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Approximation Algorithms 

Although it is hopeless to design a polynomial-time algorithm for an NP -hard optimization 

problem, it is possible to design a polynomial-time algorithm that finds the sub-optimal solutions. 

For example, a trivial algorithm for computing a vertex cover is to output all vertices in the 

graph. How do we compare these sub-optimal algorithms? Time complexity should be a concern 

but not the only or primary concern now. How close their solutions are to the optimal solution 

is more or equally important.  

A polynomial-time approximation algorithm with approximation ratio 𝜌 will guarantee to find a 

solution with value ≥
𝑂𝑃𝑇

𝜌
 for maximization problem, or with value ≤ 𝜌 ⋅ 𝑂𝑃𝑇 for minimization 

problem.  

By this definition, an approximation ratio is always ≥ 1. But frequently, you may also see people 

say that the ratio is 0.5 for a maximization problem. That is also acceptable. What they really 

mean is that the ratio is 
1

0.5
= 2 according to our definition. 

Let’s check a couple of simple examples: 

Closest String 

Closest String : Given 𝑛 length-𝐿 binary strings 𝑠1 , … , 𝑠𝑛 

, compute a new string 𝑡 , such 

that 𝑑 = max
𝑖
𝑑𝐻(𝑡, 𝑠𝑖) is minimized.  Here 𝑑𝐻 is the Hamming distance. 

This is a minimization problem. It has been proved that it is NP-hard. The following 

approximation algorithm has ratio 2: 

Algorithm: return 𝑠1. 

Proof: Because of Triangular Inequality, 𝑑(𝑠1, 𝑠𝑖) ≤ 𝑑(𝑡𝑜𝑝𝑡 , 𝑠1) + 𝑑(𝑡𝑜𝑝𝑡 , 𝑠𝑖) ≤ 2𝑑. QED. 

There have been many approximation algorithms developed for NP-hard problems. And 

common methods in developing approximation algorithms have been proposed too. Our short 

introduction here won’t cover very much of this field; but at least it can let you be aware of the 

existence of this field. 

Max-Cut 

Max-Cut: Given 𝐺 = 〈𝑉, 𝐸〉, a cut is a partition 𝑉 = 𝑉1 ∪ 𝑉2 and 𝑉1 ∩ 𝑉2 = ∅. The size of the cut 

is the number of edges whose two vertices are in 𝑉1 and 𝑉2, respectively. Find the maximum-

sized cut. 

Recall that in the approximation algorithm chapter, we introduced a randomized algorithm to 

find a cut of expected size 
|𝐸|

2
.  Since the o ptimal cut size cannot exceed |𝐸|, that algorithm is a 



randomized approximation algorithm with ratio 2. Furthermore, that algorithm can be 

derandomized, so the derandomized algorithm is a deterministic approximation algorithm with 

ratio 2. 

The currently best known approximation ratio for approximation algorithm for Max-Cut is 𝛼 =
𝜋

2
⋅ max
0≤𝜃≤𝜋 

1−cos 𝜃

𝜃
≈ 1.139.  

Inapproximability 

There is a limit for the approximation ratio. If 𝑃 ≠ 𝑁𝑃, then the approximation ratio cannot be 1. 

Sometimes one can prove stronger results. 

Theorem: if 𝑃 ≠ 𝑁𝑃, then max-cut does not have a polynomial-time approximation algorithm 

with ratio better than 
17

16
= 1.0625.  

In rare case, the hardness result can match the algorithm result. For example, if the “unique 

games conjecture” is true, then 𝛼 =
𝜋

2
⋅ max
0≤𝜃≤𝜋 

1−cos 𝜃

𝜃
≈ 1.139 is the best possible 

approximation ratio for maximum cut. 

 

Vertex Cover 

Vertex Cover: Given a graph, find the minimum sized set of vertices that every edge has an 

endpoint in it (the edge is therefore “covered”). 

An application of vertex cover is to monitor all the links on a network, where you want to use 

minimum number of monitors (vertices) to monitor all links (the edges). Another example one 

can imagine is to construct stations f or highway patrols,
where you want to use the minimum number of stations to cover all highways. 

Max Independent Set: Let 𝐺 = 〈𝑉, 𝐸〉 be a graph. An independent set 𝑉′ is a subset of 𝑉 such 

that no edge connects two vertices in 𝑉′. Find the maximum sized independent set. 

It is known that max independent set is NP-hard. We take this fact as a given, and prove the 

following theorem.  

