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1 Introduction

1.1 General aim
• Study combinatorial structures in a simple, unified and automatic way.

• Do exact (with formal, symbolic methods) and asymptotic (with C-analytic me-
thods) counting.

• Examples of combinatorial structures: integers, words, permutations, trees, func-
tional graphs.

1.2 Catalan numbers, by hand
Let’s begin with one of the most famous objects in combinatorics. The approach pre-
sented here is the typical approach one would use to find the enumeration of combina-
torial objects from a recurrence, as it would be described for instance in Wilf’s popular
textbook [4, §1].

Consider Cn the number of binary trees of size n (i.e. with n internal nodes). A
simple exhaustive study leads to the first terms C0 = 1, C1 = 1, C2 = 2, C3 = 5,
C4 = 14, . . .

A classical way of counting those numbers is to find a recurrence. A binary tree of
size n + 1 is composed of a root and two subtrees: its left child is a binary tree of size
k, its right child is a binary tree of size n − k, and the choice of the integer k is in the
set {0, 1, . . . , n}. So, it is possible to write the recurrence scheme

Cn+1 =
n∑

k=0

Ck Cn−k .

The hint is now to use a generating function: C(z) =
∑

n≥0 Cn zn, where the va-
riable z is just some parameter. The sequence (Cn)n≥0 is now encoded as the function
C(z). From the previous equation, we multiply each side by the monomial zn+1, and
then make the sum for n = 0, 1, . . .

∑
n≥0

Cn+1z
n+1 =

∑
n≥0

n∑
k=0

Ck Cn−k zn+1 ,

which can be re-written∑
n≥1

Cnzn = z
∑
n≥0

n∑
k=0

(
Ck zk

) (
Cn−k zn−k

)
Now, using the generating function C(z), we find the classical equation

C(z)− 1 = z C(z)2
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Solving this second order equation, and using the initial condition C0 = 1 (which
translates into C(0) = 1), the solution is

C(z) =
1−

√
1− 4z

2z
.

Finding the exact coefficients Cn is done by the formal power series expansion of
C(z). We use the classical Newton’s generalised binomial theorem

(1 + x)α = 1 + αx +
α(α− 1)

2
x2 + . . . +

α(α− 1) . . . (α− k + 1)
k!

xk + . . . ,

and find

C(z) =
∑
n≥0

1
n + 1

(
2n

n

)
zn .

So we conclude saying the number of binary trees of size n is the Catalan number
Cn = 1

n+1

(
2n
n

)
. And if we want an asymptotic formula of Cn, we use the classical

Stirling formula n! ∼
√

2πn e−n nn, and find

Cn =
1

n + 1

(
2n

n

)
∼ 4n n−3/2

√
π

.

This course’s aim is to directly derive the framed results—the exact and asymptotic enumeration—
from a symbolic specification of the combinatorial objects. In our current case, a binary
tree can be symbolically specified as being: either a single leaf, or a node with a pair
of binary trees (the left and right children), thus

B = • or (•,B,B)

which of course bears a striking resemblance with the functional equation satisfied by
the generating function, C(z) = 1 + zC(z)C(z).

2 Unlabelled objects
This section summarizes the main aspects of the first chapter of the reference book [2,
§I].

2.1 Basic definitions: combinatorial classes, generating functions
Definition 1. A combinatorial class A (sometimes simply a class) is a finite or denu-
merable set on which is defined a size function, | · | : A → Z �0, such that for every
size there is only a finite number of elements, that is

∀n ∈ Z�0, an := |{x ∈ A | |A| = n}| < ∞.
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Remark. Following the common usage (as formalized in Flajolet and Sedgewick’s reference
text [2]), we will always denote combinatorial classes using upper-case calligraphic letters such
as A, subclasses containing only elements of a given size as An, and the counting sequences
using the lower-case roman type, an.

As the definition suggests, for a given combinatorial class, there may be several dif-
ferent valid size functions. A well-known example in combinatorics is that of planar1

binary trees: we can for instance enumerate them according to the number of internal
nodes, the number of external nodes (also called leaves), or by counting both.

On the other hand, a trivial measure of size that would not be valid would be to
count the number of children of the root (either 0, 1, or 2) as we would then have an
infinite number of trees of “size” 1 and 2.

Definition 2. Let A be a combinatorial class, and let (an)n∈Z�0 be its counting se-
quence. We call A(z) the ordinary generating function (or OGF) associated with A,

A(z) :=
∞∑

n=0

anzn.

In some cases, it is also sometimes convenient to consider the equivalent definition
of generating function as the sum over the objects of combinatorial class A

A(z) :=
∑
α∈A

z|α|.

Exercise 1. Show these two definitions are equivalent.

The generating function is a traditional object in combinatorics. But where it is usually
considered as a formal object, algebraically manipulated, while analytic combinatorics
shows that there is considerable power in instead considering them as analytic objects.

Once given a generating function, our main goal will be to extract its coefficients.
Let f(z) be a generating function, we use the notation [zn] to note the coefficient of
the variable zn,

[zn]f(z) = [zn]

( ∞∑
i=0

fiz
i
)

= fn.

Here are some elementary but very fundamental operations on coefficients, which also
will be revisited later on.

• Scaling: [zn]f(λz) = λn[zn]f(z), as

[zn]f(λz) = [zn]

( ∞∑
i=0

fi(λz)i

)
= [zn]

( ∞∑
i=0

(fiλ
i)zi

)
= λn[zn]f(z).

1The term planar is here used to express that a combinatorial structure is embedded in the plane; in the
case of binary trees, that means that we distinguish a left and a right child.
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Combinatorial class Counting sequence OGF

Words on {0, 1}∞ 2n W (z) =
1

1− 2z

Integer compositions 2n−1 I(z) =
1− z

1− 2z

Binary trees (counting internal nodes)
1

n + 1

(
2n

n

)
B(z) =

1−
√

1− 4z

2z

Permutations n! P (z) =
∞∑

n=0

n!zn

Table 1. Some standard combinatorial classes, their enumeration sequences, and their
ordinary generating functions (OGFs). Note permutations do not have an analytic ordi-
nary generating function, i.e., the radius of convergence of P (z) is 0.

• Right shifting: [zn]zkf(z) = [zn−k]f(z), because

[zn]zkf(z) = [zn]

( ∞∑
i=0

fiz
i+k

)
= [zn]

( ∞∑
i=k

fi−kzi

)
= [zn−k]f(z).

2.2 The symbolic method
Let A, B and C be combinatorial classes with the respective ordinary generating func-
tions A(z), B(z) and C(z). The symbolic method is the observation that some sym-
bolic operations can directly be translated to ordinary generating functions.

2.2.1 Elementary constructions

The base elements are neutral objects, noted ε, which have no size and are thus trans-
lated as 1, and atomic objects, noted Z and translated to OGFs as the variable z. In
addition, we can distinguish however many kinds of neutral objects, for instance ε1,
ε2, etc., which will all translate to 1, and however many kinds of atomic objects, which
may translate either to the same variable z, or to some other variable z1, z2, etc. de-
pending on whether it is important to distinguish the type of atom it contributes to.

