
Figure 1. Example of a Fibonacci heap. It
has three trees of degrees 0, 1 and 3. Three
vertices are marked (shown in blue).
Therefore, the potential of the heap is 9
(3 trees + 2 × (3 marked-vertices)).

Fibonacci heap from Figure 1
after first phase of extract
minimum. Node with key 1
(the minimum) was deleted
and its children were added as
separate trees.

Fibonacci heap from
Figure 1 after extract
minimum is
completed. First,
nodes 3 and 6 are
linked together. Then
the result is linked
with tree rooted at
node 2. Finally, the
new minimum is
found.

Fibonacci heap from Figure 1 after
decreasing key of node 9 to 0. This node as
well as its two marked ancestors are cut
from the tree rooted at 1 and placed as new
roots.

From Wikipedia, the free encyclopedia

In computer science, a Fibonacci heap is a data structure for priority queue operations, consisting of a
collection of heap-ordered trees. It has a better amortized running time than many other priority queue data
structures including the binary heap and binomial heap. Michael L. Fredman and Robert E. Tarjan developed
Fibonacci heaps in 1984 and published them in a scientific journal in 1987. They named Fibonacci heaps after
the Fibonacci numbers, which are used in their running time analysis.

For the Fibonacci heap, the find-minimum operation takes constant (O(1)) amortized time.[1] The insert and
decrease key operations also work in constant amortized time.[2] Deleting an element (most often used in the
special case of deleting the minimum element) works in O(log n) amortized time, where n is the size of the
heap.[2] This means that starting from an empty data structure, any sequence of a insert and decrease key
operations and b delete operations would take O(a + b log n) worst case time, where n is the maximum heap
size. In a binary or binomial heap such a sequence of operations would take O((a + b) log n) time. A Fibonacci
heap is thus better than a binary or binomial heap when b is smaller than a by a non-constant factor. It is also
possible to merge two Fibonacci heaps in constant amortized time, improving on the logarithmic merge time of a
binomial heap, and improving on binary heaps which cannot handle merges efficiently.

Using Fibonacci heaps for priority queues improves the asymptotic running time of important algorithms, such as
Dijkstra's algorithm for computing the shortest path between two nodes in a graph, compared to the same
algorithm using other slower priority queue data structures.

1 Structure
2 Implementation of operations
3 Proof of degree bounds
4 Worst case
5 Summary of running times
6 Practical considerations
7 References
8 External links

A Fibonacci heap is a collection of trees satisfying the
minimum-heap property, that is, the key of a child is always greater
than or equal to the key of the parent. This implies that the
minimum key is always at the root of one of the trees. Compared
with binomial heaps, the structure of a Fibonacci heap is more
flexible. The trees do not have a prescribed shape and in the
extreme case the heap can have every element in a separate tree.
This flexibility allows some operations to be executed in a lazy
manner, postponing the work for later operations. For example,
merging heaps is done simply by concatenating the two lists of trees,
and operation decrease key sometimes cuts a node from its parent
and forms a new tree.

However at some point some order needs to be introduced to the
heap to achieve the desired running time. In particular, degrees of
nodes (here degree means the number of children) are kept quite
low: every node has degree at most O(log n) and the size of a
subtree rooted in a node of degree k is at least Fk+2, where Fk is the kth Fibonacci number. This is achieved by
the rule that we can cut at most one child of each non-root node. When a second child is cut, the node itself
needs to be cut from its parent and becomes the root of a new tree (see Proof of degree bounds, below). The
number of trees is decreased in the operation delete minimum, where trees are linked together.

As a result of a relaxed structure, some operations can take a long time while others are done very quickly. For
the amortized running time analysis we use the potential method, in that we pretend that very fast operations
take a little bit longer than they actually do. This additional time is then later combined and subtracted from the
actual running time of slow operations. The amount of time saved for later use is measured at any given moment
by a potential function. The potential of a Fibonacci heap is given by

Potential = t + 2m

where t is the number of trees in the Fibonacci heap, and m is the number of marked nodes. A node is marked if
at least one of its children was cut since this node was made a child of another node (all roots are unmarked).
The amortized time for an operation is given by the sum of the actual time and c times the difference in
potential, where c is a constant (chosen to match the constant factors in the O notation for the actual time).