Theorem: Vertex Cover is NP-complete. 

Proof: It is in NP because once a subset of vertices is given, it takes polynomial time to count the 

size and check if it covers all edges. To prove it is NP-hard, we reduce Independent set to it. 

Given an instance of independent set, 𝐼 = (𝐺, 𝑘). Let 𝑛 be the number of vertices of 𝐺. 

Construct an instan ce of vertex cover as 𝐼′ = (𝐺, 𝑛 − 𝑘) . It is polynomial-time. So the remaining 

is to prove that 𝐼 and 𝐼′ have the same answers. We only need to show that 𝐺 has a vertex cover 

of size 𝑛 − 𝑘 if and only if it has an independent set of size 𝑘. 



Claim: Let 𝐺 = 〈𝑉, 𝐸〉 be a graph. 𝑉′ is a vertex cover if and only if 𝑉 ∖ 𝑉′ is an independent set. 

If 𝑉′ is a vertex cover, then every edge 𝑒 has a vertex in 𝑉′. Therefore, there is no edge 𝑒 that 

has both vertices in 𝑉 ∖ 𝑉′. The other direction is also true. 

QED. 

A very natural idea to design an a pproximation algorithm is by using a greedy strategy. 

Algorithm VC-Greedy 

1. 𝐶 ← ∅ 

2. While 𝐸 is not empty 

a. Pick an uncovered vertex 𝑢 with maximum degree. 

b. 𝐶 ← 𝐶 ∪ {𝑢} 

c. Remove all edges incident to 𝑢 from 𝐸. 

Unfortunately, VC-Greedy does not perform very well. The following figure shows a design of a 

bad example. The design starts with 𝑛 vertices in the first level. Then 𝑛 levels of new vertices are 

added to the graph. Each vertex in level 𝑖 connec ts to 𝑖 vertices in level 1. This way, the  greedy 

algorithm would use roughly Θ(𝑛 log 𝑛) vertices in the cover. But the op timal cover has a size of 

𝑛. 

 

 

Algorithm VC-Matching. 

1. 𝐶 ← ∅ 

2. While 𝐸 is not empty 

a. Arbitrarily pick 𝑒 = (𝑢, 𝑣) ∈ 𝐸. 

b. 𝐶 ← 𝐶 ∪ {𝑢, 𝑣} 

c. Remove all edges incident to 𝑢, 𝑣 from 𝐸. 

Theorem: Algorithm VC has approximation ratio 2. 

Proof: Clearly VC is a vertex cover. Next let’s prove the ratio. Suppose we pick 𝑘 edges during 

the execution of algorithm VC. These 𝑘 edges form a matching (they don’t share vertices). So, 



the optimal vertex cover should contain at least one vertex from each of these 𝑘 edges. Thus 

𝑂𝑃𝑇 ≥ 𝑘. On the other hand, algorithm VC’s output has size at most 2𝑘.  

QED. 

Remark: An approximation algorithm is just a heuristic algorithm that happens to have a provable 

worst-case performance guarantee.  

Remark: Since we are using worst-case analysis, it is always possible that on some instances, an 

algorithm with a larger ratio may actually perform better than an algorithm with a lower ratio. 

Additionally, it is also possible that the ratio we can prove for an algorithm is not tight. The 

algorithm may have a smaller ratio, but we can only prove the larger ratio because of our 

inability to find a mathematical proof. 

Remark: Once algorithm VC outputs a set 𝑈 of size 𝑚, we can use other heuristics to improve 

the cover. (Exercise: Think about many heuristic ways to reduce 𝑈.) There is no guarantee that 

you can improve. And even if you successfully found another set 𝑈′ of size 𝑚′ < 𝑚 , there is no 

guarantee that 𝑚′ is the optimal. But what conclusion can you draw between the relation of 𝑚′ 

and the optimal? (Exercise: think about it.) 

 

Exercis e: Prove tha t if there is a p olynomial-time algorithm that can guarantee to find a vertex 

cover of size ≤ 𝑂𝑃𝑇 + 𝑐 for a constant 𝑐, then P=NP. 

Travelling-Salesman Problem 

Travelling-salesman problem (TSP ) with arbitrary we i ght : Given a weighted complete graph 

𝐺 = 〈𝑉, 𝐸〉, find a Hamilton cycle that has the minimum total edge weight. 

Theorem: If 𝑃 ≠ 𝑁𝑃, then for any function 𝑓(𝑛) that can be computed in polynomial time, TSP 

cannot be approximated with ratio 𝑓(𝑛).  

