Verifying Polynomial Identities

Computers can sometimes make mistakes, due for example to incorrect programming
or hardware failure. It would be useful to have simple ways to double-check the results
of computations. For some problems, we can use randomness to efficiently verify the
correctness of an output.

Suppose we have a program that multiplies together monomials. Consider the prob-
lem of verifying the following identity, which might be output by our program:

x+Dx—=-2)x+3ID(x—dH(x +5(x—6) E? x0 — 7x3 425,

There is an easy way to verify whether the identity is correct: multiply together the
terms on the left-hand side and see if the resulting polynomial matches the right-hand
side. In this example, when we multiply all the constant terms on the left, the result
does not match the constant term on the right, so the identity cannot be valid. More
cenerally, given two polynomials F(x) and G(x), we can verify the identity

Fi5) = 605

by converting the two polynomials to their canonical forms (Zjlz() Cix’); two polyno-

mials are equivalent if and only if all the coefficients in their canonical forms are equal.
From this point on let us assume that, as 1n our example, F(x) is given as a product
Flx) = ﬂf:l(x —a;) and G (x) is given in its canonical form. Transforming F(x) to
its canonical form by consecutively multiplying the ith monomial with the product of
the first i — | monomials requires Od?) multiplications of coefficients. We assume in

what follows that each multiplication can be performed in constant time, although if
the products of the coefficients grow large then it could conceivably require more than
constant time to add and multiply numbers together.

So far, we have not said anything particularly interesting. To check whether the
computer program has multiplied monomials together correctly, we have suggested
multiplying the monomials together again to check the result. Our approach for check-
ing the program is to write another program that does essentially the same thing we
expect the first program to do. This is certainly one way to double-check a program:
write a second program that does the same thing. and make sure they agree. There
are at least two problems with this approach, both stemming from the idea that there
should be a difference between checking a given answer and recomputing it. First, if
there is a bug in the program that multiplics monomials. the same bug may occur in the
checking program. (Suppose that the checking program was written by the same per-
son who wrote the original program!) Second. it stands to reason that we would like
to check the answer in less time than it takes to try to solve the original problem all
over again.

Let us instead utilize randomness (o obtain a faster method to verify the identity. We
informally explain the algorithm and then set up the formal mathematical framework
for analyzing the algorithm.

Assume that the maximum degree, or the largest exponent of x, in F'(x) and G(x) is
d. The algorithm chooses an integer r uniformly at random in the range {1,...,100d},
where by “uniformly at random”™ we mean that all integers are equally likely to be
chosen. The algorithm then computes the vaiues (r) and G(r). If £(r) # G(r) the
algorithm decides that the two polynomials are not equivalent, and if F(r) = G(r) the
algorithm decides that the two polynomials are equivalent.

Suppose that in one computation step the algorithm can generate an integer cho-
sen uniformly at random in the range {1. ..., 100d}. Computing the values of F(r) and
G (r) can be done in O(d) time. which is faster than computing the canonical form of
F(r). The randomized algorithm. however. may give a wrong answer.

How can the algorithm give the wrong answer?

If F(x) = G(x). then the algorithm gives the correct answer, since it will find that
F(r) = G(r) for any value of r.

If F(x)# G(x)and F(r) # G(r). then the algorithm gives the correct answer since
it has found a case where F(x) and G (.v) disagree. Thus, when the algorithm decides
that the two polynomials are not the same, the answer is always correct.

If F(x) # G(x) and F(r) = G(r), the algorithm gives the wrong answer. In
other words, it is possible that the algorithm decides that the two polynomials are the
same when they are not. For this error to occur, # must be a root of the equation
F(x) — G(x) = 0. The degree of the polynomial F(x) — G(x) is no larger than d
and, by the fundamental theorem of algebra, a polynomial of degree up to d has no
more than d roots. Thus, if F(x) # G(x), then there arc no more than d values in the
range {1,...,100d} for which F(r) = G(r). Since there are 100d values in the range
{1,...,100d}, the chance that the algorithm chooses such a value and returns a wrong
answer i1s no more than 1/100.

Verifying Matrix Multiplication

We now consider another example where randomness can be used to verify an equal-
ity more quickly than the known deterministic algorithms. Suppose we are given three
n x n matrices A, B, and C. For convenience, assume we are working over the integers
modulo 2. We want to verify whether

AB =C.

One way to accomplish this is to multiply A and B and compare the result to C. The
simple matrix multiplication algorithm takes @(n?) operations. There exist more so-
phisticated algorithms that are known to take roughly ©(n>'7) operations.