Disjoint union. We write A = B + C, if class A is defined as the disjoint union of
B and C: that is A contains all objects from B and C, and objects keep their original
sizes. Because the union is disjoint, there is no overlap in the enumeration, and this
translates to the generating functions as

A(z) = B(z) + C(z).
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Indeed, using the combinatorial definition of OGFs, since objects from A are either
from B or C,

A(z) =
∑
α∈A

z|α| =
∑
α∈B

z|α| +
∑
α∈C

z|α| = B(z) + C(z).

Remark. Although we speak of “disjoint union”, in practice, we never concern ourselves on
whether the combinatorial classes are disjoint; instead we consider we are doing the union of
unique copies of each class (for instance, imagine that A = B + B means that A is composed
of either elements of B that are colored pink or purple—thus twice as many elements).

Cartesian product. We write A = B × C, if class A is defined as all ordered pairs,
α = (β, γ) ∈ A where the first element is from β ∈ B and the second from γ ∈ C.
The size function on A is then defined as |α| = |β|+ |γ|, thus

A(z) = B(z) · C(z)

since

A(z) =
∑
α∈A

z|α| =
∑
β∈B

∑
γ∈C

z|β|+|γ| =

(∑
α∈B

z|α|
)
·
(∑

α∈C
z|α|

)
= B(z) · C(z).

Remark. The size for Cartesian products is here the sum of the sizes of each object of a pair,
and accordingly we say that we are dealing with additive combinatorial structures. Other rules
for the Cartesian product are possible, for instance that the size of a pair be the product of each
component; we would then be dealing with multiplicative combinatorial structures enumerated
by Dirichlet generating functions (DGF),

D(s) =
X
n�1

dn

ns
.

These combinatorial structures are intimately tied to number theory, and in particular Riemann’s
zeta function features prominently as it is the DGF for the unit sequence (much like the quasi-
inverse in additive combinatorics).

Sequence. We write A = SEQ (B), if A is defined as all ordered sequences (of any
size, including zero) of objects from B,

A := {ε}+ B + B × B + B × B × B + . . .

In other words, we have

A := {(β1, . . . , β�) | � � 0, βj ∈ B} .

Observe in order for A to be a well-defined class, it is necessary that b0 = 0 (i.e. that
there be no object in B with size zero), as then A would contain an infinity of objects
of any given size. The translation to OGFs is

A(z) =
∞∑

k=0

(B(z))k =
1

1−B(z)
.

This operation is often referred to as the quasi-inverse.
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Structure OGF
{ε} 1
{Z} z
A + B A(z) + B(z)
A × B A(z) ·B(z)

SEQ (A) 1
1−A(z)

Table 2. Small dictionary of unlabelled combinatorial classes

Recursive classes. Finally we mention that, under certain conditions, combinatorial
classes may be defined recursively, to allow for instance for the definition of branching
structures. We will not go into the technical detail of these conditions (see [2, §I.2.3]),
except to say that the general idea is that:

1. for every class there should be at least one terminal symbol (an atom or a neutral
element);

2. a system should not allow for a same symbol to be expanded twice without in-
creasing the size.

Example 1. This second point can be illustrated using a common mistake when specifying
unary-binary trees (sometimes called Motzkin trees because they are in bijection with Motzkin
paths, much like standard binary trees are in bijection with Dyck paths). If we define the class
of unary-binary tree as

U = Z + U + U2

that is, we define a tree as either a leaf, or an unary internal node or a binary internal node and
we count the leaves, then the recursion is not well-founded, and there are two ways to see this.

Combinatorically, the problem is that since unary nodes (in particular) do not affect the size
of a tree, it is possible to obtain an infinity of trees of the same size, simply by taking any unary-
binary tree and increasing ad infinitum the number of unary nodes—without changing the size.
We were able to get away with counting leaves in binary trees because binary nodes affect
the number of leaves (in other words, there is a direct correspondance between the number of
internal nodes and external nodes).

Analytically, the problem is simply that the functional equation

U(z) = z + U(z) + U(z)2

does not admit any positive real solution. From now on, we count all the nodes.

2.2.2 Some direct examples

Example 2. Binary words on the alphabet {0, 1}
A word is a finite sequence of 0 and 1.
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W = SEQ({0} + {1})

W (z) =
1

1 − (z + z)
and [zn]W (z) = 2n

Example 3. Number Fn of different ways to cover the segment [0,n] with bricks of size 1
and 2
Let a be an atomic class of size 1 and b an atomic class of size 2. Then, F = SEQ(a + b).

F (z) =
1

1 − (z + z2)
= 1 + z + 2z2 + 3z3 + 5z4 + . . .

We identify it as the Fibonacci sequence Fn. The recurrence Fn+2 = Fn+1 + Fn is directly
linked to the equation z2 − z − 1 = 0.

Example 4. Integer composition [2, §I.3]
The composition of an integer n is the sequence x1, x2, . . . , xk such that n = x1+x2+. . .+xk,
with xi ≥ 1.

An integer x is an atomic class of size x, represented by the OGF zx. The class I of integers
has the OGF I(z) = z + z2 + z3 + . . . = z

1−z
.

The class of compositions of integers C is described by C =SEQ(I). So,

C(z) =
1

1 − I(z)
=

1

1 − z
1−z

=
1

1 − 2z
− z

1 − 2z

Cn = [zn]C(z) = [zn]
1

1 − 2z
− [zn]

z

1 − 2z
= 2n − 2n−1 = 2n−1

Remark. For each example (words, Fibonacci numbers, integer compositions), the exponential
growth of the coefficients of the OGF is directly linked to the singularity of the generating func-
tion (a singularity of a function is a point where the function is not well defined, when it grows
to infinity).

2.3 OGFs as complex objects
Until now, an OGF is simply a formal sum of monomials. Let’s now consider2 the
OGF as a univariate function of the complex variable z.

f(z) =
∑
n≥0

fnzn

When it is possible to write f as a Taylor expansion f(z) =
∑

n≥0 f̃n(z − z0)n, we
say that f is analytic at the point z0. In combinatorics, quasi all generating functions
are analytic at 0. The function f has a radius of convergence R defined by

R = sup{r such that f(z) is analytic for |z| < r}

Another way to see the radius of convergence is

R−1 = lim sup
n
|fn|1/n

2This material is covered partially in [2, §IV.1 p.225] for the complex nature of the OGF, and then the
exponential growth is explained in §IV.3 p.238 and in particular §IV.3.2 p.243.
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It means that when n grows to infinity, we have fn ∼ R−nθ(n) where θ(n) is a
subexponential function of n. The definition imposes that it must exist a singularity
on the circle |z| < r. Furthermore, a classical theorem in complex analysis (due to
Pringsheim) says: If the coefficients fn are non-negative, then there exists a singularity
at the point of the real line z = R.

2.4 Asymptotics of the coefficients (simple case)
Lemma 1. (Schützenberger) With our combinatorial construction (ε, Z , +, ×, SEQ),
all the generating functions are rational.

Let f be an OGF. It is possible to write f as a quotient of two polynomials A(z)
and B(z). And so, finding the singularities of f is equivalent to finding the zeros of the
denominator B(z). The function f has a partial fraction expansion:

f(z) = polynomial +
∑

(ρ,r),B(ρ)=0

c

(1− z/ρ)r

Finding the asymptotics of the coefficients fn is equivalent to the study of the asymp-
totics of (1− z/ρ)−r.