Proof: Let 𝐺 = 〈𝑉, 𝐸〉 be an instance of the Hamiltonian cycle problem, which is known to be NP-

hard. Construct a complete graph 𝐺′ with the same vertex set. The edge weight is defined as 

𝑤(𝑒) = {
1, if 𝑒 ∈ 𝐸;

𝑛 × 𝑓(𝑛), if 𝑒 ∉ 𝐸. 

If 𝐺 has a Hamiltonian cycle, then the TSP on 𝐺′ 

    has cos t 𝑛 . If 𝐺 has no Hamiltonian cycle, then 

the TSP will have to use at least one edge with weight 𝑛 × 𝑓(𝑛). Thus, having a polynomial-time 

algorithm to approximate TSP with ratio 𝑓(𝑛) will solve the Hamilton cycle problem in 

polynomial time with this reduction. 

QED. 



So we focus on TSP of which the edge weight satisfies some properties. For example, Triangular 

Inequality is a natural one – because if we allow a vertex is visited twice, then the path distance 

on the graph actually satisfies the Triangular Inequality. 

Travelling-salesman problem (TSP) : Given a weighted complete graph 𝐺 = 〈𝑉, 𝐸〉. The edge 

weight satisfies Triangular Inequality. Find a Hamilton cycle that has the minimum total edge 

weight. 

Algorithm TSP: 

1. Construct a minimum spanning tree 𝑇 . 

2. Let 𝑣𝑖1 → 𝑣𝑖2 → ⋯ → 𝑣𝑖𝑛 be the vertices sorted a ccording to their first visit during a 

depth-first traversal on 𝑇. 

3. Output 𝑣𝑖1 → 𝑣𝑖2 → ⋯→ 𝑣𝑖𝑛 → 𝑣𝑖1 as the solution. 

Theorem: Algorithm TSP is a ratio 2 approximation algorithm. 

Proof: A Hamiltonian cycle has cost higher than a Hamiltonian path; and a Hamiltonian path is a 

spanning tree. Therefore, the cos t of the op timal Hamiltonian cycle is a t least the weight of a MST. 

On the other hand, consider a solution constructed by Algorithm TSP: 𝑣𝑖1 → 𝑣𝑖2 → ⋯ → 𝑣𝑖𝑛 →

𝑣𝑖1. If we walk from 𝑣𝑖𝑗 → 𝑣𝑖𝑗+1  only through the path on the MST, then each edge on the MST is 

used at most twice. Thus, the total cost would be 2 ×𝑀𝑆𝑇. Furthermore, because of the 

triangular inequality, walking on MST has an equal or larger cost than using the edge 𝑣𝑖𝑗 → 𝑣𝑖𝑗+1 

on the graph directly. Thus, the algorithm’s solution has a cost at most 2 ×𝑀𝑆𝑇. 

QED. 

In special distance metric, it is possible to achieve much better ratio. We give the following 

theorem without proof. 

Theorem (S. Arora): If under geometric distance in space 𝔑𝑑 , then TSP has a randomized 

polynomial-time approximation scheme (PTAS) that achieves approximation ratio 1 + 𝜖 in time  

𝑂 (𝑛(log 𝑛)𝑂(√𝑑⋅
1
𝜖
)
𝑑−1

). 

Pay attention to the tradeoff between time complexity and the approximation ratio. But overall, 

this is good time complexity in theory: nearly linear time. 

This is called a polynomial-time approximation scheme (PTAS). Basically, a PTAS for a problem is 

an algorithm that takes an additional input 𝜖 > 0, and runs in time 𝑂(𝑛𝑓(𝜖)) for some function 𝑓.  



Set Cover 

Set Cover: Given a collection of sets 𝑆1 , … , 𝑆𝑚, where 𝑆𝑖 ⊆ [1, 𝑛]. A cover is a sub-collection of  

sets {𝑆𝑖1 ,… , 𝑆𝑖𝑘} such that 𝑆𝑖1 ∪…∪ 𝑆𝑖𝑘 = [1, 𝑛]. Minimize 𝑘, the number of sets in the cover. 

Application: You host a party with 𝑛 people. You can order 𝑚 different flavors of pizza. Each 

flavor can feed a subset of the people. How to find the minimum number of flavors to cover all 

people? 

Vertex cover is a special case of set cover, where all the edges are the elements to cover. Edges 

that are incident with a vertex correspond to a set. Since vertex cover is NP-hard, so is set cover. 

