
Theoretical Computer Science 79 (1991) 37-109
North-Holland

37

Philippe Flajolet
INR IA Rocquencourt, F-78153 Le Chemay, France

Bruno Salvy
INRIA and LIX, Ecole Polytechnique, F-91 128 Paiaiseau, France

Paul Zimmermann
INRIA Rocquencourt, F--78153 Le Chesnay, France

Abstract

Flajolet, P., Salvy, B. and Zimmermann, P., Automatic average-case analysis of algorithms,
Theoretical Computer Science 79 (1991) 37-109.

Many probabilistic properties of elementary discrete combinatorial structures of interest for the
average-case analysis of 4gorithms prove to be decidable. This paper presents a general framework
in which such decision procedures can be developed. It is based on a combination of generating
function techniques for counting, and complex analysis techniques for asymptotic estimations.

We expose here the theory of exact analysis in terms of generating functions for four different
domains: the iterative/recursive and unlabelled/labelled data type domains. We then present
some major components of the associated asymptotic theory and exhibit a class of naturally
arising functions that can be automatically analyzed.

A fair fragment of this theory is also incorporated into a system called Lambda-Upsilon-Omega.
In this way, using computer algebra, one can produce automatically non-trivial average-case
analyses of algorithms operating over a variety of “decomposable” combinatorial structures.

At a fundamental level, this paper is part of a global attempt at understanding why so many
elementary combinatorial problems tend to have elementary asymptotic solutions. In several cases,
it proves possible to relate entire classes of elementary combinatorial problems whose structure
is well defined with classes of elementary “special” functions and classes of asymptotic forms
relative to counting, probabilities, or average-case complexity.

This paper presents a systematic framework in which combinatorial enumerations
and probabilistic properties of combinatorial structures can be studied formally.

The analysis system that we propose is “algebraically complete” with respect to
a large category of so-called decomposable data types and their associated

0304-3975!91/$03.50 @ 1991-Elsevier Science Publishers B.V. (North-Holland)

38 P. Flajoiel et al.

algorithms. It is also “asymptotically complete” with respect to several subclasses
of decomposable problems. Thus a number of statistical and computational proper-
ties of combinatorial structures can be systematically decided, even in their precise
asymptotic form.

A correlate of this is the possibility of designing an automatic analyzer of average
case performance for several interesting classes of algorithms and programmes.
Based on this theory, we have actually built a prototype system called Lambda-
Upsilon-Omega (A$) that is capable of producing rather non-trivial average-case
analyses of algorithms.

Here is a small sample of properties amenable to automatic analysis in this
context: (i) the average number of cycles in a random permutation of n elements
is -log n and the probability that such a permutation has no l-cycle is we-‘; (ii)
path length in a random heap-ordered tree of n elements is on average -2n log n,
which represents also the comparison cost of Quicksort; (iii) path length in a random
(uniform) plane tree is -in&; (iv) the symbolic differentiation algorithms of
computer algebra gain on average a factor of O(G) if shared representations (i.e.,
dags) are used, etc.

The paper consists of two major parts that reflect the two components of the
theory. The first one, the “algebraic” component, deals with exact counting through
the algebra of generating functions. The second one, the “analytic” component,
uses analytic properties of these generating functions in order to recover relevant
asymptotic infcrmations.

1.1. Algebraic enumeration

For the class of decomposable combinatorial structures under consideration, i.t
is possible to compile automatically structural specifications into equations over
counting generating functions. These equations represent in a compact format either
explicit or else recursive forms of count sequences. For the associated algorithms,
we introduce generating functions of average costs called complexity descriptors, and
we provide similar translation mechanisms from programme specifications to these
compiexity descriptors.

The equations that one generates in this way are meaningful in the sense that all
coefficients of generating functions-providing either the number of combinatorial
structures of size n or the average case complexity of algorithms over random data
of size n -are computable in time that is po!ynomial in n.

1.2. Asymptotic analysis

It is known from classical analysis and analytic number theory that the asymptotic
growth of coefficients of a series is determined by analytic properties of the series
‘viewed then as an ;Aytic function of a complex argument). In this domain,
singularities and saddle points play an essential role.

Automatic average-case analysis of algorithms 39

One of the major benefits of the generating function approach is to associate well
identified classes of special functions to well characterized classes of combinatorial
structures and programmes. We can then systematically relate classes de3ned by
special combinatorial constructions, classes of special functions with specific analytic
properties, and asymptotic properties of structures.

We first illustrate the principles of our approach by discussing two examples
drawn from the classical theory of formal languages and enumerations.

Example 1.1 (Regular events andjinite automata). Combinatorial structures defined
by regular languages and finite automata have rational generati,ng functions
[9,27,71]. The counting sequences accordingly satisfy linear recurrences wulith con-
stant coefficients. From elementary analysis, we know that a rational gcnekating
function f(z) admits a partial fraction decomposition, so that its coefficients J, have
an explicit form as “exponential polynomials”,

f” =c pk(n)dA
k

W

for a finite family of polynomials P&(x) and a family of algebraic numbers ak.
In other words, for this restricted class of devices, we are able to predict in which

class of formulae, either exact or asymptotic, counting sequences and expected
values of parameters are going to fall. For instance, a priori, the problem of run
length statistics -What is the probability that a random binary string of length n
contains no run of k consecutive 1s ?-lies in this class for each fixed k. (See [28,
X111.7] for a classical introduction.) Further analytic properties are available; most
notably the Perron-Frobenius theory [11,511 predicts that the OS of largest modulus
in (1) have arguments that are commensurable with V, a fact that further restricts
the range of fluctuations (due to complex ws) to those that are asymptotically
periodic. The whole theory [27] is a combinatorial analogue of the classical theory
of Markov chains.

Example 1.2 (Context-free languages). Trees and various types of lattice paths can
be described by context-free grammars [9, 10,26,56,71]. The corresponding generat-
ing functions are algebraic, as follows by the classical Chomsky-Schiitzenberger
theorem [16]. Accordingly, the counting sequences satisfy linear recurrences with
polynomial coefficients (“P-recursive” sequences). An algebraic function S(z) has

only algebraic singularities; from this fact, its coefficients J, are found to be

asymptotic to a sum of “algebraic” elements,

(2)

his again characterizes the allowe es of probabilistic behaviours for all com-

binatorial processes that can be described by context-free languages. This asymptotic

40 P. Flajolet et al.

theory of context-free languages was worked out in 131311; it constitutes a com-
binatorial analogue of the probabilistic theory of branching processes.

The examples above illustrate a typical situation: A class of combinatorial proces-
ses (finite automata, context-free grammars) is associated to a class of special
functions (rational functions, algebraic functions). Analytic properties of these
functions, especially the nature of their singularities, are well characterized (poles,
algebraic singularities). This in turn entails that the major asymptotic properties of
the original processes are fully characterized (exponential polynomials, algebraic
elements), and thus decidable and computable.

Our objective here is only to extend this philosophy to an appreciably larger class
of combinatorial structures. Our approach to the automatic analysis of algorithms
and data structures is thus a “pipe” between two technologies: the symbolic (or
formal) methods of combinatorial enumerations and the complex-analytic methods
of asymptotic analysis.

1.3. The automatic analyzer, Lambda-Upsilon-Omega

An automatic analyzer, the A@ system’ implements the fundamental theoretical
ideas that we have just outlined. One of the primary aims of the .hyfi system is to
provide a tool for aiding the analysis of various types of algorithms. it is also meant
to experiment with the descriptive power of the theories developed here.

The system itself is described elsewhere by its two implementers (see also Fig.
1): Zimmermann is responsible for the algebraic analyzer [89] and Salvy has designed
the asymptotic analyzer [72]. The algebraic analyzer compiles data type and pro-
cedure specifications into equations over generating functions (that are counting
generating functions or complexity descriptors). It is implemented in CAML. The
analytic analyzer is an extensive collection of routines that manipulate generalized
asymptotic series and perform asymptotic r &is D:? generating functions, produc-
ing final asymptotic results. The imerface betwce she two components is ensured
by the “solver” module that relies on compu’tez gigebra capabilities for solving
elementary equations (linear equations; algebraic equations; simple differential
equations).

As of 1990, the programme has over 10 000 instructions, partly in a high level
functional language-CAML, a dialect of ML [84]-and partly in a computer
algebra language-Maple [151.

In the present paper, we have used the A@ system in order to produce what is
called automatic theorems. In principle, an automatic theorem is a statement that is
derived automatically from formal specifications by the logical framework exposed
in this paper. We have however decided to enforce a stricter discipline and retain,

’ The name Lambda-Upsilon-Omega derives from the Greek verb root Atiw which means “I solve”
and which is at the heart of the word arta-ly-.sis. Rya should be pronounced as liio, and its Latin
rendering is LUO.

Automatic average-use analysis of algorithms 41

Fig. 1. The general structure of the AyQ system. The diagram shows the three major components of the
system, the Algebraic Analyzer (ALAS), the Solver, and the Analytic Analyzer (ANANAS).

for the twenty odd automatic theorems given here, only those results that are also
derived automatically by the A$ programme. This attitude is meant to emphasize
that the effective procedures described here are also practically implementable. The
human interaction is limited to trivial editing of resulting formulae, and the reader
can consult the A@ Cookbook [34] for complete listings of analyses that were
produced by the system in 1989.

The current functionality of the Ayfl system is as follows:
for exact counting in terms of GFs, the rules of Section 3 relating to labelled/un-
labelled recursive/iterative st,. uctures and their associated algorithms;
for the solver, the amount of algebraic manipulation discussed in Section 5.2
regarding substitution, linear and quadratic equations;
for the analytic analyzer, the theory of algebraic-logarithmic (AL) structures of
Section 4, plus the extensions relating to saddle point methods described in Section
5.3.

This specification of a precise mathematical level of expertise also ensures that our
“automatic theorems” actually represent automatic results (and not a haphazard
collection of ad hoc recipes put into a large programme!).

42 l? Fiajolet et al.

The capabilities of the logical framework- and its corresponding implementa-
tian-extend to a number of combinatorial and computational problems. Examples
are spread over this paper and in the Aya Cookbook, and they can be organized

roughly into three categories.
(i) Regular languages andfmite automata. Addition chains and related optimiz-

ation problems; long term behaviour of finite state controls in systems; various
combinatorial problems (compositions, partitions, runs in sequences) that are
expressible in terms of regular languages.

(ii) Terms and trees: Differentiation algorithms, higher derivatives; some sim-

pl%cation algorithms; a class of term rewriting systems; partial analyses of
unification algorithms and related pattern occurrence problems.

(iii) Combinatorial problems: Random tree problems; mappings and functional
graphs; partitions and ordered partitions; Banach’s matchbox problem; some special
permutation problems.

For instance, the problems on addition chains are of some relevance to integer
primality testing using elliptic curves and a small percentage of computer time was
gained using optimizations guided by the A-@ system [60]. In the next section, we
show that the symbolic computation of derivatives has an average cost over (random)
expressions of size n that is 0(n”‘). The Aya system was first used to verify the
conjecture that the cost of a d th order derivative varies on average like 0(n 1+d’2),
for d = 2,3.

Within the system’s capabilities, we find many examples of rewriting systems that
belong to the class of so-called regular systems [17,751. A@ was used to check
several of the corresponding analyses of Michele Soria’s thesis in this context [75],
or in the context of random functional graph problems (model sensitivity issues of

[31,751)-
Several automatic analyses on pattern occurrence problems in random trees have

been used in the performance study of unification algorithms given in [2]. One of
the authors’ little rewards occurred when they discovered that the A@ system was
capable of “doing” a paper published as a note (on injective partial transformations)
in the journal Discrete Mathematics [12], and even obtain more complete results
including asymptotics.

4 few historical comments on the ancestry of these ideas are now in order.
Formal or symbolic methods in combinatorial enumerations take their roots in

actual enumeration practice in various domains. However, the first general theories
seem to have started in the 1960s. The Chomsky-Schiitzenberger theory of context-
free languages [161 is amongst the first traceable sources where very systematic
correspondences are exploited between combinatorial structures (words and
languages) and generating functions. Other sources are the theory of graphical
e”umerations 1411, Rota’s thee y 01 generating functions [69,70], Bender and
Goldman’s theory of “prefabs” [S], or Foata’s theory of the partitional complex
[3g]. Each of these theories deals with combinatorial structures that are either
labelled or unlabelled, but not both. A unifying framework comprising both types

Automatic average-case analysis of algorithms 43

was proposed by Joyal [49] in 198 1 l Finally, a systematic exposition of combinatorial

enumerations in this context is the subject of a book by Jackson and Goulden [39].
Other relevant refereilces are Comtet’s book [24] and Stanley’s works [76,78 1.

On the analytical side, the tradition of relating analytic properties of a function
to asymptotic properties of Its Taylor coefficients is older. Its roots lie in part in
classical analysis (e.g., Darboux’s method), and in part in analytic number theory
(e.g., the additive theory of partitions). We shall simply refer to classical treatises
like those of De Bruijn and Olver [25,63] for a general treatment. The two major
techniques that we use are: (i) singularity analysis for functions that do not grow
too fast; (ii) saddle point techniques for functions with a more violent growth at
either a finite or infinite distance.

Turning from theory to practice, the first automatic performance analyzer that
we are aware of was built by Wegbreit in the early 1970s [83]. Wegbreit’s pioneer
system, Metric, aimed at deriving closed form expressions for execution behaviour
of programs, and it included modules to carry out average-case analysis. However,
the underlying principles were Markovian approximations (fixing the probabilities
of tests to constants) and an amount of symbolic manipulation limited to linear
recurrences with constant coefficients.

The present work is bated on works of Flajolet and Steyaert [29,36,79,37]. In
particular, the articles [36,37] proposed a complexity calculus for a class of simple
recursive programmes over tree structures; that calculus in turn gave rise to a
prototype implementation which is described in [33] and which constitutes a direct
ancestor of the current Ryn system.

The algebraic part of our system also bears some resemblance to the interesting
theory of labelled grammars due to Greene [40]. Greene’s theory concerns primarily
combinatorial enumerations; he used it for constructing an automatic generator of
random combinatorial structures, but he did not pursue the formal side of the
analysis of algorithms. The influence of Greene’s excellent work is to be found not
so much in the core of our system, but rather in several extensions (automatic
generation of random structures, counting of jabelled structures with order con-
straints). The Darwin system developed by Bergeron and Car-tier [6,7] determines
generating functions within Joyal’s enumerative theory; it is a distant cousin to the
algebraic engine of the Ryfl system. A system also designed to enumerate com-
binaitirial structures that is based on the Jackson-Goulden formalism is reported
in [58].

Amongst other proposals, we mention the approach of Hickey and Cohen to the
automatic analysis of programmes in [18,47]; it relies in part on Ramshaw’s
frequency system (which corresponds roughly to Floyd- Hoare complexity assertions
[66]) and in part on Kozen’s semantics of probabilistic programmes. The Hickey-
Cohen framework appears to have a rich expressive power, however it is not clear
how a complete calculus (with simplification rules and normal forms) can be
developed. Perhaps most of the interest of their approach lies in correctness
verification of complexity assertions. Zimmermann in [92] developed a system,

44 P. Flajolet et al.

Complexa, based on recurrence relations which extends Wegbreit’s approach since
more elaborate control mechanisms are allowe and more complicated recurrences
are dealt with by the algebraic unit.

Finally, a few other works have dealt with automatic worst-case analysis of
algorithms, a rather different domain. For this, we refer to the work of Le Metayer
[55] and references therein.

2. An example: symbolic differentiation

In order to illustrate the range of problems that we want to attack, we start by
presenting an example of a simplified programme for computing derivatives of
formal expressions.

Such algorithms form the core of classical algebra systems and provide classical
programming exercises [52, p. 336-340). Our programme is a simple tree rewriting
process that recursively implements the differentiation rules

Dx *P

De.’ + e.‘x(Df)

D(f+g) * (Df)+(Ds).
It should be stressed that the analysis that follows was produced automatically by
the Ayfi system. (We follow the standard conventions of the system for specifying
data types and algorithms, but these should be transparent in the various examples.)

We consider a programme that operates on formal expressions composed simply
of exponentials (expo), sums (plus), and a simple variable (x).

type E2qression=expo Expressionlplus ExpressionExpressionlx;
expo, plus, x=atom(1) ;

The data type specification is recursive. Its presentation resembles a classical context-
free grammar, and atom(1) refers to objects that are atomic (i.e., terminals in
standard context-free language parlance) with size equal to 1 (the standard size for
an atomic object). A symbolic expression like x +ee’+*’ is thus of the Expression
type, with size 7, being represented as

plus x expo plus expo x x

The differentiation algorithm has a simple top down recursive structure which,
in our formalism, we specify as follows:

function diff(e : Expression);
begin

case e of
(expo,f) : times(expo(copy(f)),diff(f));
(plus,f ,g) : plus(diff(f),diff(g));
x : one ;

end ;

end ;

The output expressions then beIo &ion, products

(times) and the constant 1 (one) bei allowed. The co
carbon copy of its arg

x :
end;

end;

We thus specify a version of the algorithm that computes diff (e)
own independent linked structure.

