The Engineering
Process

Software Development Process
Unified Process

Round-Trip Engineering
Reverse Engineering

Examples

Software Engineering

e The seminal definition (by Fritz Bauer):

o Software Engineering (SE) is “the establishment and
use of sound engineering principles in order to obtain
economically software that is reliable and works
efficiently on real machines”.

e The IEEE definition:

o Software Engineering (SE) is: (1) The application of a
systematic, disciplined, quantifiable approach to the
development, operation, and maintenance of software,;
that is, the application of engineering to software; (2)
The study of approaches as in (1).)

Software evolution

e The process of developing a software product using
software engineering principles and methods is referred
to as software evolution. This includes the initial
development of software and its maintenance and
updates, till desired software product is developed, which
satisfies the expected requirements.

Change Request

N

System Release Software Impact Analysis
\ Evolution)
System update Release Planning

:"--——___——--: ’

Critics to SE

Most software development is a chaotic activity, often
characterized by the phrase ‘code and fix.’

The software is written without much of an underlying plan,
and the design of the system is cobbled together from
many short term decisions.

This works pretty well if the system is small, but as the
system grows it becomes increasingly difficult to add new
features to the system.

Furthermore, bugs have become increasingly prevalent
and increasingly difficult to fix.

A typical sign of such a system is a long test phase after

the system is ‘feature complete.’
Martin Fowler, Chief Scientist of ThoughtWorks (2005)

4

Solution: the software process

e A process is a collection of activities, actions and tasks
that are performed when some work product is to be
created.

e Thereis not arigid prescription for how to build
computer software. Rather, it is an adaptable approach
that enables the people doing the work to pick and
choose the appropriate set of work actions and tasks.

e Purpose of process is to deliver software in a timely
manner and with sufficient quality to satisfy those who
have sponsored its creation and those who will use it.

What?/Who?/\Why? In process
models?

What: a road map with series of predictable steps, for a
timely, high-quality results.

Who: Software engineers, their managers, and clients —
adapt the process to their needs and follow it.

Why: for stability, control, and organization to activities, but
modern software engineering approaches must be aglle —
with such activities, controls and work products that are
appropriate.

What:

work products such as programs, documents, and data

the steps of the process you adopt depends on the software that you

we are building.
How: software process assessment mechanisms enable us
to determine the maturity of the software process — here,
guality, timeliness and long-term viability of the software are
the best indicators of the process efficacy. :

Definition of software

pProcess

e A framework for the activities,
actions, and tasks that are required
to build high-quality software.

e SP defines the approach
containing related activities that
leads to the production of the
software.

e Is not equal to software
engineering, which also
encompasses technologies that
populate the process — technical
methods and automated tools.

Prototyping

Spiral

Analmmhaluation

Planning Development

Software development process

e The software development process is a general term

describing the over-arching process of developing a software
product

e Companies often select a development process that fits their
personnel and resources. Several development process
methods are in existence, and a growing body of software
development standardizing organizations are currently
Implementing and rating different methods.

Source: https://www.techopedia.com/definition/13295/software-
development-process

Software Development Life Cycle

Software Development Life Cycle (SDLC) is a process
used by the software industry to design, develop and test
high quality software.

The SDLC aims to produce a high-quality software that
meets or exceeds customer expectations, reaches
completion within times and cost estimates.

SDLC is also called as Software Development Process.

SDLC is a framework defining tasks performed at each
step in the software development process.

ISO/IEC 12207 is an international standard for software
life-cycle processes. It aims to be the standard that
defines all the tasks required for developing and
maintaining software. https://www.tutorialspoint.com/sdlc/sdlc_overview.htm

Stages of atypical SDLC

SDLC

Types of process flows 1/2

—| Communication Planning | Modeling |— Consfrucfion |—| Deployment |—

la) Linear process flow

Planning t-| Modeling l—| Construction E| Deployment |—

[b] lterafive process flow

—| Communication

11

Types of process flows 2/2

Planning Mool
odeling

—] Communication

Increment
released | Deployment I

lc) Evolutionary process flow

Construction

Communication Planning

Modeling Time —s

Construction |—~‘ Deployment |—

(d) Parallel process flow

12

The software development
Process

e The software development process is the process of
dividing software development work into distinct phases to
Improve design, product management, and project
management.

e Known as well as a software development life cycle.

e The methodology may include the pre-definition of
specific deliverables and artifacts that are created and
completed by a project team to develop or maintain an

application.