Algorithm Greedy-Cover 

1. 𝐶 ← ∅ 

2. While there are uncovered elements 

a. Find set 𝑆 that covers the maximum number of uncovered elements 

b. 𝐶 ← 𝐶 ∪ {𝑆} 

Note that this algorithm is the same as VC-greedy when the set cover instance is reduced from a 

vertex cover problem. 

Theorem. The Greedy-Cover algorithm is a polynomial-time approximation algorithm for set 

cover with ratio 1 + log 𝑑, where 𝑑 ≤ 𝑛 is the maximum size of a set in the input. 

Proof: Without loss of generality, suppose 𝑆1 , … , 𝑆𝑝 are the sets added to the collection by the 

algorithm in order. Suppose the optimal solution is 𝑂𝑃𝑇 = {𝑆𝑖1 , … , 𝑆𝑖𝑘}. We’d like to prove 𝑝 ≤

(1 + log 𝑑) ⋅ 𝑘. 

Each set 𝑆𝑖 chosen in 2a has cost 1. Distribute this cos t to the newly covered elements by 𝑆𝑖 

. 

That is, if 𝑆𝑖 ∖ (⋃ 𝑆𝑗
𝑖−1
𝑗=1 ) contains 𝑟 elements, then each of these 𝑟 elements is charged 

1

𝑟
.  

Denote the charge received by element 𝑗 by 𝑐(𝑗). Then ∑    𝑐(𝑗)𝑗=1..𝑛 = 𝑝. 

Consider any set 𝑆 in the optimal solution with size 𝑑′. By reordering the elements, assume that 

𝑗𝑑′ , 𝑗𝑑′−1, … , 𝑗1 are the elements of 𝑆 in their order of being first covered by the Greedy-Cover 

algorithm. When 𝑗𝑡 is to be covered for the first time, at least 𝑡 elements in 𝑆 are not covered 

yet. Thus, the set selected by the algorithm to cover 𝑗𝑡 would cover at least 𝑡 elements. 

Therefore, 𝑐(𝑗𝑡) ≤
1

𝑡
. Thus,  

∑𝑐(𝑗)

𝑗∈𝑆

=∑𝑐(𝑗𝑡)

𝑑′

𝑡=1

≤∑
1

𝑡

𝑑′

𝑡=1

≤ 1 + log 𝑑′ ≤ 1 + log 𝑑. 

Hence, 

Set Cover:Set Cover:Set Cover:



𝑝 = ∑ 𝑐(𝑗)

𝑗=1..𝑛

≤ ∑ ∑𝑐(𝑗)

𝑗∈𝑆𝑆∈𝑂𝑃𝑇

≤ ∑ (1+ log 𝑑)

𝑆∈𝑂𝑃𝑇

= (1 + log 𝑑) ⋅ 𝑘. 

QED. 

Knapsack, FPTAS 

Knapsack Problem: Given objects 1, 2, … , 𝑛 that each has an inte ger size 𝑠𝑖 and integer profit 𝑝𝑖 

,

a capacity 𝐵 , find a subset of items 𝑆 ⊆ [1, 𝑛],  such that ∑ 𝑠𝑖𝑖∈𝑆 ≤ 𝐵 , and the total profit 𝑝𝑆 =

∑ 𝑝𝑖𝑖∈𝑆  is maximized.  

Application: Imagine a thief is trying to steal valuable items from a store. He has only a knapsack 

that can hold a certain weight. So he wants to select a combination of items that have the 

maximum total value, but the total weight is below the capacity of the knapsack. 

Application: Imagine a small business owner receives more jobs than his capacity, and needs to 

decide which jobs to take within his capacity in order to maximize profit. 

Knapsack has an interesting dynamic programming algorithm of which the time complexity is 

pseudo-polynomial. 

Let 𝐷[𝑖, 𝑝] be the minimum weight needed to gain profit 𝑝 with a subset of items from [1, 𝑖]. 

Clearly D[𝑖, 0] = 0. For convenience, let 𝐷[0, 𝑝] = ∞ for any 𝑝 > 0 to indicate that i t is impossible. 

