Глава 2

Релации

За да дадем определение на понятието релация, трябва първо да въведем понятието декартово произведение на множества, което пък от своя страна се основава на понятието наредена двойка.

Наредена двойка

За два елемента a и b въвеждаме опрецията **наредена** двойка $\langle a,b \rangle$. Наредената двойка $\langle a,b \rangle$ има следното характеристичното свойство:

$$a_1 = a_2 \wedge b_1 = b_2 \leftrightarrow \langle a_1, b_1 \rangle = \langle a_2, b_2 \rangle.$$

Понятието наредена двойка може да се дефинира по много начини, стига да изпълнява харектеристичното свойство. Ето примери как това може да стане:

1) Първото теоретико-множествено определение на понятите наредена двой- Norbert Wiener (1914) ка е дадено от Норберт Винер:

$$\langle a, b \rangle = \{ \{ \{a\}, \emptyset\}, \{ \{b\} \} \}.$$

2) Определението на Куратовски се приема за "стандартно" в наши дни: Каzimierz Kuratowski (1921)

$$\langle a, b \rangle = \{ \{a\}, \{a, b\} \}.$$

Задача 1. Докажете, че горните дефиниции наистина изпълняват харектеристичното свойство за наредени двойки.

Забележка 3. Сега можем да въведем понятието наредена *п*-орка

Пример за рекурсивна дефиниция

$$\langle a_1, \ldots, a_n \rangle$$

за всяко $n \ge 1$:

$$\langle a_1 \rangle = a_1,$$

 $\langle a_1, a_2, \dots, a_n \rangle = \langle a_1, \langle a_2, \dots, a_n \rangle \rangle$

Декартово произведение

За две множества A и B, определяме тяхното декартово произведение като — На англ. cartesian product

$$A \times B = \{ \langle a, b \rangle \mid a \in A \& b \in B \}.$$

За краен брой множества $A_1,A_2,\ldots,A_n,$ определяме

$$A_1 \times A_2 \times \cdots \times A_n = \{ \langle a_1, a_2, \dots, a_n \rangle \mid a_1 \in A_1 \& a_2 \in A_2 \& \dots \& a_n \in A_n \}.$$

Подмножествата R от вида $R \subseteq A \times A \times \cdots \times A$ се наричат релации.

Задача 12. Преверете, че:

1)
$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$
.

2)
$$(A \cup B) \times C = (A \times C) \cup (B \times C)$$
.

3)
$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$
.

4)
$$(A \cap B) \times C = (A \times C) \cap (B \times C)$$
.

5)
$$A \times (B \setminus C) = (A \times B) \setminus (A \times C)$$
.

6)
$$(A \setminus B) \times C = (A \times C) \setminus (B \times C)$$
.

Релациите от вида $R\subseteq A\times A$ са важен клас, който ще срещаме често. Бинарни релации Да разгледаме няколко основни вида релации от този клас:

I) **рефликсивна**, ако

$$(\forall x \in A)[\langle x, x \rangle \in R].$$

Например, релацията $\leq \subseteq \mathbb{N} \times \mathbb{N}$ е рефлексивна, защото

$$(\forall x \in \mathbb{N})[x \le x].$$

II) **антирефлексивна**, ако

$$(\forall x \in A)[\langle x, x \rangle \notin R].$$

Например, релацията < \subseteq $\,\mathbb{N}\times\mathbb{N}$ е антирефлексивна, защото

$$(\forall x \in \mathbb{N})[x \not < x].$$

III) **транзитивна**, ако

$$(\forall x, y, z \in A)[\langle x, y \rangle \in R \& \langle y, z \rangle \in R \to \langle x, z \rangle \in R].$$

Например, релацията $\leq \subseteq \mathbb{N} \times \mathbb{N}$ е транзитивна, защото

$$(\forall x, y, z \in A)[x \le y \& y \le z \rightarrow x \le z].$$

IV) **симетрична**, ако

$$(\forall x, y \in A)[\langle x, y \rangle \in R \to \langle y, x \rangle \in R].$$

Например, релацията $= \subseteq \mathbb{N} \times \mathbb{N}$ е рефлексивна, защото

$$(\forall x, y \in \mathbb{N})[x = y \rightarrow y = x].$$

V) антисиметрична, ако

$$(\forall x, y \in A)[\langle x, y \rangle \in R \& \langle y, x \rangle \in R \to x = y].$$

Например, релацията $\leq \subseteq \mathbb{N} \times \mathbb{N}$ е антисиметрична, защото

$$(\forall x, y, z \in A)[x \le y \& y \le x \rightarrow x = y].$$

VI) асиметрична, ако

$$(\forall x, y)[\langle x, y \rangle \in R \to \langle y, x \rangle \notin R].$$

Например, релацията $\leq \subseteq \mathbb{N} \times \mathbb{N}$ е асиметрична, защото

$$(\forall x, y \in \mathbb{N})[x < y \rightarrow y \not< x].$$

Забележка 4. Добре е да запомните как се наричат тези основни видове релации, защото ще ги използваме често.

Пример 6. Да обобщим примерите от по-горе.

- а) Релацията $\leq \subseteq \mathbb{N} \times \mathbb{N}$ е рефлексивна, транзитивна и антисиметрична.
- б) Релацията $<\subseteq \mathbb{N} \times \mathbb{N}$ е антирефлексивна, транзитивна и асиметрична.
- в) Релацията = $\subseteq \mathbb{N} \times \mathbb{N}$ е рефлексивна, транзитивна и симетрична.

