
Pollard's rho algorithm is an algorithm for integer factorization. It was invented by John Pollard in 1975.[1] It

uses only a small amount of space, and its expected running time is proportional to the square root of the size of

the smallest prime factor of the composite number being factorized.

Core ideas

Algorithm

Example factorization

Variants

Application

The example n = 10403 = 101 · 103
C code sample
Python code sample
The results

Complexity

References

Further reading

External links

Suppose we need to factorize a number , where is a non-trivial factor. A polynomial modulo , called

 (e.g.,), is used to generate a pseudorandom sequence: A starting value, say 2, is

chosen, and the sequence continues as , , , etc. The sequence is related

to another sequence . Since is not known beforehand, this sequence cannot be explicitly computed

in the algorithm. Yet, in it lies the core idea of the algorithm.

Because the number of possible values for these sequences are finite, both the sequence, which is mod ,

and sequence will eventually repeat, even though we do not know the latter. Assume that the

sequences behave like random numbers. Due to the birthday paradox, the number of before a repetition

occurs is expected to be , where is the number of possible values. So the sequence will

likely repeat much earlier than the sequence . Once a sequence has a repeated value, the sequence will cycle,

because each value depends only on the one before it. This structure of eventual cycling gives rise to the name

"Rho algorithm", owing to similarity to the shape of the Greek character ρ when the values , ,

etc. are represented as nodes in a directed graph.

This is detected by Floyd's cycle-finding algorithm: two nodes and (i.e., and) are kept. In each step, one

moves to the next node in the sequence and the other moves to the one after the next node. After that, it is

checked whether . If it is not 1, then this implies that there is a repetition in the

 sequence (i.e. . This works because if the is the same as

, the difference between and is necessarily a multiple of . Although this always happens

eventually, the resulting GCD is a divisor of other than 1. This may be itself, since the two sequences might

repeat at the same time. In this (uncommon) case the algorithm fails, and can be repeated with a different

parameter.

The algorithm takes as its inputs n, the integer to be factored; and , a polynomial in x computed modulo n. In

the original algorithm, , but nowadays it is more common to use

. The output is either a non-trivial factor of n, or failure. It performs the following

steps:[2]

 x 2; y 2; d 1
while d = 1:

 x g(x)
 y g(g(y))
 d gcd(|x - y|, n)

if d = n:
return failure

else:
return d

Here x and y corresponds to and in the section about core idea. Note that this algorithm may fail to find a

nontrivial factor even when n is composite. In that case, the method can be tried again, using a starting value

other than 2 or a different .

Let and .

i x y GCD(|x y |, 8051)

1 5 26 1

2 26 7474 1

3 677 871 97

4 7474 1481 1

97 is a non-trivial factor of 8051. Starting values other than x = y = 2 may give the cofactor (83) instead of 97.

One extra iteration is shown above to make it clear that y moves twice as fast as x. Note that even after a

repetition, the GCD can return to 1.

In 1980, Richard Brent published a faster variant of the rho algorithm. He used the same core ideas as Pollard but

a different method of cycle detection, replacing Floyd's cycle-finding algorithm with the related Brent's cycle

finding method.[3]

A further improvement was made by Pollard and Brent. They observed that if , then also

 for any positive integer . In particular, instead of computing at every step, it

suffices to define as the product of 100 consecutive terms modulo , and then compute a single

. A major speed up results as 100 gcd steps are replaced with 99 multiplications modulo and a single

gcd. Occasionally it may cause the algorithm to fail by introducing a repeated factor, for instance when is a

square. But it then suffices to go back to the previous gcd term, where , and use the regular ρ

algorithm from there.

The algorithm is very fast for numbers with small factors, but slower in cases where all factors are large. The ρ

algorithm's most remarkable success was the factorization of the ninth Fermat number, F8 = 1238926361552897

* 93461639715357977769163558199606896584051237541638188580280321. The ρ algorithm was a good choice

for F8 because the prime factor p = 12389263661552897 is much smaller than the other factor. The factorization

took 2 hours on a UNIVAC 1100/42.

Here we introduce another variant, where only a single sequence is computed, and the gcd is computed inside the

loop that detects the cycle.

The following code sample finds the factor 101 of 10403 with a starting value of x = 2.