In order to gain profit 𝑝 from items 1 to 𝑖, item 𝑖 can be either picked or not. If 𝑖 is picked, then 

𝐷[𝑖, 𝑝] = 𝐷[𝑖 − 1, 𝑝 − 𝑝𝑖] + 𝑠𝑖. If 𝑖 is not picked, then 𝐷[𝑖, 𝑝] = 𝐷[𝑖 − 1, 𝑝]. Thus, 

𝐷[𝑖, 𝑝] = min{𝐷[𝑖 − 1, 𝑝],𝐷[𝑖 − 1, 𝑝 − 𝑝 𝑖] + 𝑠𝑖  }. 

It is straightforward to have a dynamic programming algorithm to compute 𝐷[𝑖, 𝑝] for all 𝑖 and 𝑝. 

Then find the maximum 𝑝 that satisfies 𝐷[𝑛, 𝑝] ≤ 𝐵. Backtrace from there. 

Time complexity: computing 𝐷[𝑖, 𝑝] for each 𝑖 and 𝑝 takes 𝑂(1) time. There are 𝑛 possible 𝑖, 

and 𝑃 = ∑ 𝑝𝑖𝑖  possible 𝑝. Thus, the time complexity is 𝑂(𝑛𝑃), where 𝑃 is the total profit of all 

items. 

Exercise: Think of a careful implementation of the same algorithm to use 𝑂(𝑛 ⋅ 𝑃𝑜𝑝𝑡) time, 

where 𝑃𝑜𝑝𝑡  is the profit of the optimal solution. 

Although Knapsack-DP looks like a polynomial-time algorithm, it is not – because the value of 𝑃 

can be an exponential of the number of bits used to input all 𝑝𝑖. We say that Knapsack-DP has a 

pseudo-polynomial time complexity. When every 𝑝𝑖 is a polynomial of 𝑛, then Knapsack-DP is 

polynomial-time. If without such a constraint, it has be en proven that Knapsa ck is NP-hard. 

But in practice, do we really need so many bits to encode a profit? If there is a one-million dollar 

item, does the thief really care about another item that is worth 100 dollars? This idea leads to 

the following approximation algorithm. 



Let 𝑝𝑚𝑎𝑥 be the maximum item value. We assume the item’s size does not exceed 𝐵. Otherwise 

we can safely discard it from the computation.  

For each 𝑖, let 𝑝𝑖
′ = ⌊𝑝𝑖 ⋅

𝑘

𝑝𝑚𝑎𝑥
⌋ for a large number 𝑘 that is to be determined later. This way, 𝑝𝑖

′ 

takes values from 0 to 𝑘, and the value of each item is approximately, proportionally 

represented by 𝑝𝑖
′.  

Treat 𝑝𝑖
′ as the new profit for each item. The previous dynamic programming algorithm can be 

used to find the optimal subset of items 𝑆𝑎𝑙𝑔 under the new profit values. Output 𝑆𝑎𝑙𝑔 as an 

approximation solution of the old problem. The time complexity is 𝑂(𝑛2 ⋅ 𝑘).  

We want to prove the approximation ratio. The following useful fact is obvious from the 

definition 

𝑝𝑖
′ ≤ 𝑝𝑖 ⋅

𝑘

𝑝𝑚𝑎𝑥
< 𝑝𝑖

′ + 1. 

Suppose the profit of 𝑆𝑎𝑙𝑔 is 𝐴𝐿𝐺′ under the new profits, and 𝐴𝐿𝐺 under the old profits. 

Similarly, let 𝑆𝑜𝑝𝑡  be the optimal solution for the old problem. 𝑆𝑜𝑝𝑡  has profit 𝑂𝑃𝑇 under the old 

profits, and profit 𝑂𝑃𝑇′ under the new profits. Because ALG ′ is optimal under the new 

profits, we have 𝑂𝑃𝑇′ ≤ 𝐴𝐿𝐺′. 

Together with the fact that 𝑝𝑖
′ ≤ 𝑝𝑖 ⋅

𝑘

𝑝𝑚𝑎𝑥
< 𝑝𝑖

′ + 1, we have the following: 

𝑂𝑃𝑇 ⋅
𝑘

𝑝𝑚𝑎𝑥
≤ 𝑂𝑃𝑇′ + 𝑛 ≤ 𝐴𝐿𝐺′ + 𝑛 ≤ 𝐴𝐿𝐺 ⋅

𝑘

𝑝𝑚𝑎𝑥
+ 𝑛. 

Thus, 
𝑂𝑃𝑇

𝐴𝐿𝐺
≤ 1 +

𝑛⋅𝑝𝑚𝑎𝑥

𝑘⋅𝐴𝐿𝐺
≤ 1+

𝑛

𝑘
. 

