Of friends and politicians Chapter 34

It is not known who first raised the following problem or who gave it its B
human touch. Here it is:

T i -?.{-: -l —
1 ;g i
F T I K il
g y: J;A, - *
Suppose in a group of people we have the situation that any pair of : ””5-‘\ aj’?' > ¢ &)
; o4 o : b ke - N
persons have precisely one common friend. Then there is always a "* ~; il A 4 )‘M
AR X e 3 : / : 7 e e e SR
person (the “politician”) who is everybody’s friend. T . gl o
Iy a4
I & ,;1:(::— g
— ) = b |
. . .. . . e Y~
In the mathematical jargon this is called the friendship theorem. T AN
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Before tackling the proof let us rephrase the problem in graph-theoretic v b
terms. We interpret the people as the set of vertices V' and join two vertices
by an edge if the corresponding people are friends. We tacitly assume that A politician’s smile”
friendship is always two-ways, that is, if « is a friend of v, then v is also

a friend of u, and further that nobody is his or her own friend. Thus the

theorem takes on the following form:

Theorem. Suppose that G is a finite graph in which any two vertices have
precisely one common neighbor. Then there is a vertex which is adjacent to
all other vertices.

Note that there are finite graphs with this property; see the figure, where u
is the politician. However, these “windmill graphs” also turn out to be the
only graphs with the desired property. Indeed, it is not hard to verify that in
the presence of a politician only the windmill graphs are possible.
Surprisingly, the friendship theorem does not hold for infinite graphs!
Indeed, for an inductive construction of a counterexample one may start for
example with a 5-cycle, and repeatedly add common neighbors for all pairs
of vertices in the graph that don’t have one, yet. This leads to a (countably)
infinite friendship graph without a politician.

Several proofs of the friendship theorem exist, but the first proof, given by
Paul Erdés, Alfred Rényi and Vera Ss, is still the most accomplished.

A windmill graph

B Proof. Suppose the assertion is false, and G is a counterexample, that is,

no vertex of G is adjacent to all other vertices. To derive a contradiction we

proceed in two steps. The first part is combinatorics, and the second part is u
linear algebra.

(1) We claim that G is a regular graph, that s, d(u) = d(v) forany u,v € V.
Note first that the condition of the theorem implies that there are no cycles
of length 4 in G. Let us call this the C4-condition. .
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We first prove that any two non-adjacent vertices » and v have equal degree
d(u) = d(v). Suppose d(u) = k, where wy, . . . , wy, are the neighbors of u.
Exactly one of the w;, say ws, is adjacent to v, and ws adjacent to exactly
one of the other w;’s, say wj, so that we have the situation of the figure to
the left. The vertex v has with w; the common neighbor w2, and with w;
(¢ > 2) a common neighbor z; (i > 2). By the Cy-condition, all these z;
must be distinct. We conclude d(v) > k = d(u), and thus d(u) = d(v) = k
by symmetry.

To finish the proof of (1), observe that any vertex different from ws is not
adjacent to either v or v, and hence has degree k, by what we already
proved. But since wy also has a non-neighbor, it has degree k£ as well,
and thus G is k-regular.

Summing over the degrees of the k neighbors of u we get k2. Since
every vertex (except u) has exactly one common neighbor with u, we have
counted every vertex once, except for u, which was counted £ times. So
the total number of vertices of G is

n = k*—k+1. (1)

(2) The rest of the proof is a beautiful application of some standard results
of linear algebra. Note first that £ must be greater than 2, since for k¥ < 2
only G = K; and G = K3 are possible by (1), both of which are trivial
windmill graphs. Consider the adjacency matrix A = (a;;), as defined on
page 220. By part (1), any row has exactly k£ 1’s, and by the condition of
the theorem, for any two rows there is exactly one column where they both
have a 1. Note further that the main diagonal consists of 0’s. Hence we
have

ko1 1
1 k 1

A% = ) o = (k—1)I+J,
1 ... 1 &k

where [ is the identity matrix, and J the matrix of all 1’s. It is immediately
checked that J has the eigenvalues n (of multiplicity 1) and 0 (of multi-
plicity n — 1). It follows that A2 has the eigenvalues k — 1 + n = k?
(of multiplicity 1) and k£ — 1 (of multiplicity n — 1).

Since A is symmetric and hence diagonalizable, we conclude that A has
the eigenvalues k (of multiplicity 1) and +v/k — 1. Suppose r of the
eigenvalues are equal to v/k — 1 and s of them are equal to —v/k — 1, with
r+ s =n — 1. Now we are almost home. Since the sum of the eigenvalues
of A equals the trace (which is 0), we find

k+rvk—1—svk—1 = 0,

and, in particular, r # s, and
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Now if the square root y/m of a natural number m is rational, then it is an
integer! An elegant proof for this was presented by Dedekind in 1858: Let
no be the smallest natural number with ngy/m € N. If \/m ¢ N, then there
exists £ € Nwith 0 < /m — ¢ < 1. Setting ny := no(y/m — £), we find
n1 € Nand n1v/m = no(y/m — £)y/m = nom — £(ng/m) € N. With
n1 < ng this yields a contradiction to the choice of ng.

Returning to our equation, let us set h = vk — 1 € N, then

h(s—r) = k = h*+1.

Since h divides A% + 1 and h?, we find that h must be equal to 1, and
thus £ = 2, which we have already excluded. So we have arrived at a
contradiction, and the proof is complete. ]

However, the story is not quite over. Let us rephrase our theorem in the
following way: Suppose G is a graph with the property that between any
two vertices there is exactly one path of length 2. Clearly, this is an equiv-
alent formulation of the friendship condition. Our theorem then says that
the only such graphs are the windmill graphs. But what if we consider
paths of length more than 2? A conjecture of Anton Kotzig asserts that the
analogous situation is impossible.

Kotzig’s Conjecture. Let { > 2. Then there are no finite graphs with the
property that between any two vertices there is precisely one path of
length ¢£.

Kotzig himself verified his conjecture for £ < 8. In [3] his conjecture
is proved up to £ = 20, and A. Kostochka has told us recently that it is
now verified for all / < 33. A general proof, however, seems to be out of
reach...

References

[1] P. ERDOS, A. RENYI & V. SOS: On a problem of graph theory, Studia Sci.
Math. 1 (1966), 215-235.

[2]1 A. KoOTZIG: Regularly k-path connected graphs, Congressus Numerantium 40
(1983), 137-141.

[31 A. KOSTOCHKA: The nonexistence of certain generalized friendship graphs,
in: “Combinatorics” (Eger, 1987), Collog. Math. Soc. Janos Bolyai 52, North-
Holland, Amsterdam 1988, 341-356.