The algorithm has worst-case complexity O(n”) when applied to an input
expression of size n. This worst case is attained with chains of exponentials. For
instance the verbatim output of the differentiation command applied to the sixfoid
iteration of the exponential function in Maple is:

\
exeexe’xeeee eeee e’ ee’ eeee

The best-case complexity is clearly O(n).
Our interest in this paper lies in atterage-case ana2y.G of algorithms under uniform

combinatorial models where all input structures of a given size n are taken equally
likely. The differentiation algorithm under consideration operates in a purely recur-
sive fashion over a recursively defined data type and thus it falls under the class of
algorithms that our system car: approach. For instance, if we specify a complexity
measure of 1 for each of the output symbols,

measure expo, plus, x, times, one : 1;

the cost of the algorithm coincides with the size of the expression that it outputs.
In that case, the A@ system automaticalIy produces the answer:

Average cost for diff on random inputs of size n is:

l/3
pi%/2 n3/2

(4/3) 1’2
+ (5/6 n) + @(I?/~))

Floating point evaluation:

(.5116633543 n3/2 j + (AZ33333333 n) + (Oh’-‘*) 1

Thus, we obtain the automaticall)l produced theorem:

. The complexity of the diflz- entiation algorithm applied to

random expressions of size n is on average’

II- -E. n312+i n +0(n”‘).
12

0)

z is “automatic theorem” was produced in 75 s ofcomputing time on a machine (SunS! that performs

about 3 x 1Q6 elementary instructions per seconds and has 12. x 1Q6 byte; of core memory.

46 P. Flajoler et al.

(Also a full asymptotic expansion in descending powers of 6 can be obtained.)

roof. Let us examine now the way that such an analysis is produced. Let rdiff,,
represent the expected complexity of procedure diff over a random expression
of size n. The basic equation is

rdiff,, =
rdiff ,,

Expression,,
(4)

where Expression,, is the number of expressions of size n while rdiff, represents
the SUIII of the execution costs of the procedure over all expressions of size n. The
analysis problem thus reduces to a counting problem, namely determining
Sxpression,, , and a modified counting problem where we need to find the total cost
of the diff-algorithm.

The two problems are attacked by generating function (GF) techniques; see
9ection 3 for basic definitions. We thus define the GFs.

Expression(z) = C Expression,, l z” and rdiff(z) = C rdiff,, l z”.

n=O na0

The first one is the standard counting generating function of the expression structures.
The second one is called the complexity descriptor of the a!gorithm.

Algebraic enumeration: Translation mechanisms that we are going to review with
some detail in the next section imply that these GFs satisfy equations that are direct
“images” of the data type and of the algorithm specifications.

First, the recurske nature of the expression type leads to a fixed point equation

Expression(z) = z(Expression(z))’ -I z Expression(z) + z.

In this particular case, we found a quadratic equation whose explicit solution is

Expression(z) =
I-z--~~-~z-~z’

22 l

for Expression(z)

See [24, p. 561 for the classical solution to similar problems.
Second, the complexity descriptor rdiff(z) satisfies a simpler equation which

rationally relates it to Expression(z) and rcopy(z), and this is again a direct reflection
of the recursive specification of the dif f routine. Finally, we find that all intervening
GFs are rational functions in z and in the singular part

A(z) =~/l-22-3~~. (5)

Asymptotic analysis: The problem is now to extract the coefficients of the GFs.
The major idea is to avoid the computation of explicit forms of the coefficients
Expression,, y rdiff,, and aim at direct asymptotic analysis from the GFs themselves.

It turns out that the dominant singularities -the singularities of smallest modulus-
of a generating function determine the asymptotic growth of its coefficients. The
modulus p of the dominant singularity (-ies) contributes for the coefficients a driving

Automatic average-case analysis of algorithms 47

exponential factor of p-” while the nature of the singularity is reflected by a
subexponential factor. These questions are discussed in Section 4.

Here, the singularities of A(z) and hence of Expression(z) are the branch points
z=-1 and z=f. The dominant singularity is thus p = $. Locally, we find that for
some constants co, cl, c2,. . . , we have

Expression(z) = co+ c,dn+ 0(1 - 32) and

rdiff(z) =cz
1-3z+~i=X

c3 +0(1). (6)

By virtue of general theorems to be detailed in Section 4, these local expansions
can be transferred to coefficients and they provide the expansions

Dividing these two asymptotic forms yields the main term in the statement of
Automatic Theorem 1; the expansion as stated follows from suitably refined versions
of (6). This completes the account of the (automatic) proof of the Automatic Theorem
1. 0

The same approach will enable us to analyze a number of variants to this algorithm.
For instance, by just deleting the references to the copy procedure, we obtain an
algorithm that is equivalent to operating with shared pointer representations. A very
similar analysis can be performed (still automatically!).

Automatic Theorem 2. The average complexity of the difirentiation algorithm applied
to random expressions of size n when sharing oj’subexpressions is used is

4 1 1’
in+;+0 - .

0 n
(8)

By examining Eqs. (3) and (8), we are thus able to compare two versions of the
dMerentiation algorithm. We see that by doing (some) sharing of common subex-
pressions, complexity is reduced from 0(n3’2) to O(n), and very precise estimates
are obtained. This represents a fairly typical use of an automatic system like A@.

In passing, we have also obtained results about the counting of “expressions” or
what amounts to the same the counting of their associated trees. Rephrasing results
slightly, we have found:

atic S1. The number of unary-binary trees with n nodes is the coeficient

of zn in the generating function

l-z-Jl-2s-3zz
Expression(z) = -.--

2i: -

48 P. Flajolet et al.

Asymptotically, this number is

Expression,, =

In other words, an automatic analyzer can be used for doing some amount of
combinatorial counting as well. The sequence of coefficients of Expression(z) starts
as 1, I, 2, 4, 9, 21, 5 I, 127; these numbers are classically known as the Motzkin
numbers in combinatorial theory and they appear in Sloane’s book [74], under the
name “generalized ballot numbers”, as sequence 456.

We now propose to explain precisely on which mathematical principles such an
automatic analysis can be based.

3. Algebraic analysis

Trbe purpose of this section is to show how specifications of certain combinatorial
structures together with their associated algorithmic schemes admit translations into
generating functions.

We first introduce combinatorial constructions (or data type constructions, if one
prefers) that form the skeleton of our system (Section 3.1). Roughly speaking, we
deal with structures that are definable using products, unions, sequences, cycles,
and sets (or in programming parlance, records, variable records, lists, circular lists,
and unordered lists). The definitions may be either iterative (non-recursive) or
recursive.

Thus, we operate with basic structures that could be termed constructible or
decomposable, since they can be specified starting from basic elements by means of
a fixed collection of standard set-theoretic constructions. To be more precise, the
constructions operate in a parallel manner in two different universes, the “unlabel-
led” and thti “labelled” universe-a dichotomy that is familiar from classical
combinatorial analysis [38,39,49,76].

An issue to be discussed is the notion of well-definedness of specifications; this
is dealt with in Section 3.2. The situation there resembles that of context-free
languages with respect to properness of grammatical specifications.

Next, we describe the schemes that allow us to translate combinatorial construc-
tions into operations over generating functions (Section 3.3). The constructions that
we introduce are all “admissible” in the sense that they translate into generating
functions. Each universe is associated with its own type of generating function
(either ordinary or exponential).

In Section 3.4, we introduce a collection of programming mechanisms that are
in a sense the algorithmic counterpart of our standard combinatorial constructions.
Intuitively, we deal with extended traversal procedures for constructible/decompos-
able structures. The mechanisms considered are those of selecting a component in

Automatic average-case analysis of algorithms 49

unlabelled labelled

union [+]: union
Cartesian prodrrct [X 1: product
sequence [(.)*I: sequence
cycle [C(.)]: cycle
set [&(.)I: set
multiset CM(.)]: multiset

union [+]: union
partitional product [*]: product
partitional sequence [(.>*I: sequence
cycle [C(.)]: cycle
partitional set [&(.)I: set

Fig. 2. The admissible constructions operate in tw2 parallel “universes”, the universe of plain unlabelled
structures and that of labelled structures. T 2 A@ forms of operators are also giver. (in pseudo-teletype

font).

a product (record field selection), testing definitions by cases (handling records with
variants), iterating over one or all components (selection/iteration) for set, cycle,
or sequence constructions. This defines a closed world of algorithmic processes for
which translation into complexity descriptors can be achieved automatically by
means of a fixed set of rules (Section 3.5). Thus for this class, exact average-case
analysis is decidable and, as it turns out, of low polynomial complexity (cf. Theorem
3.15).

3.3. Combinatorial constructions

This paper deals with discrete combinatorial models for average case analysis of
algorithms. This means averaging an algorithm’s cost over a class of structures (the
legal inputs) of a fixed size n, using the uniform distribution.

Definition 3.1. A class of combinatorial structures is a pair (%?,I . I), where % is a
finite or denumerable set, 1 .I is a function from %’ to k-4 called the size function,
and for all integers n, the number of elements of % that have size n is finite.

We let in general %,, denote the subset { y E %‘I Iyl= n}. We use Cn to denote the
cardinality of %‘,, and refer to the sequence of numbers {Cn}n20 as the counting
sequence of the class %.

Typical objects that we shall consider here are words, permutations, trees and
graphs of various sorts. Typically, the “size” of a word is its length, the size of a
tree or a graph is the number of its nodes etc. Our main tool is going to be generating
functions (GFs) whose definitions we now recall.

be a sequence of numbers. We define the ordinary

generating function (OGF) and the exponential generating function (EGF) of the
sequence by

f(z)= c fnzn
II 20

and f(z)= C fn$.
,130 .

50 P. Flajolet et ai.

When %’ is a class of structures with {C,,} as its counting sequence, we call C(z)
and C(z) the OGF and EGF of K We may observe the alternate forms of GFs for
structures,

p

C(z)= 1 zy and C(z)= C 1.
I I

w

yc ‘6 yc% y*

In the sequel we stick to the notational convention of using the same groups of
letters for classes of structures (%), their counting sequences (C,, or c,) and the
corresponding generating functions (C(z), C(z) or c(z), c^(z)).

For instance, the class B of all binary strings is such that %, = (0, 1)“. Thus the
cardinality is B,, = 2”, and the corresponding OGF and EGF are found to be

B(z) = 1 2’2”
1

?I 20
=z and i(z)= C 2”$=e’;. -

n20 .
(11)

We need a notation to go back from GFs to coefficients. If a(z) =CrZo a,~“, in
accordance with well established practice, we use [z”]a(z) to denote the coefficient
of z* in a(z), that is to say a,,. Thus, in the notation of Eq. (9), we have

fn = [z”]f(z) = n![z”]f(z).

Abusing notations slightly, we sometimes use the convention

In the sequel, we freely drop the “hat” in GFs whenever it is clear from context
with which family we are operating. (Normally, a “universe” dictates its own choice
of GFS.)

Unlabelled univer*.re
In this universe, structures are simply composed of indistinguishable “atoms”

(nodes in graphs or trees, letters in words, etc.). The size of a structure is the number
of the atoms it contains. The opera;io,:s allowed are

Cartesian Product, Union, Sequence, Set, Multiset, Cycle.

These operations have their usual set-theoretic meaning, except that we use a notion
of “marked union” for the reason of avoiding ambiguous specifications.

The product relation %’ = ti x B means

~={~E~~~~=(cY,B),LYE~,PE~} with]~]=I(LY,P)(=((Y]+]PI. (12)

The union ?Z = & + 3 represents the marked union

%=({,ix94)u({p’~x~), (13)
where p and t_c’ with g f p’ are “marks” of size 0, and “ LJ ‘* represents the usual
set-theoretic union. In other words the (marked) union defined here coincides with

Automatic average-case analysis of algorithms 51

the standard (set-theoretic) union whenever & n 3 = Q). Otherwise, we take two
disjoint copies do, 3” of J& g and form % = =r&“u a’. This conventlon is crucial
in that it eliminates all questions connected with the ambiguity of specifications.

The sequence class % = &* is defined in the usual way by

%={E}+ed+(dX&4)+(dXdxs.Q+g l l . (14

By the set construction applied to &, denoted % = &(&), we mean the class
formed by the collection of all the finite subsets of .sJ

%=#i(d) e %={{a! ,,..., (Yk}lk~O,(I!I,...,(YkE~}. (15)

The multiset construction MC.] exists only in the unlabelled universe; a multiset is
a set of elements with repetitions allowed. The c_vcle construction C[.] applied to a
set & is the set C(d) whose elements are (non-empty) cycles of elements from &.

In the unlabelled universe, a specification of a class of combinatorial structures
is a collection of (possibly recursive) equations over classes that uses only the
constructors above. The initial classes are defined by the atom primitive that
corresponds to a class only consisting of a single element (atom) of a size normally
equal to 1. Thus, the class of all binary string:, with alphabet {a, b} can be specified
in a non-recursive way in Ayfi format as

type Word = sequencetletter);
Letter = union(a,b);
a, b = atom;

and recursively as

type Word = Word Letter 1 epsilon;
Letter = a 1 b;

a, b = atom(l); epsilon = atom(O);

In passing, we have illustrated some possible variations in notations: The vertical
bar “I” is a synonym for union; product symbols may be omitted so that “prod-
uct (A,E)" can be abbreviated to “A B”; the notation “atom(k)” defines an atom
of size k, so that atom is the same as atom(l), and atom(O) may be used to
represent the empty word.

Labelled universe
The main feature here is that structures are composed of “atoms” that bear distinct

integer labels from I to n, when the structure has size n. For instance the permutation

I

admits the cycle decomposition u = {(5,3)(6, 1,2,4)}; it can be viewed as a graph
whose nodes are labelled by the integers 1, 2, 3, 4, 5, 6 an two connected
components that are circular graphs.

52 l? Flajolet et al.

Clearly, the standard Cartesian product cannot operate directly on labelled struc-
tures (otherwise, duplicate integer labels would result). The proper notion of product3
that is adapted to labelled structures forms pairs, but also accomplishes consistent
relabellings; it is called the partitionalproduct. If cy and p are two labelled structures,
their partitional product (cy * p) is the collection of all ordered pairs y = (a!*, PO),
where cy*, /3* are obtained by performing order preserving relabellings of cy, p in
such a way that the resulting y be well labelled.

The union operation has the same (marked) meaning in the labelled as in the
unlabelled case.

Once the partitional product has been defined, the corresponding notions of
partitional sequence, partitional set and partitional cycle constructions follow. We
define the partitional sequence by

and, from there, we are led to the definition of partitional power set construction,
%=&d) iff

%=({a! ,,..., (yk}l(a! ,,..., a&J4”,k~O}. (IV

Cycles are defined similarly.
For instance, the class of all permutations can be defined by

type Permutation = set(Circular);
Circular = cycle(Element);
Element = Latom(1);

where Latom means “labelled atom”. Since we operate within a labelled universe,
the set and cycle constructors are implicitly to be interpreted in the labelled parti-
tional sense.

3.2. Well dejined specijica tions

We first need to isolate those type specifications that are well defined. Type
specifications resemble context-free grammars and our problems are analogous to
questions like so-called E-freeness for context-free grammars.

More precisely, a type specijcation is an equational specification that is composed
of

a set of atoms T,

a set of non-terminals N,

a set of productions P.

The productions in P are written as equations,

S= @(R,,. .., R,),

3 This is a classical concept in combinatorial analysis. We just give here minimal definitions. The
reader is referred to [24,38,39,78] for background and compiete definitions, or to [Sl] for uses in the
analysis of algorithms.

Automatic average-case ana!lGs of algorithms 53

where S is a non-terminal, CD is a constructor, and the Rj are either atoms or

non-terminals. Each non-terminal appears on the left-hand side of exactly one
production.

One defines derivations, like for standard grammars: we write A + B if B derives
from A in a single step and A * B if B derives from A in a sequence of steps. In
this way a production can also be written S+ @. Then, we have a precise definition
of the class of structures generated by a specification.

A type specification is said to be iterative or non-recursive when the corresponding
dependency graph of the productions is acyclic; otherwise, it is said to be recursive.
For example, the class of non-recursive type specifications with the set of constructors
{union, product, sequence} corresponds to regular expressions; the class of recursive
type specifications with the same constructors corresponds to usual context-free
grammars.

The valuation of a symbol S (atom or non-terminal) is denoted by val(S), and
it is the least size of the objects generated by S (possibly 03).

Definition 3.3. A data type specification is said to be well defined if it satisfies the
two properties:

(1) each non-terminal has a finite valuation;
(2) for each non-terminal S, the subset Y-‘,, of objects of size n generated by S is

finite.

Here are two instances of specifications that are not well defined. First,

type A = sequence(B);
B= sequence (x) ;

X= atom(l) ;

What happens is that B contains the empty structure E, with I&I= 0. Thus A contains
any sequence E’ = (E, E, . . . , E) for any k 20. Each of the &k has size 0, so that
A0 = 00. The other example is

typeS=SL;
L= x I Y;
x* Y = atom(l) ;

In that case, S does not specify any finite structure. In a sense, the solution for S
in this equational specification is the set of injinite sequences, {x, y}“, and we cannot
assign to it any combinatorial (finite) meaning.

We naturally want to restrict attention to well defined specifications. The following
proposition expresses the possibility of doing this algorithmically.

Proposition 3.4. It is algorithmically aecidable whether a type specijication is well
dejned or not.

The proof is based on two lemmas that take care of each of the conditions
occurring in the notion of well definedness.

54 P. Flajolet et al.

Lemma 3.5. Given a specijcation, the valuation of each non-terminal is computable.

Proof. The following algorithm computes the valuation of all symbols (atoms and
non-terminals) by maintaining a dynamically changing array v(.) whose final values
coincide with the valuation function.

Algorithm Valuations:

for each atom a, v(a) * Ial
for each non-terminal S, v(S) * 00

repeat

for each non-terminal S do

if S + a! where ar is an atom or a non-terminal then

v(SMG-4
if S + union(R, , . . . , &) then

v(S)+min(v(R,), . . . ,v(&))

if S+product(W,, . . . , &) then

v(S)+v(R,)+ l l . +v(&)

if S + Q(R) where @ E {sequence, set, multiset) then

v(S)+0

if S + cycle(R) then

v(S)+v(R)
od

until v(.) is unchanged.

