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Abstract 

Flajolet, P., Salvy, B. and Zimmermann, P., Automatic average-case analysis of algorithms, 
Theoretical Computer Science 79 (1991) 37-109. 

Many probabilistic properties of elementary discrete combinatorial structures of interest for the 
average-case analysis of 4gorithms prove to be decidable. This paper presents a general framework 
in which such decision procedures can be developed. It is based on a combination of generating 
function techniques for counting, and complex analysis techniques for asymptotic estimations. 

We expose here the theory of exact analysis in terms of generating functions for four different 
domains: the iterative/recursive and unlabelled/labelled data type domains. We then present 
some major components of the associated asymptotic theory and exhibit a class of naturally 
arising functions that can be automatically analyzed. 

A fair fragment of this theory is also incorporated into a system called Lambda-Upsilon-Omega. 
In this way, using computer algebra, one can produce automatically non-trivial average-case 
analyses of algorithms operating over a variety of “decomposable” combinatorial structures. 

At a fundamental level, this paper is part of a global attempt at understanding why so many 
elementary combinatorial problems tend to have elementary asymptotic solutions. In several cases, 
it proves possible to relate entire classes of elementary combinatorial problems whose structure 
is well defined with classes of elementary “special” functions and classes of asymptotic forms 
relative to counting, probabilities, or average-case complexity. 

This paper presents a systematic framework in which combinatorial enumerations 
and probabilistic properties of combinatorial structures can be studied formally. 

The analysis system that we propose is “algebraically complete” with respect to 
a large category of so-called decomposable data types and their associated 
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algorithms. It is also “asymptotically complete” with respect to several subclasses 
of decomposable problems. Thus a number of statistical and computational proper- 
ties of combinatorial structures can be systematically decided, even in their precise 
asymptotic form. 

A correlate of this is the possibility of designing an automatic analyzer of average 
case performance for several interesting classes of algorithms and programmes. 
Based on this theory, we have actually built a prototype system called Lambda- 
Upsilon-Omega (A$) that is capable of producing rather non-trivial average-case 
analyses of algorithms. 

Here is a small sample of properties amenable to automatic analysis in this 
context: (i) the average number of cycles in a random permutation of n elements 
is -log n and the probability that such a permutation has no l-cycle is we-‘; (ii) 
path length in a random heap-ordered tree of n elements is on average -2n log n, 
which represents also the comparison cost of Quicksort; (iii) path length in a random 
(uniform) plane tree is -in&; (iv) the symbolic differentiation algorithms of 
computer algebra gain on average a factor of O(G) if shared representations (i.e., 
dags) are used, etc. 

The paper consists of two major parts that reflect the two components of the 
theory. The first one, the “algebraic” component, deals with exact counting through 
the algebra of generating functions. The second one, the “analytic” component, 
uses analytic properties of these generating functions in order to recover relevant 
asymptotic infcrmations. 

1.1. Algebraic enumeration 

For the class of decomposable combinatorial structures under consideration, i.t 
is possible to compile automatically structural specifications into equations over 
counting generating functions. These equations represent in a compact format either 
explicit or else recursive forms of count sequences. For the associated algorithms, 
we introduce generating functions of average costs called complexity descriptors, and 
we provide similar translation mechanisms from programme specifications to these 
compiexity descriptors. 

The equations that one generates in this way are meaningful in the sense that all 
coefficients of generating functions-providing either the number of combinatorial 
structures of size n or the average case complexity of algorithms over random data 
of size n -are computable in time that is po!ynomial in n. 

1.2. Asymptotic analysis 

It is known from classical analysis and analytic number theory that the asymptotic 
growth of coefficients of a series is determined by analytic properties of the series 
‘viewed then as an ;Aytic function of a complex argument). In this domain, 
singularities and saddle points play an essential role. 
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One of the major benefits of the generating function approach is to associate well 
identified classes of special functions to well characterized classes of combinatorial 
structures and programmes. We can then systematically relate classes de3ned by 
special combinatorial constructions, classes of special functions with specific analytic 
properties, and asymptotic properties of structures. 

We first illustrate the principles of our approach by discussing two examples 
drawn from the classical theory of formal languages and enumerations. 

