Computational Complexity Theory Avi Wigderson
Problem Set 4 Due: May 16, 1999

1. A Paradoz.
It is known that if 3SAT € P then PH = P. In particular we have a polynomial
time algorithm for MIN — CIRCUIT that was defined in class. On the other hand
it is believed in the CS community that there is no polynomial time algorithm for
MIN — CIRCUIT even if we are allowed to use 35AT as an Oracle. Write your

opinion about this seemingly paradox.

2. Chernoff Bound.
The aim of this exercise is to show that if we have many independent experiments the
outcome is exponentialy likely to be extremely close to the expectation. This is one of
the most usefull facts in probability and in finite combinatorics.

Let Xy, ..., X, be independent Bernoulli trials such that, for 1 <¢ <n, Pr[X; = 1] = p;,
where 0 < p; < 1. Define X =¥ X;, p = E[X] =X, p:.

edr

(b) Prove that for 0 < § < 1, Pr[X > (1 — §)pu] < e7#°/2,

(a) Prove that for and any 6 > 0, Pr[X > (1 + )] <

Hints:

1. Instead of looking at the event X > (1 4 8)u consider the equivalent event e¢'* >
¢!k for some fixed t. Now use Markov inequality and then maximize over t.

2. Recall that Vz 1 + 2z < €.
3. For part (b) use the fact (which you can easily verify by taking derivatives) that
for 0 <6 <1, (1—6)°> e=0+5%/2,
3. BPP.

Definition 1 The class BPP(€) (for Bounded-error Probabilistic Polynomial time) con-
sists of all languages L that have a randomized algorithm A running in worst-case poly-
nomial time such that for any input x € {0,1}",

1 —e.

€.

o v € L = Pr[A(x) accepts]

>
o v ¢ L = Pr[A(x) accepts] <

BPP = BPP(1/3).

(Note: The probabilistic aspect of A does not affect the running time that is always
polynomial. However wrong answers can occur by bad luck.)

In this question n is the input length. The following equation says that it is possible to
transform a BPP algorithm with an error as large as % — 1/poly(n) to one with error
probability as small as 27P°(").

Prove that Ve, BPP(3 —n™°) = BPP(2™").
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4. Oracles.

Definition 2 Let PNPIog™) be the class of all languages that can be decided by a polyno-
mial time Oracle TM which on input of length n asks a total of O(logn) SAT queries.
Let P|]|VP (for an Oracle machine that asks its queries in parallel) be the class of all
languages that can be decided by an Oracle TM operating as follows: On input x, the
machine first computes in polynomial time a polynomial number of instances of SAT,
and receives the correct answers for them (from the Oracle). Based on these answers,
the machine decides whether x € L in polynomial time.

Prove that PNPllognl — P|]|VP.

5. The Permanent.

Definition 3 For a matric A € M, , = (a;;) let

PERM(A) = 3 T Avoiiy-

gES, 1=1

where S, is the group of all permutations of n elements (this is like the Determinant
with no + signs).

a. Show that the Permanent is the coefficient of 135 - - - y,, in the polynomial

n n

Pyt vz, ) = [ D yjaiy

=1 7=1
b. Prove that .
PERM(A) = (-1 ¥ (DT S a,,
TC[n] 1=1 ;€T
in two different ways:

i. Verify the formula directly.
ii. Use interpolation to get the coefficient of yyys--- ¥, in the polynomial from
(1.).

c. Let Xy4,...,X,,, be independent random variables such that, for 1 < ¢ < n,
E(X;;) =0, VAR(X,,) = 1. Denote by B € M,y, the following random ma-
trix : B = (b@j), bi,j = \/WX%]

Show that PERM(A) = E(DET(B)?) (we thing about B as a random matrix,
and take the expected value of DET(B)?).

Since the Determinant is easy we managed to find a representation of the Permanent
as the expectation of an “easy” random variable. The natural thing to do would
be to approximate it.

d. Let Pr[X;; = 1] = Pr[X,;; = —1] = 1/2. How many estimation of (DET(B)?*)
should we do in order to approximate PERM up to a constant, A, according to
Chevichev’s inequality?