Source: Suryanarayana, Girish (2015). "Software
Process versus Design Quality: Tug of War?". IEEE
Software. 32 (4): 7-11.

OOAD The Engineering Process 13

The SW Dev. Process ltself

What Is a»Process?

+ Defines Who is doing What, When to do it, and How
to reach a certain goal.

New or changed
—_——
requirements

New or changed
_—
system

Software Engineering
Process

OOAD The Engineering Process 14

Phases of Software Development
— Analysis

e Requirements analysis - specifying the functional capabillities
needed In the software. Use-cases are an important tool for
communication about requirements between software developers
and their clients.

Products: software requirements documents for the software
Objectives: capture the client's needs and wants

e Domain analysis - developing concepts, terminology, and
relationships essential to the client's model of the software and its
behavior. Conceptual-level class diagrams and interaction
diagrams are important tools of domain analysis.

Products: client-oriented model for the software and its components
Objectives: capture the client's knowledge framework

OOAD The Engineering Process 15

Source: G. Shute, UMN

Phases of Software Development
— Design

e Client-oriented design - specifying components of the software that
are visible to the client and its' behavior in terms of their attributes,
methods, and relationships to other components. Specification-level
class diagrams and interaction diagrams are important tools
here.

Products: client-oriented specifications for components
Obijectives: define the structure of interactions with the client,
providing methods that satisfy the client's needs and wants,
operating within the client's knowledge framework

e Implementation-oriented design - determining internal features and
method algorithms for the software. Usage of component diagrams.
Products: implementation-oriented specifications for components
Obijectives: define internal structure and algorithms for components

th&t meet client-oriented spetifitatsrns 18
Source: G. Shute, UMN

Phases of Software Development —
Implementation and Integration

e Implementation - writing and compiling code for the individual
software components.
Products: source/binary code for software components and their test
software
Obijectives: to produce coded components that accurately implement
the implementation-oriented design

e Integration - putting the software components into a context with
each other and with client software. Usage of software integration
tools ()
Products: integrated software components
Objectives: test the integrated software components in the context in

which they will be used
OOAD The Engineering Process Source: G ShUte, UMN 17

https://code-maze.com/top-8-continuous-integration-tools/

Phases of Software Development —
Packaging

e Packaging - bundling the software and its documentation into a
deliverable form. Usage of package diagrams.

Products: software and documentation in an easily installed form
Objectives: to manage the software in an efficient way

OOAD The Engineering Process Source: G ShUte, U M N 18

Ongoing Activities in Software
Development 1/2

e Risk analysis - management activities that attempt to identify
aspects of the development process that have a significant
chance of failing.

e Planning - management activities that determine the specific
goals and allocate adequate resources for the various phases
of development. Resources include time, work and meeting
space, people, and developmental hardware and software.
Risk analysis can be viewed as preparation for planning.

OOAD The Engineering Process SOUI’CGZ G Shute, U M N 19

Probabilities

Risk events and conse-
and their quences of
relationships risk events
are defined are assessed
As5055 Consequences may
Probaility & include cost, schedule,
Consequence technical performance
ldentify 1. Risk > 2 Risk impacts, as well as
Risks Identification ||‘-'|"I|JE!E'|: -:-?Ipat}uhty or function-
Assessment ality Impacts
F Y
Reassess existing _ Assess Risk
risk events and _ I;;ﬁz%h Criticality
identify new risk Risk Ricks v
events Tracking

Decision-analytic
) rules applied to
3. Risk rank-order identi-
Priorntization fied risk events
Analysis from "maost to
least™ critical