Once again, we use arandomized algorithm that allows for faster verification — at the
expense of possibly returning a wrong answer with small probability. The algorithm is
similar in spirit to our randomized algorithm for checking polynomial identities. The
algorithm chooses a random vector ¥ = (ry,r2,....r,;) € {0, 1}". It then computes ABr
by first computing Br and then A(Br). and it also computes Cr. If A(Br) # Cr, then
AB #£ C. Otherwise, it returns that AB = C.

The algorithm requires three matrix-vector multiplications, which can be done in
time ©(n?) in the obvious way. The probability that the algorithm returns that AB =
C when they are actually not equal is bounded by the following theorem.

)

Theorem 1.4: [f AB # C and if r is chosen uniformly at random from {

Pr(ABr = Cr) <

0| —

Proof: Before beginning, we point out that the sample space for the vector r is the set
{0, 1}" and that the event under consideration is AB7 = Cr. We also make note of the
following simple but useful lemma.

Lemma 1.5: Choosing r = (r,ra,....r,) € {0, 1} uniformly at random is equivalent
to choosing each r; independently and uniformliy from {0, 1}.

Proof: 1f each r; is chosen independently and uniformly at random. then each of the

2" possible vectors 7 is chosen with probability 277, giving the lemma. L]

—

LetD = AB — C # 0. Then ABr = Cr implies that Dr = 0. Since D # 0 it must
have some nonzero entry; without loss of generality, let that entry be d;.

For Dr = 0, it must be the case that

Z dr, =0

J=1
or, equivalently,

n
> -2 dijr

1.1)
a (

ry = —

Now we introduce a helpful idea. Instead of reasoning about the vector 7, suppose
that we choose the ry independently and uniformly at random from {0, 1} in order, from
r, down to r|. Lemma 1.5 says that choosing the r; in this way is equivalent to choos-
ing a vector 7 uniformly at random. Now consider the situation just before r| is chosen.
At this point, the right-hand side of Eqn. (1.1) is determined, and there is at most one
choice for r; that will make that equality hold. Since there are two choices for ry, the
cquality holds with probability at most 1/2, and hence the probability that AB# = Cr
is at most 1/2. By considering all variables besides » as having been set, we have re-
duced the sample space to the set of two values {0, 1} for ; and have changed the event
being considered to whether Eqn. (1.1) holds.

This idea is called the principle of deferred decisions. When there are several ran-
dom variables, such as the r; of the vector 7, it often helps to think of some of them
as being set at one point in the algorithm with the rest of them being left random — or
deferred — until some further point in the analysis. Formally. this corresponds to con-
ditioning on the revealed values; when some of the random variables are revealed, we
must condition on the revealed values for the rest of the analysis. We will see further
examples of the principle of deferred decisions later in the book.

To formalize this argument, we first introduce a simple fact, known as the law of
total probability.

Theorem 1.6 [Law of Total Probability]l: Ler E|, E,, ..., E, be mutually disjoint
events in the sample space Q. and let \ J'_, E; = Q. Then

Pr(B) = ZPr(B NE) = Z Pr(B | E;)Pr(E)).

=1 =1

Proof: Since the events BN E; (i = 1,...,n) are disjoint and cover the entire sample
space €2, it follows that

Pr(B) = Z Pr(BNE).
=l

Further,

ZPr(B NE;) = ZPr(B | E;)Pr(E;)

i=1 =1

by the definition of conditional probability. O

Now, using this law and summing over all collections of values (x;,x3,x4,...,X,) €
{0, 1}~ yields

Pr(AB7 = C7)
= > Pr((ABF = CF) N ((ra,....r) = (X2, ... X))

vz os{o et

12
Z = 2 dl./'rj 5
= Z Pr((*‘l = ——j————) N((ra, ...,) = (X2, X n)))
. R dy
L ooe{0 e
Z'?_ dyir

- Z Pr(rl = ——’%) Pr((ra,...om) = (x2, ..., x0))

(X2....x)€{0 1=t I ’

|

< Z EPr((rg,...,r,,) =(x>,...,. X))

(2. ... xe(0 -l
1
— 5.

Here we have used the independence of | and (r,, ..., r,) in the fourth line, n

To improve on the error probability of Theorem 1.4, we can again use the fact that the
algorithm has a one-sided error and run the algorithm multiple times. If we ever find
an r such that ABr # Cr, then the algorithm will correctly return that AB £ C. If we
always find ABr = Cr, then the algorithm returns that AB = C and there is some
probability of a mistake. Choosing r with replacement from {0, 1}" for each trial, we
obtain that, after & trials, the probability of error is at most 2 *. Repeated trials increase
the running time to O (kn?).

Suppose we attempt this verification 100 times. The running time of the random-
ized checking algorithm is still ©®(n?). which is faster than the known deterministic
algorithms for matrix multiplication for sufficiently large n. The probability that an in-
correct algorithm passes the verification test 100 times is 27! an astronomically small
number. In practice, the computer is much more likely to crash during the execution
of the algorithm than to return a wrong answer.