First this algorithm terminates because the vector v has components that lie in
Nu {a), which is a well ordered set, and, by construction, the vector decreases at
each iteration (in the partially ordered product set). Second, after k loops, v(S) is
the least size of the objects derived from S in at most k steps. As v converges, the
output value is the least size of all objects derived from S. Cl

Observe that algorithms that identify non-terminals with valuation 0 in context-free
grammars are well known (cf. [40, p. 69-701 or [11).

The next step consists of eliminating specifications with a non-terminal T such
that T, = 00. We need to define a reduced specification as one in which: (i) all
valuations val(S) are finite; (ii) no production is of the form X + @(Y) with @ one
of {sequence, multiset, cycle, set} and val(Y) = 0. It is easy to decide using Lemma
3.5 whether a specification is reduced. Then, we have

. Consider a reduced specification. Then the following two conditions are

(1) for some integer n and non-terminal T, we have T, = 00;

(2) there exists a ‘I), such that X”’ appears in the
production defining productions, X”-I’-+ X”‘Y or
X (’ -‘)-+ YX”‘, we have val(Y) = 0.

Automatic average-case anal_vsip of algorithms

roof. See Zimmermann’s thesis [90]. This lemma shows
T, = 00) reduces to cycle detection in an appropriate graph.

55

that circularity (i.e.,
cl

We can now complete the proof of Proposition 3.4 and actually derive an algorithm

for deciding well defined specifications.

Algorithm WelbDefinedness
(1) Valuation: Apply algorithm Valuations that determines all valuations

(Lemma 3.5). If one valuation equals 00, the data type specification is not well defined.
(2) Reduction: Check that the specification is reduced. If not, the specification

is not well defined.
(3) Circukrity: Perform the cycle detection test of Lemma 3.6 on the reduced

specification.

Thus, we now know how to test algorithmically for well defined specifications.
For instance, consider the following three tree specifications.

Ta = o 1 o Ta 1 o Ta Ta Ta;
Tb= 0IwTbIoTbTbTb;
Tc = o 1 o Tc 1 w Tc Tc Tc;
0= atom(l); w = atom(O);

Each of the three types represents a class of unary-ternary trees, the difference being
related to which nodes contribute to size and which do not. Type Ta is such that
all nodes count, and its specification is well defined. Type 7% is not well defined
(we can add to a tree 78 an arbitrary number of unary nodes without changing its
size); type Tc is well defined in agreement with the conservation laws for trees (one
cannot add ternary nodes without increasing the number of nullary nodes that
contribute to size j.

In the sequel, we assume that we are only dealing with well defined specifications.

3.3. Translation rules for counting generating functions

In this section, we provide translation rules from specifications to generating
function equations. The main point is that the constructions that we introduced
earlier (Section 3.1) are all “admissible” in the sense that they translate into

generating functions.
A typical translation rule is the rule for Cartesian products. Let % = 94 x 3 be a

(Cartesian) product construction. By our standard convention, we let
C(z) denote the associated ordinary generating functions. Then, we have

C(z)= c zly’= c Zlnl+lPI
Y‘ t (1r.p br .d x .fi

=
c

z’-’ x C z’~’ = A(z) l B(z).
trc..J pc .!A

56 P. Flajolet et al.

The first sum is the definition of C(z); the second sum follows from the definition
of a Cartesian product and of its size, cf. (12); the third sum results from distributivity.

This example shows an instance of a translation rule: Cartesian products of sets
translate into products of corresponding generating functions. We shall present such
correspondences in the form of a rule,

A=BxC

A(z) = B(z)C(z)’

Unlabelled universe
In this universe, structures are simply composed of undistinguishable atoms.

Translations are in terms of ordinary generating functions. We first list the translation
rules.

Rule 1 (Union):

A(z)= B(z)+C(z)

Rule 2 (Cartesian product):

A=BxC

A(z) = B(z)C(z)

Rule 3 (Sequence):

A = sequence(B)

A(z) = QUW))

where

Rule 4 (Cycle):

A = cycle(B)

4.4 = @c(B)(z)

where

@&-)(z) = c yog l
Ii-1 1 -f(2)

(4 is the Euler totient function, that is, 4(k) is the number of positive integers not
exceeding k and relatively prime to k: 4(1) = 1, +(2) = 1,4(3) = 2,4(4) = 2,4(s) =

4). , . . .

Rule 5 (Set):

A = sef(B)

A(,_) = s(B)(z)

Automatic average-case anal_vsis of algorithms

where

57

@&f)(z) = exp (f+-f$+fF- . . .).

Rule 6 (Multiset):

A = multiset(B)

A(z) = %,(R)(z)

where

f(z) +f(zz) +f(z’) + %(f)(z)=exp -i--- 2 3 ‘** (>
.

We can now state our main theorem for unlabelled structures.

Theorem 3.7. The constructions of Union, Product, Sequence, Cycle, Set and Multiset
are admissible, and their translations to ordinary generating functions are given by
Rules 1-6.

The collection of unlabelled iterative structures defines a class ofgenerating functions
that is contained in the class of elementary functions de$nable explicitly from 1, z by
application of operators Lnunlabelled = (+, X, Q, @+, Gs, aM}.

The collection of unlabelled recursive structures defines a class of generating functions
that is contained in the class of elementary functions dejnable implicitly from 1, z by
application of operators S2unlabelled.

Proof (Indications). The proof reduces to proving the correctness of translation
Rules 1-6. This has been done already for products.

For unions, we clearly have, when %Z = ~4 + 3:

c zlyl= c
YE % ac.d

so that unions map to sums. For the sequence construction, %‘= &*, since Ce is a
union of products, we find that the GF C(z) is a sum of products, namely:

C(z)= I+A(z)+(A(z) l A(z))+(A(z) l A(Z) 9 A(z))+ l . l =i
1
A(z).

The rule for the set construction is valid because b(d) is isomorphk to an infinite
Cartesian product,

with E a structure of size 0. In other words, we view a subset w c & as an infinite
array indexed by the domain ~4, w ere each array element is either an E or an CY E d.

58 l? Flajolet et al.

Thus, in terms of generating functions, we find

C(z)= n (1+z’“‘)= fi (l+zpA,a
ae.d I1 = 1

=exp
(

i A,,log(l+z”) .
II - 1)

By using the Taylor expansion of log(1 +x), we obtain

--

The derivation for multisets is entirely similar. It relies on the isomorphism M(~4) =
flfii .d {a)*. The translation for cycles4 is due to Read [67].

Once the translation of basic constructions is known, the translation of complete
specifications follows. Iterative specifications give rise to collections of functional
equations built from 1, z by application of flUnlabelled. Recursive specifications give
rise to the corresponding class of functional equations. 0

We observe that there are several easy extensions of these rules to slightly modified
constructions. For instance, we may use

C = sequence(A,

to construct A-sequences with at
to GFs is easily found to be

C(z) =
A(#

1 -A(z)’

For set and cycle constructions, the corresponding functionals over GFs can be

car&=b) ;

least b components. In that case, the translation

derived from Polya‘s theory of counting. For instance, we have

“C = set(A,card = 2);” implies C(z)=~A(z)‘+~A(z’).

We use occasionally these modified rules in examples.
As an illustration of the power of this formalism, we treat a few examples giving

rise to automatic theorems.

(Bracketing problems). These problems are treated by Comtet [N,
pp. X2-57] as an illustration of the technique of generating functions. Here, we are
able to obtain their solutions automatically.

a This construction together wit

theory of counting 164,651.

the set and multiset constructions can also be attached to Pblya‘s

Atctontatic aoerage-case analysis of algoritltnts 59

core . (i) The number qf binary bracketings of a non-conzntutatitie
non-associative product involving n factors is the coeBcient of 2” in

BB(z) = ;(1 -Jr -42). (18)

(ii) The number of binary bracketings qf a commutative non-associative product
involving n factors is the coefieient of 2” in the function B(z) that satisfies the
functional equation

CB(z) = z+;CB’(z)+:CB$). (19)

(iii) The number of generalized bracketings of a non-commutative product involving
n factors (where each bracket can contain two or more factors) is the coeficient of 9’
in

GB(t)=~(lfz-J1-6z+t). (20)

For part (i), there follows by the binomial expansion of (h + x)“’ the wel! known
form of the Catalan numbers, BB, = i(‘,“--,‘>. For part (ii), Qtter used the functional
equation to prove, in 19 8, that CB, -0.318(2.483)Rn-“” For part (iii), we shall
see in the asymptotic section how to derive the asymptotic form

GB,, = 35J3+W(1+0(;)).

Proof. The specifications corresponding to the three problems are

type BB = BB o BB 1 X;
CB = X 1 o multiset(CB, card=2);
GB = X 1 o sequence(GB, card>=2);
X= atom(l); o=atomO;

The corresponding equations for BB(z) and GB(z) are

BB(z)=z+BB’(z) and GB(z)=z+
GB’(z)

1 -GB(z)’

The solutions for BB, GB then follow automatical y through the resoldon Q

algebraic equations: BB is deifned directly by a quad atic equation (with a rsnique
formal power series solution); GB satisfies an equation that reduces to a quadratic
form. As to CB, its definition is (intrinsically) by means of a functional equation.

Labelled universe
These structures are composed of atoms labelled by distinct an

ktegers. Translations are now in terms of exponential
if A! is a class of labelled structures, we o crate with its EGF,

60 P. Flajolet et al.

which we write as A(z) for notational simplicity. We again start by listing the
translation rules.

Rule 7 (Wnion):

A=BuC

A(z) = B(z)+ C(z)

Rule 8 (Partitional product):

A=BxC

A(z) = B(z)C(z)

Rule 9 (Sequence):

A = sequence(B)

A(z) = QW4)

where

Rule 10 (Cycle):

A = c_yclet B)

A(z) = L(B(z))

where

1
L(f) = log -

1 -.f’

Pule 11 (Set):

A = set(B)

A(z) = WW)

where

E(f) = exp(f).

The constructions of Union, Product, Sequence, Cycle, Set in the labelled
universe are admissible, and their translations to exponential generating functions are
given by Rules 7-I 1.

The collection of labelded iterative structures dejnes a class of generating functions
that is contained into the class of elementary functions de3nable explicitly from 1, z
bq’ application of operators nldbellcd = {-I-, x, Q, L, E).

The collection of labelled recursive structures defines class of generating functions
that is contained into the class of e~eme~tar~~.fM~ctio~~s ejnable implicitly from 1, z

b_v application of operators fllilhcllcd.

Automatic average-case analysis of algorithms 61

roof (Indications). The major point that needs justification is the rule for products.
We observe that the cardinality of the partitional product (a * p) is equal to (‘“I,‘;“).
Thus, if % = &’ * 3, we find

The rule for partitional sequences follows as in the unlabelled case. The rule for
sets is simpler here. From (17), a k-set is asb,ociated to k! sequences (all sequences
associated to a set by permuting its elements are distinct, because of the labelling
of atoms!). Thus Y = b(d) translates into

1 1 1
C(z)=1+~A(z)+~A2(zj-i- -0. +cA’(z)-f- -- =eA(‘).

. . .

A simiEar reasoning gives the translation for cycles with l/k replacing the factor
l/k!. 0

Labelled constructions greatly add to the expressive power of our language. ‘We
start with examples of iterative structures and then continue with recursive types.
We occasionally appeal to direct variants of the rules above. For instance, for a set
of cardinality larger than 6, we have

“A =
’ W(z))’ set(B, card>b);ll ---s, A(z)=e”“- 1

j=O j! *

Automatic Theorem 5. The number &, of partitions of a set of cardinality n into
equivalence classes is the coeficient of [z”/n !] in the function

exp(e’- 1).

The number of ordered partitions of a set of cardinality n into classes (where classes

are ordered between themselves) is the coeficient of [z”ln !] in the function

1
2-e”

The partition numbers are known
be obtained by expanding the EGF,

as Bell numbers [24] and an expression can

a well known formula obtained by Dobiiiski in 1877.
constitute a classiciil example of the asy
and we shall derive an asymptotic form for them in the next section.

62 I? Flajolet et al.

Proof. It directly results from the specification

type Partition = set(Block);
Block = set(Element,card>O);
OrderedPartition = sequence(Block);
Element = Latom(1); Cl

Theorem 3.10. Given a type specijication 2, the number of arithmetic operations
necessary for computing all the counting sequences associated with non-terminals up
to size n is O(lZin’).

Proof. We consider the additional cost of computing a new coefficient A,# = [z”]A(z)
where A(z) = Z(B(z), C(Z)), assuming that we know already the values of Ak for
k c n, and &, Ck for k s n. The proof proceeds by cases on 5’.

Union: If 5 = +, A,, is simply given by B,, + C,,, thus the additional cost for
getting A,# is O(1).

Product: If E = x, A, is given by a convolution, A,, =zz=, B&-k, and the cost
is O(n).

Sequence: If A = l/(1 - B), we also have A = 1+ BA. Thus, taking coefficients,
we get a recurrence’ A, = [z”](1+ BA), i.e., A, = Cl=, BkAH_k, so that the additional
cost for A,, is O(n).

Labelled set: If A = exp(B), A’= AB’ thus A, = (l/n&“-‘]AB’ and the cost is
again O(n).

Labelled cycle: If A = log(1 -B)-‘, we have A’= B’/(1 - B) or A’= B’+ BA’.
Using the corresponding recurrence, we see that the additional cost for A,, is O(n).

Unlabelled set: If A(z)=exp(B(z)+ B(z’)/2+ l l l), we have A,, =
[z”] exp(F(z)), where F(z)= B(z)+ B(z’)/2+ l l l . The coeEcients of F are stored
and computed along with the other coefficients. In this way, the cost of computing
a new coefficient [z”] F(z) and the new value A, = [z”] exp(F(z)) adds only O(n)
extra cost.

Unlabelled cycle: We have A(z) = log(1 - B(z))-’ + i log(1 - B(z*))-’ + l . 9 . We
need to compute incrementally and store the coefficients of f,(z) = log(1 - B(z))-‘.
The additional cost of obtaining a new coetficient for L(z) and for A, is O(n).

We have seen that the cost of incrementally computing one A,, is O(n). Thus the
total cost is O(n’).

The proof also shows that in the formula O(n’), there is an implied constant that
is proportional to the size of the specification Z. 0

Note that the complexity bounds are obtained with nai’ve algorithms. They could
be improved by using Fast Fourier Transform techniques or other classical algorithms
on power series [54].

5 This technique of forming recurrences derived from algebraic or differential equations is a familiar
algorithmic trick of computer algebra.

Automatic auemge-case analysis of algorithms 63

This result, together with the companion result on the complexity of programmes,

shows that exact counting results can be obtained with low computational com-
plexity. Accordingly, this has consequences in the automatic generation of random
structures in the class, since the top-down generation of structures of size n relies
on these splitting probabilities. Hickey and Cohen [19] use similar techniques in
order to generate words in context-free languages uniformly. Greene has given an
interesting discussion of more general issues, as well as an implementation for
structures definable by his “labelled grammars”’ [40, Ch. 41.

3.4. Programme constructions

We now introduce the class of programmes that naturally correspond to the
decomposable data types that we have introduced. As we shall see, we also have
translation rules into generating function equations for these schemes.

A programme consists of a type specijication part-based on the admissible
constructors described earlier-and of one or more procedure definitions.

Procedures are of a functional form and they are built out of a small collection
of programme constructions, also called programme schemes.

The basic idea is to capture in the language a class of extended traversal pro-
cedures. Basically, we can chain operations by means of a sequential composition

scheme. We can test cases for structures whose underlying type is a union of two
types. We can operate on composite structures-sequences, cycles, or sets-and
pick up information by either selecting a single component (selection) or by traversing
all of them (iteration).

The basic operations are detailed below. Writing a procedure P[a : A] specifies
that the argument of P is a, and that the type of a is A.

Sequential composition. This is used for sequentially chaining operations. Our
syntax here is Pascal-like and uses “;” for this scheme.

P[a : A] = Q[a];R[a] where Q[a : A], R[a : A].

Union. For a type defined by a union, there is a test by cases.

A = union(B, C)

P[a:A]-if a. 3 t en Q[a] else R[a]

where Q[b: B], R[c: C].

Product. The selection scheme descends into one component of a product:

A = product(B, C)

P[(b, c) : A] = Q[b]

where Q[b : B].

equence, Cycle, Set an he selection scheme extracts one component

(a fixed component like the first one for a sequence, and a random component for

64 P. Flajolet et al.

a cycle or a set). For instance, we have

A = sequence(C)

P[a : A] = Q[a[l]]

where Q[c : C].

The corresponding iteration scheme examines all components:

A = <yc!e(C)
P[a : A] = forall 6 in a do Q[6]

where Q[c : C].

These schemes exist in parallel in the unlabelled and the labelled universe, with
the obvious restrictions: the notion of product is that of the universe under consider-
ation; multisets are distinguished from sets only in an unlabelled universe.

Observe that there are no explicit variable assignments, and in a deep sense, one

cannot modify structures nor create new structures. Operations are thus in essence
limited to traversal procedures? HowLvet, as we shall see, many algorithms that do
modify their data can be emulated in the language.

The concrete syntax that we use in examples is an incarnation of the abstract
schemes above; it should be self-explanatory; see the example of symbolic differenti-
ation discussed in Section 2.

For programmes, there is a notion of well-definedness that is analogous to that
of type specifications.

Definition 3.11. A programme over a well defined type specification is itself wefl

dejined iff for each procedure Q and each input X, the execution of Q on x terminates
in a finite number of steps.