4. Risk -
Mitigation Risk Mitigation
Planning,

Implementation,
and Progress
Monitoring

Risk events assessed as

medium or high criticality

might go into risk mitiga-

tion planning and imple-

mentation; low critical

risks mig ht be Source: https://www.mitre.org/publications/systems-
tracked/monitored on a engineering-guide/acquisition-systems-engineering/risk-
watch list. management/risk-impact-assessment-and-prioritization

https://www.mitre.org/publications/systems-engineering-guide/acquisition-systems-engineering/risk-management/risk-impact-assessment-and-prioritization

Ongoing Activities in Software

Development 2/2

Software verification — to assure that software fully satisfies all the
expected requirements, with activities directed at ensuring that the
products of the various phases of development meet their
objectives. Testing Is an important part of verification that takes
place during implementation and integration. Two kinds of testing:

Black-box testing is testing how software meets its client-oriented
specifications, without regard to implementation.

White-box testing uses knowledge of implementation to determine a testing
plan that all paths of control have been exercised.
Software validation — the process of checking whether the
specification captures the customer's needs

Documentation - providing instructions and information needed for
the installation, use, and maintenance of software.

OOAD The Engineering Process 21

Source: G. Shute, UMN

Software Verification vs
Validation

Verification Validation

style
checkers
/ integration

test

. unit test custome\f"~_ .
acceptance . Prototyping

test

regression
test

static analysis

usability . modeling
test .~ e.g. UML,
' formal methods

system test

proofs of beta test

correctness _— I =], model
robustness checking

analysis

inspection goal analysis

model/specification
inspection

consistency
checking

OOAD The Engineering Process 22
Source: https://www.easterbrook.ca/steve/2010/11/the-

difference-between-verification-and-validation/

Some software development
methodologies

1990s

Rapid application development (RAD), since 1991

Dynamic systems development method (DSDM), since 1994
Scrum, since 1995

Team software process, since 1998

Rational Unified Process (RUP), maintained by IBM since 1998
eXtreme Programming (XP), since 1999

2000s

Agile Unified Process (AUP) maintained since 2005 by Scott Ambler
Disciplined Agile Delivery (DAD) supersedes AUP

2010s
e Scaled Agile Framework (SAFe)
e Large-Scale Scrum (LeSS)

OOAD

The Engineering Process 23

The Rational/IBM Unified Process

The Unified Process is a Process Framework

There is NO Universal Process!
- The Unified Process is designed for flexibility and extensibility
» allows a variety of lifecycle strategies
» selects what artifacts to produce
» defines activities and workers
» models concepts

RATIONAL

OOAD The Engineering Process 24

The Unified Process
for SW Engineering

The Unified Process is Engineered

A unit of work
A role played by an
individual or a team

Activity

ZE

Describe a

Al Use Case

responsible for Artifact

/ \ A A piece of information that is

produced, modified, or used

by a process

Use case
Use case

package RATIONAL

OOAD The Engineering Process 25

The Unified Process Is
Architecture-Centric

Architectq re-Centric

Models are vehicles for visualizing, specifying,
constructing, and documenting architecture

The Unified Process prescribes the successive
refinement of an executable architecture

_ation Construction Transition

time

Architecture

RATIONAL

The Engineering Process

OOAD

Architecture and Models

Use Case Analysis Design Depl. Impl.
Model Model Model Model Model

1T

Architecture embodies a collection of views of the models

T~

The Engineering Process 27

The Unified Process is Use-Case Driven

Use Case Driven _

Use Cases bind these workflows together

Use Cases D_rive lterations

< Drive a number of development activities
= Creation and validation of the system’s architecture
= Definition of test cases and procedures
= Planning of iterations
= Creation of user documentation
= Deployment of system

+ Synchronize the content of different models

RATIONAL

The Engineering Process

The Unified Process Is
lterative and Incremental

Lifecycle Phases

_ation Construction Transition

time
+ [nception Define the scope of the project and

develop business case

+ Elaboration Plan project, specify features, and
baseline the architecture

* Construction Build the product
+ Transition Transition the product to its users

RATIONAL

The Engineering Process

Phases ang:i lterations

oration Construction Transition

Prelim

Arch I Dev Dev : Trans
lteration

lteration lteration | lteration lteration

A A A A A A A A

Release Release Release Release Release Release Release Release

An iteration is a sequence of activities with an established plan and
evaluation criteria, resulting in an executable release

RATIONAL

OOAD The Engineering Process 30

. | X N J
Milestones, Phases and Releases 44+
o0 0
o0
® Milestone - the point at which an iteration formally °
ends; corresponds to a release point. Major and minor

milestones-

Major Milestones

T Consinion | transion

A A A

Baseline Initial Product
Architecture Capability Release

Phase - the time between two major project milestones,
during which a well-defined set of objectives is met,
artifacts are completed, and decisions are made to move
or not move into the next phase.