Example 1.1 (Regular events andjinite automata). Combinatorial structures defined 
by regular languages and finite automata have rational generati,ng functions 
[9,27,71]. The counting sequences accordingly satisfy linear recurrences wulith con- 
stant coefficients. From elementary analysis, we know that a rational gcnekating 
function f(z) admits a partial fraction decomposition, so that its coefficients J, have 
an explicit form as “exponential polynomials”, 

f” =c pk(n)dA 
k 

W 

for a finite family of polynomials P&(x) and a family of algebraic numbers ak. 
In other words, for this restricted class of devices, we are able to predict in which 

class of formulae, either exact or asymptotic, counting sequences and expected 
values of parameters are going to fall. For instance, a priori, the problem of run 
length statistics -What is the probability that a random binary string of length n 
contains no run of k consecutive 1s ?-lies in this class for each fixed k. (See [28, 
X111.7] for a classical introduction.) Further analytic properties are available; most 
notably the Perron-Frobenius theory [ 11,511 predicts that the OS of largest modulus 
in (1) have arguments that are commensurable with V, a fact that further restricts 
the range of fluctuations (due to complex ws) to those that are asymptotically 
periodic. The whole theory [27] is a combinatorial analogue of the classical theory 
of Markov chains. 

Example 1.2 (Context-free languages). Trees and various types of lattice paths can 
be described by context-free grammars [9, 10,26,56,71]. The corresponding generat- 
ing functions are algebraic, as follows by the classical Chomsky-Schiitzenberger 
theorem [16]. Accordingly, the counting sequences satisfy linear recurrences with 
polynomial coefficients (“P-recursive” sequences). An algebraic function S(z) has 

only algebraic singularities; from this fact, its coefficients J, are found to be 

asymptotic to a sum of “algebraic” elements, 

(2) 

his again characterizes the allowe es of probabilistic behaviours for all com- 

binatorial processes that can be described by context-free languages. This asymptotic 
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theory of context-free languages was worked out in 131311; it constitutes a com- 
binatorial analogue of the probabilistic theory of branching processes. 

The examples above illustrate a typical situation: A class of combinatorial proces- 
ses (finite automata, context-free grammars) is associated to a class of special 
functions (rational functions, algebraic functions). Analytic properties of these 
functions, especially the nature of their singularities, are well characterized (poles, 
algebraic singularities). This in turn entails that the major asymptotic properties of 
the original processes are fully characterized (exponential polynomials, algebraic 
elements), and thus decidable and computable. 

Our objective here is only to extend this philosophy to an appreciably larger class 
of combinatorial structures. Our approach to the automatic analysis of algorithms 
and data structures is thus a “pipe” between two technologies: the symbolic (or 
formal) methods of combinatorial enumerations and the complex-analytic methods 
of asymptotic analysis. 

1.3. The automatic analyzer, Lambda-Upsilon-Omega 

An automatic analyzer, the A@ system’ implements the fundamental theoretical 
ideas that we have just outlined. One of the primary aims of the .hyfi system is to 
provide a tool for aiding the analysis of various types of algorithms. it is also meant 
to experiment with the descriptive power of the theories developed here. 

The system itself is described elsewhere by its two implementers (see also Fig. 
1): Zimmermann is responsible for the algebraic analyzer [89] and Salvy has designed 
the asymptotic analyzer [72]. The algebraic analyzer compiles data type and pro- 
cedure specifications into equations over generating functions (that are counting 
generating functions or complexity descriptors). It is implemented in CAML. The 
analytic analyzer is an extensive collection of routines that manipulate generalized 
asymptotic series and perform asymptotic r &is D:? generating functions, produc- 
ing final asymptotic results. The imerface betwce she two components is ensured 
by the “solver” module that relies on compu’tez gigebra capabilities for solving 
elementary equations (linear equations; algebraic equations; simple differential 
equations). 

As of 1990, the programme has over 10 000 instructions, partly in a high level 
functional language-CAML, a dialect of ML [84]-and partly in a computer 
algebra language-Maple [ 151. 

In the present paper, we have used the A@ system in order to produce what is 
called automatic theorems. In principle, an automatic theorem is a statement that is 
derived automatically from formal specifications by the logical framework exposed 
in this paper. We have however decided to enforce a stricter discipline and retain, 

’ The name Lambda-Upsilon-Omega derives from the Greek verb root Atiw which means “I solve” 
and which is at the heart of the word arta-ly-.sis. Rya should be pronounced as liio, and its Latin 
rendering is LUO. 
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Fig. 1. The general structure of the AyQ system. The diagram shows the three major components of the 
system, the Algebraic Analyzer (ALAS), the Solver, and the Analytic Analyzer (ANANAS). 

for the twenty odd automatic theorems given here, only those results that are also 
derived automatically by the A$ programme. This attitude is meant to emphasize 
that the effective procedures described here are also practically implementable. The 
human interaction is limited to trivial editing of resulting formulae, and the reader 
can consult the A@ Cookbook [34] for complete listings of analyses that were 
produced by the system in 1989. 

