Wilf's Snake-Oil Method

We begin with an example.

Example 1. Find a closed form (if one exists) of the sum below.

$$\sum_{k>0} \binom{k}{n-k} \tag{1}$$

Notice that n is the free variable. So let $a_n = \sum_{k \geq 0} {k \choose n-k}$ and let $A(x) \xleftarrow{\text{ogf}} \{a_n\}_{n \geq 0}$. Then

$$A(x) = \sum_{n} a_n x^n = \sum_{k \ge 0} \sum_{k \ge 0} {k \choose n-k} x^n$$

$$= \sum_{k \ge 0} \sum_{n} {k \choose n-k} x^n$$

$$= \sum_{k \ge 0} x^k \sum_{n} {k \choose n-k} x^{n-k}$$

$$= \sum_{k \ge 0} x^k \sum_{r} {k \choose r} x^r$$

$$= \sum_{k \ge 0} x^k (1+x)^k$$

$$= \sum_{k \ge 0} (x+x^2)^k$$

So we have a geometric series with common ratio $x + x^2$. Thus

$$A(x) = \frac{1}{1 - x - x^2}$$

It follows that

$$a_n = \sum_{k \ge 0} \binom{k}{n-k} = f_n$$

where the f_n 's are the Fibonacci numbers.

The Snake Oil Method for Managing Combinatorial Sums

- a. Identify the free variable in the sum and name the sum. For example, $a_n = \sum_{k\geq 0} {k \choose n-k}$ in the introductory example.
- b. Let $A(x) \stackrel{\text{ogf}}{\longleftrightarrow} \{a_n\}_{n>0}$. Then $a_n = [x^n]A(x)$.
- c. Now A(x) is a double sum over n. Interchange the order of summation so that the inner sum has a simple closed form. It will be useful to have a catalogue of series whose closed forms are known (see 2.5 of the text). We list a few of the more common forms below.
- d. Finally, try to identify the coefficients of the result.

A Few Useful Power Series

$$\sum_{k} \binom{n}{k} x^k = (1+x)^n \tag{2}$$

$$\sum_{n} \binom{n}{k} x^n = \frac{x^k}{(1-x)^{k+1}} \tag{3}$$

$$\sum_{n} \frac{1}{n+1} \binom{2n}{n} x^n = \frac{1-\sqrt{1-4x}}{2x} \tag{4}$$

We will also avoid specifying limits on indices whenever possible. For example, if n is a positive integer, we will write

$$2^n = \sum_{k} \binom{n}{k}$$

since the summand vanishes unless $0 \le k \le n$. This allows us to carry out the following manipulation without obsessing over the ranges of our variables of summation. For example,

$$\sum_{k} {n \choose r+k} x^{k} = x^{-r} \sum_{k} {n \choose r+k} x^{r+k}$$
$$= x^{-r} \sum_{s} {n \choose s} x^{s}$$
$$= x^{-r} (1+x)^{n}$$

We demonstrate the technique with a few more examples.

Example 2. Evaluate the sum

$$\sum_{k} \binom{n+k}{2k} 2^{n-k}, \quad n \ge 0$$

Let $\alpha \in \mathbb{R}$ and $a_n = a_n(\alpha) = \sum_k \binom{n+k}{2k} \alpha^{n-k}$. Also, let $A(x) \xleftarrow{\text{ogf}} \{a_n\}_{n \geq 0}$. Then

$$A(x) = \sum_{n} a_{n} x^{n} = \sum_{k} \sum_{k} {n+k \choose 2k} \alpha^{n-k} x^{n}$$

$$= \sum_{k} \sum_{n} {n+k \choose 2k} \alpha^{n-k} x^{n}$$

$$= \sum_{k} \alpha^{-k} \sum_{n} {n+k \choose 2k} \alpha^{n} x^{n}$$

$$= \sum_{k} \alpha^{-2k} x^{-k} \sum_{n} {n+k \choose 2k} (\alpha x)^{n+k}$$

$$= \sum_{k} \alpha^{-2k} x^{-k} \frac{(\alpha x)^{2k}}{(1-\alpha x)^{2k+1}}, \quad \text{(by (3))}$$