[zn]
1

(1− z/ρ)r
= ρ−n[zn](1− z)−r

= ρ−n

(
n + r − 1

r − 1

)
= ρ−n (n + r − 1)(n + r − 2) . . . (n + 1)

(r − 1)!

∼ ρ−nnr−1

(r − 1)!

Finally, fn is a sum of terms of the form c ρ−nnr−1. (This is a version of Theorem
VI.1 p.381 [2], when ρ = 1.)

Conclusive remarks

• The singularity which is the closest to the origin give the exponential growth in the
asymptotics. The singularity of minimal modulus is called a dominant singularity.

• The subexponential term of this asymptotic is given by the multiplicity of the
dominant singularity.

Example 5. Find the asymptotics of the coefficients of

f(z) = (1 − z2/2)−5(1 − z3)−1(1 − 2z)−5(1 − z − z2)−1 .

Singularities: {
√

2,−
√

2, 1, 1/2, φ, φ} Dominant singularity: z = 1/2 Multiplicity: 5.
So, fn = [zn]f(z) ∼ c 2nn4.
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2.5 General asymptotic scheme
With more detailed complex analysis, it is possible to get the asymptotic of other gene-
rating functions (not necessarily rational). This is Theorem VI.2 p.385 [2], also seen in
the special case where the singularity is ρ = 1—because using the property of scaling,
[zn]f(ρz) = ρn[zn]f(z), we can always get back to this case.

Theorem 1. (Subexponential asymptotic term) For α ∈ R\{0,−1,−2, . . .}, for k ∈ N,

[zn]
1

(1− z)α
logk

(
1

1− z

)
∼ nα−1

Γ(α)
logk(n),

where Γ is the classical generalized factorial function: Γ(x) =
∫∞
0

e−t tx−1dt.

Theorem 2. (Transfer lemma, Th. VI.3 p.390 [2])
If f(z) ∼z→1 g(z), then fn ∼ gn.
If f(z) =z→1 O(g(z)), then fn = O(gn).
If f(z) =z→1 o(g(z)), then fn = o(gn).

This powerful theorem expresses that it is enough to know the comparative beha-
viour of two functions in the neighbourhood of their smallest singularity (here assumed
to be 1).

The intuition is that a function’s behaviour around its singularity is extremal and
dictated exactly by its singularity.

Remark. For a more detailled lemma (with all hypothesis), see FS09. Moreover, instead of
having just an equivalent, it is also possible to have a more precise asymptotic expansion with
several error terms.

2.6 Tree enumeration
The topic here is first covered in [2, §I.5].

2.6.1 Binary trees B = ε+ Z×B×B

So, B(z) = 1 + zB(z)2. We solve the equation and find B(z) = 1−√1−4z
2z .

The singularity is at z = 1/4, and the order is −1/2.
Near z = 1/4, we can write B(z) ∼ 2 − 2

(1−4z)−1/2 . So,

Bn ∼ −2
4nn−3/2

Γ(−1/2)
∼ 4n n−3/2

√
π

(
Γ(−1/2) = −2

√
π
)

2.6.2 Unary-binary trees U = Z+ Z×U + Z×U×U
U(z) = z + zU(z) + zU(z)2 = zφ(U(z)), where φ(t) = 1 + t + t2.

Exercise 2. Find the generating function, an expression for the coefficients and an asymptotic
value.
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2.6.3 General trees A = Z×SEQ(A)

A(z) =
z

1−A(z)
so, A(z) = z + A(z)2

A(z) =
1−

√
1− 4z

2
An ∼

4n−1n−3/2

√
π

Remark. We notice that zB(z) = A(z). Then, [zn−1]B(z) = [zn]A(z), and Bn−1 = An.
The bijection between binary trees and general trees is here proved thanks to the symbolic me-
thod!

2.6.4 Otter trees: the problem of symmetries

An Otter tree T is a rooted binary non-planar unlabelled tree. We count the leaves.

T (z) = z + z2 + z3 + 2z4 + 3z5 + 6z6 + 11z7 + . . .

An Otter tree is just a leaf, or it is a node with two Otter subtrees. But there is a
symmetry at this node, so we put a factor 1/2 in the counting of those configurations.
But with this correction, when the two subtrees are exactly the same, it is now counted
just a half time. So we add the other half for those subtrees. Then,

T (z) = z +
1
2
T (z)2 +

1
2
T (z2).

2.6.5 Balanced 2-3 trees: an example of substitution

Balanced 2–3 trees are trees where each node is:

• a leaf,

• an internal node with two or three sons,

and all leaves are at the same distance from the root.
The combinatorial specification is:

E = Z + E ◦ [{Z × Z}+ {Z × Z × Z}]

3 Labelled objects and exponential generating functions
We now discuss the topic of labelled objects, introduced in [2, §II.1 and 2].

As noted, for instance in Table 1, the class of permutations does not have an analytic
OGF, because the coefficients n! grow exponentially faster than zn and thus the radius
of convergence of the ordinary generating function is zero.

This combinatorial explosion is a common trait shared by all combinatorial classes
that are labelled—that is, of which the atoms are endowed with a permutation of n,
the size. Permutations are such a class (a permutation is a sequence of labelled atoms),
as are arrangements (a subset of labelled atoms), and more complex objects such as
graphs.
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3.1 Definition and examples
The solution is to enumerate these objects using exponential generating functions, in
which the coefficient is normalized by n!.

Definition 3. Let A be a labelled combinatorial class, and let (an)n∈Z�0 be its coun-
ting sequence. We call A(z) the exponential generating function (or EGF) associated
with A,

A(z) :=
∞∑

n=0

an
zn

n!
.

And with OGFs, there is also a combinatorial definition,

A(z) :=
∑
α∈A

z|α|

|α|! .

Notice that now, extracting the coefficient leads to a factorial factor:

an = n![zn]A(z)

Example 6. P = {Permutations}

P (z) =
X
n≥0

n!
zn

n!
=

1

1 − z

It looks like a sequence of atoms. Indeed, a permutation can be viewed as a linear graph of
size n:

σ(1) —– σ(2) —– σ(3) —– . . . —– σ(n)

Example 7. Non-connected graph (no edge) U. For all n, Un = 1.

U(z) =
X
n≥0

zn

n!
= ez

Example 8. Complete graph (all edges) K. It is the same EGF, K(z) = ez .

Example 9. Cyclic graph (with a given orientation in the plain) C. Cn = (n − 1)!. So,

C(z) =
X
n≥1

(n − 1)!
zn

n!
=
X
n≥1

zn

n
= log

„
1

1 − z

«
.

3.2 Construction of the sum
The disjoint union is the same construction as the unlabelled case. If A = B + C, then
the EGF is A(z) = B(z) + C(z).
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3.3 Construction of the product
Starting with two labelled structures β and γ, the classical Cartesian product does not
provide a well labelled structure. The set of labels of a well-labelled structure of size n
is exactly the set of integers [1, n].