The current functionality of the Ayfl system is as follows: 
for exact counting in terms of GFs, the rules of Section 3 relating to labelled/un- 
labelled recursive/iterative st,. uctures and their associated algorithms; 
for the solver, the amount of algebraic manipulation discussed in Section 5.2 
regarding substitution, linear and quadratic equations; 
for the analytic analyzer, the theory of algebraic-logarithmic (AL) structures of 
Section 4, plus the extensions relating to saddle point methods described in Section 
5.3. 

This specification of a precise mathematical level of expertise also ensures that our 
“automatic theorems” actually represent automatic results (and not a haphazard 
collection of ad hoc recipes put into a large programme!). 
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The capabilities of the logical framework- and its corresponding implementa- 
tian-extend to a number of combinatorial and computational problems. Examples 
are spread over this paper and in the Aya Cookbook, and they can be organized 

roughly into three categories. 
(i) Regular languages andfmite automata. Addition chains and related optimiz- 

ation problems; long term behaviour of finite state controls in systems; various 
combinatorial problems (compositions, partitions, runs in sequences) that are 
expressible in terms of regular languages. 

(ii) Terms and trees: Differentiation algorithms, higher derivatives; some sim- 

pl%cation algorithms; a class of term rewriting systems; partial analyses of 
unification algorithms and related pattern occurrence problems. 

(iii) Combinatorial problems: Random tree problems; mappings and functional 
graphs; partitions and ordered partitions; Banach’s matchbox problem; some special 
permutation problems. 

For instance, the problems on addition chains are of some relevance to integer 
primality testing using elliptic curves and a small percentage of computer time was 
gained using optimizations guided by the A-@ system [60]. In the next section, we 
show that the symbolic computation of derivatives has an average cost over (random) 
expressions of size n that is 0( n”‘). The Aya system was first used to verify the 
conjecture that the cost of a d th order derivative varies on average like 0( n 1+d’2), 
for d = 2,3. 

Within the system’s capabilities, we find many examples of rewriting systems that 
belong to the class of so-called regular systems [ 17,751. A@ was used to check 
several of the corresponding analyses of Michele Soria’s thesis in this context [75], 
or in the context of random functional graph problems (model sensitivity issues of 

[31,751)- 
Several automatic analyses on pattern occurrence problems in random trees have 

been used in the performance study of unification algorithms given in [2]. One of 
the authors’ little rewards occurred when they discovered that the A@ system was 
capable of “doing” a paper published as a note (on injective partial transformations) 
in the journal Discrete Mathematics [12], and even obtain more complete results 
including asymptotics. 

4 few historical comments on the ancestry of these ideas are now in order. 
Formal or symbolic methods in combinatorial enumerations take their roots in 

actual enumeration practice in various domains. However, the first general theories 
seem to have started in the 1960s. The Chomsky-Schiitzenberger theory of context- 
free languages [ 161 is amongst the first traceable sources where very systematic 
correspondences are exploited between combinatorial structures (words and 
languages) and generating functions. Other sources are the theory of graphical 
e”umerations 1411, Rota’s thee y 01 generating functions [69,70], Bender and 
Goldman’s theory of “prefabs” [S], or Foata’s theory of the partitional complex 
[3g]. Each of these theories deals with combinatorial structures that are either 
labelled or unlabelled, but not both. A unifying framework comprising both types 
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was proposed by Joyal [49] in 198 1 l Finally, a systematic exposition of combinatorial 

enumerations in this context is the subject of a book by Jackson and Goulden [39]. 
Other relevant refereilces are Comtet’s book [24] and Stanley’s works [76,78 1. 

On the analytical side, the tradition of relating analytic properties of a function 
to asymptotic properties of Its Taylor coefficients is older. Its roots lie in part in 
classical analysis (e.g., Darboux’s method), and in part in analytic number theory 
(e.g., the additive theory of partitions). We shall simply refer to classical treatises 
like those of De Bruijn and Olver [25,63] for a general treatment. The two major 
techniques that we use are: (i) singularity analysis for functions that do not grow 
too fast; (ii) saddle point techniques for functions with a more violent growth at 
either a finite or infinite distance. 