Release - a subset of the end-product that is the object
oo Of €valuation at a major. milestone. a1

Workload during the Phases and
Workflows (Disciplines)

Disciplines

Business Modeling
Requirements

Analysis & Design

Implementation
Test
Deployment

Configuration
& Change Mgmt
Project Management
Environment

OOAD

Phases

§

Elaboration Construction

§'

|
sl
)
\
|
A
- EEr T
l
h
’
-

.\
|
i /

..‘.... ; _-—ee LA L B

Initial || Elab #1 anbnwwc:';"""“"

Iterations

The Engineering Process

Source: https://larion.?’czzom/

Phases are not identical
INn terms of schedule and effort

¢ A typical initial development cycle for a medium-sized project
should anticipate the following distribution between effort and

schedule:
Inception Elaboration Construction Transition
Effort ~5 % 20 % 65 % 10%
Schedule 10 % 30 % 50 % 10%
Inception E1:aly orati orn Construction Trasy sitior

T =

Project plan: a time-sequence set of activities and task,
assigned to resources, containing task dependencies, for the

project. Iteration Plan.

Determining the number of iterations and the length of each

coro jteration

The Engineering Process

33

| X N J
. . o000
A Risk-Driven Approach 3%
| X J
¢ A risk is a variable that, within its normal distribution, can take &
value that endangers or eliminates success for a project
¢ Attributes of a risks:
1. Probability of occurrence
2. Impact on the project (severity)
S Magnitude indicator: High, Significant, Moderate, Minor, Low.
Define scenarios to Plan Iteration N
Initial Project Risks address highestdat Cost
Initial Project e Schedule
Develop Iteration N
i - Collect cost and
Iteration N quality metrics
Revise Overall
Project Plan
Cost : i i Risks
Schedule Rews_e Rr_cuect Risks Eliminated
Reprioritize
Scope/Content

OOAD

The Engineering Process 34

Risks in Iterative and Waterfall Development Proc

’2?2::
(o

Inception

Elaboration

Risk Construction

Preliminary ~ Architect. ~ Architect. Devel. Devel. Devel. Transition Transition Post-

lteration Iteration Iteration Iter 'Q?n o lteration lteration Iteration lteration deployment
I >

TRisk Profile Comparison |Coding Comparison

Progress Integration starts here Quality tests

90% (waterfall proc.) >
o LvaRmalpriee) |~ —
70%
60%
50%
40%
30%
20% <
10% -

Time 5 10 15 20 25 30 35 40 45 50

OOAD (weeks) The Engineering Process 35

Types of Risks

Resource risks (organization, funding, people, time)
® Business risks (contract type, client, competitors)
® Technical risks (scope, technology, external

dependency)
® Schedule risks

Iteration 1 —Iteration 2 —lteration 3
* Results of previous iterations “Mini-Waterfall” Process
* Up-to-date risk assessment
* Controlled libraries of models, code, and tests Iteration Planning
Rgmts Capture

Analysis & Design

Implementation

Test

OOAD The Engineering Process

Prepare Release

Release description
Updated risk assessment
Controlled libraries

36

Resulting Benefits

e Planning and monitoring
e No “90% done with 90% remaining” effect

e Can incorporate problems/issues/changes into
future iterations rather than disrupting ongoing
production

e The project’s elements (testers, writers, tool-
smiths, QA, etc.) can better schedule their work

OOAD The Engineering Process 37

Software Engineering
Taxonomy

Taxonomy Project of the IEEE-CS Technical Council on

Software Engineering (TCSE) has developed a unified taxonomy.
Here, they present definitions of:

Forward engineering
Reverse engineering
Reengineering

Round Trip Engineering

OOAD The Engineering Process 38

Forward, Reverse and
Reengineering

Forward engineering - "the traditional process of moving from
high-level abstractions and logical, implementation-independent
designs to the physical implementation of a system."