For any 𝜖 > 0, let 𝑘 = 𝑛/𝜖, we get an approximation ratio 1 + 𝜖 with time complexity 

𝑂(𝑛2 ⋅ 𝑘) = 𝑂 (𝑛3 ⋅
1

𝜖
). 

This is called a fully polynomial-time approximation scheme ( FPTAS). It is stronger than PTAS. To 

achieve approximation ratio 1 + 𝜖, a PTAS runs in 𝑂(𝑛𝑓(𝜖)) time for some function 𝑓. But a 

FPTAS runs in time 𝑂(𝑛𝑐 ⋅ 𝑓(𝜖)) for some constant 𝑐 and function 𝑓. 

Linear Programming for Weighted Vertex Cover 

Let’s examine the vertex cover again. Now each vertex has a weight associated to it. We want to 

find a vertex cover that minimizes the total weight of the vertices used. The unweighted vertex 

cover is therefore a special case, where each vertex has weight of 1. 

Now the maximal-matching algorithm does not work anymore. We solve this weighted version 

with another standard approximation-algorithm design technique: linear-programming 

relaxation and rounding. 



Let 𝑉 = {𝑣1, … , 𝑣𝑛} be the vertices and 𝐸 = {𝑒1,… , 𝑒𝑚} be the edges. Let 𝑤𝑖  be the weight of 𝑣𝑖. 

Let 𝑥𝑖 = 0,1 be variables indicating whether 𝑣𝑖 is used in the vertex cover. Then the cost of the 

solution is 

∑𝑤𝑖 ⋅ 𝑥𝑖 .

𝑛

𝑖=1

 

To ensure 𝑥𝑖  provides a cover, we need to ensure that for each edge 𝑒 = (𝑣𝑖 , 𝑣𝑗), at least one of 

𝑥𝑖 and 𝑥𝑗 is 1. That is 𝑥𝑖 + 𝑥𝑗 ≥ 1. Overall, we get an integer-linear-programming (ILP) problem: 

{
 
 

 
 min∑𝑤𝑖 ⋅ 𝑥𝑖 ;

𝑛

𝑖=1

𝑥𝑖 + 𝑥𝑗 ≥ 1,  for each edge 𝑒 = (𝑥𝑖 , 𝑥𝑗);
𝑥𝑖 = 0,1.

 

So, the weighted vertex cover problem can be solved by using a software package that can solve 

integer linear programming. But in general, integer linear programming is also NP-hard. (Vertex 

Cover is NP-hard, and we just provided a reduction fro m Vertex Cover to Integer Linear 

Programming). So, such a package will likely take exponential time in the worst case. 

But Linear Programming (LP) is polynomial-time solvable. So we relax the ILP problem to an LP 

problem: 

{
 
 

 
 min∑𝑤𝑖 ⋅ 𝑥𝑖 ;

𝑛

𝑖=1

𝑥𝑖 + 𝑥𝑗 ≥ 1,  for each edge 𝑒 = (𝑥𝑖 , 𝑥𝑗);
0 ≤ 𝑥𝑖 ≤ 1.

 

This is called LP relaxation. Now we can find a solution 𝑥̃𝑖 in polynomial time. Under this 

solution, the optimized goal is minimized. Denote it with 𝑊𝐿𝑃. Similarly, denote the optimal goal 

for ILP by 𝑊𝐼𝐿𝑃 . We know that 𝑊𝐿𝑃 ≤ 𝑊𝐼𝐿𝑃 because LP is a relaxation. 

Next we need to build an integer solution of 𝑥𝑖  from 𝑥̃𝑖. It is as simple as 

𝑥𝑖 = {
0,  if 𝑥̃𝑖 <

1 
;

2

1,  if  𝑥̃𝑖 ≥
1 .
2
 

 

Theorem: The above algorithm (LP relaxation + rounding) has approximation ratio 2. 

Proof: Now we get a solution with total weight 𝑊𝐴𝐿𝐺. First, this is a vertex cover because each 

edge makes sure that 𝑥̃𝑖𝑗 + 𝑥̃𝑖𝑗
′ ≥ 1, so at least one of the two vertices is rounded to 1. Secondly, 



the rounding will enlarge a variable to at most twice of the original value. So 𝑊𝐴𝐿𝐺  is at most 

twice of 𝑊𝐿𝑃. That is, 𝑊𝐴𝐿𝐺 ≤ 2 ⋅ 𝑊𝐿𝑃 ≤ 2 ⋅ 𝑊𝐼𝐿𝑃. 