So, from a couple (β, γ), we define a re-labelled structure (β′, γ′) where the la-
bels are exactly {1, . . . , |β| + |γ|}, and the relative order of labels of each element is
preserved. We define

β � γ = { all couples (β′, γ′) well relabelled}

The class β � γ contains exactly
(|β|+|γ|
|β|

)
distinct elements. Then we can define the

labelled product
A = B � C =

⋃
β∈B,γ∈C

β � γ

Lemma 2. A(z) = B(z) · C(z)

Proof.

A(z) =
∑
α∈A

z|α|

|α|!

=
∑
β∈B

∑
γ∈C

∑
α∈β�γ

z|β|+|γ|

(|β|+ |γ|)!

=
∑
β∈B

∑
γ∈C

(|β|+ |γ|
|β|

)
z|β|z|γ|

(|β|+ |γ|)!

=
∑
β∈B

∑
γ∈C

z|β|z|γ|

|β|! |γ|!

= B(z) · C(z)

Remark. B � B := B2 does not contain elements (β,β): the re-labelling make the two βs
different.

3.4 Construction of the sequence
Since we have the two constructions, sum and labelled product, it is possible to construct
the sequence as before. For any labelled class B where b0 = 0,

A = SEQ (B) = {α s.t. ∃k ≥ 0, α = (β1, . . . , βk) finite re-labelled sequence, βi ∈ B}
SEQ (B) = {ε}+ B + B � B + B � B � B + . . .

The corresponding EGF is

A(z) =
∑
k≥0

B(z)k =
1

1−B(z)

Definition 4. k-component sequence: SEQ k(A) = Ak

14



3.5 Construction of the set
A k-component set:

SETk(B) := {sets with k elements of B}
This class can be viewed as an equivalence class:

SETk(B) =
SEQk(B)

R

where R is the following equivalence relation:
(β1, . . . , βk)R(β′1, . . . , β

′
k) iff there exists a permutation σ ∈ Sk such that βσ(i) = β′i.

We notice that the ratio of cardinalities is:
|SETk(B)|
|SEQk(B)| =

1
k!

.

Then, we define the SET constructor:

A := SET (B) =
⋃
k≥0

SETk(B) ,

and the corresponding EGF is

A(z) =
∑
k≥0

1
k!

(B (z))k = exp(B(z)) .

3.6 Construction of the cycle
For any labelled class B with b0 = 0 and k ≥ 1, the class of k components cycle is

CYCk(B) := {cycles with k elements of B}
This class can be viewed as an equivalence class:

CYCk(B) =
SEQk(B)

T
,

where T is the following equivalence relation:
(β1, . . . , βk)T(β′1, . . . , β

′
k) iff there exists a cyclic permutation τ ∈ Sk such that

βτ(i) = β′i.
We notice that the ratio of cardinalities is:

|CYCk(B)|
|SEQk(B)| =

1
k

.

Then, we define the CYC constructor:

A := CYC (B) =
⋃
k≥1

CYCk(B) ,

and the corresponding EGF is

A(z) =
∑
k≥1

1
k

(B (z))k = log
(

1
1−B(z)

)
.

15



Structure EGF
{ε} 1
{Z} z
A + B A(z) + B(z)
A � B A(z) ·B(z)

SEQ (A) 1
1−A(z)

SET (A) exp(A(z))

CYC (A) log
(

1
1−A(z)

)

Table 3. Small dictionary of labelled combinatorial classes

3.7 Examples of permutation classes
3.7.1 Permutations

P (z) =
1

1− z
= exp

(
log

(
1

1− z

))
So we just a this symbolic equation:

P = SET (CYC (Z))

This expreses the classical decomposition of a permutation in a product of permutation
with disjoint supports.

3.7.2 Involutions

An involution σ is a permutation such that σ2 = Id. It can be viewed as a product
of permutation of size 1 and 2 with disjoint support, that is a set of cycles of size 1 or 2.
All permutations are defined by: P = SET (CYC (Z)). Involutions are specified by
I = SET(CYC≤2(Z)). Then, the EGF is

I(z) = exp
(

z +
z2

2

)
=

∑
n≥0

1
n!

(
z + z2/2

)n

=
∑
n≥0

1
n!

n∑
k=0

(
n

k

)
1
2k

z2kzn−k

=
∑
n≥0

zn

n!

n∑
k=0

(
n

k

)
1
2k

zk

16



Extracting the coefficient,

[zn]I(z) =
1
n!

(
n

0

)
1
20

+
1

(n− 1)!

(
n− 1

1

)
1
21

+ . . . +
1

(n− k)!

(
n− k

k

)
1
2k

+ . . .

=
�n/2	∑
i=0

1
(n− i)!

(
n− i

i

)
1
2i

Finally, the exact number of involutions of size n is In =
�n/2	∑
i=0

n!
i! (n− 2i)! 2i

.

Remark. Finding an asymptotic for those formula will be developed later (Saddle-point analysis).

3.7.3 Derangements

A derangement is a permutation without fixed points.

D = SET (CYC>1(Z))

D(z) = exp
(

z2

2
+

z3

3
+ . . .

)
= exp

(
log

(
1

1− z

)
– z

)
=

e−z

1− z

dn = n![zn]D(z) =
n∑

k=0

(
n

k

)
(−1)k(n− k)! = n!

n∑
k=0

(−1)k

k!

Remark. The probability for a random permutation of being a derangement is:

dn

n!
=

nX
k=0

(−1)k

k!
−→n→∞ e−1

Remark. It can be directly done by singularity analysis. The singularity of D(z) is at z = 1. At
this point, the asymptotic expansion of D(z) is

D(z) ∼z=1
e−1

1 − z
, so, dn ∼ n!

e
.

4 Recursive classes. Asymptotics of trees
(Covered in I.5 and II.5 of the book.)

In the previous examples of class of trees (binary, unary-binary, general), we saw
that the generating function is often of the form A(z) = zφ(A(z)). This formula
expresses the classical recursive definition of tree structures.

For example,

• φ(t) = 1 + t + t2 for unary-binary trees;

• φ(t) = 1/(1− t) for general trees.

17



Example 10. The Cayley tree is a rooted labelled non-planar tree. Its recursive definition is a
node and a set of subtrees. So, T = Z � SET (T).

T (z) = z exp(T (z)) .

For Cayley trees, φ(t) = et.

How to get easily exact and asymptotic formula?

4.1 Lagrange inversion
Theorem 3. If A(z) = zφ(A(z)), then the tree equation has a unique solution which
satisfies:

[zn]A(z) =
1
n

[yn−1]φ(y)n ;

[zn]A(z)k =
k

n
[yn−k]φ(y)n .

Remark. This theorem needs some analytic hypothesis on the function φ, which are always
verified for classical tree examples.

Proof.

Lemma 3. If f(z) =
∑

n≥0 fnzn is analytic, then we have the Cauchy formula

fn =
1

2iπ

∮
f(z)

dz

zn+1
.

If z =
A(z)

φ(A(z))
=

y

φ(y)
, then by differentiation, dz =

dy

φ(y)
− yφ′(y)

φ(y)2
dy .