Turning from theory to practice, the first automatic performance analyzer that 
we are aware of was built by Wegbreit in the early 1970s [83]. Wegbreit’s pioneer 
system, Metric, aimed at deriving closed form expressions for execution behaviour 
of programs, and it included modules to carry out average-case analysis. However, 
the underlying principles were Markovian approximations (fixing the probabilities 
of tests to constants) and an amount of symbolic manipulation limited to linear 
recurrences with constant coefficients. 

The present work is bated on works of Flajolet and Steyaert [29,36,79,37]. In 
particular, the articles [36,37] proposed a complexity calculus for a class of simple 
recursive programmes over tree structures; that calculus in turn gave rise to a 
prototype implementation which is described in [33] and which constitutes a direct 
ancestor of the current Ryn system. 

The algebraic part of our system also bears some resemblance to the interesting 
theory of labelled grammars due to Greene [40]. Greene’s theory concerns primarily 
combinatorial enumerations; he used it for constructing an automatic generator of 
random combinatorial structures, but he did not pursue the formal side of the 
analysis of algorithms. The influence of Greene’s excellent work is to be found not 
so much in the core of our system, but rather in several extensions (automatic 
generation of random structures, counting of jabelled structures with order con- 
straints). The Darwin system developed by Bergeron and Car-tier [6,7] determines 
generating functions within Joyal’s enumerative theory; it is a distant cousin to the 
algebraic engine of the Ryfl system. A system also designed to enumerate com- 
binaitirial structures that is based on the Jackson-Goulden formalism is reported 
in [58]. 

Amongst other proposals, we mention the approach of Hickey and Cohen to the 
automatic analysis of programmes in [18,47]; it relies in part on Ramshaw’s 
frequency system (which corresponds roughly to Floyd- Hoare complexity assertions 
[66]) and in part on Kozen’s semantics of probabilistic programmes. The Hickey- 
Cohen framework appears to have a rich expressive power, however it is not clear 
how a complete calculus (with simplification rules and normal forms) can be 
developed. Perhaps most of the interest of their approach lies in correctness 
verification of complexity assertions. Zimmermann in [92] developed a system, 
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Complexa, based on recurrence relations which extends Wegbreit’s approach since 
more elaborate control mechanisms are allowe and more complicated recurrences 
are dealt with by the algebraic unit. 

Finally, a few other works have dealt with automatic worst-case analysis of 
algorithms, a rather different domain. For this, we refer to the work of Le Metayer 
[55] and references therein. 

2. An example: symbolic differentiation 

In order to illustrate the range of problems that we want to attack, we start by 
presenting an example of a simplified programme for computing derivatives of 
formal expressions. 

Such algorithms form the core of classical algebra systems and provide classical 
programming exercises [52, p. 336-340). Our programme is a simple tree rewriting 
process that recursively implements the differentiation rules 

Dx *P 

De.’ + e.‘x(Df) 

D(f+g) * (Df)+(Ds). 
It should be stressed that the analysis that follows was produced automatically by 
the Ayfi system. (We follow the standard conventions of the system for specifying 
data types and algorithms, but these should be transparent in the various examples.) 

We consider a programme that operates on formal expressions composed simply 
of exponentials (expo), sums (plus), and a simple variable (x). 

type E2qression=expo Expressionlplus ExpressionExpressionlx; 
expo, plus, x=atom( 1) ; 

The data type specification is recursive. Its presentation resembles a classical context- 
free grammar, and atom( 1) refers to objects that are atomic (i.e., terminals in 
standard context-free language parlance) with size equal to 1 (the standard size for 
an atomic object). A symbolic expression like x +ee’+*’ is thus of the Expression 
type, with size 7, being represented as 

plus x expo plus expo x x 

The differentiation algorithm has a simple top down recursive structure which, 
in our formalism, we specify as follows: 

function diff(e : Expression); 
begin 

case e of 
(expo,f) : times(expo(copy(f)),diff(f)); 
(plus,f ,g) : plus(diff(f),diff(g)); 
x : one ; 

end ; 

end ; 

The output expressions then beIo &ion, products 



(times) and the constant 1 (one) bei allowed. The co 
carbon copy of its arg 

x : 
end; 

end; 

We thus specify a version of the algorithm that computes diff ( e ) 
own independent linked structure. 