#include <stdio.h>
#include <stdlib.h>

int gcd(int a, int b)
{

int remainder;
while (b != 0) {

remainder = a % b;
a = b;
b = remainder;

}
return a;

}

int main (int argc, char *argv[])
{

int n = 10403, loop = 1, count;
int x_fixed = 2, x = 2, size = 2, factor;

do {
printf("---- loop %4i ----\n", loop);
count = size;
do {

x = (x * x + 1) % n;
factor = gcd(abs(x - x_fixed), n);
printf("count = %4i x = %6i factor = %i\n", size - count + 1, x, factor);

} while (--count && (factor == 1));
size *= 2;
x_fixed = x;
loop = loop + 1;

} while (factor == 1);
printf("factor is %i\n", factor);
return factor == n ? EXIT_FAILURE : EXIT_SUCCESS;

}

The above code will show the algorithm progress as well as intermediate values. The final output line will be

"factor is 101".

def gcd(a, b):
while a % b != 0:

a, b = b, a % b
return b

number = 10403
x_fixed = 2
cycle_size = 2
x = 2
factor = 1

while factor == 1:
count = 1
while count <= cycle_size and factor <= 1:

x = (x*x + 1) % number
factor = gcd(x - x_fixed, number)
count += 1

cycle_size *= 2
x_fixed = x

print(factor)

In the following table the third and fourth columns contain secret information not known to the person trying to

factor pq = 10403. They are included to show how the algorithm works. If we start with x = 2 and follow the

algorithm, we get the following numbers:

step

2 2 2 2 0

5 2 5 2 1

26 2 26 2 2

677 26 71 26 3

598 26 93 26 4

3903 26 65 26 5

3418 26 85 26 6

156 3418 55 85 7

3531 3418 97 85 8

5168 3418 17 85 9

3724 3418 88 85 10

978 3418 69 85 11

9812 3418 15 85 12

5983 3418 24 85 13

9970 3418 72 85 14

236 9970 34 72 15

3682 9970 46 72 16

2016 9970 97 72 17

7087 9970 17 72 18

10289 9970 88 72 19

2594 9970 69 72 20

8499 9970 15 72 21

4973 9970 24 72 22

2799 9970 72 72 23

The first repetition modulo 101 is 97 which occurs in step 17. The repetition is not detected until step 23, when

. This causes to be , and a factor

is found.

If the pseudorandom number occurring in the Pollard ρ algorithm were an actual random number, it

would follow that success would be achieved half the time, by the Birthday paradox in

iterations. It is believed that the same analysis applies as well to the actual rho algorithm, but this is a heuristic

claim, and rigorous analysis of the algorithm remains open.[4]

Pollard, J. M. (1975), "A Monte Carlo method for factorization", BIT Numerical Mathematics, 15 (3): 331–334,
doi:10.1007/bf01933667 (https://doi.org/10.1007%2Fbf01933667)

1.

Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L. & Stein, Clifford (2009), "Section 31.9: Integer
factorization", Introduction to Algorithms (third ed.), Cambridge, MA: MIT Press, pp. 975–980,
ISBN 978-0-262-03384-8 (this section discusses only Pollard's rho algorithm).

2.

Brent, Richard P. (1980), "An Improved Monte Carlo Factorization Algorithm" (http://maths-people.anu.edu.au
/~brent/pub/pub051.html), BIT, 20: 176–184, doi:10.1007/BF01933190 (https://doi.org
/10.1007%2FBF01933190)

3.

Galbraith, Steven D. (2012), "14.2.5 Towards a rigorous analysis of Pollard rho", Mathematics of Public Key
Cryptography (https://books.google.com/books?id=owd76BElvosC&pg=PA272), Cambridge University Press,
pp. 272–273, ISBN 9781107013926.

4.

Katz, Jonathan; Lindell, Yehuda (2007), "Chapter 8", Introduction to Modern Cryptography, CRC Press
Samuel S. Wagstaff, Jr. (2013). The Joy of Factoring (http://www.ams.org/bookpages/stml-68). Providence,
RI: American Mathematical Society. pp. 135–138. ISBN 978-1-4704-1048-3.

Comprehensive article on Pollard's Rho algorithm aimed at an introductory-level audience
(https://sofosband.wixsite.com/pversusnp/single-post/2018/08/27/Factorising-part-2---Pollards-Rho-algorithm)
Weisstein, Eric W. "Pollard rho Factorization Method" (http://mathworld.wolfram.com
/PollardRhoFactorizationMethod.html). MathWorld.
Java Implementation (http://introcs.cs.princeton.edu/java/99crypto/PollardRho.java.html)

Retrieved from "https://en.wikipedia.org/w/index.php?title=Pollard%27s_rho_algorithm&oldid=886293723"

This page was last edited on 5 March 2019, at 10:52 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using
this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia
Foundation, Inc., a non-profit organization.

C code sample

Python code sample

The results