Then, the coefficient an can be written:

[zn]A(z) =
1

2iπ

∮
y
φ(y)n+1

yn+1

(
dy

φ(y)
− yφ′(y)

φ(y)2
dy

)
=

1
2iπ

∮
φ(y)n

yn
dy − 1

2iπ

∮
φn−1φ′

yn−1
dy

= [yn−1]φ(y)n − 1
n

[yn−2](φ(y)n)′

If we write φ(y)n =
∑

αpy
p, then (φ(y)n)′ =

∑
pαpy

p−1.
So, [zn]A(z) = αn−1 − 1

n (n− 1)αn−1 = 1
nαn−1.

Finally, [zn]A(z) = 1
n [yn−1]φ(y)n.
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4.1.1 Binary trees B = ε + Z × B × B
B(z) = 1 + zB(z)2 does not fit to the specification but if we set C(z) = B(z) − 1,
then C(z) = z(1 + C(z))2. Thanks to the Lagrange inversion,

[zn]C(z) =
1
n

[yn−1](1 + y)2n =
1
n

(
2n

n− 1

)
=

1
n + 1

(
2n

n

)
.

4.1.2 Unary-binary trees U(z) = z(1 + U(z) + U(z)2)

un = [zn]U (z)=
1
n

[yn−1](1+y +y2)n =
1
n

∑
n1+n2+n3=n,n2+2n3=n−1

(
n

n1, n2, n3

)

4.1.3 Cayley trees T = Z � SET (T)
The tree equation is T (z) = zeT (z) .

[zn]T (z) =
1
n

[yn−1]eny =
1
n

nn−1

(n− 1)!
=

nn−1

n!
.

Finally, Tn = n![zn]T (z) = nn−1 .

4.2 Asymptotics for trees: analytic inversion
The following is based on the implicit function theorem (see Prop. IV.5 p.278 and Thm
VI.6 p.404).

Theorem 4. If Y (z) = zφ(Y (z)), φ is an analytic function with R, radius of conver-
gence; and if it exists a unique τ , 0 < τ < R such that φ(τ) = τφ′(τ), then Y (z)
is analytic at z = 0, its radius of convergence is ρ = 1/φ′(τ), and Y (z) has an
asymptotic expansion near its singularity ρ,

Y (z) ∼z=ρ τ − γ
√

1− z/ρ

where γ =
√

2φ(τ)/φ′′(τ).

4.2.1 Unary-binary trees U(z) = z(1 + U(z) + U(z)2)

We need 1 + τ + τ2 = τ(1 + 2τ), which implies τ2 = 1. So, ρ = 1/3 and γ =
√

3.
So, for z near 1/3, U(z) ∼ 1−

√
3
√

1− 3z
Finally, the singularity analysis leads to the asymptotic

Un ∼
√

3
2

3n n−3/2

√
π

.
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4.2.2 Cayley trees T (z) = zeT (z)

The equation eτ = τeτ implies τ = 1. So, the radius of convergence is ρ = e−1, and
γ =

√
2. Finally,

T (z) ∼z=e−1 1−
√

2
√

1− ez .

The singularity analysis implies

Tn = n![zn]T (z) ∼ n!
en n−3/2

.√
2π

Remark. Plus, we know that Tn = nn−1, so it is possible to re-discover the Stirling formula

nn−1 ∼ n!
enn−3/2

√
2π

.

5 Other symbolic operators

5.1 Boxed product
Let us define a modified labelled product, if B is a class with no element of size 0,
(b0 = 0).
A = B� � C is the subset of B � C with labels such that the smallest label is in the

B component. The generating function of A is given by

A(z) =
∫ z

0

(
d

dt
B(t)

)
C(t)dt .

Example 11. Records in permutations, increasing binary trees.

5.2 Pointing and substitution
Those two operations are the same in labelled and unlabelled world.

Pointing It means pointing a distinguished atom.
A = ΘB means An = [1, n] × Bn. Constructing an object of size n in A is choosing
an object of size n in B and point one of the n atoms of this object. Clearly, we have
an = nbn, so

A(z) = z
d

dz
B(z) .

Substitution A = B ◦ C means substitute every atom of B by elements of C. It
translates directly into A(z) = B(C(z)).
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6 Multivariate generating functions using markers
In this course we consider a very simple extension of our combinatorial objects to allow
for the analysis of special parameters in function of the size of an object. For simplicity,
we will restrain ourselves to a simple type of parameter that can be expressed in terms
of markers (see III.1 p.152), but the technique is powerful enough to consider much
more advanced parameters, for instance recursive (see III.5 p.181) or extremal (see
III.8 p.214).

6.1 Definitions
Definition 5. A parameter χ for a combinatorial class A is a function χ : A −→ N.

Example 12. Number of letters in a word, height of a tree, number of disconnected nodes in
a graph.

Definition 6. Let A be a class and χ be a parameter on A. The bivariate generating
function (BGF) associated to this couple (A, χ) is

A(z, u) :=
∑
α∈A

z|α|uχ(α) (unlabelled), A(z, u) :=
∑
α∈A

z|α|

|α|!u
χ(α) (labelled).

Equivalently, we have

A(z, u) =
∑

n,k≥0

an,kznuk (unlabelled), A(z, u) =
∑

n,k≥0

an,k
zn

n!
uk (labelled),

where
an,k = |{α ∈ A such that |α| = n, χ(α) = k}|.

Notation [znuk]A(z, u) = an,k (unlabelled) and
an,k

n!
(labelled).

Remark. When u is set to 1, we obtain the univariate OGF (or EGF):
A(z, 1) =

P
n

P
k an,kzn1k =

P
n anzn = A(z).

6.2 Symbolic method
All previous symbolic constructions are preserved when we use multivariate generating
functions. Now, in the specifications, we are allowed to add markers, stickers (•) on
the objects.

In the unlabelled world, we still have a direct correspondence for Union, Product,
Sequence. In the labelled world, we still have a direct correspondence for Union,
Product, Sequence, Set, Cycle.

Example 13. (Binary words)
We want to count the number of ones in a binary word (with alphabet {0, 1}).

21



W = SEQ (Z0 + •Z1), so the bivariate generating function is W (z, u) =
1

1 − (z + uz)
.

[znuk]W (z, u) = [uk][zn](1 − z(1 + u))−1 = [uk](1 + u)n =

 
n

k

!
.

This is the number of words of size n with k ones.
W (z, 1) = (1 − 2z)−1, so [zn]W (z, 1) = 2n.
The distribution is then easy to compute:

Pn[drawing a word with k ones] =

`
n
k

´
2n

=
[znuk]W (z, u)

[zn]W (z, 1)
.

6.3 Distribution, mean, variance, moments
What is said here applies to all multivariate generating functions, even obtained with
more powerful techniques than markers (see III.2 p.156).

Definition 7. (Distribution) For a classA and a parameter χ, we have the BGF A(z, u).
The distribution of the parameter χ, uniformly with respect to the size, is given by

Pn[χ = k] =
[znuk]A(z, u)
[zn]A(z, 1)

.

Remark. We always consider that objects of the same size have the same probability to be
chosen. For a class A, we consider there is a uniform distribution over An.