The algorithm has worst-case complexity O(n”) when applied to an input 
expression of size n. This worst case is attained with chains of exponentials. For 
instance the verbatim output of the differentiation command applied to the sixfoid 
iteration of the exponential function in Maple is: 

\ 
exeexe’xeeee eeee e’ ee’ eeee 

The best-case complexity is clearly O(n). 
Our interest in this paper lies in atterage-case ana2y.G of algorithms under uniform 

combinatorial models where all input structures of a given size n are taken equally 
likely. The differentiation algorithm under consideration operates in a purely recur- 
sive fashion over a recursively defined data type and thus it falls under the class of 
algorithms that our system car: approach. For instance, if we specify a complexity 
measure of 1 for each of the output symbols, 

measure expo, plus, x, times, one : 1; 

the cost of the algorithm coincides with the size of the expression that it outputs. 
In that case, the A@ system automaticalIy produces the answer: 

Average cost for diff on random inputs of size n is: 

l/3 
pi%/2 n3/2 

(4/3) 1’2 
+ (5/6 n) + @(I?/~)) 

Floating point evaluation: 

( .5116633543 n3/2 j + (AZ33333333 n) + (Oh’-‘*) 1 

Thus, we obtain the automaticall)l produced theorem: 

. The complexity of the diflz- entiation algorithm applied to 

random expressions of size n is on average’ 

II- -E. n312+i n +0( n”‘). 
12 

0) 

z is “automatic theorem” was produced in 75 s ofcomputing time on a machine (SunS! that performs 

about 3 x 1Q6 elementary instructions per seconds and has 12. x 1Q6 byte; of core memory. 
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(Also a full asymptotic expansion in descending powers of 6 can be obtained.) 

roof. Let us examine now the way that such an analysis is produced. Let rdiff,, 
represent the expected complexity of procedure diff over a random expression 
of size n. The basic equation is 

rdiff,, = 
rdiff ,, 

Expression,, 
(4) 

where Expression,, is the number of expressions of size n while rdiff, represents 
the SUIII of the execution costs of the procedure over all expressions of size n. The 
analysis problem thus reduces to a counting problem, namely determining 
Sxpression,, , and a modified counting problem where we need to find the total cost 
of the diff-algorithm. 

The two problems are attacked by generating function (GF) techniques; see 
9ection 3 for basic definitions. We thus define the GFs. 

Expression(z) = C Expression,, l z” and rdiff(z) = C rdiff,, l z”. 

n=O na0 

The first one is the standard counting generating function of the expression structures. 
The second one is called the complexity descriptor of the a!gorithm. 

Algebraic enumeration: Translation mechanisms that we are going to review with 
some detail in the next section imply that these GFs satisfy equations that are direct 
“images” of the data type and of the algorithm specifications. 

First, the recurske nature of the expression type leads to a fixed point equation 

Expression(z) = z( Expression( z))’ -I z Expression( z) + z. 

In this particular case, we found a quadratic equation whose explicit solution is 

Expression(z) = 
I-z--~~-~z-~z’ 

22 l 

for Expression( z) 

See [24, p. 561 for the classical solution to similar problems. 
Second, the complexity descriptor rdiff(z) satisfies a simpler equation which 

rationally relates it to Expression(z) and rcopy( z), and this is again a direct reflection 
of the recursive specification of the dif f routine. Finally, we find that all intervening 
GFs are rational functions in z and in the singular part 

A(z) =~/l-22-3~~. (5) 

Asymptotic analysis: The problem is now to extract the coefficients of the GFs. 
The major idea is to avoid the computation of explicit forms of the coefficients 
Expression,, y rdiff,, and aim at direct asymptotic analysis from the GFs themselves. 

It turns out that the dominant singularities -the singularities of smallest modulus- 
of a generating function determine the asymptotic growth of its coefficients. The 
modulus p of the dominant singularity (-ies) contributes for the coefficients a driving 
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exponential factor of p-” while the nature of the singularity is reflected by a 
subexponential factor. These questions are discussed in Section 4. 