Thus, the root of each tree in a heap has one unit of time stored. This unit of time can be used later to link this
tree with another tree at amortized time 0. Also, each marked node has two units of time stored. One can be
used to cut the node from its parent. If this happens, the node becomes a root and the second unit of time will
remain stored in it as in any other root.

To allow fast deletion and concatenation, the roots of all trees are linked using a circular, doubly linked list. The
children of each node are also linked using such a list. For each node, we maintain its number of children and
whether the node is marked. Moreover, we maintain a pointer to the root containing the minimum key.

Operation find minimum is now trivial because we keep the pointer to the node containing it. It does not change
the potential of the heap, therefore both actual and amortized cost are constant.

As mentioned above, merge is implemented simply by concatenating the lists of tree roots of the two heaps.
This can be done in constant time and the potential does not change, leading again to constant amortized time.

Operation insert works by creating a new heap with one element and doing merge. This takes constant time, and
the potential increases by one, because the number of trees increases. The amortized cost is thus still constant.

Operation extract minimum (same as delete minimum) operates in three phases.
First we take the root containing the minimum element and remove it. Its
children will become roots of new trees. If the number of children was d, it takes
time O(d) to process all new roots and the potential increases by d−1. Therefore,
the amortized running time of this phase is O(d) = O(log n).

However to complete the extract minimum operation,
we need to update the pointer to the root with
minimum key. Unfortunately there may be up to n roots
we need to check. In the second phase we therefore
decrease the number of roots by successively linking
together roots of the same degree. When two roots u
and v have the same degree, we make one of them a
child of the other so that the one with the smaller key
remains the root. Its degree will increase by one. This is
repeated until every root has a different degree. To find trees of the same degree
efficiently we use an array of length O(log n) in which we keep a pointer to one root of
each degree. When a second root is found of the same degree, the two are linked and
the array is updated. The actual running time is O(log n + m) where m is the number of
roots at the beginning of the second phase. At the end we will have at most O(log n)
roots (because each has a different degree). Therefore, the difference in the potential
function from before this phase to after it is: O(log n) − m, and the amortized running
time is then at most O(log n + m) + c(O(log n) − m). With a sufficiently large choice of
c, this simplifies to O(log n).

In the third phase we check each of the remaining roots and find the minimum. This
takes O(log n) time and the potential does not change. The overall amortized running

time of extract minimum is therefore O(log n).

Operation decrease key will take the node, decrease the key and if
the heap property becomes violated (the new key is smaller than the
key of the parent), the node is cut from its parent. If the parent is
not a root, it is marked. If it has been marked already, it is cut as
well and its parent is marked. We continue upwards until we reach
either the root or an unmarked node. Now we set the minimum
pointer to the decreased value if it is the new minimum. In the
process we create some number, say k, of new trees. Each of these
new trees except possibly the first one was marked originally but as
a root it will become unmarked. One node can become marked.
Therefore, the number of marked nodes changes by
−(k − 1) + 1 = − k + 2. Combining these 2 changes, the potential
changes by 2(−k + 2) + k = −k + 4. The actual time to perform the cutting was O(k), therefore (again with a
sufficiently large choice of c) the amortized running time is constant.

Finally, operation delete can be implemented simply by decreasing the key of the element to be deleted to minus
infinity, thus turning it into the minimum of the whole heap. Then we call extract minimum to remove it. The
amortized running time of this operation is O(log n).

The amortized performance of a Fibonacci heap depends on the degree (number of children) of any tree root
being O(log n), where n is the size of the heap. Here we show that the size of the (sub)tree rooted at any node x
of degree d in the heap must have size at least Fd+2, where Fk is the kth Fibonacci number. The degree bound
follows from this and the fact (easily proved by induction) that for all integers , where

. (We then have , and taking the log to base of both sides gives
 as required.)

Consider any node x somewhere in the heap (x need not be the root of one of the main trees). Define size(x) to
be the size of the tree rooted at x (the number of descendants of x, including x itself). We prove by induction on
the height of x (the length of a longest simple path from x to a descendant leaf), that size(x) ≥ Fd+2, where d is
the degree of x.

Base case: If x has height 0, then d = 0, and size(x) = 1 = F2.