$$= \sum_{k} \frac{x^{k}}{(1-\alpha x)^{2k+1}}$$

$$= \frac{1}{1-\alpha x} \sum_{k} \left(\frac{x}{(1-\alpha x)^{2}}\right)^{k}$$

$$= \frac{1}{1-\alpha x} \frac{1}{1-\frac{x}{(1-\alpha x)^{2}}}$$

$$= \frac{1}{1-\alpha x} \frac{(1-\alpha x)^{2}}{(1-2x)^{2}-x}$$

$$= \frac{1-\alpha x}{1-(1+2\alpha)x+\alpha^{2}x^{2}}$$

Now let $\alpha = 2$. Then

$$A(x) = \frac{1 - 2x}{1 - 5x + 4x^2}$$
$$= \frac{1/3}{1 - x} + \frac{2/3}{1 - 4x}$$

It follows that

$$a_n(2) = \frac{1 + 2 \cdot 4^n}{3}, \quad n \ge 0$$

The result in Example 2 depended on our ability to identify the sum $\sum_{n} \binom{n+k}{2k} (\alpha x)^{n+k}$. What about something like

$$\sum_{k} \binom{n}{k} \binom{2n}{n-k}$$

Since the free variable n appears in both binomial coefficients, it's difficult to see how changing the order of summation might help. Fortunately, there is another way.

Example 3. Evaluate the

$$\sum_{k} \binom{n}{k} \binom{2n}{n-k} \tag{5}$$

Here we make the odd choice to replace all but one appearance of n with new free variables. So let

$$a_n = \sum_{k} \binom{n}{k} \binom{m}{s-k} \tag{6}$$

Then

$$A(x) = \sum_{n} \sum_{k} \binom{n}{k} \binom{m}{s-k} x^{n}$$
$$= \sum_{k} \binom{m}{s-k} \sum_{n} \binom{n}{k} x^{n}$$
$$= \sum_{k} \binom{m}{s-k} \frac{x^{k}}{(1-x)^{k+1}}$$

Unfortunately, this doesn't look terribly inviting. Let's try summing on one of the other free variables in (5). So let

$$b_m = \sum_{k} \binom{n}{k} \binom{m}{s-k}$$

and $B(x) \stackrel{\text{ogf}}{\longleftrightarrow} \{b_m\}_{m>0}$. Then

$$B(x) = \sum_{m} b_{m} x^{m}$$

$$= \sum_{m} \sum_{k} \binom{n}{k} \binom{m}{s-k} x^{m}$$

$$= \sum_{k} \binom{n}{k} \sum_{n} \binom{m}{s-k} x^{m}$$

$$= \sum_{k} \binom{n}{k} \frac{x^{s-k}}{(1-x)^{s-k+1}}$$

$$= \frac{x^{s}}{(1-x)^{s+1}} \sum_{k} \binom{n}{k} u^{k}, \qquad u = \frac{1-x}{x}$$

Now that looks better. Did you see what happened? Summing on m allowed us to move the troublesome index s-k outside of the binomial coefficient, where it was easier to deal with. Continuing, we have

$$B(x) = \frac{u^{-s}}{1-x} \sum_{k} \binom{n}{k} u^{k}$$
$$= \frac{u^{-s}}{1-x} (1+u)^{n}$$

Substituting s = n yields

$$= \frac{1}{1-x} \left(\frac{1}{u} + 1\right)^n$$

$$= \frac{1}{1-x} \frac{1}{(1-x)^n}$$

Finally,

$$\sum_{k} \binom{n}{k} \binom{2n}{n-k} = a_{2n} = \left[x^{2n}\right] \frac{1}{(1-x)^{n+1}}$$
$$= \left[x^{2n}\right] \frac{1}{x^n} \frac{x^n}{(1-x)^{n+1}}$$
$$= \left[x^{2n+n}\right] \sum_{r} \binom{r}{n} x^r$$
$$= \binom{3n}{n}$$

You can compare a few values of the last expression with (5) by visiting the URLs: https://tinyurl.com/y97goulm and https://tinyurl.com/ydf2gyyh.