Reverse engineering - "the process of analyzing a subject
system with two goals in mind:

(1) to identify the system's components and their
interrelationships; and,

(2) to create representations of the system in another form or at a
higher level of abstraction."

Reengineering - "the examination of a subject system to
reconstitute it in @ new form and the subsequent implementation
of the new form."

OOAD The Engineering Process 39

Round Trip Engineering

With Round Trip Engineering you can incrementally develop
software, starting either from a new design or from an existing body
of code. You can change the source code and keep design diagrams
up to date, using any editor you like. Or you can change the design
diagrams and keep the source code up to date.

Code Generatiom

Retaim
Dresicm o T t=
Driacgram I_I__%I__I_I Contral Sode
Compiler Directives

Reverse Emgimeaerimo

Reverse engineering Is the process of evaluating an existing
body of code to capture important information describing a
system, and representing that information in a format useful to
software engineers and designers.

OOAD The Engineering Process 40

Code

/
|

Reverse Engineering with
IBM Rose™

Rose Reverse engineering is the process of examining a
program's source code to recover information about its
design.

IBM Rose includes a C++ and Java Analyzer. The Rational
Rose C++ Analyzer extracts design information from a C++
application's source code and uses it to construct a model

representing the application's logical and physical structure.

OOAD The Engineering Process 41

The IBM Rose C++ Analyzer

s+ Rational Rose — atm exampleagndl - [Tlass Cragrarm: DNspensaer

L OonC
B Fil= Edit Wi Format Erowse Report oLy Tools Add-TIms LAY (o T [Ty Hel
e = = I = = = ol e N 1= 1 O T e O = O =/ R s O R = =W o«
. I~ 1
& T Rational Rose C+ + Analyzer
=
Fil= Edit Ao = R [T D T T Hel
] = = 1= N = = == ~] dh|ema]|w]| a2 -3]| W(|E|E s W] ' N2
= Projectd —_I_IEI _Ix
I Caption___ || |
Direc:turies___l Extensions.___ |
[—1 cAiprojectsimyvalemijframeworkicomirilaZvframew] |[[<MHMone> |
| Bases___ |[[<None> : Project Files — =] =]
Files I Files Not In List (Fitered) Fil== In List: (I_nfiltered)
== |
N e e || |
Eemowwe Selected I
BEermosrse Al I
File Filter: I*.h;*.hh;*.hpp;*.hm*.cpp;*.mc*.cc;*.c vl Filter I
Current Director..: iy S jfrarmeworky comyyrilasframework beanss,
Oirector. Structure: Froject Director. List:
== jfrarmework - | Auold Current I T KR chprojects\rewalaetyjfre
(= com Add Subdirs |
. = ril=
Sl Hierarchyws I
F Help, F1 .
l =Dr.==~e.r.j prfss — — FEermose [Din=s])
all I
Mletwork. .. I Eefresh Praject File List I
For Help, press F1
R I S et |

Generation Limits -
Objecteering™

Generate code for the dynamic model thanks to
PatternsObjecteering/UML associates Design Patterns and

code generators to allow you to ge

nerate the code from the

model's dynamic application. The State design pattern,
developed by Gamma, is automated, so as to automatically
transform the UML state diagram model into a class model.
The code generator then transforms this class model into

Java code. By applying the State o
sure of generating Java code whic

esign pattern, you can be
N corresponds to the state

diagrams, thereby guaranteeing a

OOAD The Engineering Process

nighly efficient result.

43

Generation Limits -

Objecteering ™

OOAD

State diagram - STATEMACHINE [Analysiz] - Sale cycle state diagram - Update

Ly
= a

CL
(=
.