Here, the singularities of A(z) and hence of Expression(z) are the branch points 
z=-1 and z=f. The dominant singularity is thus p = $. Locally, we find that for 
some constants co, cl, c2,. . . , we have 

Expression(z) = co+ c,dn+ 0( 1 - 32) and 

rdiff(z) =cz 
1-3z+~i=X 

c3 +0(1). (6) 

By virtue of general theorems to be detailed in Section 4, these local expansions 
can be transferred to coefficients and they provide the expansions 

Dividing these two asymptotic forms yields the main term in the statement of 
Automatic Theorem 1; the expansion as stated follows from suitably refined versions 
of (6). This completes the account of the (automatic) proof of the Automatic Theorem 
1. 0 

The same approach will enable us to analyze a number of variants to this algorithm. 
For instance, by just deleting the references to the copy procedure, we obtain an 
algorithm that is equivalent to operating with shared pointer representations. A very 
similar analysis can be performed (still automatically!). 

Automatic Theorem 2. The average complexity of the difirentiation algorithm applied 
to random expressions of size n when sharing oj’subexpressions is used is 

4 1 1’ 
in+;+0 - . 

0 n 
(8) 

By examining Eqs. (3) and (8), we are thus able to compare two versions of the 
dMerentiation algorithm. We see that by doing (some) sharing of common subex- 
pressions, complexity is reduced from 0( n3’2) to O(n), and very precise estimates 
are obtained. This represents a fairly typical use of an automatic system like A@. 

In passing, we have also obtained results about the counting of “expressions” or 
what amounts to the same the counting of their associated trees. Rephrasing results 
slightly, we have found: 

atic S1. The number of unary-binary trees with n nodes is the coeficient 

of zn in the generating function 

l-z-Jl-2s-3zz 
Expression(z) = -.-- 

2i: - 
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Asymptotically, this number is 

Expression,, = 

In other words, an automatic analyzer can be used for doing some amount of 
combinatorial counting as well. The sequence of coefficients of Expression(z) starts 
as 1, I, 2, 4, 9, 21, 5 I, 127; these numbers are classically known as the Motzkin 
numbers in combinatorial theory and they appear in Sloane’s book [74], under the 
name “generalized ballot numbers”, as sequence 456. 

We now propose to explain precisely on which mathematical principles such an 
automatic analysis can be based. 

3. Algebraic analysis 

Trbe purpose of this section is to show how specifications of certain combinatorial 
structures together with their associated algorithmic schemes admit translations into 
generating functions. 

We first introduce combinatorial constructions (or data type constructions, if one 
prefers) that form the skeleton of our system (Section 3.1). Roughly speaking, we 
deal with structures that are definable using products, unions, sequences, cycles, 
and sets (or in programming parlance, records, variable records, lists, circular lists, 
and unordered lists). The definitions may be either iterative (non-recursive) or 
recursive. 

Thus, we operate with basic structures that could be termed constructible or 
decomposable, since they can be specified starting from basic elements by means of 
a fixed collection of standard set-theoretic constructions. To be more precise, the 
constructions operate in a parallel manner in two different universes, the “unlabel- 
led” and thti “labelled” universe-a dichotomy that is familiar from classical 
combinatorial analysis [38,39,49,76]. 

An issue to be discussed is the notion of well-definedness of specifications; this 
is dealt with in Section 3.2. The situation there resembles that of context-free 
languages with respect to properness of grammatical specifications. 

Next, we describe the schemes that allow us to translate combinatorial construc- 
tions into operations over generating functions (Section 3.3). The constructions that 
we introduce are all “admissible” in the sense that they translate into generating 
functions. Each universe is associated with its own type of generating function 
(either ordinary or exponential). 

In Section 3.4, we introduce a collection of programming mechanisms that are 
in a sense the algorithmic counterpart of our standard combinatorial constructions. 
Intuitively, we deal with extended traversal procedures for constructible/decompos- 
able structures. The mechanisms considered are those of selecting a component in 
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unlabelled labelled 

union [+]: union 
Cartesian prodrrct [X 1: product 
sequence [ (.)*I: sequence 
cycle [C( .)]: cycle 
set [&(.)I: set 
multiset CM(.)]: multiset 

union [+]: union 
partitional product [*]: product 
partitional sequence [ (.>*I: sequence 
cycle [C(.)]: cycle 
partitional set [&(.)I: set 

Fig. 2. The admissible constructions operate in tw2 parallel “universes”, the universe of plain unlabelled 
structures and that of labelled structures. T 2 A@ forms of operators are also giver. (in pseudo-teletype 

font). 

a product (record field selection), testing definitions by cases (handling records with 
variants), iterating over one or all components (selection/iteration) for set, cycle, 
or sequence constructions. This defines a closed world of algorithmic processes for 
which translation into complexity descriptors can be achieved automatically by 
means of a fixed set of rules (Section 3.5). Thus for this class, exact average-case 
analysis is decidable and, as it turns out, of low polynomial complexity (cf. Theorem 
3.15). 