Inductive case: Suppose x has positive height and degree d>0. Let y1, y2, ..., yd be the children of x, indexed in
order of the times they were most recently made children of x (y1 being the earliest and yd the latest), and let c1,
c2, ..., cd be their respective degrees. We claim that ci ≥ i-2 for each i with 2≤i≤d: Just before yi was made a
child of x, y1,...,yi−1 were already children of x, and so x had degree at least i−1 at that time. Since trees are
combined only when the degrees of their roots are equal, it must have been that yi also had degree at least i-1 at
the time it became a child of x. From that time to the present, yi can only have lost at most one child (as
guaranteed by the marking process), and so its current degree ci is at least i−2. This proves the claim.

Since the heights of all the yi are strictly less than that of x, we can apply the inductive hypothesis to them to get
size(yi) ≥ Fci+2 ≥ F(i−2)+2 = Fi. The nodes x and y1 each contribute at least 1 to size(x), and so we have

A routine induction proves that for any , which gives the desired lower bound on

size(x).

Although Fibonacci heaps look very efficient, they have the following two drawbacks (as mentioned in the paper
"The Pairing Heap: A new form of Self Adjusting Heap"): "They are complicated when it comes to coding them.
Also they are not as efficient in practice when compared with the theoretically less efficient forms of heaps,
since in their simplest version they require storage and manipulation of four pointers per node, compared to the
two or three pointers per node needed for other structures ".[3] These other structures are referred to Binary
heap, Binomial heap, Pairing Heap, Brodal Heap and Rank Pairing Heap.

Although the total running time of a sequence of operations starting with an empty structure is bounded by the
bounds given above, some (very few) operations in the sequence can take very long to complete (in particular
delete and delete minimum have linear running time in the worst case). For this reason Fibonacci heaps and
other amortized data structures may not be appropriate for real-time systems. It is possible to create a data
structure which has the same worst-case performance as the Fibonacci heap has amortized performance.[4][5]

One such structure, the Brodal queue, is, in the words of the creator, "quite complicated" and "[not] applicable
in practice." Created in 2012, the strict Fibonacci heap is a simpler (compared to Brodal's) structure with the
same worst-case bounds. It is unknown whether the strict Fibonacci heap is efficient in practice. The run-relaxed
heaps of Driscoll et al. give good worst-case performance for all Fibonacci heap operations except merge.

In the following time complexities[6] O(f) is an asymptotic upper bound and Θ(f) is an asymptotically tight bound
(see Big O notation). Function names assume a min-heap.

Operation Binary[6] Binomial[6] Fibonacci[6] Pairing[7] Brodal[8][a] Rank-pairing[10] Strict
Fibonacci[11]

find-min Θ(1) Θ(log n) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1)

delete-min Θ(log n) Θ(log n) O(log n)[b] O(log n)[b] O(log n) O(log n)[b] O(log n)

insert O(log n) Θ(1)[b] Θ(1) Θ(1) Θ(1) Θ(1) Θ(1)

decrease-key Θ(log n) Θ(log n) Θ(1)[b] o(log n)[b][c] Θ(1) Θ(1)[b] Θ(1)

merge Θ(n) O(log n)[d] Θ(1) Θ(1) Θ(1) Θ(1) Θ(1)

Brodal and Okasaki later describe a persistent variant with the same bounds except for decrease-key, which is not
supported. Heaps with n elements can be constructed bottom-up in O(n).[9]

a.

Amortized time.b.
Bounded by [2][12]c.
n is the size of the larger heap.d.

Fibonacci heaps have a reputation for being slow in practice[13] due to large memory consumption per node and
high constant factors on all operations.[14] Recent experimental results suggest that Fibonacci heaps are more
efficient in practice than most of its later derivatives, including quake heaps, violation heaps, strict Fibonacci
heaps, rank pairing heaps, but less efficient than either pairing heaps or array-based heaps.[15]

Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L.; Stein, Clifford (2001) [1990]. "Chapter 20: Fibonacci
Heaps". Introduction to Algorithms (2nd ed.). MIT Press and McGraw-Hill. pp. 476�497. ISBN 0-262-03293-7.
Third edition p. 518.

1.

Fredman, Michael Lawrence; Tarjan, Robert E. (1987). "Fibonacci heaps and their uses in improved network
optimization algorithms" (PDF). Journal of the Association for Computing Machinery. 34 (3): 596�615.
doi:10.1145/28869.28874.