FEEeEQUIi@©e ¢

foreate)

I aricell)

Cancelled

I iy

CotzLlt
dnalysiz \wWiard
Browse. ..
Check. rodel
Wizards,/Taols

Java

. .-

Design Patlerns ForJava #

Rezouces

l azk:

Mazk contents

= Show contents

S ki linkz

[ptiohs

Autarmatic

Chrl+H
Ctil+E
Chrl+L

Selectin esplarer

GOF -
GOF -

GOF
GOF

GOF -
GOF -

GOF -

Delrrered

SoldOfF

15ellCfT)

Fratatype

Singletan

- fidapter [create clazs on target]

- fydapter [Update existing class]

Friowy
Mementa

The Engineering Process

44

Generation processes in VP

Project eXceler

Diagram

Wiew Team |T::n::n|5 | Modeling W

Publish
Enmpnser Project

DB

L

%@ﬁ@

Hibernate

L

o

Code

gt

MSc Thesis Process

ﬂl Hand

1.' Paink Eraser
|i Sweeper
L* Magnet
/# Gesture Pen

|E Diagram Mavigatar |

i} Smart Edit
F

™| Timing Frame

i Mote

OOAD

Generate Java Code...

Reverse Java Code...

Generate C++ Code...

/B BB

Reverse C++ Code...

Instant Generator...

3

Instant Reverse. ..

Generate State Machine Code...

Reverse State Machine Code. ..

Instant Reverse Java to Sequence Diagram...

Generate REST APL...

i &

The Engineering Process 45

Instant reverse Java sources and | 3:2:
classes | e
TOOlS _> JARs.mcemddassfoldersonthemmtrewse“

Code -> '

Instant Reverse...

1
IZJ Reverse source on demand

Reverse To: | Class Diagram v

For more, see: https://www.visual-paradigm.com/support/documents/vpuserguide/276/277/28011 reverseengin.html

OOAD The Engineering Process 46

00
o000
Instant reverse Java sources to | ss::
. | X
sequence diagram :
TO 0 I S '> Select Operation
Select an operation to form a sequence diagram,
CO d e -> EI@ C:\Sample‘lsrf: &' RegisterController.register {Strirllg.int)
Instant E i ool I ey vy
Reverse Java to g il . S—
Sequence S X o | |
Diagram... I . [;
; 1.3: selhame() | i
: " a
] 1.4 sethge() | !
gl I
2 | |
) 1.5 add[aTcaunLh |
< Back || Mext = = i .?
| @< | i
0 | | |
=

OOAD The Engineering Process 47

Java Round-Trip:
Generate/Update Java code

Tools ->
Code ->

Generate

Java
Code...

https://www.visual-

paradigm.com/support/documents/vpuserguide/276/381/7486_generateorup.

html

OOAD

Generate Code

ciagram. Your Implement wil be retained.

Language: | Java w
+ =&l

Model

Pleass spedfy the folder to generate code, The code generator wall update your g

Code Synchronization

| code | Brace and indentation | rew Lines | Template |

Predefined macros...

The Engineering P

Operaton Template

S TODO - implement {dasc}, {operation}

throw new UnsupportedOperationE xcephion();

Getter Template

| dass

operaton |

return this, {attribute};

Setter Template
this. {attribute} = {parameter);

Pressenw

public dass ClassX [
private nt attribute;

pubic void aperation{) {
[TODO - mplement Case ope
throw rew Unsuppor tedOper atic
}

public int getAtirbute() {
retumn this. attribube;
}

public void setAtirbute(nt atiribute
this.atinbute = atiribute;
}

Java Round-Trip: Generate/Update
UML classes from Java code

Reverse Code

Tools ->
Code ->
Reverse

Language: | Java w

Saurce Path
}C:'I.Pmy:dﬂ"l'r ProjectiPrototype
C:\Projects\My ProjectiTmgl

Pleass speafy the source path for reverse code.

31 =1lallv

Java
Code...