3.3. Combinatorial constructions 

This paper deals with discrete combinatorial models for average case analysis of 
algorithms. This means averaging an algorithm’s cost over a class of structures (the 
legal inputs) of a fixed size n, using the uniform distribution. 

Definition 3.1. A class of combinatorial structures is a pair (%?,I . I), where % is a 
finite or denumerable set, 1 .I is a function from %’ to k-4 called the size function, 
and for all integers n, the number of elements of % that have size n is finite. 

We let in general %,, denote the subset { y E %‘I Iyl= n}. We use Cn to denote the 
cardinality of %‘,, and refer to the sequence of numbers {Cn}n20 as the counting 
sequence of the class %. 

Typical objects that we shall consider here are words, permutations, trees and 
graphs of various sorts. Typically, the “size” of a word is its length, the size of a 
tree or a graph is the number of its nodes etc. Our main tool is going to be generating 
functions (GFs) whose definitions we now recall. 

be a sequence of numbers. We define the ordinary 

generating function (OGF) and the exponential generating function (EGF) of the 
sequence by 

f(z)= c fnzn 
II 20 

and f(z)= C fn$. 
,130 . 
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When %’ is a class of structures with {C,,} as its counting sequence, we call C(z) 
and C(z) the OGF and EGF of K We may observe the alternate forms of GFs for 
structures, 

p 

C(z)= 1 zy and C(z)= C 1. 
I I 

w 

yc ‘6 yc% y* 

In the sequel we stick to the notational convention of using the same groups of 
letters for classes of structures (%), their counting sequences (C,, or c,) and the 
corresponding generating functions (C(z), C(z) or c(z), c^(z)). 

For instance, the class B of all binary strings is such that %, = (0, 1)“. Thus the 
cardinality is B,, = 2”, and the corresponding OGF and EGF are found to be 

B(z) = 1 2’2” 
1 

?I 20 
=z and i(z)= C 2”$=e’;. - 

n20 . 
(11) 

We need a notation to go back from GFs to coefficients. If a(z) =CrZo a,~“, in 
accordance with well established practice, we use [z”]a(z) to denote the coefficient 
of z* in a(z), that is to say a,,. Thus, in the notation of Eq. (9), we have 

fn = [z”]f(z) = n![z”]f(z). 

Abusing notations slightly, we sometimes use the convention 

In the sequel, we freely drop the “hat” in GFs whenever it is clear from context 
with which family we are operating. (Normally, a “universe” dictates its own choice 
of GFS.) 

Unlabelled univer*.re 
In this universe, structures are simply composed of indistinguishable “atoms” 

(nodes in graphs or trees, letters in words, etc.). The size of a structure is the number 
of the atoms it contains. The opera;io,:s allowed are 

Cartesian Product, Union, Sequence, Set, Multiset, Cycle. 

These operations have their usual set-theoretic meaning, except that we use a notion 
of “marked union” for the reason of avoiding ambiguous specifications. 

The product relation %’ = ti x B means 

~={~E~~~~=(cY,B),LYE~,PE~} with ]~]=I(LY,P)(=((Y]+]PI. (12) 

The union ?Z = & + 3 represents the marked union 

%=({,ix94)u({p’~x~), (13) 
where p and t_c’ with g f p’ are “marks” of size 0, and “ LJ ‘* represents the usual 
set-theoretic union. In other words the (marked) union defined here coincides with 
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the standard (set-theoretic) union whenever & n 3 = Q). Otherwise, we take two 
disjoint copies do, 3” of J& g and form % = =r&“u a’. This conventlon is crucial 
in that it eliminates all questions connected with the ambiguity of specifications. 

The sequence class % = &* is defined in the usual way by 

%={E}+ed+(dX&4)+(dXdxs.Q+g l l . (14 

By the set construction applied to &, denoted % = &( &), we mean the class 
formed by the collection of all the finite subsets of .sJ 

%=#i(d) e %={{a! ,,..., (Yk}lk~O,(I!I,...,(YkE~}. (15) 

The multiset construction MC.] exists only in the unlabelled universe; a multiset is 
a set of elements with repetitions allowed. The c_vcle construction C[.] applied to a 
set & is the set C(d) whose elements are (non-empty) cycles of elements from &. 