2.

Fredman, Michael L.; Sedgewick, Robert; Sleator, Daniel D.; Tarjan, Robert E. (1986). "The pairing heap: a new
form of self-adjusting heap" (PDF). Algorithmica. 1 (1): 111�129. doi:10.1007/BF01840439.

3.

Gerth Stølting Brodal (1996), "Worst-Case Efficient Priority Queues", Proc. 7th ACM-SIAM Symposium on Discrete
Algorithms, Society for Industrial and Applied Mathematics: 52�58, doi:10.1145/313852.313883,
ISBN 0-89871-366-8, CiteSeerX: 10.1.1.43.8133

4.

Brodal, G. S. L.; Lagogiannis, G.; Tarjan, R. E. (2012). Strict Fibonacci heaps (PDF). Proceedings of the 44th
symposium on Theory of Computing - STOC '12. p. 1177. doi:10.1145/2213977.2214082. ISBN 9781450312455.

5.

Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L. (1990). Introduction to Algorithms (1st ed.). MIT
Press and McGraw-Hill. ISBN 0-262-03141-8.

6.

Iacono, John (2000), "Improved upper bounds for pairing heaps", Proc. 7th Scandinavian Workshop on Algorithm
Theory, Lecture Notes in Computer Science, 1851, Springer-Verlag, pp. 63�77, doi:10.1007/3-540-44985-X_5

7.

Brodal, Gerth S. (1996), "Worst-Case Efficient Priority Queues", Proc. 7th Annual ACM-SIAM Symposium on
Discrete Algorithms (PDF), pp. 52�58

8.

Goodrich, Michael T.; Tamassia, Roberto (2004). "7.3.6. Bottom-Up Heap Construction". Data Structures and
Algorithms in Java (3rd ed.). pp. 338�341.

9.

Haeupler, Bernhard; Sen, Siddhartha; Tarjan, Robert E. (2009). "Rank-pairing heaps" (PDF). SIAM J. Computing:
1463�1485.

10.

Brodal, G. S. L.; Lagogiannis, G.; Tarjan, R. E. (2012). Strict Fibonacci heaps (PDF). Proceedings of the 44th
symposium on Theory of Computing - STOC '12. p. 1177. doi:10.1145/2213977.2214082. ISBN 9781450312455.

11.

Pettie, Seth (2005). "Towards a Final Analysis of Pairing Heaps" (PDF). Max Planck Institut für Informatik.12.
http://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/FibonacciHeaps.pdf, p. 7913.
http://web.stanford.edu/class/cs166/lectures/07/Small07.pdf, p. 7214.
Larkin, Daniel; Sen, Siddhartha; Tarjan, Robert (2014). "A Back-to-Basics Empirical Study of Priority Queues".
Proceedings of the Sixteenth Workshop on Algorithm Engineering and Experiments: 61�72. arXiv:1403.0252 .
doi:10.1137/1.9781611973198.7.

15.

Java applet simulation of a Fibonacci heap (http://www.cs.yorku.ca/%7Eaaw/Jason
/FibonacciHeapAnimation.html)
MATLAB implementation of Fibonacci heap (http://www.mathworks.com/matlabcentral/fileexchange
/30072-fibonacci-heap)
De-recursived and memory efficient C implementation of Fibonacci heap (http://www.labri.fr/perso
/pelegrin/code/#fibonacci) (free/libre software, CeCILL-B license (http://www.cecill.info/licences
/Licence_CeCILL-B_V1-en.html))
Ruby implementation of the Fibonacci heap (with tests) (https://github.com/evansenter/f_heap)
Pseudocode of the Fibonacci heap algorithm (http://www.cs.princeton.edu/%7Ewayne/cs423/fibonacci
/FibonacciHeapAlgorithm.html)
Various Java Implementations for Fibonacci heap (https://stackoverflow.com/q/6273833/194609)

Retrieved from "https://en.wikipedia.org/w/index.php?title=Fibonacci_heap&oldid=731467315"

Categories: Fibonacci numbers Heaps (data structures)

This page was last modified on 25 July 2016, at 15:15.
Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may
apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered
trademark of the Wikimedia Foundation, Inc., a non-profit organization.

