Theorem (Immerman-Szelepcsényi): For reasonable $s(n) \ge \log n$, NSPACE(s(n)) = co-NSPACE(s(n)). Let M be a nondeterministic machine using s(n) space. We will create a nondeterministic machine N such that for all inputs x, N(x) accepts if and only if M(x) rejects. Fix an input x and let s=s(|x|). The total number of configurations of M(x) can be at most c^s for some constant c. Let $t=c^s$. We can also bound the running time of M(x) by t because any computation path of length more than t must repeat a configuration and thus could be shortened. Let I be the initial configuration of M(x). Let m be the number of possible configurations reachable from I on some nondeterministic path. Suppose we knew the value of m. We now show how N(x) can correctly determine that M(x) does not accept. ``` Let r=0 For all nonaccepting configurations C of M(x) Try to guess a computation path from I to C If found let r=r+1 If r=m then accept o.w. reject ``` If M(x) accepts then there is some accepting configuration reachable from I so there must be less than m non-accepting configurations reachable from I so N(x) cannot accept. If M(x) rejects then there is no accepting configurations reachable from I so N(x) on some nondeterministic path will find all m nonaccepting paths and accept. The total space is at most O(s) since we are looking only at one configuration at a time. Of course we cannot assume that we know m. To get m we use an idea called *inductive* counting. Let m_i be the number of configurations reachable from I in at most i steps. We have m₀=1 and m_t=m. We show how to compute m_{i+1} from m_i. Then starting at m₀ we compute m₁ then m₂ all the way up to m_t=m and then run the algorithm above. Here is the algorithm to nondeterministically compute m_{i+1} from m_i . ``` Let m_{i+1}=0 For all configurations C Let b=0, r=0 For all configurations D Guess a path from I to D in at most i steps If found Let r=r+1 If D=C or D goes to C in 1 step Let b=1 If r<m_i halt and reject Let m_{i+1}=m_{i+1}+b ``` The test that r<m; guarantees that we have looked at all of the configurations D reachable from I in i steps. If we pass the test each time then we will have correctly computed b to be equal to 1 if C is reachable from I in at most i+1 steps and b equals 0 otherwise. We are only remembering a constant number of configurations and variables so again the space is bounded by O(s). Since we only need to remember m_i to get m_{i+1} we can run the whole algorithm in space O(s).