An interesting related problem is to evaluate the gradual change in our confidence in
the correctness of the matrix multiplication as we repeat the randomized test. Toward
that end we introduce Bayes’ law.

Theorem 1.7 [Bayes’ Law]: Assume that E|, E», ..., E, are mutually disjoint sets
such that \ J!_| E; = E. Then

Pr(E;N B) _ Pr(B | E;) Pr(E))
Pr(B)y YU Pr(B|E)Pr(E)

Pr(E; | B) =

As a simple application of Bayes’ law, consider the following problem. We are given
three coins and are told that two of the coins are fair and the third coin is biased, land-
ing heads with probability 2 /3. We are not told which of the three coins is biased. We

permute the coins randomly, and then flip each of the coins. The first and second coins
come up heads, and the third comes up tails. What is the probability that the first coin
is the biased one?

The coins are in a random order and so, before our observing the outcomes of the
coin flips, each of the three coins is equally likely to be the biased one. Let E; be the
event that the ith coin flipped is the biased one. and let B be the event that the three
coin flips came up heads, heads, and tails.

Betore we flip the coins we have Pr(E;) = 1/3 for all /. We can also compute the
probability of the event B conditioned on E;:

' : 2 1 1 1
Pr(B\El):Pr(B\Eg)zg.i_izg’
and
BIE 111 I
Pr(B | 3)_§.§.§_E_

Applying Bayes’ law, we have
Pr(B | E,)Pr(E}) B 2
Sl Pr(B|E)PrE) 5

Pr(E, | B) =

Thus, the outcome of the three coin flips increases the likelihood that the first coin is
the biased one from 1/3 to 2/5.

Returning now to our randomized matrix multiplication test, we want to evaluate
the increase in confidence in the matrix identity obtained through repeated tests. In
the Bayesian approach one starts with a prior model, giving some initial value to the
model parameters. This model 1s then modified, by incorporating new observations, to
obtain a posterior model that captures the new information.

In the matrix multiplication case, if we have no information about the process that
generated the identity then a reasonable prior assumption is that the identity is correct
with probability 1/2. If we run the randomized test once and it returns that the matrix
identity is correct, how does this change our confidence in the identity?

Let E be the event that the identity is correct, and let B be the event that the test re-
turns that the identity is correct. We start with Pr(E) = Pr(E) = 1/2, and since the
test has a one-sided error bounded by 1/2, we have Pr(B | E) = 1 and Pr(B | E) <
1/2. Applying Bayes’ law yields

o

Pr(B | E)Pr(E) 1/2
Pr(E | B) = > _
Pr(B| E)Pr(E) +Pr(B | E)Pr(E) — 1/2+1/2-1)2

(OS]

Assume now that we run the randomized test again and it again returns that the iden-
tity is correct. After the first test, [may naturally have revised my prior model, so that
I believe Pr(E) > 2/3 and Pr(E) < 1/3. Now let B be the event that the new test
returns that the identity 1s correct; since the tests are independent, as before we have
Pr(B|E)=1landPr(B | E) < 1/2. Applying Bayes’ law then yields

| 2/3
Pr(E | B) >
2/3+1/3-1/2

4
=3

In general: If our prior model (before running the test) is that Pr(E) > 2//(2/ 4 1)
and 1f the test returns that the identity is correct (event B), then
5i
2 1] i+t] [

Pr(E | B) >

.1 2y 2
741 22

“

Thus, if all 100 calls to the matrix identity test return that the identity is correct, our
confidence in the correctness of this identity is at least | — l/(Z”)(’ +1).

A Randomized Min-Cut Algorithm

A cut-set in a graph is a set of edges whose removal breaks the graph into two or
more connected components. Given a graph G = (V, E') with n vertices, the minimum
cut — or min-cut — problem is to find a minimum cardinality cut-set in G. Minimum
cut problems arise in many contexts, including the study of network reliability. In the
case where nodes correspond to machines in the network and edges correspond to con-
nections between machines, the min-cut is the smallest number of edges that can fail
before some pair of machines cannot communicate. Minimum cuts also arise in clus-
tering problems. For example, if nodes represent Web pages (or any documents in a
hypertext-based system) and two nodes have an edge between them if the correspond-
ing nodes have a hyperlink between them, then small cuts divide the graph into clusters
of documents with few links between clusters. Documents in different clusters are
likely to be unrelated.

We shall proceed by making use of the definitions and techniques presented so far in
order to analyze a simple randomized algorithm for the min-cut problem. The main op-
eration in the algorithm is edge contraction. In contracting an edge {u, v} we merge the
two vertices i and v into one vertex, eliminate all edges connecting # and v, and retain
all other edges in the graph. The new graph may have parallel edges but no self-loops.
Examples appear in Figure 1.1, where in each step the dark edge is being contracted.