The situation is made easy here since all programmes satisfy a descent property:
Given a procedure call Q(x), all the calls R(y) that are generated operate with y’s
that are substructures of x. The only way a procedure Q can loop is therefore by
generating a caili sequence,

o(x) + Q,(x) + l l l + Q,(x) + Q(x),

with a stationary argument. Such a property is in fact syntactically decidable. (See
our earlier discussion about circularity in data type specifications and Zimmermann’s
thesis [90] for details.)

’ Judging from the entirety of the analyses contained in Knuth‘s volume on sorting and searching
[53], the only algorithms that we know how to analyze are those whose complexity is equivalent to a
parameter of a static structure. No general method is known in order to analyze intrinsically dynamic

algorithms that repeatedly modify a structure. Examples that typically leave us helpless are heapsort
and balanced trees that modify either an ordered array structure cr a tree strircture. The reader can
consult the classic paper of Jonassen and Knuth [48] to see what awaits the analyst confronted with
such problems, when the size is restricted to 11 = 3! Thus, the limitation under discussion is not an
essential bottleneck, given our current state of knowledge in the analysis of algorithms.

Automatic auerage-case analysis of algorithms 65

osition 3.12. It is algorithmically decidable if a programnie is well-defined or not.

3.5. Complexity descrip tots

The ordinary complexity descriptor of a procedure P with input in a set CaQ is the
generating function

rP(z) = c TP{Q}z’a!
aEd

The exponential complexity descriptor is

There, rP{ a} denotes the complexity (cost) of procedure P applied to input a. The
complexity is always represented by the number of times some explicitly designated
operations (basic procedure calls) are performed. On our examples, this is represen-
ted by the “measure” directive.

The rules that follow enable us to translate programme schemes into functional
equations over complexity descriptors. The complexity descriptors and counting
GFs appearing there are to be taken as either ordinary (in an unlabelled universe)
or exponential (in a labelled universe); in the latter case, we omit the “A ” token of
EGFs. With this convention some of the rules can be grouped together: for instance,
the rule for sequences is to be understood as a rule for ordinary GFs and complexity
descriptors in the unlabelled case, and to be interpreted as a rule for exponential
GFs in the labelled case.

to

to

Whenever we need to emphasize that the complexity of P is taken with respect
inputs in A, we write rPJA(z) instead of QP(z).
Rule 12 (Elementary costs): This corresponds to a cost measure that is declared
assign constant cost p to each procedure call Q(.).

P[a:A]=Q[a] rQ{a}=p

rP(z) = p l A(z)

Rule 13 (Sequencing) :

P[a : A] = Q[a];R[a]

TP(z) = TQ(z)+TR(z)

Rule 14 (Union):

A=union(B,C) P[a:A]=i

rP&) = ~QJ&) + &W

Rule 15 (Product):

66 P. Flajolet et al.

Rule 16 (Sequence: selection):

A = sequence(B) P[a : A] = Q[a[l-]]

- rP(z) = ~Q(z)/(l- B(z))

Rule 17 (Sequence : iteration) :

A = sequence(B) P[a : A] = ball b in a do Q[b]

rP(z) = ~Q(z)/(l- B(z))*

Rule 18 (Set: selection): In an unlabelled universe,

.4=set(B) P[a:A]=Q[a[l]]

rP(z) =C,“=, rQ”zn
I

where Bs(Z, U) = flbEB (1 + uz’-“!). In a labelled universe,

A=set(B) P[a:A]= Q[a[l]]

~P(z)=(exp(P(z))--l)/B(z)~Q(z)

Rule 19 (Set: iteration): In an unlabelled universe,

A=set(B) P[a:A]=fora!l b in a do Q[b]_

~P(z)=@#)(z)(rQ(z)-rQ(r’*)+~Q(z’)- . ..)

In a labelled universe,

A=set(B) P[a:A]=forall b in a do Q[b]

7P(z) = ewUW)~QW
Rule 20 (Multiset: selection): In an unlabelled universe,’

A = multiset(B) P[a : A] = Q[a[l]]

TP(z)=C~=~ rQnzn
I

where B”(z, u) = nbEB l/(1 - uz’“‘).
Rule 21 (Multiset: iteration): In an unlabclled universe,

A = multiset(B) P[a : A] = forall b in a do Q[b]

~P(z)=&,,(B)(z)(rQ(z)+rQ(z’)+~Q(z~)+ l 0 j

Rule 22 (Cycle: selection): In an unlabelled universe,

A=cycle(B) P[a:A]=Q[a[_l]]

d(k) +(z) =x&l - k log
1 *rQtzk) _-

1- B(zk) B(zk)

In a labelled universe,

A=cycle(B) P[a:A]= Q[a[l]]

1 ~Q(z)
I-

’ The multiset constructor differs from the set constructor only in an unlabelled universe.

Automatic average-case analysis of algorithms 67

Rule 23 (Cycle: iteration): In an unlabelled universe,

A=cycle(B) P[a:A]=forall b in a do Q[b]

In a labelled universe,

A = cycle(B) P[a : A] = forall b in a do Q[b]

rP(2) =
1

1 -B(z)
TQW

That these rules are correct follows from techniques akin to those employed in
proving the corresponding results for counting generating functions,8 the cases of
the unlabelled set/multiset/cycle constructions being trickier. We shall refer to
Zimmermann’s thesis [90] for detailed proofs.

Theorem 3.13. (i) For each of the four data type classes- unlabelled iterative, labelled
iterative, unlabelled recursive, labelled recursive-the corresponding class ofprogramme
schemes translates in to functional equations over complexity descriptors.

(ii) 77re complexity descriptors of programmes operating on a collection of labelled
iterative structures are definable explicitly from 1, z by application of operators a zbelled =
I-k, X, Q, E, L, E*, L*}, where

E*(f) = (E(f) - U/J L”(f) = Uf j/f:

(iii) TIte complexity descriptors of programmes operating on a collection of labelled
recursive structures satisfy syste,ms oJf linear equations whose coeficients are definable
from 1, z by application of operators Og,,,,,, .

For unlabelled types, in general, we obtain functional equations involving the @

operators of type constructions and a class of operators V associated with selection
and iterat,on on sets, multisets and cycles.

Example 3.14 (Cycles in a random permutation). Our first example is a programme

that counts the number of cycles in a permutation.

Automatic eorem 6. (i) The expected number of cycles in a random permutation of
n elements is equal to the coeficient of [z”] in the generating function

H(Z) =+
1

A
log=*

-z -
(22)

’ In a sense, the rules for data types are reduced (homomorphic) images of the type specifications
themselves. The translation to complexity descriptors instead resembles a generalized derivation on type
specifications.

68 P. Fhjolet et al.

(ii) This expected number has the asymptotic form

1 1 1
WYW =log n+ y +&-s+s+O 7 , 0 (23)

where y = 0.57721 is the Euler constant.

The first part is equivalent to the well known assertion that the mean number of
cycles is given by a harmonic number,

1 1 1
Hn=1+2+3+ -0. +-.

n

The “automatic” character of part (ii) results from the developments of the next
section.

. The type specification of permutations has been studied already in Section 3.1.

type Permutation = set(Circular);
Circular = cycle(Element);
Element = Latom(1);

To count the number of cycles in a permutation, it suffices to traverse the permutation
and on each cycle trigger a procedure, count, which does nothing but whose cost
is declared to be equal to I:

procedure CountCycles(p : Permutation);
begin

forall c in p
count(c) ;

end;

measure count :

The type specifications lead
functions.

do

1;

to a collection of equations for counting generating

Permutation(z) = exp(Circular(z))
Circular(z) = log(1 - Element(z))-’
Element(z) = z.

(24)

Turning to procedures, the rule for initial costs gives

1
rcount(z) = Circular(z) = log I; - (25)

the rule for set iteration provides

7CountCycles(z) = 7count(z) l Permueation(z) (26)
ich is equivalent to the first assertion of the theorem, with (z) being an

abbreviation for SountCycles(z). Cl

Automatic average-case analysis of algorithms 69

Finally, these (often huge!) generating function equations also convey some
meaning, as the following theorem shows.

Theorem 3.15. Given a programme specification II’ the average cost of its procedures

operating on uniform random inputs of size up to n can be determined in 0(lIIln3

x log n) arithmetic operations.

The proof proceeds along the lines of that of data types which we have given in
sufficient detail.

3.6. Examples

We Llect here a few more examples meant to illustrate the expressive power of
our formalism. In order not to make the statements too cumbersome we sometimes
directly cite an asymptotic result. In that case, it is to be understood that the
asymptotic part of the proof will follow from the developments given in the next
section.

Example 3.16 (Denumerants). In how many ways can one attain a total of n centimes,
with coins of denominations 1, 2 and 3 centimes? The problem is one of special
integer partition counting [24, p. 1081.

Automatic Theorem 7. 77je number of partitions of n into summands equal to 1, 2, or
3 is

+*+&+0(l).

Proof. The formal description of the problem is the following.

typo sum = multiset(Coin);
Coin = one 1 two 1 three;
oTi2 = atom(l); two = atom(Z); three = atom(3);

According to rules 1 and 6, the ordinary generating function is computed explicitly
from this description.

1
SUm(z)=(l_z)(l_z’)(l-z~)

From this generating function, and with theorems of the following section, one
deduces the asymptotic expansion given above. Cl

7 (Compositions). A l-2-composition of n is a sequence of integers

(i , , . . . , ik) in {1,2} whose sum equals n.

The number of I-2-compositions of n is asymptotically

70 R Flajolet et al.

roof. A composition is simply a list of summands

type Composition = sequence(Summand);
Summand = one 1 two;
one = atom(l); two = atom(2);

According to rules 1 and 3, the ordinary GF for l-2-compositions

Composition(2) =
1

1 -(z+z2)’

is thus

The coefficient of z” is a Fibonacci number. The well known asymptotic expansion
follows automatically from the algorithms of Section 4. Cl

Example 3.18 (Push length in trees). Our problem here is to analyze path length in
general plane trees where all node degrees are allowed. The programme operates
on an unlabelled, recursively defined type. Its specification closely mimics the
inductive definition of path length: if t = (0, 1, , . . . , tk), then

rr[f] = Irl+ R[f*]+ l l l + w[fJ.

Automatic Theorem 9. The expected path length in a general plane tree with n nodes
is asymp to f ically

~&P2i++O(n”‘).

Proof. It suffices to translate the classical inductive definition of path length into
our framework.

type Tree = Node sequence(Tree);
Node = atom(l);

procedure Size(t : Tree);
begin

count ;
case t of

(root,subtrees): forall u in subtrees do
Size(u) ;

end;
end;

procedure PathLength(t : Tree);
begin

Size(t);
case t of

(root,subtrees): forall u in subtrees do
PathLength(

end ;
end ;

easure co : I;

Automatic average-case analysis of algorithms 71

From rules 2 and 3, we obtain the counting GF for trees

Tree(z)=
I-di=E

2 .

From rules 12, 13, 15 and 17, the complexity descriptor for the procedure
PathLength is obtained (before simplification) by the A@ system as

TPathLength(z) =
(R-1)(1+I&z)4

16+8~-96z+8(1-4~)~‘~+ 128z2-32zdm’

From these two GFs, the result follows by asymptotic expansion of coefficients. 0

Example 3.19 (Derangements and singleton cycles in permutations). We want to prove
here the assertions made in the introduction regarding fixed points in permutations.

Automatic Theorem 10. The number of derangements (permutations without fixed

point) of l..n is equal to

&=n!m[zn]fi. -

The expected number of singleton cycles (cycles of size 1) in a random permutation of

n is equal to 1.

Proof. The formal description of derangements and singleton cycles iollows, and
the procedure FixedPoints counts the number of singleton cycles in a permutation.

type Derangement = set(Circular2);
Circular2 = cycle(Node,card>=2);
Node = Latom(1);
Permutation = set(Singleton 1 Circular2);
Singleton = Latom(1) ;

procedure FixedPoints(p : Permutation);
begin

forall c in p
case c of

Singleton
end;

end;

measure count :

do

: count

1;

According to rules 10,11,12 and 19, the counting GF for the number of derangements
and the complexity descriptor of the procedure are

exp(-z) Z
Derangement(z) = ~ , - z

from which both statements of the theorem result immediately. 0

72 l? Hajolet 41 al.

Example 3.20 (Cyclic points in random mappings). We consider random mappings
from a finite set to itself with the special property that each point has either 0 or 2
antecedents. This is an approximate mode1 for Quadratic functions xwx’+ a
(mod n). Such a mapping is equivalent to a binary functional graph, i.e., a digraph
in which each point has outdegree 1 and indegree 0 or 2. A binary functional graph
can be specified in our formalism; it is a set of connected components; each
component has a unique cycle; on each point of the cycle are planted binary trees.
For motivations related to cryptography and random number generation (see, e.g.,
[31]), our goal is to determine the average proportion of points that lie on a cycle
(cyclic points).

type PPing = set(Component);
Component = cycle (PlantedTree) ;

PlantedTree = node Trear
Tree = node 1 node set(Tree,card=2);
node = LatomW;

procedure CountCyclicPoints (m : pping) ;

begin
forall c in m do

CountCyclicPointsInComponent(c);
end;

procedure CountCyclicPointsInComponent
begin

forall t in c do
count ;

end;

measure count : 1;

(c : Component) ;

u?omatic eorem 11. The average number of cyclic points in a random binary
functional graph of n points is for n = 0 (mod 2)

n I-Jl-2s
I 1 z

l-22
.

roof. The exponential GF for binary functional mappings and the complexity
descriptor for the number of cyclic points in such mappings are found to be

apping(2) =
1

Ji-77’

This asymptotic result is of some relevance to the analysis of an inre
tion algorithm due to Pollard, the so-called Pollard rho-method (see,

. Asymptotic analysis of class of element

At this stage, the a ebraic theory of generatin fun~ti~~s~~t least in cases where
explicit solutions e t=--provides an expressio of a function in terms of basic
operators associated with combinatorial constructions. In this way, we are confronte
with tire problem of estimating coefficients of generating functions of rather diverse
and complicated forms.

Apart from the simplest cases (like the GF of Fibonacei numb
encountered when analyzing 1-2 compositions), no “closed form” for the coefficients
is available in general. However, it appears that a considerable amount of asymptotic
information on the coefficients of a GFf(z) is contained in the .+tgrr!~?rikc off(z),
itself viewed as an urr@G~ jkri~tion of the complex variable z. For the automatic
extraction process that we envision, we must also render the method free from
analysis, and purely formal or “algebraic”. This is made possible by the approach
explained here. The end result is quite simple. For a large class of functions f arising
from combinatoriaf enumerations, the nth Taylor coefficient fn = [z”]f< z) has an
asymptotic form,

fn - C~?r”(log n)‘, (27)

with k an integer, C, p, s real numbers. All the quantities appearing in the estimate
(27) are algorithmically computable.

A sample of functions related to combinatorial enumerations that we discuss
throughout this section is the following.

sow = l fA=) =+-$, f2W =
1

l-z-z” 1 -log[l/(l -z-z2)]’

1 1 -P-V
IX=) -JE I,_ =3’

1 P

og[l/(l-z’)l+(l-z’)s
+ exp(z e’),

74 P. Flajolet et al.

In this sectioin, we propose an algorithm that operates on explicitly defined
functions of w‘lich fO, . . . , f, are typical. All these examples have singularities at a

finite distance. When analyzing such a function f(z), the following strategy is used.
(1) The analytic properties off are first introduced into the game by means of

the Cauchy coeficient formula

(2) It is well known from the theory of Cauchy’s formula (28), see [80], that the
singularities of a function nearest to the origin determine the radius of convergence
of the function (i.e., the series defining the function). Such singularities are known
as dominant singularities and the discussion above reduces to the assertion: rhe
modulus of the dominant singularities of an analytic function *f(z) gives the radius of
convergence of the series form of f(z). Then, if we let p denote the radius of
convergence off(z), the coefficients {f,l)nzo satisfy the basic relation

1
lim suplf,,l”” = 7

?I=0 P
(29)

This property is often written in a more suggestive way as an approximation relation

J, = p-” where p = min(ltl 1 f(z) is singular}.

The precise meaning of the formula fn = p-” is that fn - p-“o(n), where o(n) satisfies
lim suplo(n)l”” = 1, i.e., the growth of o is slower than any increasing exponential
but faster than any decreasing exponential infinitely often. The formula fn =r p-”
thus indicates that p-” captures the main exponential growth of fn.

For instance, the dominant singularity off,(z) is at p = log 2 which cancels the
denominator. The dominant singularity of f?(z) can be determined by looking at
places where either the logarithm becomes singular or the denominator cancels. In
this fashion, we obtain the approximate formulae

I 1
1

f

-l+& -4e-’ --I’

?’ I-log[l/(l-z-z’)]== .-- 2) l

he modulus of the dominant singularities of f(z) thus provides the first level
of information on coefficients of a function, ifl ihe approximate form of an exponen-
tial term. If a function has a unique dominant singularity, this is usually enough to
conclude the analysis by local sip?gularity analysis, as explained below.

owever, some functions hid eriodicities in the behavicur of their coefficients.
er instance the GT j&z) expa

Automatic average-case analysis of algorithms 75

Plotting the values of these coefficients (see Fig. 3) suggests that the coefficients go
by groups of three. It is indeed the case, and this is due to the presence of three
dominant singularities, namely

1, 1 . eZi7r/3, 1 . e-2in/3,

presence of (1 - 2’) in
whenever periodicities

these singularities being related to the the denominator.
Therefore, one of the major problems, arise, consists of
determining the directions where the dominant singularities lie. These directions
are called dominant directions. The process of analyzing the coefficients of a function
is shown to decompose into a finite collection of aperiodic problems of a simpler
form.

