
In computational complexity theory, the padding argument  is a tool to conditionally prove
that if some complexity classes are equal, then some other bigger classes are also equal.

The proof that P = NP implies EXP = NEXP uses "padding".

 by definition, so it suffices to show .

Let L be a language in NEXP. Since L is in NEXP, there is a non-deterministic Turing machineM

that decides L in time  for some constant c. Let

where '1' is a symbol not occurring in L. First we show that  is in NP, then we will use the
deterministic polynomial time machine given by P = NP to show that L is in EXP.

 can be decided in non-deterministic polynomial time as follows. Given input , verify that it

has the form  and reject if it does not. If it has the correct form, simulate M(x). The

simulation takes non-deterministic  time, which is polynomial in the size of the input, .
So,  is in NP. By the  assumption P  = NP, there  is also a deterministic  machine  DM  that
decides  in  polynomial  time. We  can then decide  L  in  deterministic  exponential  time  as

follows. Given input , simulate . This takes only exponential time in the size of
the input, .

The  is called the "padding" of the language L. This type of argument is also sometimes used
for space complexity classes, alternating classes, and bounded alternating classes.
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