QED. 

Fa rthest String, Closest String, Linear-programming Relaxation 

Farthest string: Given 𝑛 length-𝐿 strings 𝑠1 , … , 𝑠𝑛, find another string 𝑠, such that min
1≤𝑖≤𝑛

𝑑(𝑠, 𝑠𝑖) 

is maximized. Here 𝑑 is Hamming distance, n  > 1 . 

Closest string: Given 𝑛 length-𝐿 strings 𝑠1 , … , 𝑠𝑛, find another string 𝑠, such that max
1≤𝑖≤𝑛

𝑑(𝑠, 𝑠𝑖) is 

minimized. Here 𝑑 is Hamming distance, n  > 1. 

Both problems were proved to be NP-hard.  

In designing error-correction codes , the farthest s tring problem can be used to find a new code 

that is the farthest from all other existing codes.  

In bioinformatics, these two problems were special cases of the more generalized Distinguishing 

String problem: 

Distinguishing string: Given two sets of length-𝐿 strings 𝑆 and 𝑆′, two numbers 𝑑 and 𝑑′, find a 

distinguishing string 𝑡 , such tha t 𝑑(𝑡, 𝑠) ≤ 𝑑 for every 𝑠 ∈ 𝑆 and 𝑑(𝑡, 𝑠′) ≥ 𝑑′ for 

every 𝑠′ ∈ 𝑆′. Here 𝑑 is Hamming distance. 

The distinguishing string can be used to detect the presence of the DNA of a group of 

bacteria/viruses, while avoiding the false positives from the human DNA. 

In this section, we stu dy Farthest s tring and closest stri ng on the binary alphabet. But these 

algorithms can be easily extended to non-binary cases. 

Chernoff’s bound: Let 𝑋1, … , 𝑋𝑛 be 𝑛 independent 0-1 random variables. Pr(𝑋𝑖 = 1) = 𝑝𝑖. 𝑋 =

∑ 𝑋𝑖
𝑛
𝑖=1  be the sum. 𝜇 = 𝐸[𝑋] = ∑ 𝑝𝑖

𝑛
𝑖=1 .  For any 𝛿 > 0,  

Pr(𝑋 ≥ (1 + 𝛿)𝜇) ≤ exp(−
𝛿2𝜇

3
), 

Pr(𝑋 ≤ (1 − 𝛿)𝜇) ≤ exp(−
𝛿2𝜇

2
). 

Lemma: If 𝑛 is a polynomial of 𝐿, then the maximum distance 𝑑𝑜𝑝𝑡 for Farthest String is at least 
𝐿

2
− 𝑂(√𝐿 log 𝑛).  

Proof: Consider a random binary string 𝑡. For any input string 𝑠𝑖, 𝑑(𝑡, 𝑠𝑖) is the summation of 𝐿 

independent 0-1 variables, each has probability 
1

2
 to be 1. By Chernoff’s bound,  



Pr (𝑑(𝑡, 𝑠𝑖) ≤ (1 − 𝛿) ⋅
𝐿

2
 ) ≤ exp (−

𝛿2𝐿

4
). 

Let 𝛿 =
4⋅√log𝑛

√𝐿
, the above formula becomes 

Pr (𝑑(𝑡, 𝑠𝑖) ≤
𝐿

2
− 2 ⋅ √𝐿 log 𝑛 ) ≤ exp(−4 log 𝑛) = 𝑛−4. 

Adding all probabilities up for all 𝑖, we get 

Pr (∃𝑖 such that 𝑑(𝑡, 𝑠𝑖) ≤
𝐿

2
− 2 ⋅ √𝐿 log 𝑛 ) ≤ 𝑛−3. 

Thus,  

Pr (𝑑(𝑡, 𝑠𝑖) ≥
𝐿

2
− 2 ⋅ √𝐿 log 𝑛   for every 𝑖) ≥ 1 − 𝑛−3. 

Since the probability is positive, there is at least one 𝑡 such that 𝑑(𝑡, 𝑠𝑖) ≥
𝐿

2
− 2 ⋅

√𝐿 log 𝑛   for every 𝑖 .  

QED. 

Recall that this is called the probability method to prove the existence of something. 