(4) Leaving apart the periodicity phenomena- this is possih:e either because the
function to analyze J(z) has no periodicities, or because J(z) has a!ready been
decomposed-the problem is thus to quantify the subexponential factor w(n) in
the formula fn N p-“w(n).

It turns out that there is a correspondence between the singular rates of growth
of functions around their singularities and the asymptotic (subexponential) rates of
growth of their coefficients. Here are a few examples of the correspondence, for
functions singular at 1,

1 1 1 1
J11-ZH&9 - - l_z*ogl_zHlogn,

z

()

e 2~ n

exp 1_z -- 2(?re)l/2n3;4’

(The last transformation belongs to the theory of saddle point integrals which we
discuss in Section 5.5.)

(5) In our approach, the problem of finding the asymptotic growth of coefficients
off(z) reduces to determining locally the behaviour of the function around all its
dominant singularities. If the collection of these is {a, = pe”l}+, , for a finite index
set J and real angles 6)i, then, under normal circumstances, by recomposing elements
of the form cf*w(n), ‘we obtain

where the o,(n) are functions of subexponential growth.

Fig. 3. A graph of the toe cients of :” in ./it : I. as a function of 11.

76 P. Flajolet et al.

The general principle that guides us is that functions arising from the automatic
algebraic construction of generating functions have coefficients that are also
automatically analyzable. More will be said to support this broad claim in Sections
5 and 6.

We now propose to implement this programme in detail on the class g of
elementary functions that appear as generating functions of well defined labelled
iterative structures. (This class should be called in full the class of LI-elementary
functions.)

.l. The class of elementary functions 8 is defined as the class of functions
containing the monomials 1, z and closed under the operations of alilheIIed =

1+,x, 0, W3, where

Q(f) =+-f,
1

L(f) = log -
1 -f’

W7 = exp(f),

with the further restriction that all operations take place in the ring of formal power

The requirement that operations be cormal means that Q, L and E can only be
applied to functions J such that J(O) = 0, a restriction which is satisfied exactly by
those generating functions that arise from weI\ dejned specifications in the sense
of algebraic enumerations (Section 3)

The restriction to 0 and UJ is not strict. The algorithms we shall develop apply
almost verbatim to enriched classes, where we allow modified operators like E*(f) =
(et- 1)/f etc. Thus, though we state propositions for 8, trivially amended results
hold true for larger classes, from which we occasionally borrow examples such as
fi or _t;. The remaining functions A,, f?, f4, JIS, h, f, all belong to 8, and thus they
are generating functions of some elementary (i.e., labelled iterative) structures.

There is an important subclass of the elementary class g-the class gAL of
“algebraic-logarithmic” functions-for which a complete asymptotic analysis of
coefficients can be developed automatically by means of the strategy that we have
exposed. It is our purpose now to explore properties of the class 8 and its distin-
guished subclass, and to illustrate our general philosophy by working out the
algorithms in some detail.

The programme presented in the next paragraphs can be outlined as follows:

~gorit~ uivalent
Input: A function f from the elementary class 8.
Output: An asymptotic form of [z”]_N z) when f is in a proper subclass, f E iSA,_.

(1) Radius: Find the radius of convergence p of J
(2) Directions: Compute the dominant directions.
(3) Expansion: Determine the growth of the function about its dominant

singularities.
(4) Transfer: rowth of the toe

Automatic aL!erage-case analysis of algorithms 77

The labels Radius, Directions, Expansion, Transfer refer to specific algorithms.
Other methods, like saddle-point analysis, that are operational for dealing with

functions of “violent” singular growth, like entire functions, are discussed in
Section 5.3.

4.1. Dominant singularities and principal exponential growth

Our first result shows that the dominant exponential growthf, = p-n is computable
for all f in the class 8. We start to exploit the analytic fact that functions in 8 have
positive coefIicients (they are GFs) and rely on structural induction.

Proposition 4.2. Let f (z) be an elementary function in the class SF. Then
(1) the radius of convergence p off satisjes 0 < p s 00;

(2) it is decidable whether f is entire or not, i.e., whether p = 00 or p < 00;
(3) whenever p < 00, p is a dominant singularity off; furthermore, function f is

infinite at p, which means that f (x) + -1-00 as x + p from the left;
(4) the radius of convergence p off; when it is jinite, is computable to any preciston

E > 0.

Proof. (1) These functions are analytic at the origin because they are either poly-
nomials or compositions of exp, L, Q, with functions that are 0 at 0. Hence by
induction they are analytic at 0.

(2) By induction it is easy to see that f is entire if and only if neither Q nor L

appear in its expression.
(3) This is a special case of Pringsheim’s theorem [80]. Since the coefficients of

our functions are positive, using the triangular inequality shows that they are maximal
along the real axis. That they are infinite at their singularity follows again by
induction since singularities in this class can only arise by Q or L.

(4) The computation of p is done by the following algorithm:

Input: An expression f c i%.
Output: The radius of convergence off within a fixed accuracy E > 0.

(2) If f is a polynomial, then its radius of convergence is infinite.
(2) If f is exp(g) then its radius is that of g.
‘3) If f is Q(g) or L(g), then the radius is the smallest real positive root of g(x) = 1 l
(4) If f is a sum or a product, then its radius is the minimum of those of its

arguments.

The main observation is relative to Step 3: g(
IO, p[with p the radius of conve
accuracy by classical numerical al

78 P. Flajoler et al.

.3. We consider the function f4 defined by

1 1
h(z) = log

I-zlog[l/(l-z~)]+(~-~~)~
+ exp(2 e’).

Although the smallest real singularity p off, cannot be expressed in closed form,
it is not difficult to see (automatically by the above algorithm, or by hand) that p

is the smallest singularity of the outer logaci.nm and to compute an approximate value

p = 0.835408159 = min 1 I O< x C 1 x log
1

-=l .
l-x? 1

4.2. Dominant directions and periodicities

In order to take into account the periodicities that may occur in coefi&nts of
functions, we introduce the reduced form of a function. The reduced form off is a
triple (a, g, p) such that

f(z)= r”g(zP),

with g satisfying g(0) # 0, p and a two integers 0~ a < p, and p a 1 as large as
possible. The number p is called the period of j:

Observe also that the period p is visible on the Taylor coefficients off: the indices
of the non-zero coefficients of $ are included in a unique arithmetic progression of
ratio p,

in IL f 0) E {a + jp);L,,.

A function that has a period p 2 2 is said to be purel’t periodic. For instance, any
odd or even function is purely periodic.

A functionfin % has a reduced form f(z) = z”g(z P), with g belonging

to 8. The quantities a, p, g are eflectively computable.

Both parts of the proof are consequences of the following algorithm.

orit ctio

Input: _f~ 8.
Output: A pair (a, p) and a function g.

(1) Iff is a polynomial, expand it, take p as the gcd of the differences of the
nts of the monomials, and a as the smallest exponent modulo p.

f J is Q(g), L(g), or exp(g), apply the algorithm to its argument, then take

to its components, a

Automatic average-case ana!,*sis of algorirhns 79

All these operations are purely syntactical, and one can check that the final g
appearing in the reduced form is always a function of E’. Full details will appear
in [73]. Cl

This algorithm will serve to compute all the dominant singularities of a function.
But we first need to introduce an oracle which plays an important role.

S. We call 6, the following oracle: Given two functions g and h in $$f
that are 0 at the origin, with rR and r!, the smallest real positive roots of g(x) = 1
and h(x) = 1. the oracle outputs one of

‘g < rh, 5 = f-h, ru > rh.

The oracle enables us to state the following proposition.

Proposition 4.6. The Dominant directions of a function f E 2% are computable condi-

tionally upon oracle 0, . These directions are all commensurable with VL

Proof. It operates by a structural induction that we embody in the algorithm
Directions.

Algorithm Directions
Input: SE SK
Output: A set of angles.

(1) If f is exp(g) then apply the algorithm to g.
(2) If f is Q(g) or L(g) then apply Reduction to reduce g(z) into z”h(zp); set

9 = gcd(a, p) and return {(2kn/9), k = 1..9}.

(3) Iff=g+h orf= g l h, then first use algorithm Radius to compute the radii
of convergence of g and h, then use the oracle 6, to compare them; if they are
different then apply Directions on the function with the smallest one, otherwise
apply it to both of them and return the union of their dominant directions. Cl

We observe that the corresponding problems are well worked out in the case of
rational series [11,27,7 11.

.7. Let fS(z) be the following function:

h(z) =exp z log (2 yI.$-q+&*
An application of the al thm leads to the c

80 P. Flajolet et al.

Note on the role of oracles

We made our first encounter with oracles here. It sho id that we live in

a world where the status-transcendent, algebraic, or ra f constants like

‘e-“-l ucI e-”
Y =

I
-dx+ -dx, e+n,

0 x I 1 x
C(S)= c 4,

n3~ n

is still undecided. Consequently, in view of some the xpansions that result from
our automatic analysis, it is not too surprising that one should appeal to oracles of
sorts.

Fortunately, a reliable oracle of the type 6, is easily implemented in practice by
evaluating the quantities involved numerically, with a high enough precision. It
should also be noted that given such an oracle, we can then compute symbolically

ius of convergence of functions in SE, that is, compute the smallest subex-
pression of the input function whose root is the smallest positive singularity. The
radius of convergence of any function in g is thus given as a simple root of a
elementary equation. We shall henceforth assume that this is the form returned by
algorithm Radius.

4.3. Singular growth

All the algorithms we have presented so far work with any function of 8. We
now isolate a subclass gAL of elements of 28 for which one can automatically compute
the asymptotic expansion of the Taylor coefficients. This class is characterized by
the moderate growth of its elements about their singular

We actually construct a partition of ‘8 into three disjoi

8 AL9 8entirrr 8*xp such that 28’ = %‘AL u @fentire u fiSexp. (31)

The class gentire consists of all entire functi Jns, and it is clearly a decidable subclass
of K The class gAL consists of functions with a radius of convergence p c 00 and
with a so-called algebraico-logarithmic (

s()
1 1

z -(II -z/p)”
log& i--- -w p+p-9

where a! is real and k is a non-negative integer. These are our main objects of study.
In this subsection we show that one can decide membership to gAL thanks to a

gap property. In the class %‘\&,,,,, of functions sin ular at JJ, it is found that
functions of the form

lay a special role as threshold functions.
e fact that its ele row too fast an

that

will be characterized by
e easily recognizable by the property

Automatic average-case analysis of algorithms 81

ositio Conditioned upon oracle 6,) membership of a function in Z&_ is
decidable. A singular expansion of a function in SEAL around its positive dominant
singularity is also computable.

roof. We define 3 classes GPA&}, g regularly}, g&-,(p), that reflect the partition (3 1)
at z = p. These are respectively, the functions with an algebraic-logarithmic singular-
ity at p9 the functions regular at p, and the functions with an exponential singularity
at p. Proving that f E 2&L is equivalent to proving that f E iZAL{p} for p the dominant
singularity oft< a quantity that is assumed to be known from our previous algorithms.
Finding the nature of the singularity is done by the following algorithm.

The algorithm essentially composes generalized algebraic-logarithmic expansions.
If a fast growing function is detected, the algorithm only returns the proposition

‘YE %X,M”.

orithm Expansion
Input: A function f in %’ and a positive real number p.
Output: An asymptotic form off at pt or the answer “f E 8&,(p)“.
Comment: Assume p s R, with R the radius of convergence off: Also assume that
p is itself the root of an elementary equation.

(1) Compute the radius of convergence R off by the algorithm Radius.
(2) Appeal to I for deciding whether R > p or R = p.
(3) If R>p, then return f(p)+f’(p)(z-p)+O((l-z/&.
(4) Otherwise, R = p. Consider cases according to t&r: nature of J
(a) If f is Q(g) then return

1 1 g”(P)

pg’(p) 1 -ZIP +w(P)
-+0(1 -t/p).

(b) If f is L(g) then if (by 0,) pg’(p) # I then return

log
1

I-ZlP
-log(pg’(p))+W -Z/P),

else return

10
1 +Pg”(P) -(l-z/p~+o((l-~lp~*~.

1 - zip 2g’tp)

(c) Hj=g+h or f =g* h, then apply
the results, retu
f is exp(g) then

if it is of the form

-Z/P),

82 I? Ffajolet et al.

then return

eh 1 -=-
(P - rf,o)” +O (l-z/p)“-’ (> ’

otherwise return If”eXP.

The complete proof of the proposition reduces to checking the correctness of the
algorithm; see Salvy’s thesis [73] for details. Cl

.9, Consider the function f6 deEned as follows:

f6(z) = exp (1
2 log ---

1-4z4e
z/(1-z3)

>
+e’ log,

1
-++++.
P -2r*

Applying algorithm adius, we find that the radius of convergence is I/& Then
we apply Expansion to (fa, I/a). Sincef, is a sum, the algorithm is called recursively
on each of the summands. The algorithm yields

4 -a

(

1

(l-rJZ)“+O (l-&2)“-))

with

Jz ala+2

a =T-exp- 7 ’

symptotic analysis of coeficients

The singular expansions that we have computed can now be transferred to
coefficients. The case of a unique dominant singularity is naturally simpler (Theorem

JO), but information can also be obtained in several periodic cases (Theorem

rithmic function of with a unique dominant

ave an asymptotic form

fn = [z”]f(t) = Cp-“n’ log’ it I 1 +O
((i&J

er. Using oracle 6, , all these numbers
erms of elementary functions and roots

statements become naturally mor

Automatic average-w-e analysis of adgorirhms 83

Odlyzko [32], is a variant of the classical arboux method. For its statement, we
need the following notation for Camembert domains,

A = {z, lzl s 1+ r), /arg(z - l)] 3 4p},

for some q>o and oCq<lr/2.

(Flajolet-Odlyzko [3 I]). ssume that f (2) is analytic in

ax-,1 ind,

f(z)=0
1

(1-z)” logy--
) 1-z 9

for some real numbers cy, y. Then the n-th Taylor coeficient off (t) satisjies

[z”]f(r)=O(n”-‘logYn).

Note that the condition of being analytic in a domain larger than the circle of
convergence is always fulfilled by our functions which are composed of a finite
number of entire and meromorphic functions.

The next theorem is older and was stated by Jungen in 1931 [SO].

Lem 4.12 (Jungen [SO]). Define the coeficienrs a,, by the expansion

(I-z)-t log”&- f a&‘,
n=O

where k 2 0 is an integer and s is an arbitrary complex number. en the coeficientz
a,, are given asymptotically by the following formulae:

(1) Ifs#O,-I,-2,...,then

a~=~[log’nrp,o+log”ncp,(n)+ l l l +Cgdn)l,

)- 1 +co,/n+co2/n2+ l l l

84 I? Flajolet et al.

The proof of the theorem is easily completed. Each function satisfying the
assumptions has a singular expansion of the form given by Proposition 4.8.
Coefficients of the main term can be extracted by Jungen’s theorem; the remainder
term is itself amenable to Lemma 4.11.

This double transfer completes the proof of the theorem, and the underlying
algorithm constitutes the algorithm Transfer referred :o in the introduction to this
section. Cl

Many of the examples we have considered so far fall into this class, which permits
US to complete the proofs of a few statements made earlier in anticipation of
asymptotic methods. Our simple examples here all have explicit singularities that
can be found by a reasonable computer algebra system. A first batch deals with
meromorphic iklctions.

eorem 12. The asymptotic number of 1-2 compositions of n is

1 n+l

1 Zn 1 1-z-z’ =-+o 4 J5 (- 4” 1 where n Q = - 1+J3 2 ’

The asymptotic number of ordered partitions of n is

2” 1

[I 1

z 2-e’== (log2)” n! +O(n(kYg2)“)’

The number of derangements D,, satisjes

D”=$ f& ’ 1 n!
e-h!+0 - . 0 n

roof. The first two examples (they are also functions fc and f, of our example list)
are direct consequences of our algorithms: we have a rational function and a
meromorphic function with an explicit dominant singularity at p = log 2. The case
of derangements follows that of ordered partitions. 0

The second batch of examples is relative to functions with algebraic and logarith-
mic singularities.

atic eorc 3. The mean number of cycles in a random permutatiort of n is

E =“1_z I 1 log -=logn+y+--- 1 1 l+l -+o
1 _ 2 2n 12n2 120n4

(- 1 1
n6

.
The asymptotic number of unary-binary expressions of size n is

Automatic average-case analysis of algorithms 85

The asymptotic number of generalized bracketings of size n is

GB,=[z”];(l+z-m)=
-4+3x0

4Jn;;s
(3tJi)“(1+0(i)).

The expected path length in a random plane tree of size n is asymptotically

i J- 7e n3/2+$n+O(n”‘).

Notice that several examples here are relative to implicitly defined recursive
structures. As we have seen, the corresponding generating functions are all expressible
in closed form. The square-root singularities are amenable to the ireatment given
here for the class 8&_.

The last batch of examples deals with the more general case of functions whose
singularities are defined as roots of various elementary equations.

Automatic Theorem 14. Tbie following coejicient expansions hold. Let

f2H =
1

1 -log[l/(l -z-z2)]’

then

where CY = $JS -4 e-’ - 1). Let

$4(z) = 1%
1 1

1-zlog[l/(l-z~)]+(l-zz)’
+ exp(z e’),

then

where p is the smallest positive root of

1
l=plog- l_+’

Let

f,(z) = exp (log
1 :,,I-:,’

1 9

then

Iz”lfb9 = (5)‘”
where 4 is the golds? r,ntio.

e&--l n 4”
W+Y

+O(n em-24n)9

86 I? Flajolet c f al.

f. For ff , the sin ularity can be made explicit. Note the example off4 for which
the singularity p could not be written in closed for , but this raised n
in the automatic computation. Function f7 corresponds to a function l

singular behaviour at 4.

