
In computational complexity theory, the padding argument is a tool to conditionally prove
that if some complexity classes are equal, then some other bigger classes are also equal.

The proof that P = NP implies EXP = NEXP uses "padding".

 by definition, so it suffices to show .

Let L be a language in NEXP. Since L is in NEXP, there is a non-deterministic Turing machineM

that decides L in time for some constant c. Let

where '1' is a symbol not occurring in L. First we show that is in NP, then we will use the
deterministic polynomial time machine given by P = NP to show that L is in EXP.

 can be decided in non-deterministic polynomial time as follows. Given input , verify that it

has the form and reject if it does not. If it has the correct form, simulate M(x). The

simulation takes non-deterministic time, which is polynomial in the size of the input, .
So, is in NP. By the assumption P = NP, there is also a deterministic machine DM that
decides in polynomial time. We can then decide L in deterministic exponential time as

follows. Given input , simulate . This takes only exponential time in the size of
the input, .

The is called the "padding" of the language L. This type of argument is also sometimes used
for space complexity classes, alternating classes, and bounded alternating classes.

Arora, Sanjeev; Barak, Boaz (2009), Computational Complexity: A Modern Approach
(http://www.cs.princeton.edu/theory/complexity/), Cambridge, p. 57,
ISBN 978-0-521-42426-4

Retrieved from "https://en.wikipedia.org/w/index.php?title=Padding_argument&oldid=1130735256"

