body

of code. You can change the source code and keep design diagrams

up to date, using any editor you like. Or you can change the design

diagrams and keep the source code up to date.

Reverse engineering is the process of evaluating an existing

body of code to capture important information describing a

system, and representing that information in a format useful to

software engineers and designers.

OOAD The Engineering Process 41

Reverse Engineering with

IBM Rose™

Rose Reverse engineering is the process of examining a
program's source code to recover information about its
design.

IBM Rose includes a C++ and Java Analyzer. The Rational
Rose C++ Analyzer extracts design information from a C++
application's source code and uses it to construct a model
representing the application's logical and physical structure.

OOAD The Engineering Process 42

The IBM Rose C++ Analyzer

OOAD The Engineering Process 43

Generation Limits -

Objecteering™

Generate code for the dynamic model thanks to

PatternsObjecteering/UML associates Design Patterns and

code generators to allow you to generate the code from the

model's dynamic application. The State design pattern,

developed by Gamma, is automated, so as to automatically

transform the UML state diagram model into a class model.

The code generator then transforms this class model into

Java code. By applying the State design pattern, you can be

sure of generating Java code which corresponds to the state

diagrams, thereby guaranteeing a highly efficient result.

OOAD The Engineering Process 44

Generation Limits -

Objecteering™

Generation processes in VP

OOAD The Engineering Process 45

Instant reverse Java sources and

classes

Tools ->

Code ->

Instant Reverse...

OOAD The Engineering Process 46

For more, see: https://www.visual-paradigm.com/support/documents/vpuserguide/276/277/28011_reverseengin.html

Instant reverse Java sources to

sequence diagram

Tools ->

Code ->

Instant

Reverse Java to

Sequence

Diagram...

OOAD The Engineering Process 47

Java Round-Trip:

Generate/Update Java code

Tools ->

Code ->

Generate

Java

Code...

OOAD The Engineering Process 48

https://www.visual-

paradigm.com/support/documents/vpuserguide/276/381/7486_generateorup.

html

Java Round-Trip: Generate/Update

UML classes from Java code

OOAD The Engineering Process 49

Tools ->

Code ->

Reverse

Java

Code...

https://www.visual-paradigm.com/support/documents/vpuserguide/

276/381/7530_generateorup.html

State Machine Diagram Code

Generation

1. Creation of controller class

2. Creation of a sub-state machine diagram from the

controller class

3. Assigning operations to transitions

4. Specifying method body for the entry/exit of state

5. Specifying method body for operation
OOAD The Engineering Process 50

Tools -> Code -> Generate State

Machine Code...

OOAD The Engineering Process 51

https://www.visual-paradigm.com/support/documents/vpuserguide/276/386/28107_generatingst.html

OOAD The Engineering Process 52

Reverse-engineering Relational DB
Replicating the structure of the database in a class model
is relatively straight-forward.

Create a Class for each Table

For each column, create an attribute on the class with the
appropriate data type. Try to match the data type of the attribute
and the data type of the associated column as closely as possible.

Column Name Data Type

Customer_ID Number

Name Varchar

Street Varchar

City Varchar

State/Province Char(2)

Zip/Postal Code Varchar

Country Varchar

OOAD The Engineering Process 53

Example by MagicDraw™ - from

DDL…

--@(#) C:\md\MagicDraw UML 6.0\script.ddl

DROP TABLE MQOnline.mqo_dbo.customers;

DROP TABLE MQOnline.mqo_dbo.libraries;

CREATE TABLE MQOnline.mqo_dbo.libraries

(

id numeric (10) NOT NULL,

abbreviation varchar (4) NOT NULL,

name varchar (30) NOT NULL,

prod_code varchar (8) NOT NULL,

CONSTRAINT MQOnline.mqo_dbo.PK__libraries__605D434C PRIMARY KEY(id)

);

CREATE TABLE MQOnline.mqo_dbo.customers

(

id numeric() (10) NOT NULL,

name varchar (30) NOT NULL,

password varchar (16),

CONSTRAINT MQOnline.mqo_dbo.PK__customers__00CA12DE PRIMARY KEY(id)

);

OOAD The Engineering Process 54

Example by MagicDraw™ - …to

E-R diagram

OOAD The Engineering Process 55

Identify Embedded/Implicit Classes

The class that results from the direct table-class mapping will
often contain attributes that can be separated into a separate
class, especially in cases where the attributes appear in a
number of translated classes. These 'repeated attributes' may
have resulted from denormalization of tables for performance
reasons, or may have been the result of an oversimplified data
model.

Example: revised Customer class, with extracted Address class.

The association drawn between these two is an aggregation,
since the customer's address can be thought of as being part-of
the customer.

OOAD The Engineering Process 56

Handle Foreign-Key Relationships

For each foreign-key relationship in the table, create an association
between the associated classes, removing the attribute from the
class which mapped to the foreign-key column. If the foreign-key
column was represented initially as an attribute, remove it from the
class.

Column Name Data Type
Number Number
<<FK>> Customer_ID Varchar

Example: In the Order table above,
the Customer_ID column is a
foreign-key reference; this column
contains the primary key value of the
Customer associated with the Order.

OOAD The Engineering Process 57

Handle Many-to-Many

Relationships

RDBMS data models represent many-to-many
relationships with a mean which has been called a
join table
, or an
association table
- a foreign key reference can only contain a reference to
a single foreign key value; when a single row may relate
to many other rows in another table, a join table is
needed to associate them.

OOAD The Engineering Process 58

Handle Many-to-Many

Relationships – DB model

Product-Supplier Table

Column Name Data Type

Product_ID Number

Supplier_ID Number

Product Table

Column Name Data Type

Product_ID Number

Product_Name Varchar

Supplier Table

Column Name Data Type

Supplier_ID Number

Supplier_Name Varchar

OOAD The Engineering Process 59

Handle Many-to-Many

Relationships – Object Model

Product-Supplier Table
Column Name Data Type
Product_ID Number
Supplier_ID Number

OOAD The Engineering Process 60

Introducing Generalization

Sometimes common structure results from denormalization for
performance, such as is the case with the 'implicit' Address table
which we extracted into a separate class. In other cases, tables
share more fundamental characteristics which we can extract into
a generalized parent class with two or more sub-classes. Look for
repeated columns in two tables:

SW Product HW Product

Column Name Data Type Column Name Data Type

Product_ID Number Product_ID Number

Name Varchar Name Varchar

Description Varchar Description Varchar

Price Number Price Number

Version Varchar Assembly Number

OOAD The Engineering Process 61

Class Generalization from

the Data Model

SW Product HW Product

Column Name Data Type Column Name Data Type

Product_ID Number Product_ID Number

Name Varchar Name Varchar

Description Varchar Description Varchar

Price Number Price Number

Version Varchar Assembly Number

OOAD The Engineering Process 62

Finally – an Object Model

Putting all of the class definitions together, the figure

shows a consolidated class diagram for the Order

Entry System.

OOAD The Engineering Process 63

OOAD The Engineering Process 64

OOAD The Engineering Process 65