4.5. Periodicities

The esat case’ rf* functions in zcPAL several dominant sin
treatm Such functions are callied periodic (purely periodic funct
earlier in Section 4.2 are periodic). A singular expansion must be computed around
each dominant singularity, and then translated by the previous theorems into a
partial expansion. These partial expansions are then added together, and this yields
an expansion for the coefficients.

Difficulties may arise for some functions that do not differ too much from a purely
periodic function. in that case, the main asymptotic terms cancel for certain values
of the index n, and subdominant terms dictate the asymptotic behaviour of
coeficients in this case. There is then a~ ex onential cancellation to be taken into
account.

Consider for instance the problem of extracting

[z”]J(z) where j(t) =L+-!- 1-2ra 1-r’

from this point of view. We have

[P]
I 1

------=2”, [yy--=
l-29 1-Z

1.

nus. _fq,, = 2” + 1, but for n f 3 (mod 4), we have fH = 1. When computing fm, the
asyPmptotic forms deriving from the singularities 2-l” e”“” (k = 0, 1,2,3) cancel
exactf’ when n is not a multiple of 4. There’s the rub!

In fact, by performing only real computations, it is possible to derive an interesting
h not always complete) part of the asymptotic information.

4c cients of a function oj’ kYAL with p 2 2 dominant singularities

sntis$k an as~~~ptoti~ estimate of tk$mn

A, ==p %‘log%l c+px’ CY, cos-
2jrr 77

+O(p-“n’ log’-’ n),
I 1 P

u-here C, p, s, k are as in ?%eorem 4.10, arod 0 s C, s C. Using oracle ?, the constants _

of the assertions

87

Wnder severah circumstances the expansion we 0bta.n from thi
fide asymptotic e ifhculties may arise if the

in which case we only
s is a dominant asymptoti
i.e., a non-zero proportion)

Proof. The basic idea consists of computing expansions related to sin
of the same form as before,

except that now a may be complex, o = p eiH, with p the radius of conver
the series under consideration and 8 a real angle.

The translation to coefficients is effected like before, and each dominant sin
may contribute. We should simply add the corresponding contributions. The
then lies with the precise determination of the constants C,. Although they aqe
computed by the same type of expansions as in th real case, this calculation presents

an additional difficulty: we have to decide whether a function in 25 which is regular
at a complex point (the singularity under study) is zero there or not. This task is
accomplished by oracle G2. When examining the behaviour of a function S at a;
we modify step 3 of algorithm Expansion in the following way:

(a) Check wh th J e er is a polynomial or not (this is decidable in Q.
(b) If it is not, compute values off”‘(cr), k 2 0 until (5, finds two of them, f”l’,

Jtliz’, to be non-zero. Return

(c) If it is, do the same operations but stop when k > deg(J). Return the expansion
so obtained.

The rest of algorithm Expansion works unchanged, mainly because, in steps 4a
and 4b, g is necessarily real on the ray from 0 to Q.

A few of the functions we h met in our exa ples present several s arities

on their circle of conver e first case is ea ucti

ces to analyze t .

4 expectai ~~~~~? of cyclic points in

21,

I? Flajolet et al.

(The functions involved in this analysis are purely periodic, being simply functions
of z2, see Automatic Theorem 11.)

The next batch of examples illustrates more intricate situations, and in one case
only partial coefficient information is available from the algorithms we have just
discussed.

eoretn 16. The following asymptotic coeficient expansions hold.

1 1 2 --- f;(z)-J1= 1_z” * [,nl.Md=~ ~ J
1+0(I).

4 2”
Js(z) = exp

t
1

z’ log -
>

+ d
l-z4 -

1 * [z6”]f5(z) =2”‘+0 ;
0

f&) =exp z log--
(

1
e”“+”

)
1

l-4z4 ,
+e’ log 12r’+ I+ z,

kc! n n”-’
* Cz”l_&W = 4arfaI +OW-2fi),

with

a 4&-2 cy=- 3 exp 7 l

L I

Proof. In the case of x1, the colnprex singularities are of a smaller order than the
real one. This is not the case with fj for which we only get an expansion for indices
n that are multiples of 6. More complete estimates can be found for products like
f6, where we get all coefficients. 0

Even though in case of periodicities the raw version of the algorithms we have
described is not guaranteed to produce an asymptotic expansion for all coeficients,
in practice an expansion can often be obtained by computing singular expansions
with more terms. We do not attempt to develop the theory in this case as it becomes
naturally rather intricate.

. Extensions

We discuss here some of the possible extensions of our approach. Clearly,
theoretical advances can be used to great advantage in extending the functionality
of an automatic analysis system.

We saw (briefly) in Section 1 that there are three components in our automatic
analysis system. The two major ones correspond to the computation of generating
functions (the algebraic analyzer) based on the algebraic enumeration techniques
of Section 3 and to the asymptotic analysis (the analytic analyzer) based on the

niques of Section he interface is ensured by the solver.
ur discussion will fohow this tern

Automatic average-case analvsis of algorithms 89

5.1. Algebraic counting

We have seen how to analyze four major classes in terms of automatically
determined generating functions. Each new combinatorial construction or pro-
gramme control structure that admits a translation into GFs will enable us to solve
an enlarged class of problems.

Minimum rooting
Many algorithms deal with ordered structures. A particularly interesting construc-

tion that fixes the localization of the smallest label in a labelled structure (min-
rooting) has been formalized by Greene in his thesis [40] under the name of box
operator. The equation

d=93°* % (33)

means that ,a0 is the usual partitional product of 3 and %, with the condition that
the smallest label lies in the B-component. Greene has proved that labelled context-
free grammars augmented with the box construction translate over generating
functions through integro-differential operators. For instance, in the case of (33),
we have the recurrence,

where the modified binomial coefficient takes care of the fact that only n - 1 labels
need to be distributed between B? and CG. In terms of EGFs, this means

(34)

It can be shown that an interesting set of programmes on structures defined with
the box operator are admissible too. They then translate into differential equations
for the complexity descriptors. We will not give the complete rules here; they will
appear in [go]. Let us just cite an example, that of heap-ordered trees.’

Automatic Theorem 17. The average internal pathlength in a heap-ordered tree of size
n is asymptotically

roof. Heap-ordered trees admit the specification,

type Heap = leaf 1 min(key) Heap Hx~.p;
key = Latom(1);
leaf = Latom(0) ;

9 A heap-ordered tree is a labelled binary tree with labels that are in increasing order along any branch

starting from the .U rPot. Such trees have strong relations to binary search trees and quicksort. We refer to

Vuillemin’s article [82] for a discussion of combinatorial aspects of these trees that are known there as
“tournament” trees.

90 R Flajolet et al.

The programme 8br analyzing internal pathlength follows closely the one used for

procedure PathLength (h : Heap);
begin

size(h);
case h of

leaf : zero;
(k,hl,h2) : begin PathLength(h1); Pat ngth(h2) end;

end;
end;

procedure size (h : Heap);
begin

case h of
leaf : zero;
(k,hl,h2) : begin one; size(h1); size(h2) end;

end;
end;

measure one : 1;
zero : 0;

The rule (33-34) gives us an equation for Heap(z), namely,

Heap(z) = 1 +

an equation that leads to a non-linear differential equation with variables that
separate,

d
-& Y(z)= Y2(z), Y(0) = 1.

Such problems are well within the capabilities of computer algebra systems, and
one finds, as expected,

1
Heap(z) =G. -

The rules given in [90] allow us further to compute the ssmpiexity descriptor of
the procedure PathLength, and the litera’l form produced by Aya is in this case

7PathLength(z) = - ’
2 log(l-Z)

z2-2z+1- z2-2z+1 =

The automatic theore follows from these functions and from theorems of Section
4. a

Automaik average-case analvsis of aCgoritkms 91

This analysis is of special interest as it relates to the analysis of binary search
trees and of the quicksort algorithm.

Boolean functions

The programme constructions of Section 3 operate with “pure” procedures in
which no result is ever passed and reused by another procedure. This corresponds
to our general and informal notion of pure traversal procedures. The possibilities
for extensions in this area are of course limited by undecidability considerations.
However, a nice class of functions returning boolean values can also be integrated

f!cr the system. An example of this is a programme that checks the occurrence of
certain symbols in binary trees.

type 2eroJ.g = z&o&);
T = zero i X 1 product(g,T,T):

function Occurs(t : T) : boolean;
begin

Visit;
case t of

zero : false;
x : true;
!g,u,v) : if Occurs(u) then true else Occurs(v);

end;
end;

measure Visit : 1;

This determines whether an expression contains the variable X or not; the cost of
Occurs (t) is the number of nodes visited. This programme is in none of the four
classes defined earlier (see Theorem 3.13), because in the statement “if Occurs (u)
then true else Occurs(v) ” we (recursively) use the result of another computation.

For a boolean function f, several well defined rules allow us to compute two type
specifications of data items for which f returns tiue and false. Once these type

specifications are known, the schemes “if f ix)=true then l l - ” and “if
f (x)=false then . . . ” become admissible.

Automatic Theorem 1 Consider expressions built with the symbol 0, a variable X
and a binary operator g. The average number of nodes of a random expression of size

n that are visited in the course of a preorder traversal before Jnding X is

x&8&1

[Zn1-Z~+ZGi7

L 1 z* -
T/I-8z2-1

22

Asymptotically, this quantity

4+ATI-0(1/Jn).

.

is, for n odd,

92 P. Flajolet et al.

roof. The number of nodes visited is the number of times the function Visit is
called in the above programme, whence the cost of this programme. The rules given
in this paper enable to compute the GF for expressions

T(z) J1-82- 1 =-
22

and the rules given in [92] enable us to compute the complexity descriptor which
is found to be

rOccurs(2) = -
h-8z2-1

e?Jiz7+ zJiz7’

The asymptotic result foliows from direct singularity analysis. Cl

Such a scheme has been introduced into the A@ system and it has proved useful
in an average-case analysis of several unification algorithms [2].

5.2. Implicit and explicit generuting functions (the Soher)

The algebraic analysis produces functional equations, while the asymptotic analysis
techniques that we have used so far require an explicit form for generating functions
and complexity descriptors.

At the interface between these two components of the analysis process” there
should (ideally) lie a well defined model of algebraic manipulation. In order not
to obscure the picture, we have been discreet so far on this subject. A few explanations
mixing theoretical considerations as well as implementation problems will now be
offered.

Clearly, some amount of algebraic manipulation is needed, at least because of
machine-man interaction. For instance, it may be desirable to incorporate sim-
plification rules such that

1
exp log- (> 1

l-z
*-

1-Z’

This simplification occurs in the analysis of the cycle decomposition of permutations
and is the one that enables us to corrclude that the EGF of permutations is l/(1 -z),
i.e., the number of permutations of n is n !.

On another register, usual simplifications like

Xx0 * 0,Xx1 * X,X+Y+X * 2X-tY,RootOf(x’-4,xBO) a 2,...,

are certainly a necessity. The status of simplification rules of the form

log(X* Y) * log x+1og Y, J_ * fl*Ji7,

is much more debatable and their usefulness depends upon context.

lo In the .ZyQ system, this interface is the function of the Solver module.

Automatic average-case analysis of algorithms 93

In this paper, at theory level, we have generally assumed the common rules of
elementary algebra when manipulating generating functions. The designer of an
automatic analyzer (like the A@ system) should in principle take full contrcl over
the simplification rules that are employed. However, for obvious efficiency reasons,
it is usually not possible to enforce such a vigorous policy. So, the algebraic
capabilities of the Ayn system rely on those of the host computer algebra language,
namely the Maple system. As is natural, this occasionally creates conflicts between
what is needed of a general purpose computer algebra system and the stricter
simplification discipline that a system like llya requires for its more limited universe
of special functions. Examples of such problems are well-known to designers, e.g.,
the rules

(R,-,)m + (l-z) and (R,)m * m * (z-l),

though being each reasonable under certain conditions, may lead to inconsistent
results. (This is in no way meant as a criticism of the Maple system without which
the A$ enterprise would not have existed. Such problems are bound to occur with
any system currently in existence [61].)

In the sequel, we assume in our discussion that we have available an ideal engine
for algebra manipulations.

The two issues to be discussed are: (i) simplication and resolution of equations;
(ii) the universes of special functions.

Simplijica tion and resolution of equations
(1) In the universe of purely iterative labelled structures, an equational definition

of structures leads to a chain of equations that can be solved by direct substitution.
For instance this remark is at the origin of the result that the class of associated
GFs is the elementary class % defined as the closure of I, z by operators of L$abelled.

(2) For programmes over labelled recursive structures, the complexity descriptors
are plainly given by linear equations over GFs. In that case, explicit solutions are
derived automatically from the counting GFs assuming only that a linear equation
solver is available. In a way, the most difficult part” of an analysis is the one relative
to counting GFs.

(3) For recursive structures in the labelled universe (and simpler recursive
unlabelled structures that do not involve sets or cycles), the GFs appear as fixed
point equations over the class of elementary functions. Such equations are in general
highly non-linear, but it is possible to trap interesting subclasses.

For instance, we may consider the class of quadratic structures in which all GFs

are resolved by: (i) substitution; (ii) linear equations; (iii) quadratic equations.
There are obvious examples of quadratic structures, the simplest being the pure

” This observation reflects the fact that time is an additive complexity measure that is in a loosely
defined sense “linear”, and resembles a “derivation*‘. Our approach cannot be extended to space

complexity measures that replace sums by maximum operators.

94 P. 1 iajolet et al.

binary trees

type BB = BB o BB 1 X;
X = atom(l); 0 = atom(O);

or the unary-binary expression types. Other cases, like the binary functional graphs
or the generalized bracketings with OGF

GB(z) = z + GB’(z)
1 -GB(z)’

illustrate the fact that the precise notion of a quadratic structure is relative to a
given model” of algebraic simplification.

(4) Our understanding of the algebra of P6lya operators @ (for data types) and
V (for programmes) is not too advanced. We only know that certain identities exist,
for instance,

@M(f(d) = @S(f(Z))@M(f(Z’)),

which corresponds to (1 - z)-! = (I i z)(I- z’)-‘. This does not seem to be a major
drawback however since most of the work in this case should be rejected to the
asymptotic analyzer, using techniques that we detail below.

Function universes
The remarks above show that a complete discussion of automatic analysis must

include a precise discussion of simplification issues for the class of functions used.
This in turn is related to a notion of which special functions and corresponding
properties are regarded as known.

As an example, the family of Cayley trees defined by

Cayley = 0 set(Cayley); 0 = Latom(1);

corresponds to the implicit equation,

Though
session

Cayley(2) = z exp(Cayley(z)).

this equation could be regarded as not elementarily solvable, the Maple

> solve(Cayley(z)=z*exp(Cayley(z)),Cayley(z));
- w(- z)

expresses it in terms of a special transcendentall W(z) (the root of W ew = z)
which is regarded as known by the system. We could thus define W-structures, in
the same way as we have defined quadratic structures. However, the proliferation
of such definitions is best avoided. Probably a more general approach based on an
extensive use of standardized implicit functions reusable by the asymptotic analyzer
is to be preferred.

” Throughout the paper, in our automatic theorems, we have operated with the nai’ve notion induced
by the capabilities of the Maple “solve” routine. Then, for us, GB is a quadratic structure.

” This function was considered by Eisenstein and Cayley, amongst others.

Automatic average-case analysis of algorithms 95

Another example is provided by the family of ternary trees. In that case, the
specification is

type Ternary = o Ternary Ternary Ternary 1 X;
X = atom(l); 0 = atom(O);

The corresponding solution is known,

Ternary(z) =
(

1
-i+

J=Z% “3+

) (

1 6iZi2 t’3 --- 6J3 2 6Js) 3

meaning that ternary trees belong to the class of “radical” structures. However, the
asymptotic analysis of the GF Ternary(z), though feasible from the explicit form,
is best carried out by subjecting anonymously Ternary(z) to a general asymptotic
treatment of algebraic functions.

Finally, we saw in the analysis of heap-ordered trees that certain constructions
relating to order constraints introduce integro-differential operators. (The capability
of Maple’s ‘dsolve” differential equation solver was used on that occasion.) In
this context, an interesting class of functions is that of combinatorial holonomic
systems of Zeilberger [88], which, in the univariate case, reduces to the class of
D-finite functions described by Stanley [77].

In other words, we could also regard as known the solution Y(z) of any equation

; wfg YW=O,
j=O

where the Qj are rational functions, and proper initial conditions completely deter-
mine Y(z). This class has rich closure properties. To a large extent, the corresponding
asymptotic problems on coefficients are solvable; this results from either Birkhoff’s
theory of difference equations [85], or from the singularity analysis techniques that
we have utilized in Section 4.

Differential operators will not be discussed further here.

5.3. Analytic schemes

In Section 4, we have seen how to analyze a particular subclass of problems
arising from labelled iterative functions. In that case, a full characterization of r:he
possible asymptoti= behaviours was attained. Our knowledge of the other types is
not so systematic. However, several analytic techniques from earlier works can be
put to work for us. In this subsection, we propose to summarize the main idaas that
extend the automatic approach to a much larger class of problems.

Labelled iterative structures: In order to complete the classification of these
structures, we need to analyze elementary functions with “exponential” Erowth SC
their dominant singularities, 2&,, and the entire functions gentire l Saddle point
integrals are the major tool for this range of problems.