For a binary string 𝑠 , we use 𝑠[𝑗] to denote the 0-1 letter at position 𝑗. We also use 𝑠[𝑗] as the 0 -1
integer value. Let 𝑡 = 𝑥1𝑥2…𝑥𝐿 be the to-be-computed binary string. Then 

𝑑(𝑡, 𝑠𝑖) =∑(𝑠𝑖[𝑗] + (1 − 2 ⋅ 𝑠𝑖[𝑗]) ⋅ 𝑥𝑗).

𝐿

𝑗=1

 

Notice that the right hand side is a linear combination of the 0-1 variables 𝑥1, 𝑥2 , … , 𝑥𝐿. The 

Farthest String problem is converted to the following ILP problem:  

{

max 𝑑 ;
𝑑(𝑡, 𝑠𝑖) ≥ 𝑑,    𝑖 = 1,… , 𝑛 ;
𝑥𝑗 = 0 or 1, 𝑗 = 1,… , 𝐿.

 

Note that 𝑑(𝑡, 𝑠𝑖) represents the linear combination ∑ (𝑠𝑖[𝑗] + (1 − 2 ⋅ 𝑠𝑖[𝑗]) ⋅ 𝑥𝑗)
𝐿
𝑗=1 . The 

optimal solution of this ILP gives an optimal farthest string. Suppose 𝑑𝑜𝑝𝑡  be the optimal value 

of 𝑑 for this ILP.  

Relax the ILP to LP by replacing the 𝑥𝑗 = 0 or 1 with condition 0 ≤ 𝑥𝑗 ≤ 1. LP can be solved in 

polynomial time to give us the optimal solution 0 ≤ 𝑥̃𝑗 ≤ 1. The corresponding value of 𝑑 is 𝑑̃𝑜𝑝𝑡 . 

Since it is a relaxation, we know that 𝑑̃𝑜𝑝𝑡 ≥ 𝑑𝑜𝑝𝑡 .  



Trouble is that 𝑥̃𝑗 is not 0-1. Let’s use the following randomized rounding procedure to obtain a 

0-1 solution 𝑥𝑗: For each 𝑗, let 𝑥𝑗 = 1 with probability 𝑥̃𝑗, and 0 with probability 1 − 𝑥̃𝑗. Let 𝑡 =

𝑥1…𝑥𝐿 be the sequence obtained by this randomized rounding procedure. 

Fix a string 𝑠𝑖 

. 

𝜇𝑖 = 𝐸[𝑑(𝑡, 𝑠𝑖)] =∑(𝑠𝑖[𝑗] + (1 − 2 ⋅ 𝑠𝑖[𝑗]) ⋅ 𝐸[𝑥𝑗])

𝐿

𝑗=1

=∑(𝑠𝑖[𝑗] + (1 − 2 ⋅ 𝑠𝑖[𝑗]) ⋅ 𝑥̃𝑗)

𝐿

𝑗=1

≥ 𝑑̃𝑜𝑝𝑡 ≥ 𝑑𝑜𝑝𝑡 . 

By Chernoff's bound: 

Pr(𝑑(𝑡, 𝑠𝑖) ≤ (1 − 𝛿)𝑑𝑜𝑝𝑡) ≤ Pr(𝑑(𝑡, 𝑠𝑖) ≤ (1 − 𝛿)𝜇𝑖) ≤ exp (−
𝛿2𝜇𝑖
2
) ≤ exp (−

𝛿2𝑑𝑜𝑝𝑡

2
). 

By the Lemma we can safely assume 𝑑𝑜𝑝𝑡 ≥
𝐿

3
. Let 𝛿 =

√9 log 𝑛
√𝐿

,  

Pr(𝑑(𝑡, 𝑠𝑖) ≤ (1 − 𝛿)𝑑𝑜𝑝𝑡) ≤ exp (−
 3 log 𝑛

2
) = 𝑛−

  3
2. 

Adding up all input strings 𝑠𝑖, we have 

Pr(∃𝑖 s.t. 𝑑(𝑡, 𝑠𝑖) ≤ (1 − 𝛿)𝑑𝑜𝑝𝑡) ≤ 𝑛
−

  1
2. 

Therefore,  

Pr(𝑑(𝑡, 𝑠𝑖) ≥ (1 − 𝛿)𝑑𝑜𝑝𝑡  for every 𝑖) ≥ 1 − 𝑛−
  1
2. 

In another word, the 𝑡 obtained with random rounding has a 1 − 𝑜(1) probability to be an 

approximation solution with ratio better than 1 − 𝑜(1). We obtained a randomized FPTAS. 

Remark: LP-relaxation (plus randomized rounding) is a powerful method to design 

approximation algorithms. 


