
Pollard's rho algorithm is an algorithm for integer factorization. It was invented by John Pollard in 1975.[1] It

uses only a small amount of space, and its expected running time is proportional to the square root of the size of

the smallest prime factor of the composite number being factorized.
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Suppose we need to factorize a number , where  is a non-trivial factor. A polynomial modulo , called

 (e.g., ), is used to generate a pseudorandom sequence: A starting value, say 2, is

chosen, and the sequence continues as , , , etc. The sequence is related

to another sequence . Since  is not known beforehand, this sequence cannot be explicitly computed

in the algorithm. Yet, in it lies the core idea of the algorithm.

Because the number of possible values for these sequences are finite, both the  sequence, which is mod ,

and  sequence  will  eventually  repeat, even though we do  not  know the  latter. Assume  that  the

sequences  behave like  random numbers. Due to the  birthday paradox, the number of   before  a  repetition

occurs is expected to be , where  is the number of possible values. So the sequence  will

likely repeat much earlier than the sequence . Once a sequence has a repeated value, the sequence will cycle,

because each value depends only on the one before it. This structure of eventual cycling gives rise to the name

"Rho algorithm", owing to similarity to the shape of the Greek character ρ when the values , ,

etc. are represented as nodes in a directed graph.

This is detected by Floyd's cycle-finding algorithm: two nodes  and  (i.e.,  and ) are kept. In each step, one

moves to the next node in the sequence and the other moves to the one after the next node. After that, it is

checked  whether  .  If  it  is  not  1,  then  this  implies  that  there  is  a  repetition  in  the

 sequence  (i.e.  .  This  works  because  if  the   is  the  same  as

,  the  difference  between   and  is  necessarily  a  multiple  of  .  Although  this  always  happens

eventually, the resulting GCD is a divisor of  other than 1. This may be  itself, since the two sequences might

repeat  at  the  same time. In this  (uncommon)  case  the  algorithm fails, and can be  repeated with  a different

parameter.

The algorithm takes as its inputs n, the integer to be factored; and , a polynomial in x computed modulo n. In

the  original  algorithm,  ,  but  nowadays  it  is  more  common  to  use

. The  output  is  either a non-trivial  factor of  n,  or  failure.  It  performs  the  following

steps:[2]

    x  2; y  2; d  1
while d = 1:

        x  g(x)
        y  g(g(y))
        d  gcd(|x - y|, n)

if d = n: 
return failure

else:
return d

Here x and y corresponds to  and  in the section about core idea. Note that this algorithm may fail to find a

nontrivial factor even when n is composite. In that case, the method can be tried again, using a starting value

other than 2 or a different .

Let  and .

i x y GCD(|x  y |, 8051)

1 5 26 1

2 26 7474 1

3 677 871 97

4 7474 1481 1

97 is a non-trivial factor of 8051. Starting values other than x = y = 2 may give the cofactor (83) instead of 97.

One extra iteration is  shown above to  make  it  clear that y  moves  twice  as  fast  as  x.  Note  that  even after a

repetition, the GCD can return to 1.

In 1980, Richard Brent published a faster variant of the rho algorithm. He used the same core ideas as Pollard but

a different method of  cycle  detection, replacing Floyd's  cycle-finding algorithm with the  related Brent's  cycle

finding method.[3]

A  further  improvement  was  made  by  Pollard  and  Brent.  They  observed  that  if  ,  then  also

 for any positive integer . In particular, instead of computing  at every step, it

suffices  to  define   as  the  product  of  100 consecutive   terms  modulo  ,  and then compute  a  single

. A major speed up results as 100 gcd steps are replaced with 99 multiplications modulo  and a single

gcd. Occasionally it may cause the algorithm to fail by introducing a repeated factor, for instance when  is  a

square. But it then suffices to go back to the previous gcd term, where , and use the regular ρ

algorithm from there.

The algorithm is very fast for numbers with small factors, but slower in cases where all factors are large. The ρ

algorithm's most remarkable success was the factorization of the ninth Fermat number, F8 = 1238926361552897

* 93461639715357977769163558199606896584051237541638188580280321. The ρ algorithm was a good choice

for F8 because the prime factor p = 12389263661552897 is much smaller than the other factor. The factorization

took 2 hours on a UNIVAC 1100/42.

Here we introduce another variant, where only a single sequence is computed, and the gcd is computed inside the

loop that detects the cycle.

The following code sample finds the factor 101 of 10403 with a starting value of x = 2.

#include <stdio.h>
#include <stdlib.h>

int gcd(int a, int b) 
{

int remainder;
while (b != 0) {

remainder = a % b;
a = b;
b = remainder;

}
return a;

}

int main (int argc, char *argv[]) 
{

int n = 10403, loop = 1, count;
int x_fixed = 2, x = 2, size = 2, factor;

do {
printf("----   loop %4i   ----\n", loop);
count = size;
do {

x = (x * x + 1) % n;
factor = gcd(abs(x - x_fixed), n);
printf("count = %4i  x = %6i  factor = %i\n", size - count + 1, x, factor);

} while (--count && (factor == 1));
size *= 2;
x_fixed = x;
loop = loop + 1;

} while (factor == 1);
printf("factor is %i\n", factor);
return factor == n ? EXIT_FAILURE : EXIT_SUCCESS;

}

The above code will  show the algorithm progress as well as intermediate values. The final output line will  be

"factor is 101".

def gcd(a, b):
while a % b != 0:

a, b = b, a % b
return b

number = 10403
x_fixed = 2
cycle_size = 2
x = 2
factor = 1

while factor == 1:
count = 1
while count <= cycle_size and factor <= 1:

x = (x*x + 1) % number
factor = gcd(x - x_fixed, number)
count += 1

cycle_size *= 2
x_fixed = x

print(factor)

In the following table the third and fourth columns contain secret information not known to the person trying to

factor pq = 10403. They are included to show how the algorithm works. If  we start with x  = 2 and follow the

algorithm, we get the following numbers:

step

2 2 2 2 0

5 2 5 2 1

26 2 26 2 2

677 26 71 26 3

598 26 93 26 4

3903 26 65 26 5

3418 26 85 26 6

156 3418 55 85 7

3531 3418 97 85 8

5168 3418 17 85 9

3724 3418 88 85 10

978 3418 69 85 11

9812 3418 15 85 12

5983 3418 24 85 13

9970 3418 72 85 14

236 9970 34 72 15

3682 9970 46 72 16

2016 9970 97 72 17

7087 9970 17 72 18

10289 9970 88 72 19

2594 9970 69 72 20

8499 9970 15 72 21

4973 9970 24 72 22

2799 9970 72 72 23

The first repetition modulo 101 is 97 which occurs in step 17. The repetition is not detected until step 23, when

. This causes  to be , and a factor

is found.

If the pseudorandom number  occurring in the Pollard ρ algorithm were an actual random number, it

would follow  that  success  would be  achieved half  the  time, by  the  Birthday  paradox in  

iterations. It is believed that the same analysis applies as well to the actual rho algorithm, but this is a heuristic

claim, and rigorous analysis of the algorithm remains open.[4]
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