96 P. F?ajolet et al.

Labelled recursive structures: The EGFs are then defined implicitly by elementary
equations. This vastly gercralizes the situation of context-free gi:ammars. Singularity
analysis techniques are known to be applicable to several intel*esting subcases, and
they prove to be the essential tool in this range of problems..

Unlabelled structures: The set and cycle constructions lead to Polya operators
that have complicated explicit forms. However, a simple technique that goes back
to Polya and that has been used extensively in analyzing trees and graphs makes
singularity analysis applicable to a wide range of problems in this class.

Labelled iterative structures and saddle point analysis
Still starting from Cauchy’s formula, the method which is used for

faster growth is the saddle-point method. It attempts to find a suit
integration through a remarkable point called the saddle poini. The Ca
is concentrated about this point, and it is possible to obtain precis
information by neglecting the other parts of the contour (see e.g., [25,
problem with this method is that it is difficult in the most general setting to prove
the validity of neglecting these other parts of the path.

In 1955, Hayman [4SJ delimited a class of functions for which one can compute
systematically an asymptotic form of coefficients by a saddie point method. This
class of so-called H-admissible functions also enjoys nice closure properties which
make it a useful tool for automatic computations. There are two main theorems in
Hayman’s theory.

Theorem 5.1 (Hayman 1451). uf = C fnz” is H-admissible, then as n + 00,

f
f() r

“-r”J2nbo’

wherer=r(n) isthesmallesIpositiverootofrf’(r)/f(r)=n,andb(r)=rd(rf’(r))/dr.

This first theorem is typical of the form of estimates that one expects when using
saddle-point methods. The second theorem provides closure properties that are
important for our purposes.

eorem 5.2 (Hayman 145-J). Properties of H-admissible functions:
(1) Closure property: If f and g are H-admissible, P is a polvnomial with real

coeficients and positive leading coeficient, then exp(f), f + g, f -kSPJ P(f), Pa f are
H-admissible.

(2) If P is an aperiodic polynomial with positive coeficients, then exp(P) is
.Y~admissible.

(3) Let cy, p, be positive real numbers and &, p3 real numbers, then % .
:

[6 f(z)=exp &(1-z)-” pgi= 1 1 I(2 1 1 6
- ;log -log-

(

Z ‘) 1-z).

is

Automatic average-case arlalysis of algorithms 97

We s2y here that P(z) is aperiodic when P is not 2 function of 9 for arq p > 1.
The first part of this theorem reduces the test for H-admissibility to simpler tests,
the second part provides the basis for most of the entire H-admissible functions,
and the last part deals with functions with singularities at a finite distance.

The simplest example of H-admissible function is exp(z). From it we get Stirling’s
formula:

1. 1 en
z-s n l 0

Another example is provided by Bell numbers.

Automatic Theorem 19. The number of partitions of size n satisjes

e e'-1

P* = n![z”] exp(e’- l)- n!
r
n+,

4277 exp(r) ’

where r = r(n) is the positive root of r exp(r) = n,

r(n)=logn-loglogn+
log log n+O log log n\

log n (log2 n /’

The next example is tvpical of what can happen at a finite distance. It deals with
so-called “Laguerre contigurations”. (The name derives from the resemblance of
the GF of Laguerre configurations with the GF of Laguerre polynomials.) A Laguerre
configuration is a permutation in which each cycle carries exactly one mark. Since
we can “open” cycles at their mark, we can define a Laguerre configuration by the
specification:

type Laguerre = set(OpenCycle);
OpenCycle = sequence(Node, card>=l);
Node=Latom(l);

From the specification, we obtain the EGF of Laguerre configurations as

exp(N -4).

Automatic Theore
cally

The number qf Laguerre conjigurations of size n is asymptoti-

n![z”] exp
z

--n!
e2J;;

1-Z 2&zn3’4’

Verify automatically admissibility fwm Theorem 5.2, :hen insert the saddle
point formula of Theorem 5.1. Cl

98 P. Flajolet et al.

An unfortunate drawba(,k of Hayman’s method is that it provides only the main
term of the expansion of coefficients. Another class of functions was subsequently
introduced by Harris and Schoenfeld 1441. By imposing more stringent conditions
on the functions in their class, called the class of HS-admissible functi
were able to derive a full asymptotic expansion of function coefficients. As such,
the HS-admissible functions did not lend themselves to a direct implementation
until Odlyzko and Richmond 1621 noted the following property: iff is H-admissible,
exp(f) is I-IS-admissible. It then becomes feasible to automatically derive a full
asymptotic expansion of Bell numbers, for exa :Fle.

Two gaps are still to be tilled. First neither the method of Hayman nor that of
Harris and Schoenfeld can produce a full asymptotic expansion for functions of
“fast but moderate” growth. Thus one cannot find the other terms in Stirling’s
formula by their method. This problem has been partially resolved by Wyman [87],
but the corresponding class cannot be implemented easily. Also, t‘unctions of an
even slower growth do not fit in any known class yet; an instance is the slowly
growing function

exp(zlog’+-).

As a last remark, let us note that it is far from easy to manipulate automatically
expansions in such general scales. A good theoretical framework for this kind of
work lies in Hardy’s tract on “orders of infinity” 1431 and in their generalization
by Hardy fields 1131. More about this will be said elsewhere [73].

Labelled recursive struck 84 yes and implicit functions
In a long series of papers, Meir and Moon (see, e.g., [59]), have considered

so-called simple families of trees (Meir and Moon say “simply generated”‘). Essen-
tially, these are classes of recursive tree structures, either labelled or unlabelled,
whose generating function is defined by an equation

(The various tree examples that we have considered so far ar: closely related to
this notion.)

The interest of this class for us is to provide a protypical treatment of recursive
structures. We may as well assume without great loss o gsnerality that 4 (y) is a

polynomial in y with positive coefficients, in which case (35) implicitly defines J(z)
as an algebraic function of its argument.

In outline, the analysis of the coefficients of f proceeds as follows. Let (z,, yO)
be a point on the algebraic curve defined by (35), so that y. = zo4(yo), or equivalently
yo=f(zoJm Let P(z,y)=y-z4(y). y expanding the equation P(z, y) = 0, we obtain

a
(Z-ZOkg

a
(zo,Yo)+(Y -Yo) ay - P(z0, Yo) - 0,

Automatic average-case analysis of algorithms 99

?qcally. Thus, around an ordinary point, we have a linear dependence between
Z = z - z. and Y = y - yo, provided that the partial derivatives are non-zero. A close:
examination reveals that the dependence is actually analytic.

The analytic dependence breaks down when the partial derivative with respect
to y vanishes. In that case, pushing to the next order in y, we find a relation

a
(z’ ““kg

1
P(zo, Yo) +2 (Y -yoJ2

a2
ay’ P(z9, Yo) - 0. (36)

Thus the function f(z) admits a branch point at z,; its value there is yo, and its

singularity is of the square-root type, as seen from the approximate solution of (36),

A*=2

a
G P(zo, Yo)

a*
ayz mo, Yo)’

Thus, for a singularity, z;, and y. are algebraic numbers determined by a system
of two equations. Details can be worked out for the particular equation (35). With
T the positive root of $(r) = 4(r), the dominant singularity off is p = r/4(r),
and the square root growth yields a coefficient of the form =p3z-3’2.

Theorem 5.3 (Meir and Moon [59]). The coeficient of zn inside the implicitly defined
function

YW = Zd)(YW)

has the asymptotic form

_#+[z”]f(z)-6p+X3/*, S=
J

2 ‘jz:),
Tr 7

where r@(r) = 4(~).

In summary, this approach consists of looking at places where the implicit function
theorem fails to provide an analytic solution. This defines a collection of elementary
equations amongst which the singularities of implicit functions lie. By expanding
further, we obtain non-linear dependencies resulting in branch points (through
inversion). These algebraic branch points cause coefficients to be composed
asymptotically of algebraic elements of the form p-‘W’~ with p, q integers.

The “implicit function method” applies par excellence to the coefficients of
arbitrary algebraic functions, see [30] for enumerative applications. It is applicable
to a large class of transcendentals, such as the Cayley function. It must constitute
the method of choice when attempting a complete asymptotic classification of
labelled recursive structures via appropriate multidimensiona! generalizations.

100 P. Flajolet et al.

Unlalielled structures and Po’lya operators

We start the discussion by two examples, integer partitions and xnultisets of words

(which we ~11

type

here “languages”).

Partition = multiset(Integer);
Integer = sequence(One, card>O);
One = atom(l);

Language = multiset(Word);
Word = sequencebtter, cardN);
Letter = a 1 b; a, b = atom(l) ;

The corresponding OGFs P(z), L(z) are

P(Z)= fi (1-zn)-‘=exp(Z(z)+$(&+$Z(~3)+ . . l)
n=l

L(z)= i (l-z”)-‘” =exp(W(z)+$W(z2)+fW(z3)-t l l l),
n=l

with

22
Z(z)=k and W(z)==.

It turns out that the seemingly innocuous difference between Z(z) and W(z) has
implications for the analysis.

The asymptotic theory of Pn = [z”] P(z) is a classical chapter (originating with
Hardy and Ramanujan) of additive analytic number theory. In full generality, it
involves a mixture of saddle-point analysis, modular transformations, Dedekind
sums, and Ford circles !

One main point is that P(z) has a natural boundary at lzl = 1. The end result is
given by Rademacher’s form of the Hardy-Ramanujan theorem [3, p. 69).

Theorem 5.4 (Hardy-Ramanujan-Rademacher). The number of integer partitions of
n is

p,
r d sinh(n/k)($(x - 1/24))“2

=--&$, Ak(n)k”‘[z-
(x - 1/24)“2 I x=n

A,(n) = 1 Cr)},,k e-‘Tinhik3
!a mod k
(h.k)=l

with q,,k a certain 24th root bf unity.

(37)

The full analysis of P,*, as suggested bv the statement of the theorem, is difficult.
totic analysis of L(z) needs only a few lines.

eorem 5.5. The irUth?r of “languages” of size n is asytq tGtically

L,, - es
“‘2”

3?

where 8

1

k=‘k+l 1

1
e

z - -
26 n314 2”-1’

(Such a theorem is in principle well within the capabilities of an automatic
analyzer; it should really be an “automatic theorem”, but in the current implementa-
tion of A+, Polya operat ors are not yet taken into account by the asymptotic
modules.)

Proof. We observe that W(z) is singular at p = l, and it has a simple pole there.
The crucial point is that we have p < 1, so that when z is in the vicinity of p, t: -

arguments of W(z*), W(z3), . . . , are near p*, p3,. . . , that is to say well within the
disk lzl< p. Simple bounds show further that the series

A(z) =qw(z2)+$w(z3)+ l l .

is analytic at z = p = i.
Thus, from an asymptotic standpoint, our problem is reduced to analyzing a

simple function, namely

2z
exp 1 _2z (> e-

i(r)
9

where L1 (z) is analytic in Izi < p”’ = 2-‘! *. The saddle-point formula

yields the result: we need to change z to 22 which multiplies this form by 2”. The
influence of the Polya operator is miraculously (?!) hmited to the simple factor
e”‘l/2’

. cl

The structures which, like partitions, have a radius of convergence equal to 1 are
(decidably) isolated within the class of unlabelled structures. These require special
treatment. (Observe however that saddle-point techniques readily provide an
asymptotic equivalent of the number of partitions.)

Apart from this small fragment, unlabelled iterative structures can only lead to
isolated singularities, The composition rules for singularities are easily extracted
from the forms

@c(f) = 1ogu -f(W+fl(z),

Wf) = exp(fW +Az),

@df) = exp(fW 4(z),

where fi , f2, f3 are analytic in larger areas. In other words, with respect to singularity
analys: i and saddle point, th: remainders play the role of additive or melltiplicative
mo ers that do not affect t e nature of singularities, as we ave seen in the case

102 P. Flajolet et al.

of “languages”. The types of singularities (either algebraic-logarithmic or exponen-
tial) remain of the same form as in the labelled case. The asymptotic shape of
coefficients thus remain decidable, though special constants (like 6 above) are
introduced.

We shall not attempt any discussion of unlabelled recursive structures. The
techniques there mix what we have just seen concerning unlabelled iterative struc-
tures together with ideas stemming from the analysis of singularities for implicitly
defined generating functions. The reader should turn to the literature on graphical
enumerations 1411, and especially to a paper by Harary et al. where a subclass of
asymptotic problems on graph trees is shown to be decidable [42].

6. Conclusions

A coherent class of elementary combinatorial problems can only lead to designated
“special” asymptotic forms.

We have mentioned in the introduction that properties definable by regular
languages (equivalently finite automata) and context-free languages all lead to
asymptotic expressions involving “rational” or “algebraic” asymptotic elements of
the form

P(n)& and n r/ “w “,

for algebraic numbers o.
As a particular case, the asymptotic density of an unambiguous context-free

language can only be an algebraic number, which constitutes Berstel’s density
theorem [8]. Generalized densities for context-free languages exist and they are
built from the algebraic elements described above. This means that any elementary
counting property of context-free languages can only involve exponentials and
rational powers of n but no logarithm. This observation is in agreement with standard
probability theory: for instance, the probability that a coin-tossing sequence of
length 2n is well-balanced (has n tosses of each type) is asymptotic to l/G.
(Negative results also derive from this: for instance, square-free numbers and prime
numbers in binary representations cannot form context-free languages since the
corresponding arithmetic densities are -6/rr2 and -l/log n respectively.)

If we look back at the four combinatorial examples that we discussed at the
beginning of the introduction, we observe that they all deal with elementary com-
binatorial objects, namely cycles, permutations, heap-ordered trees, expression trees,
and elementary properties like number of components or cost of recursive transfor-
mations.

The symbols used in the results are all related to classical functions of analysis,
and we found “elements” like

exp(- I), a, 6, log n, Jii,

intervening in the asymptotic solutions.

Auromatic average-case analysis of algorithms 103

The discussion in Sections 3-5 should explain why this is so. Our purpose is now
to put the results and the methods of earlier sections in a broader perspective. This
is achieved by means of structure theorems.

Structure theorems
In this discussion, it proves convenient to use the same naming convention for

classes of structures and classes of equations satisfied by their generating functions.
In this way, we speak of rational structures for structures defined rationally, i.e.,

structures definable by finite automata and regular languages. In the same perspec-
tive, algebraic structures correspond to context-free languages. (These two conven-
tions are in agreement with the naming conventions of the “French School”.)

In Section 4, we have developed a part of the theory of elementary labelled iterative
(LI) structures, that of algebraic-logarithmic structures defined as those elementary
LI-structures whose GFs lie in Z?*,_. In Section 5.3, we have provided indications
on the analytic treatment of either entire structures or exponentially singular structures
using saddle-point techniques. Apart from periodicity considerations14 this
classification exhausts the class of all labelled iterative structures.

The first basic structure theorem is naturally relative to algebraic-logarithmic
structures. We recall that the class % is defined as the closure of 1, z by

E(Y) = exp(y), UY) =log(l -UC Q(y) = (1 -y)_‘.

We have: Asymptotically, the elementary counting properties relative to strongly
aperiodic labelled iterative structures of the algebraic-logarithmic type are expressible
rationally in terms of a field of constants 9&_ defined below and of the elements

n!, n”, log n, P-T n-4, (38)

with a, p E Q. The field 3&_ is the smallest field of constants containing the rationals
and the numbers

RoorOf[f(p)= 13, f E %,

and closed under application of functions g E 8.
The indications that we gave in Section 5.3 regarding the classes of entire or

exponentially singular functions could be cast in a similar mould. Statements become
naturally more cumbersome, and we shall only enunciate a very vague version whose
value is only to put saddle-point methods in the proper perspective.

The class of elementary counting properties relative tn exponentially singular and
entire functions involves algebraic-logarithmic elements plus the class of functions
defined as roots of saddle-point equations,

I4 Periodicity issues complicate the picture without significantly changing it, so that we do not discuss
them in depth in the present paper which is only a short: introduction to the subject. Technically, one
way of avoiding periodicity problems consists in restricting attention to strongly aperiodic structures in
which all component GF’s are aperiodic. Notil:e that periodicity issues are well understood in the context
of rational structures, [11,27,71].

104 P. Flajolet et al.

The class of labelled recursive structures lead to another statement with the
constants involving systems of equations rather than single equations.

The unlabelled classes naturally lead to yet more complicated formulations, since
Polya operators are involved. We have however explained in Section 5.3 that, in
general, their study is of the same mathematical and computational level of difficulty
as that of the corresponding labelled classes. (The asymptotic forms remain of the
same type, only the field of constants is larger.)

We have summarized in Table I some of the classes of problems examined by
various authors and discussed throughout this paper. Our approach can thus be
viewed as a large programme to generalize and unify a number of results themselves
dealing with properties of classes of elementary structures.

Zero-one lu ws and distributions

A parallel enterprise of a generality comparable to ours is that of Compton [22,
20,23,21]. Compton starts from so-called O-1 laws in logic and finite model theory.
For instance, (rand.om) firiite graphs have a O-1 law, since any first order property
of graphs is either true with asymptotic probability 1 or false with asymptotic
probability 1; examples of this situation are that almost all large graphs have
5-cliques, almost no graph has isolated points, etc. Compton is able to describe
whole classes of logical theories having O-1 laws. fiurthermore his results also cover
statistical regularities that are bound to occur in general classes of combinatorial
structures, regarding the mean number of components in random structures or the
existence of asymptotic probability (not necessarily 0 or I), in first or second order
logical theories.

Another category of results stems from the original observations of Bender and
Canfield [4,14] that certain general combinatorial schemes like sequence or set
formation, whose translation into generating functions is

1

1 -UC(Z) or exp(uC(z)), (39)

Table 1
A classification of some families of structures.