Definition 8. (Mean) For a class A, a parameter χ and the associated BGF A(z, u),
the expected value of the parameter χ is given by

En[χ] =
[zn]

(
d

duA(z, u)
)
|u=1

[zn]A(z, 1)
.

Proof.

[zn]
(

d
duA(z, u)

)
|u=1

[zn]A(z, 1)
=

[zn]
(∑

n,k k an,kznuk−1
)
|u=1

[zn]
∑

n anzn
=

[zn]
∑

n,k k an,kzn

an

=
∑

k k an,k

an
=

∑
k

k
an,k

an

=
∑

k

k Pn[χ = k] = En(χ)

Definition 9. (Moments) For a classA, a parameter χ and the associated BGF A(z, u),
the factorial moment of order r of the parameter χ is given by

En[χ(χ− 1) . . . (χ− r + 1)] =
[zn]

(
dr

dur A(z, u)
)
|u=1

[zn]A(z, 1)
.
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In particular, the variance is given by

Vn(χ) = En[χ(χ− 1)] + En[χ]− En[χ]2 .

Example 14. (Binary words)
W (z, u) = (1 − z(1 + u))−1.

[zn]

„
d

du
A(z, u)

«
|u=1 = [zn]

„
z

(1 − z(1 + u))2

«
|u=1 = [zn]

z

(1 − 2z)2

= [zn−1]
1

(1 − 2z)2
= 2n−1[zn−1]

1

(1 − z)2
= 2n−1n

Finally, En[number of ones] = 2n−1n
2n = n

2
, which is hopefully the result we expected.

Example 15. (Giving back money) We have only coins of size 1, 2, and 5. The problem is to
know what is the expected number of coins we receive, in general. The specification is in the
unlabelled world, and giving money is just a sequence of coins of size 1, then a sequence of
coins of size 2, and finally a sequence of coins of size 5. On the specification, we choose to mark
the number of coins of size 2.

D = SEQ (Z) × SEQ
`
•Z2´× SEQ

`
Z5´

So, the corresponding generating function is:

D(z, u) =
1

(1 − z)

1

(1 − uz2)

1

(1 − z5)
.

The cumulative function C(z) := d
du

D(z, u)|u=1 is given by

C(z) =
z2

(1 − z2)2(1 − z)(1− z5)
.

All the poles of this function are on the circle of convergence |z| = 1. But, the singularity z = 1
is the only dominant singularity because of its multiplicity (which is 4). So, the subexponential
term of asymptotic is n4−1 = n3. The constant factor is given by the asymptotic equivalent
near the singularity z = 1,

C(z) ∼z=1
1

(1 − z)4(1 + z)2(1 + z + z2 + z3 + z4)
∼ 1

22 · 5
n3

3!
.

With the same technique of singularity analysis, we find [zn]D(z) ∼ 1
2·5

n2

2

So the expected number of coins of size 2 is En[coins of size 2] ∼ n
6

.
The same analysis can be done for the expected number of coins of size 1 and 5, and we find:

En[coins of size 1] ∼ n

3
, En[coins of size 5] ∼ n

15
.

So, the expected number of coins is En[number of coins] ∼ n
3
(1 + 1/2 + 1/5) ∼ 17n

30
.

7 Tree statistics

Example 16. (Root degree of a rooted tree ("Cayley tree"), Ex III.12 p.179)
The aim of this problem is to find the average number of children at the root of a Cayley tree.
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Specification:

To = Z � SET (•T )

T = Z � SET (T )

So the generating functions satisfy

T (z, u) = z exp (uT (z))

T (z) = z exp (T (z))

The derivative is d
du

T (z, u) = zT (z) exp(uT (z)). So, for u = 1 , we have an expression for
the cumulative function

d

du
T (z, u)|u=1 = T (z)z exp(T (z)) = T (z)2 .

Using the Lagrange inversion, we find the coefficient of zn:

[zn]
d

du
T (z, u)|u=1 = [zn]T (z)

2
=

2

n
[yn−2] exp(y)n =

2

n
nn−2[yn−2]ey =

2

n

nn−2

(n − 2)!
.

Finally, since, T (z, 1) = T (z) =
P

n nn−1 zn

n!
, the expected number of children at the root is

given by

En[children at the root] =
[zn] d

du
T (z, u)|u=1

[zn]T (z)
=

2nn−2

n(n − 2)!
· n!

nn−1
= 2(1 − 1

n).

Conclusion: in general, a rooted tree has 2 children at the root!

Remark 1. Note that a nice direct proof exists: in a graph G = (V,E), where V is the set

of vertices and E the set of edges,
P

v∈V deg(v) = 2|E|. Let r be the root,

En[deg(r)] =
X
v∈V

Pn[v is root] deg(v)

=
1

n

X
v∈V

deg(v) [all vertices equiprobably the root]

=
2|E|
n

[total degree formula]

= 2

„
1 − 1

n

«
[a tree has n − 1 edges].

Indeed, direct methods can generally be simpler (especially for the toy examples considered in
this course to illustrate our methods), but analytic combinatorics generally presents the advantage
of providing a generic, “one size fits all” method to tackle combinatorial problems which can be
specified.

8 Permutation statistics
We can use all the concepts previously presented (EGF, BGF, symbolic method and
singularity analysis) for the study of some statistics on permutations.
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8.1 Prisoners and boxes
Puzzle A hundred prisoners, each uniquely identified by a number between 1 and 100,
have been sentenced to death. The director of the prison gives them a last chance. He
has a cabinet with 100 drawers (numbered 1 to 100). In each, he’ll place at random
a card with a prisoner’s number (all numbers different). Prisoners will be allowed to
enter the room one after the other and open, then close again, 50 drawers of their own
choosing, but will not in any way be allowed to communicate with one another after-
wards. The goal of each prisoner is to locate the drawer that contains his own number.
If all prisoners succeed, then they will all be spared; if at least one fails, they will all
be executed.

There are two mathematicians among the prisoners. The first one, a pessimist,
declares that their overall chances of success are only of the order of 1/2100 
 8·10−31.
The second one, a combinatorialist, claims he has a strategy for the prisoners, which
has a greater than 30% chance of success. Who is right?

Remark. This problem, described in the book in Notes II.15 p.124 and III.10 p.176, takes its
origin from a paper by Gál and Miltersen on data structures [3, 5]. The optimality of the strategy
was recently proven in 2006 by Curtin and Warshauer [1].

Solution The better strategy goes as follows. Each prisoner will first open the drawer
which corresponds to his number. If his number is not there, he’ll use the number he
just found to access another drawer, then find a number there that points him to a third
drawer, and so on, hoping to return to his original drawer in at most 50 trials. (The last
opened drawer will then contain his number.) This strategy globally succeeds provided
the initial permutation σ defined by σi (the number contained in drawer i) has all its
cycles of length at most 50. The probability of the event is

p = [z100] exp
(

z

1
+

z2

2
+ · · ·+ z50

50

)
= 1−

100∑
j=51

1
j

 0.31182 78206.

Do the prisoners stand a chance against a malicious director who would not place the
numbers in drawers at random? For instance, the director might organize the numbers
in a cyclic permutation. [Hint: randomize the problem by renumbering the drawers
according to a randomly chosen permutation.]