The algorithm consists of 1 — 2 iterations. In each iteration, the algorithm picks an
edge from the existing edges in the graph and contracts that edge. There are many pos-
sible ways one could choose the edge at each step. Our randomized algorithm chooses
the edge uniformly at random from the remaining edges.

Each iteration reduces the number of vertices in the graph by one. After n — 2 1t-
erations, the graph consists of two vertices. The algorithm outputs the set of edges
connecting the two remaining vertices.

[tis easy to verify that any cut-set of a graph in an intermediate iteration of the algo-
rithm is also a cut-set of the original graph. On the other hand, not every cut-set of the
original graph is a cut-set of a graph in an intermediate iteration, since some edges of
the cut-set may have been contracted in previous iterations. As a result, the output of
the algorithm is always a cut-set of the original graph but not necessarily the minimum
cardinality cut-set (see Figure 1.1).

1
3.4 1,34 12,34
2 2

2 4
(a) A successful run of min-cut.
1 3 1 1 1
5 5 N
3.4 3,45
2345
2 4 2 2

(b) An unsuccesstul run of min-cut.

Figure 1.1: An example of two executions of min-cut in a graph with minimum cut-set of size 2.

We now establish a lower bound on the probability that the algorithm returns a cor-
rect output.

Theorem 1.8: The algorithm outputs a min-cut set with probability atleast 2 /n(n — 1).

Proof: Let k be the size of the min-cut set of G. The graph may have several cut-sets
of minimum size. We compute the probability of finding one specific such set C.

Since C is a cut-set in the graph. removal of the set C partitions the set of vertices
into two sets, S and V — S, such that there are no edges connecting vertices in S to
vertices in V' — S. Assume that, throughout an execution of the algorithm. we contract
only edges that connect two vertices in § or two vertices in V — S. but not edges in C.
In that case, all the edges eliminated throughout the execution will be edges connect-
ing vertices in S or vertices in V' — S, and after n — 2 iterations the algorithm returns a
graph with two vertices connected by the edges in C. We may therefore conclude that,
if the algorithm never chooses an edge ot C in its n — 2 iterations, then the algorithm
returns C as the minimum cut-set.

This argument gives some intuition for why we choose the edge at each iteration
uniformly at random from the remaining existing edges. If the size of the cut C i1s small
and if the algorithm chooses the edge uniformly at cach step, then the probability that
the algorithm chooses an edge of C is small — at least when the number of edges re-
maining is large compared to C.

Let E; be the event that the edge contracted in iteration 7 is not in C. and let F; =
ﬂ;:l E; be the event that no edge of C was contracted in the first / iterations. We need
to compute Pr(F,_»).

We start by computing Pr(£}) = Pr(f). Since the minimum cut-set has k edges,
all vertices in the graph must have degree k or larger. If each vertex is adjacent to at
least k edges, then the graph must have at least nk /2 edges. The first contracted edge
1s chosen uniformly at random from the set of all edges. Since there are at least nk/2
edges in the graph and since C has k edges, the probability that we do not choose an
cdge of C in the first iteration is given by

2k
Pr(E,))=Pr(F)) 21— —=1-—
nk

)
n

Let us suppose that the first contraction did not eliminate an edge of C. In other
words, we condition on the event F;. Then, after the first iteration, we are left with an
(n — 1)-node graph with minimum cut-set of size k. Again, the degree of cach vertex in
the graph must be at least &, and the graph must have at least k(n — 1)/2 edges. Thus,

k 2
Pr(E> | F)) > — ——m— =1-—)
kin—1)/2 n—1

Similarly.

(8]

k
Pr(E; | Fiop) > 1— — , =]—-—
kin—i+1)/2 n—i-+1

To compute Pr(F,_»), we use

(Fn—l) = Pr(En—2 N Ez—}) = PI’(E,,,Q_ | Fu—-3) : Pr(Ez—-3)
=Pr(E,_» | F,—3) -Pr(E,_3 | F,_4)---Pr(E> | Fy)-Pr(F))

10 -=) - M=)
=(”f)Ci:f)(iz:i)---(i)(i)(i)(;)

= — —. |
nn—1)

Since the algorithm has a one-sided error, we can reduce the error probability by repeat-
ing the algorithm. Assume that we run the randomized min-cut algorithm n(n — 1) Inn
times and output the minimum size cut-set found in all the iterations. The probability
that the output is not a min-cut set is bounded by

n(n—1)lnn
| — 2 < efZInn — L
nn —1) - n?

In the first inequality we have used the fact that 1 — x <e™".