........

https://www.visual-paradigm.com/support/documents/vpuserguide/

276/381/7530_generateorup.html

OOAD

[+f] Reverse source on demand (You can drag and drop from Class

Class Repository (=1

O-B-Bhe

a X

([Juntited
ey Java Round-trip
= {fC: loutput MyProject
= s
= [Emypackage

[#]4

The Engineering Process

: ilﬁC?'uet:pe"ayment.;iava
|) CreditCardPayment.jz

@Pavmem.)av ‘

L Visual 9

Paradigm

Enterprise Edition

Open Recent Projects Ue

Reverse "Customer.java” to

> |

%\ Collapse
% Bipand

%] New Class Diagram

[m Class Repository t g

49

]] (X
State Machine Diagram Code eecs
. o0
Generation :
Creation of controller class
Creation of a sub-state machine,diagrgm from-the
controller class T .
Biachet g
Assigning operations to transitiofs———————=
(PR (e AT) e
@ Open Specification... Enter
Stereotypes l:@ b
Specifying method body for the entry/exit of state
Specifying method body for operation

OOAD

The Engineering Process 50

Tools -> Code -> Generate State

Machine Code...

OOAD

Class: |'£nntrnller

State Diagram:| Class

Language: | Java

Dutput Path:

Options
Synchronized transition methods

[| Generate debug message

Generate try/catch

[| Re-generate transition methods

|:| Browse output directory after generate Auto create transition operations

Generate sample 6

Generate diagram image

https:/www.visual-paradigm.com/support/documents/vpuserguide/276/386/28107 _generatingst.html

The Engineering Process

51

Reverse-engineering Relational DB

Replicating the structure of the database in a class model
s relatively straight-forward.

Create a Class for each Table

For each column, create an attribute on the class with the
appropriate data type. Try to match the data type of the attribute
and the data type of the associated column as closely as possible.

Column Name Data Type

Customer ID Number

Name Varchar i L
Street Varchar

City Varchar Seisiomens - NumBeT
State/Province Char(2) Egi;nezf;fg
Zip/Postal Code Varchar S rostaiCode - Btring
Country Varchar erouy ST

OOAD

The Engineering Process 52

Example by MagicDraw ™ - from
DDL...

--@(#) C:\md\MagicDraw UML 6.0\script.dd|

DROP TABLE MQOnline.mqo_dbo.customers;
DROP TABLE MQOnline.mqo_dbo.libraries;
CREATE TABLE MQOnline.mgo_dbo.libraries
(
id numeric (10) NOT NULL,
abbreviation varchar (4) NOT NULL,
name varchar (30) NOT NULL,
prod_code varchar (8) NOT NULL,
CONSTRAINT MQOnline.mgo_dbo.PK__libraries 605D434C PRIMARY KEY(id)

);

CREATE TABLE MQOnline.mgo_dbo.customers
(

id numeric() (10) NOT NULL,

name varchar (30) NOT NULL,

password varchar (16),
CONSTRAINT MQOnline.mgo_dbo.PK__customers__ 00CA12DE PRIMARY KEY(id)

);

OOAD The Engineering Process 53

Example by MagicDraw™ - .. .to

E-R diagram

<<PlC==-id : numeric(10) [1]
-abbreviation : varchar(4) [1]
-name :varchar(30) [1]
-prod_code :varchar(8) [1]

<=<gatahase==
MQOnline
<<schema==
mqo_dbo
=<tahle=> 2|
<< b=
libraries A
customers

<<Pl==-id : numeric(10) [1]
-name :varchar(30) [1]
-password : varchar(16)

<<PK==+PK__libraries__605D434C(id)

<=<Pl==+PK__customers__00CA12DE(id)

OOAD

The Engineering Process

54

ldentify Embedded/Implicit Classes

The class that results from the direct table-class mapping will
often contain attributes that can be separated into a separate
class, especially /n cases where the attributes appear in a
number of transiated classes. These repeated attributes’ may
have resulted from denormalization of tables for performance
reasons, or may have been the result of an oversimplified data
model.

Example: revised Customer class, with extracted Address class.

The association drawn between these two is an aggregation,
since the customer's address can be thought of as being part-of

Address

—ustormer grstreet @ String
crpocustormeriD D MHMumber Roity D String
SPhEarme D String srstatelprovinoce @ String
1..1 crpostalCode D String

00 srcountry D String

Handle Foreign-Key Relationships

For each foreign-key relationship in the table, create an association
between the associated classes, removing the attribute from the
class which mapped to the foreign-key column. If the foreign-key
column was represented initially as an attribute, remove it from the
class.