Labelled Iterative structures
algebraic-logarithmic structures

o exponentially singular structures
entire structures
general LI structures

Unlabelled Iterative structures
3 regular languages and finite automata
o general UI structures

abelled Recursive structures
quadratic structures
algebraic structures; W-structures
simple families of Meir and Moon [59]
general LR structures

Unkbelled Recursive structures
@ context-free languages [30]

simple families of Meir and Moon [59]
graph trees of Marary et al. [42]
general UR structures

Automatic average-case analysis of algorithms 105

lead to Gaussian distributions under quite general analytic conditions on the series
C. (These schemes give bivariate generating functions for the distribution of the
number of components in sequence or set constructions.)

Consider the number of cycies in a random permutation or a derangement, the
number of components in a random mapping, the number of irreducible factors in
a random polynomial over a finite field. The occurrence of a common structural-
analytic scheme “explains” the origin of a limiting nor.mal distribution for these
rather diverse combinatorial structures [35].

Such questions can be pushed much further and one might aim at a complete
characterization of limit distributions that occur inside elementary structures of the
LI, UI, LR, UR classes. The problems are naturally more complicated since we are
then dealing with bivariate problems.

For recursive structures, we are confronted with non-linear bivariate functional
equations. For instance, little is known (to us, at least) on the distribution of path
length in plane trees. The bivariate GF of the exact distribution satisfies the non-linear
difference equation,

F(z;q)= ’
1 - F(gz; 4)’

and, though a limit distribution was proved to exist [57], no analytic form seems
to be known for the density. In the same vein, the existence of a limit law for the
comparison cost of Quicksort was established only recently [68]. This corresponds
to the non-linear differential equation

aaz; 4)
a2

= C2(qz; q).

Many things are known about the moments [46], but the exact form of the density
remains a mystery.

For iterative structures, we deal with explicit functional forms, and there is good
hope of approaching a fairly extensive classification of problems. An importapt step
in this direction has been made by Michkle Soria in her thesis [75]. She is able to
detect schemes of considerable generality that are associated with the occurrence
of diverse limit distributions like Gaussian, Rayley, geometric, Poisson, and the like.

This suggests that a distribution -al counterpart of our framework should also exist.
As a final conclusion, we are led to believe in the existence of a fascinating domain

of investigation. Its scope is the relation betwc:en combinatorial structure dfld
asymptotic form and we propose to call it statistical comblsatorics.

Acknowledgment

This work was supported in part by the Esprit Basic Research Action No. 3075
(Project ALCOM). The authors are grateful to Frangois orain, ich?le Soria,

106 I? Fhjolet ef al.

and Robert Sedgewick for their comments on the manuscript. The ideas developed
here have greatly benefited from innumerable insightful discussions with Jean-Marc
Steyaert and Michkle Soria. Maurice Nivat’s constant support (and patience during
the final labour!) is gratefully acknowledged.

References

[I] A.V. Aho and J.D. Ullman, The Theory of Parsing, Translation, and COmpihg; Vohime 1: Parsing
{Prentice Hall, Englewood Cliffs, NJ, 1972).

[2] L. Albert, R. Casas, F. Fages and P. Zimmermann, Average case analysis of unification algorithms,
Research Report 1213, Institut National de Recherche en Informatique ct en Automatique, April
1990; also in: Rot. STACS ‘91, Lecture Notes in Computer Science (Springer, Berlin, 1991).

[3) GE. Andrews, ne Theory of Partitions, Encyclopedia of Mathematics and its Applications, Vol. Z
(Addison-Wesley, Reading, MA, 1976).

[4] E.A. Bender, Central and local limit theorems applied to asymptotic enumeration, J. Combinatorial
Theory 15 (1973) 91-111.

[S] E.A. Bender and J.R. Goldman, Enumerative uses of generating functions, Indiana Univ. Math. J.
(1971) 753-765.

[6] F. Bergeron and G. Cartier, Darwin: Computer algebra and enumerative combinatorics, in: R. Cori
and M. Wirsing, eds., STACS-88, Lecture Notes in Computer Science 294 (Springer, Berlin, 1988).

[3] F. Bergeron, G. Labelle and P. Leroux, Functional equations for data structures, in: R. Cori and
M. Wirsing, eds., STACS-88, Lecture Notes in Computer Science 294 (Springer, Berlin, 1988).

{8] J. Berstel, Sur la densite asymptotique de langages formels, in: M. Nivat, ed., Automata, Languages
and Programming (North-Holland, Amsterdam, 1972) 345-358.

[9] J. Berstel, ed., S&es Formelles (LITP, University of Paris, 1978).
[lo] J. Berstel and C. Reutenauer, Recognizable formal power series on trees, Theoret. Comput. Sci. 18

(1982) 115- 148.
[1 l] J. Berstel and C. Reutenauer, Les Skies Rarionnelles et leurs Languages (Masson, Paris, 1984).
[121 D. Borwein, S. Rankin and L. Renner, Enumeration of injective partial transformations, Discrete

Math. 73 i1989) 291-296.
[133 N. Bourbaki, Fonctions d’unc variable reelle, in: Eliments de Marhgmatiques, 2nd edn. (Hermann,

1951) Chap. 5,36-55.
[141 E.R. Canfield, Central and local limit theorems for the coefficients of polynomials of binomial type,

J. Combinatorial 7heory, Series A 23 (1977) 275-290.
[151 B. Char, K. Geddes, G. Gonnet, M. Monagan and S. Watt, MAPLE: Reference Manual 5th edn.

(University of Waterloo, 1988).
1161 N. Chomsky and M.P. Schiitzenberger, The algebraic theory of context-free languages, in: P. Braffort

and D. Hirschberg, eds., Computer fiogrcrmming and Formal Languages (North-Holland, Amster-
dam, 1963) 118-161.

117: C. Choppy, S. Kaplan and M. Soria, Complexity ana!ysis of term rewriting systems, Theoret. Comput.
Sci. 67 (1989) 261-282.

[18] J. Cohen, Computer-assisted microanalysis of programs, Comm. ACM 25(10) (1982) 724-733.
1191 J. Cohen and T. Hickey, Uniform random generation of strings in a context-free language, S!AM

J. Comput. 12(4) (1983) 645-655.
[20] K.J. Compton, A logical approach to asymptotic combinatorics. I. First order properties, Adv.

iblaih. 65 (1987) 65-96.
1211 iU. Cowton, A logical approach to asymptotic combinatorics. II. Second-order properties. J.

Combinatoria! Theory, Series A 50 (1987) 110-131.

[22] KJ. Cowton, Some methods for computing component distribution probabilities in relational
structures, Discrete Math. 66 (1987) 59-77.

1231 K.J. Compton, O-l laws in logic and combinatorics, in: I. Rival, ed., Proc. NATO Advanced Study
lnstiwe on Algorithms and Order (Reidel, Dordrecht, 1988) 353-383.

Automatic average-case analysis of algorithms 107

[24] L. Comtet, Advanced Combinatorics (Reidel, Dordrecht, 1974).
[25] N.G. de Bruijn, Asymptotic Methods in Analysis, 3rd edn. (North-Holland, 1958; .epfinted by Dover,

1981).

[26] M.-P. Delest and G. Viennot, Algebraic languages and polyominoes enumeration, Theoret. Comput.
Sci. 34 (1984) 169-206.

[27] S. Eilenberg, Automata, Languages, and Machines, Vol. A (Academic Press, 1974).
[28] W. Feller, An Introduc:ion to Probability Theory and its Applications, 3rd edn., Vol. I (Wiley, New

York, 1968).

[29] P. Flajolet, Analyse d ‘Algorithmes de Manipulation d’iarbres et de Fichiers, Cahiers du Bureau
Universitaire de Recherche Operationnelle, Vols. 34, 35 (Universite Pierre et Marie Curie, Paris,
1981) 209 pp.

[30] P. Flajolet, Analytic models and ambiguity of context-free languages, nteoret. Comput. Sci. 49
(1987) 283-309.

[3 l] P. Flajolet and A.M. Odlyzko, Random mappi ng statistics, in: J.-J. Quisquater, ed., Proc. Eurocrypt’
Lecture Notes in Computer Science 434 (Springer, Be-fin, 1990) 329-354.

1321 P. Flajolet and A.M. Odlyzko, Singularity analysis of generating functions, SIAM 9. Discrete Math,
3(2) (1990) 216-240.

[33] P. Flajolet, B. Salvy and P. Zimmermann, Lambda-Upsilon-Omega: An assistant algorithms analyzer,
in: T. Mora, ed., Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, Lecture Notes
in Computer Science 357 (Springer, Berlin, 1989) 201-212.

[34] P. Flajolet, B. Salvy and P. Zimmermann, Lambda-Upsilon-Omega: The 1989 Cookbook, Research
Report 1073, Institut National de Recherche en Informatique et en Automatique, August 1989, 116

.
[35] FpFlajolet and M. Soria, Gaussian limiting distributions for the number of components in com-

binatorial structures, J. Comtiinatorial Theory, Series A 93 (1990) 165-182.
[36] P. Flajolet and J.-M. Steyaert, A complexity calculus for classes of recursive search programs over

tree structures, in: Proc. 22nd Ann. Symp. on Foundations of Computer Science (IEEE Computer
Society Press, 1981) 386-393.

[37] P. Flajolet and J.-M. Steyaert, A complexity calculus for recursive thee algorithms, Math. Systems
Theory 19 (1987) 301-331.

[38] D. Foata, La Serie GtWratrice Exponentielle dans les Problemes d’finumeration (S.M.S. Montreal
University Press, 1974).

[39] I.P. Goulden and D.M. Jackson, Combinatorial Enumeration (Wiley, New York, 1983).
[40] D.H. Greene, Labelled formal languages and their uses, Ph.D. Thesis, Stanford University, 1983.
[41] F. Harary and E. Palmer, Graphical Enumeration (Academic Press, 1973).
[42] F. Harary, R.W. Robinson and A.J. Schwenk, Twenty-step algorithm for determining the asymptotic

number of trees of various species, .I. Austral. Math. Sot. (Series A) 20 (1975) 483-503.
[43] G.H. Hardy, Orders of infinity, Cambridge Tracts Math. 12 (1910).
[44] B. Harris and L. Schoenfeld, Asymptotic expansions for the coefficients of analytic functions, Illinois

J. Math. 12 (1968) 264-277.
[45] W.K. Hayman, A generalization of Stirling’s formula, J. Reine Angew. Math. 196 (1956) 67-95.
[46] P. Hennequin, Combinatorial analysis of quicksort algorithm, Theoret. Inform Applic. 23(j) (1989)

317-333.
[47] T. Hickey and J. Cohen, Automating program analysis, J. ACM 35 (1988) 185-220.
[48] A.T. Jonassen and D.E. Knuth, A trivial algorithm whose analysis is not, J. cornput. System Sci.

16 (1978) 301-322.
[49] A. Joyal, Une theorie combinatoire des series formelles, Adv. Math. 42(1) (1981) l-82.
[50] R. Jungen, Sur les series de Taylor n’ayant que des singularites algebrico-logarithmiques sur leur

cercle de convergence, Comment. Math. He/v. 3 (1931) 266-306.
[51] S. Karlin and Ii. Taylor, A First Course in Stochastic Processes, 2nd edn. (Academic Press, 1975).
[52] D.E. K:uth, The Art of Computer Programming, Vol. 1: Fundamental Algorithms (Addison-Wesley,

Reading, MA, 1968).
[53] D.E. Knuth, The Art of Computer Programming, Vol. 3: Sorting and Searching (Addism-Wesley,

Reading, MA, 1973).
[54] D.E. Knuth, The Art of Computer Programming, Vol. 2: Seminumerical Algorithms, 2nd edn.

(Addison- Wesley, Reading, MA, I98 1).

108 I? Flajolet et al.

[55] D, Le Metayer, Ace: An automatic complexity evaluator, ACM Trans. fiogtamming Languages

Systems lQ(2) (1988) 248-266.
[56] M. Lothaire, Combinatorics on Words. Encyclopedia of Mathematics and its Applications, Vol. 17

(Addison-Wesley, Reading, MA, 1983).
1571 G. Louchard, The Brownian excursion: a nutrlerical analysis, Compur. Math. Applic. lO(6) (1984)

413-417.
158-J p. Massaza, G. Mauri, P. Righi and M. Torelli, A symbolic manipulation system for combinatorial

structures, in: T. Beth and M. Clausen, eds., Applicable Algebra, Error-Correcting Codes, Com-
binatorics and Computer Algebra, Lecture Notes in Computer Science 307 (Springer, Berlin, 1987).

[59] A. Meir and J.W. Moon, On the altitude of nodes in random trees, Can. J. Math. 30 (1978) 997-1015.
[60] F. Morain and J. Olivos, Speeding up the computations on an elliptic curve using addition-

subtraction chains, CAIRO Theoret. Inform. Applic. 24(6), to appear.
1611 J. Moses, Algebraic simplification: a guide for the perplexed, C’omm. ACM 14(S) (1971) 527-537.
[62] A.M. Odlyzko and L.B. Richmond, Asymptotic expansions for the coefficients of analytic generating

functions, Aeqwationes Math. 28 (1985) 50-63.
[63] F.W.J. Oher, Asymptotics and Special Functions (Academic Press, New York, 1974).
[64] G. Pblya, Kombinatorische Anzahlbestimmungen fiir Gruppen, Graphen und cbfimische Verbin-

dungen, Acta Math. 68 (1937) 145-254.
[65i S. Pblya and R.C. Read. Combinatorial Enumeration of Groups, Graphs and Chemical Compounds

(Springer-Verlag, New York, 1987).
[66] L.H. Ramshaw, Formalizing the analysis of algorithms, Ph.D. Thesis, Stanford University, 1979;

also avai!able as Tech. Rep. SL-79-5, Xerox Palo Alto Research Center, Palo Alto, CA.
[67] R.C. Read, A note on the number of functional digraphs, Math. Ann. 143 (1961) 109-110.
[68] M. Rignier, A limiting distribution for qu:- . asort, ?%eoret. Inform. Applic. 23(3) (1989) 335-343,
1691 G.-C. Rota, On the roundations of combinatorial theory, I. Theory of MGbius inversion, 2.

Wahrscheinlichkeitstheorie 2 (1964) 340-368.
2701 G.-G. Rota, Finite Operator Calculus (Academic Press, New York, 1975).
[71] A. Salomaa and M. Soittola, Automata-meoretic Aspects of Formal Power Series (Springer, Berlin,

1978).
[72] B. Salvy, FL actions g&Cratrices et asymptotique automatique, Research Report 967, Institut

National de Recl.:rche en Informatique et en Automatique, 1989, 118 pp.
[73] B. Salvy, Asymptotique automatique et fonctions gCnCratrices, Ph.D. Thesis, Ecole Polytechnique,

1991, in preparation.
[74] N.J.A. Sloane, A Handbook of Integer Sequences (Academic Press, New York, 1973).
[75] M. Soria, MCthodes d’anallyse pour les constructions combinatoires et les algorithmes, Doctorat

d’Etat, UniversitC de Paris-Sud, Orsay, 1990.
[76] R.P. Stanley, Generating functions, in: G.-C. Rota, ed., Studies in Combinatorics, M.A.A. Studies

in Mathematics 17 (The Mathematical Association of America, 1978) 100-141.
1771 R.P. Stanley, Differentiably finite power series, Eur. J. Combinatorics 1 (1980) 175-188.
1781 R.P. Stanley, Enumerative Combinatorics, Vol. I (Wadsworth & Brooks/Cole, 1986).
[79] J.-M. Steyaert, Structure et complexid des algorithmes, These d’Etat B l’universiti de Paris VII, 1984.
[SO] E.C. Titchmarsh, TIae Theory of Functions, 2nd edn. (Oxford University Press, 1939).
1811 J. Vim and P. Flajolet, Analysis of algorithms and data structures, in: J. van Leeuwen, ed.,

Handbook of Theoretical Computer Science, Vol. A: Algorithms and Complexity (North-Holland,
Amsterdam, 1990) 43 l-524.

1821 J. Vuillemin, A unifying look at data structures, Comm. ACM 23(4) (1980) 229-239.
WI B. Wegbreit, r\l&hanical program analysis, Comm. ACM 18(9) (1975) 528-539.
1841 P. Weis, M. Aponte, A. Laville, M. Mr .y and A. SuPrez, The CAML Reference Manual (INRIA-

ENS, 1987).
[SS] J. Wimp a& D. Zeilbergi-r. Resurrecting the asymptotics of linear recurrences, J. Math. Anal.

Applic. 191 (1985) 162- : ‘-5.

!.861 R. ~~G~~g, Asymptotic Ap;lroximations of Integrals (Academic Press, 1989).
[871 M. Wyman, The asymptotic behavior of the Laurent coefficients, Can. .!, Math, 11 (1959) 534-555.
1881 D. Zeiiberger, A holonomic approach ho spc&; fcaii&tili identities, 1988, Preprint.
1891 P. Zimmerman& Alas: un systeme d’analyse algbbrique, Rapport de recherche 968, Institut National

de Recherche en Informatique et en Automatique, 1989,

Automatic average-case analysis of algorithms 109

[90] P. Zimmermann, Series generatrices et ana!ysc automatique d’algorithmes, Ph.D. Thesis, Ede
Polytechnique, Palaiseau, France, ; 391.

[91] P. Zimmermann and W. Zimmermann, Analysis of programs with semantic conditionals, 1990, in
preparation.

[92] W. Zimmermann, Automatische Komplexit%sanalyse von funktionalen Programmen, Ph.D. Thesis,
University of Karlsruhe, 1990.