Задача 13. Нека R е релация върху A. Да определим релациите:

- $S = \{\langle x, y \rangle \mid \langle x, y \rangle \in R \land \langle y, x \rangle \in R\};$
- $T = \{ \langle x, y \rangle \mid \langle x, y \rangle \in R \land \langle y, x \rangle \notin R \}.$

Докажете, че:

- а) S е симетрична и T е антисиметрична.
- 6) $\langle x, y \rangle \in R \quad \leftrightarrow \quad (\langle x, y \rangle \in S \lor \langle x, y \rangle \in T);$
- в) ако R е транзитивна, то S и T са също транзитивни, но обратната посока не е вярна.

Задача 14. Проверете дали релацията R е рефлексивна, транзитивна, симетрична, антисиметрична или асиметрична.

а) $R \subseteq \mathbb{N}^2$ и е определна като

Озн.
$$\mathbb{N}^2 = \mathbb{N} \times \mathbb{N}$$

 $a|b \leftrightarrow (\exists k \in \mathbb{N})(b = k \cdot a)$

 $(a,b) \in R \leftrightarrow a|b.$

 $\langle x, y \rangle \in R \leftrightarrow \gcd(x, y) = 1 \leftrightarrow \neg(\exists z > 1)[z|x \land z|y]$

 $(a,b) \in R \leftrightarrow a.b > 0.$

б) $R \subseteq \mathbb{Z} \times \mathbb{Z}$ е определена като

$$gcd$$
 - greatest common divisor (най-голям общ делител)

в) $R \subseteq \mathbb{R}^2$ и е определена като

г) $R \subseteq \mathbb{R}^2$ и е определена като

$$(a,b) \in R \leftrightarrow a+b=0.$$

д) $R \subseteq \mathbb{R}^2$ и е определена като

$$(a,b) \in R \leftrightarrow a+b=5.$$

е) $R \subseteq \mathbb{R}^2$ и е определена като

$$(a,b) \in R \leftrightarrow a+b$$
 е четно.

ж) $R \subseteq (\mathbb{R}^2)^2$ и е определена като

$$(\langle a, b \rangle, \langle c, d \rangle) \in R \iff a + d = b + c.$$

з) $R \subseteq (\mathbb{R}^2)^2$ и е определена като

$$(\langle a, b \rangle, \langle c, d \rangle) \in R \leftrightarrow a \cdot d = b \cdot c.$$

и) $R_m \subseteq \mathbb{Z}^2, m \in \mathbb{Z}, m > 0$ и е определена като

Озн.
$$\mathbb Z$$
 - целите числа

 $(a,b) \in R_m \leftrightarrow m \mid (a-b).$

к) $R \subseteq \mathbb{R}^2$ и е определена като

$$(x,y) \in R \leftrightarrow (x-y)$$
 е рационално число.

л) $R \subseteq \mathbb{Q}^2$ и е определена като

$$(p,r) \in R \ \leftrightarrow \ p-r$$
 е цяло число.

м) $R \subseteq \mathbb{N}^2$ и е определена като

$$(a,b) \in R \leftrightarrow a = b \lor a + 1 = b.$$

н) $R \subseteq \mathbb{N}^2$ и е определена като

$$\langle a, b \rangle \in R \iff (\exists k \in \mathbb{N})[a + k = b].$$

о) Нека $\leq_1 \subseteq \ A^2$ и $\leq_2 \subseteq \ B^2$ са частични наредби. $R \subseteq A^2 \times B^2$ е определена като

$$(\langle a, b \rangle, \langle c, d \rangle) \in R \leftrightarrow a \leq_1 c \land b \leq_2 d.$$

п) Нека $\leq_1 \subseteq \ A^2$ и $\leq_2 \subseteq \ B^2$ са частични наредби. $R \subseteq A^2 \times B^2$ е определена като

$$(\langle a, b \rangle, \langle c, d \rangle) \in R \leftrightarrow a \leq_1 c \lor b \leq_2 d.$$

р) $f:X \to Y$ е функция, $R \subseteq \mathscr{P}(X) \times \mathscr{P}(X)$ и

$$(A,B) \in R \leftrightarrow f(A) = f(B).$$

Операции върху релации

I) **Композиция** на две релации $S\subseteq A\times B$ и $T\subseteq B\times C$ е релацията $S\circ T\subseteq A\times C$, определена като:

$$S \circ T = \{ \langle x, y \rangle \mid (\exists z) [\langle x, z \rangle \in T \& \langle z, y \rangle \in S] \}.$$

II) Обръщане на релацията $R\subseteq A\times B$ е релацията $R^{-1}\subseteq B\times A$, определена като:

$$R^{-1} = \{ \langle x, y \rangle \mid \langle y, x \rangle \in R \}.$$

Задача 15. Дайте пример за релации R и S, за които

$$R \circ S \neq S \circ R$$
.

Задача 16. Докажете, че:

- а) R е симетрична тогава и само тогава, когато $R^{-1} \subseteq R$;
- б) R е транзитивна тогава и само тогава, когато $R \circ R \subseteq R$;
- в) R е транзитивна и симетрична тогава и само тогава, когато $R = R^{-1} \circ R$.

Задача 17. Нека $\{\langle a,b\rangle\}\subseteq R$, за някои $a\neq b$. Докажете, че ако R е симетрична, то R не е антисиметрична.

Задача 18. Нека R да бъде релация на еквивалентност върху B и $f:A\to B$. Дефинираме множеството

$$Q = \{((x,y) \in A \times A \mid (f(x),f(y)) \in R\}.$$

Докажете, че Q е релация на еквивалентност.