Column Name Data Type

Number Number
<<FK>> Customer_ID Varchar

Crder
=uarmber D Integer

Example: In the Order table above,
the Customer_ID column is a
foreign-key reference; this column 1.1

contains the primary key value of the PTE T TE T
Customer associated with the Order. ename : String

OOAD The Engineering Process 56

Handle Many-to-Many
Relationships

RDBMS data models represent many-to-many

relationships with a mean which has been called a
join table
, Or an

association table
- a foreign key reference can only contain a reference to
a single foreign key value; when a single row may relate

to many other rows in another table, a join table is
needed to associate them.

OOAD The Engineering Process 57

Handle Many-to-Many

Relationships — DB model

Product Table

Column Name Data Type

Product_ID

Number

oduct Name Varchar

OOAD

| X N J
L X N J
(X J
®
Supplier Table
Column Name Data Type
Supplier_ID Numbes—

Supplier_Name

Varch

Product-Supplier Table

Column Name Data Type
Product_ID Number
Supplier_ID Number

The Engineering Process

58

Handle Many-to-Many
Relationships — Object Model

Product-Supplier Table

Column Name

Data Type

Product_ID

Number

Supplier_ID

Froduact

r: Integer
D =tring
=it price - Dodble

Number

Supplier
=raArme D String

OOAD

= s=rurmibaer

Rurmber

|

Addres=

ar=street @ String

o=cite @ Strirng
==taterfprowince @ String
rpo=stalisode @ =tring
c=Ccourntre @ =Strinng

The Engineering Process

59

Introducing Generalization

Sometimes common structure results from denormalization for
performance, such as is the case with the 'implicit' Address table
which we extracted into a separate class. In other cases, tables
share more fundamental characteristics which we can extract into
a generalized parent class with two or more sub-classes. Look for
repeated columns in two tables:

SW Product HW Product

Column Name Data Type Column Name Data Type
Product_ID Number Product_ID Number
Name Varchar Name Varchar
Description Varchar Description Varchar
Price Number Price Number
Version Varchar Assembly Number

OOAD

The Engineering Process

60

CY X)
- - 'YX X
Class Generalization from 13T
o0
the Data Model °
SW Product HW Product
Column Name Data Type Column Name Data Type
Product_ID Number Product_ID Number
Name Varchar Name Varchar
Description Varchar Description Varchar
Price Number Price Number
Version Varchar Assembly Number

Froduouct

cemurmber - intecger
crdescription - Sirinog
Punit price - Douibile

=

SoffvwwareFroduct

Lversion D Double

OOAD

The Engineering Process

N

HardwareProduct

assaernbly @ String

61

o0 0
. - X N J
Fina y —ahn O jeC'[Mode oo
®
Order Lineltem
nurmber : Integear Hlinelterns wrquantity - Integer
el i 91 ..* =rndmmber Integer
1.1
1..1
Custormer Eroduct
orcustormerlD - RHumber e p e ——— - Supplier
SHnAme D String {}descri ti-c-n) Sgtrin T LenAEme D String
o : K e g s=nurmber : Muamber
{} Sednit price Double
1..1
SoftvwareProduct HardwwareFroduct Address
Lgversion D Double rassermbly @ String gestreet : String
Secity - String
s=statefprovince D String
srpostalCode | String
Secountry - String
1..1
Address

crstreet @ String

seCity D String
gestatefprovince @ String
grpostalCode | String
secodntry - String

OOAD

Putting all of the class definitions together, the figure
shows a consolidated class diagram for the Order

Entry System.

The Engineering Process

62

RUP 4+1 View \

=

. ’ .
. =
-

Logical View Implementation View

=

Analysts/Designers o AR Programmers
Structure ol X Software management
Use-Case View

End-user "
. Functionality » -

= ® Process View Deployment View W

System engineering
System topology, delivery,
installation, communication

System integrators
Performance, scalability, throughput