8.2 Average number of cycles
Recall that the class of permutations can be seen as a set of cycles: P = SET(CYC (Z)).
We want to count the number of cycles, so the specification becomes P = SET (•CYC (Z)) .
The corresponding BGF is

Pc(z, u) = exp
(

u log
(

1
1− z

))
= (1− z)−u .

The average number of cycles is given by

En[number of cycles] =
[zn] d

duPc(z, u)|u=1

[zn]P (z)
= [zn]

d

du
Pc(z, u)|u=1 .
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Ω(z) :=
d

du
Pc(z, u)|u=1 = log

(
1

1− z

)
exp

(
u log

(
1

1− z

))
|u=1 =

1
1− z

log
(

1
1− z

)
.

So,

En[number of cycles] = [zn]Ω(z) = [zn]

(∑
i

zi

)(∑
k

zk

k

)

= [zn]
∑

p

zp

(
1 +

1
2

+
1
3

+ . . . +
1
p

)

=
n∑

i=1

1
i

= Hn ∼n→∞ log(n) .

8.3 Number of cycles of size r

Let dr be the number of cycles of size r in a permutation of size n. In the specification
of a permutation, we now want to mark only the cycles of size r.

Pdr
= SET((CYC(Z)\{CYCr(Z)}) + {•CYCr(Z)}) .

The corresponding BGF is

Pdr (z, u) = exp
(

log
(

1
1− z

)
− zr

r
+ u

zr

r

)
=

1
1− z

exp
(

(u− 1)
zr

r

)
.

[ukzn]Pdr(z, u) = n![ukzn]Pdr (z,u)
n![zn](1−z)−1 is the probability that a permutation of size n has

exactly k cycles of size r. This function Pdr (z, u) has a singularity at z = 1, so using
the transfer lemma,

[ukzn]Pdr (z, u) ∼ [ukzn]
1

1− z
e−1/reu/r

∼ e−1/r
(
[uk]eu/r

) (
[zn]

1
1− z

)
∼ 1

k!
1
rk

e−1/r .

So, we conclude saying the number of cycles of size r in a permutation of size n follows
a Poisson law of parameter 1

r .

Pn[dr = k] ∼ 1
k!

1
rk

e−1/r so, dr ∼ Poisson
(

1
r

)
.

Remark. (Expected number of cycles of size r)
In order to find this quantity, we have several options. As we know dr follows a Poisson law of
parameter r−1 when n → ∞, we can directly say that En(dr) ∼ r−1.

Or, we can use the asymptotic of the cumulative function Cdr (z) = d
du

Pdr (z, u)|u=1.

Cdr (z) =
1

1 − z
e

−zr

r
zr

r
e

zr

r =
1

r

zr

1 − z
.
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So,

En(dr) =
n![zn]Cdr (z)

n!
= [zn]Cdr (z) =

1

r
[zn−r]

1

1 − z
=

1

r
, for r ∈ {1, . . . n} .

This expression is exact, so it is possible to conclude on the average number of cycles in a
permutation:

En[number of cycles] =

nX
r=1

En(dr) =

nX
r=1

1

r
∼n→∞ log(n) .

9 Functional graph statistics
We defineM, the class of mappings (or functions), by

Mn = {f : {1, . . . , n} → {1, . . . , n}}.

We will represent a mapping of Mn by a graph with n vertices, and there is an edge
between two vertices, from i to j, if f(i) = j. The class of graphs we obtain is called
functional graphs, and they can be viewed as graphs where every vertex has outdegree 1.

Starting from a vertex x, apply several times the function f : x, f(x), f( f (x)) . . .
At some point, since the domain is finite, this construction will loop back on itself. Re-
peating the process for all vertices, we thus construct the whole graph. It is generally
composed of several connected components and each component is an oriented cycle
of points (possibly reduced at only one point), and from each point of the circle, there
is some tree structure which is hung. This tree structure is a rooted tree without order
on its children, so it is a Cayley tree. The specification derives from this description:

M = SET (CYC (T ))
T = Z � SET (T )

The corresponding generating functions are

M(z) = exp
(

log
(

1
1− T (z)

))
=

1 ,
1− T (z)

T (z) = z · exp(T (z)).

We study tree statistics on this structure of functional graphs:

1. γ1 is the number of cycles (connected components);

2. γ2 is the number of cyclic points (vertices of the cycles);

3. γ3 is the number of points without antecedents (leaves of the Cayley trees).

So we will consider three bivariate generating functions, called Mi(z, u) for i = 1, 2, 3.
The goal of this study is to find the expected value of each parameter γi. We know the
expression of the expectation:

En[γi] =
n![zn]Ci(z)
n![zn]M(z)

,
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where Ci(z) is the corresponding cumulative function Ci(z) := d
duMi(z, u)|u=1. The

total number of mappings mn is known and mn = nn, so the expression of the expec-
tations reduces to

En[γi] =
n!
nn

[zn]Ci(z) .

9.1 Expression of the BGFs
We have to find the symbolic specification for each parameter γi.

Number of cycles: γ1

M1 = SET (•CYC (T )) so M1(z, u) = exp
(
u log

(
1

1− T (z)

))
.

So,

C1(z) =
d

du
M1(z, u)|u=1 =

1
1− T (z)

log
(

1
1− T (z)

)
.

Number of cyclic points: γ2

M2 = SET (CYC (•T )) so M2(z, u) = exp
(
log

(
1

1− uT (z)

))
.

So,

C2(z) =
d

du
M2(z, u)|u=1 =

T (z)
(1− T (z))2

.

Number of points without antecedents: γ3

M3 = SET
(

CYC
(
T̂
))

where T̂ is the class of Cayley trees where leaves (but not

root) are marked. Let T̃ be the class of Cayley trees where all leaves are marked. The
specification is

M3 = SET
(

CYC
(
T̂
))

T̂ = T̃ \ {•Z}

T̃ =
(
Z � SET(T̃ ) \ {Z}

)
+ {•Z}

The corresponding bivariate generating functions are

M3(z, u) = exp

(
log

(
1

1− T̂ (z, u)

))
=

1 ,
1− T̂ (z, u)

T̂ (z, u) = T̃ (z, u)− uz +  z ,

T̃ (z, u) = z exp
(
T̃ (z, u)

)
+ (u− 1)z .
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So, the cumulative function can be expressed and we find

C3(z) =
d

du
M3(z, u)|u=1 =

zT (z)
(1− T (z))3

.

9.2 Expected values
All three cumulative functions are expressed in terms of the tree function T (z). The asymptotic
behavior is dictated by this function. But we have already studied this function and
its singularities (section 3.2, analytic inversion theorem for trees). We know that the
dominant singularity of T (z) is at z = e−1, and near this singularity, T (z) admits an
asymptotic development

T (z) ∼
z=e−1

1−
√

2
√

1− ez .

Number of cycles: γ1

En[γ1] =
n!
nn

[zn]C1(z) =
n!
nn

[zn]
1

1− T (z)
log

(
1

1− T (z)

)
∼ n!

nn
[zn]

1√
2
√

1− ez
log

(
1√

2
√

1− ez

)
∼ n!

nn

en

2
√

2
[zn]

1
(1− z)1/2

log
(

1
1− z

)
∼ n!

nn

en

2
√

2
n−1/2

Γ(1/2)
log(n) ∼ 1

2
log(n)

Number of cyclic points: γ2

En[γ2] =
n!
nn

[zn]C2(z) =
n!
nn

[zn]
T (z)

(1− T (z))2

∼ n!
nn

[zn]
1

2(1− ez)

∼ n!
nn

en

2
[zn]

1
(1− z)

∼
√

πn

2

Number of points without antecedents: γ3

En[γ3] =
n!
nn

[zn]C3(z) =
n!
nn

[zn]
zT (z)

(1− T (z))3

∼ n!
nn

[zn]
e−1

2
√

2(1− ez)3/2

∼ n!
nn

ene−1

2
√

2
[zn]

1
(1− z)3/2

∼ n!ene−1

nn · 2
√

2
n1/2

Γ(3/2)
∼ n

e
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10 Probability of being a connected graph
This section will use generating functions only as formal objects. Indeed, the functions
will be implicit and their radius of convergence will be 0. But it is still possible to use
them.

Let G be the class of labelled graphs. Take G ∈ G a graph with n vertices. We have(
n
2

)
possible edges, and for each edge, we decide to have it or not. So the total number

of labelled graphs with n vertices is gn = 2(
n
2). Then we have an expression for the

generating function:

G(z) =
∑
n≥0

2(n
2) zn

n!
.

Let K be the subclass of G of connected graphs. As a graph is the set of its connected
components, the symbolic method provides the following equation G = SET (K). So, the
direct translation into EGF is G(z) = exp(K(z)). By inversion, we can formally write

K(z) = log

1 +
∑
n≥1

2(n
2) zn

n!

 .

And using the formal definition of the log, log(1 + u) = u − u2/2 + u3/3 + . . ., we
can express the number of connected graphs with n vertices as

kn = n![zn]K(z) = n![zn] log

1 +
∑
n≥1

2(n
2) zn

n!


= n![zn]

∑
n≥1

2(n
2) zn

n!

− 1
2
n![zn]

∑
n≥1

2(n
2) zn

n!

2

+
1
3
n![zn]

∑
n≥1

2(n
2) zn

n!

3

+ . . .

= 2(
n
2) − 1

2

∑
n1+n2=n

(
n

n1, n2

)
2(n1

2 )2(n2
2 ) +

1
3

∑
n1+n2+n3=n

(
n

n1, n2, n3

)
2(n1

2 )2(n2
2 )2(n3

2 ) + . . .

In these sums, there are only a few dominant terms. Indeed, the sequence
(
2(n

2)
)

n
increases exponentially:

2(n+1
2 ) = 2n2(n

2) .

So, in the first sum, only the first and the last term are meaningful with regard to the
asymptotic (that is n1 = 1 and n2 = n − 1, or n1 = n − 1 and n2 = 1). The other
terms and the other sums are all included into o

(
2(n

2)2−n
)

. So,

kn = 2(
n
2)

(
1− 2n2−n + o(2−n)

)
.

Finally, almost all labelled graphs of size n are connected:

Pn[a graph is connected] =
kn

gn
∼

n→∞ 1− 2n2−n −→
n→∞ 1 .
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11 Saddle-point method
What can we say about the asymptotics of coefficients of a generating function without
singularities?

Let f(z) =
∑

n≥0 fnzn be a generating function with no singularities: it means
f(z) is analytic at C. The only formula we can use is the Cauchy formula for coeffi-
cients:

fn =
1

2iπ

∮
f(z) dz

zn+1
,

where the integral is evaluated around some contour which englobes 0. The theory says
that any contour around 0 can be used. The saddle-point method relies on a good choice
of contour in order to make approximation, and asymptotic expansion.

The function inside the integral is f(z)
zn+1 . This function has a pole at z = 0. Fur-

thermore, as f is C-analytic (or entire function), the ratio grows to infinity when |z|
tends to infinity. Let us recap the geography of the problem. The function f(z)

zn+1 has a
peak at z = 0 and has another peak around z → ∞. So, between these two peaks,
there exists a valley, and especially a point with a smallest height: this point is called a
saddle-point.

Definition 10. (saddle-point) A saddle-point z0 of a function f is a point such that
f(z0) �= 0 and f ′(z0) = 0.

Another key to understand the saddle-point method is the fact it is easy to eva-
luate contour integrals of the form

∮
eh(z)dz. Indeed, for such integrals, we locate

the saddle-point z0 where h′(z0) = 0, and then, around this saddle-point, we use the
Taylor expansion of h

h(z) = h(z0) +
1
2
h′′(z0)(z − z0)2 + O((z − z0)3) .

So, for the evaluation of the contour integral, we cut the contour into two parts: a part
C1 really close to the saddle-point z0, and the other part C2 (the rest of the circle cen-
tered at 0). For the part C1, we use the Taylor expansion of h, then a constant term
eh(z0) will be a factor, and the rest of the integral is easy to evaluate (directly related to∫

e−t2dt). Then, it is possible to show that the integral on the part C2 is exponentially
negligible.

Saddle-point technique Let f(z) =
∑

fnzn. Let note exp (h(z)) = f(z)
zn+1 .

Then, find ζn such that h′(ζn) = 0, that is

ζn
f ′(ζn)
f(ζn)

= n + 1 .

Then we have an asymptotic expression for the coefficients

fn ∼
f(ζn)

ζn+1
n

√
2πh′′(ζn)

.
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11.1 Exponential and 1/n!
If f(z) = ez , we already know that [zn]f(z) = 1

n! . The function f has no singularity
so we can, as an exercise, use the saddle-point method. Let h(z) = log f(z)

zn+1 = z −
(n + 1) log(z).
So, h′(z) = 1− n+1

z , and h′′(z) = n+1
z2 . h′(ζn) = 0 implies ζn = n + 1.

So, we can deduce an asymptotic for the factorial

1
n!
∼ en+1

(n + 1)n+1
√

2π/(n + 1)
.

Then, we put one factor (n + 1) inside the square root, put the factor nn outside, and
use the equivalent (1 + 1/n)n ∼ e, and we find

1
n!
∼ en

nn
√

2πn
.

11.2 Number of involutions: asymptotics

Remember that the generating function of the involutions is I(z) = exp
(
z + z2

2

)
.

This function has no singularity, so we use the saddle-point method. Let exp(h(z)) =
I(z)/zn+1, so we have

h(z) = z +
z2

2
− (n + 1) log(z) , h′(z) = 1 + z − n + 1

z
, h′′(z) = 1 +

n + 1
z2

.

The derivative cancels for the roots of z2 + z− (n + 1). The positive saddle-point
is −1/2 + 1/2

√
1 + 4(n + 1). When n tends to infinity, it is sufficient to know

the asymptotics of the saddle-point, so

ζn ∼
√

n− 1/2  +  5__ .

We obtain an expression for [zn]I(z):
8 n

In

n!
∼ eh (ζn)

ζn+1
n

√
2πh′′(ζn)

∼ en/2+
√

n−1/4 n−n/2

2
√

πn

∼ �n/2	∑
i=0

1
i! (n− 2i)! 2i

 ,
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