In the unlabelled universe, a specification of a class of combinatorial structures 
is a collection of (possibly recursive) equations over classes that uses only the 
constructors above. The initial classes are defined by the atom primitive that 
corresponds to a class only consisting of a single element (atom) of a size normally 
equal to 1. Thus, the class of all binary string:, with alphabet {a, b} can be specified 
in a non-recursive way in Ayfi format as 

type Word = sequencetletter); 
Letter = union(a,b); 
a, b = atom; 

and recursively as 

type Word = Word Letter 1 epsilon; 
Letter = a 1 b; 

a, b = atom(l); epsilon = atom(O); 

In passing, we have illustrated some possible variations in notations: The vertical 
bar “I” is a synonym for union; product symbols may be omitted so that “prod- 
uct ( A,E)" can be abbreviated to “A B”; the notation “atom(k)” defines an atom 
of size k, so that atom is the same as atom(l), and atom(O) may be used to 
represent the empty word. 

Labelled universe 
The main feature here is that structures are composed of “atoms” that bear distinct 

integer labels from I to n, when the structure has size n. For instance the permutation 

I 

admits the cycle decomposition u = {(5,3)(6, 1,2,4)}; it can be viewed as a graph 
whose nodes are labelled by the integers 1, 2, 3, 4, 5, 6 an two connected 
components that are circular graphs. 
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Clearly, the standard Cartesian product cannot operate directly on labelled struc- 
tures (otherwise, duplicate integer labels would result). The proper notion of product3 
that is adapted to labelled structures forms pairs, but also accomplishes consistent 
relabellings; it is called the partitionalproduct. If cy and p are two labelled structures, 
their partitional product (cy * p) is the collection of all ordered pairs y = (a!*, PO), 
where cy*, /3* are obtained by performing order preserving relabellings of cy, p in 
such a way that the resulting y be well labelled. 

The union operation has the same (marked) meaning in the labelled as in the 
unlabelled case. 

Once the partitional product has been defined, the corresponding notions of 
partitional sequence, partitional set and partitional cycle constructions follow. We 
define the partitional sequence by 

and, from there, we are led to the definition of partitional power set construction, 
%=&d) iff 

%=({a! ,,..., (yk}l(a! ,,..., a&J4”,k~O}. (IV 

Cycles are defined similarly. 
For instance, the class of all permutations can be defined by 

type Permutation = set(Circular); 
Circular = cycle(Element); 
Element = Latom(1); 

where Latom means “labelled atom”. Since we operate within a labelled universe, 
the set and cycle constructors are implicitly to be interpreted in the labelled parti- 
tional sense. 

3.2. Well dejined specijica tions 

We first need to isolate those type specifications that are well defined. Type 
specifications resemble context-free grammars and our problems are analogous to 
questions like so-called E-freeness for context-free grammars. 

More precisely, a type specijcation is an equational specification that is composed 
of 

a set of atoms T, 

a set of non-terminals N, 

a set of productions P. 

The productions in P are written as equations, 

S= @(R,,. .., R,), 

3 This is a classical concept in combinatorial analysis. We just give here minimal definitions. The 
reader is referred to [24,38,39,78] for background and compiete definitions, or to [Sl] for uses in the 
analysis of algorithms. 
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where S is a non-terminal, CD is a constructor, and the Rj are either atoms or 

non-terminals. Each non-terminal appears on the left-hand side of exactly one 
production. 

One defines derivations, like for standard grammars: we write A + B if B derives 
from A in a single step and A * B if B derives from A in a sequence of steps. In 
this way a production can also be written S+ @. Then, we have a precise definition 
of the class of structures generated by a specification. 

A type specification is said to be iterative or non-recursive when the corresponding 
dependency graph of the productions is acyclic; otherwise, it is said to be recursive. 
For example, the class of non-recursive type specifications with the set of constructors 
{union, product, sequence} corresponds to regular expressions; the class of recursive 
type specifications with the same constructors corresponds to usual context-free 
grammars. 

The valuation of a symbol S (atom or non-terminal) is denoted by val( S), and 
it is the least size of the objects generated by S (possibly 03). 

Definition 3.3. A data type specification is said to be well defined if it satisfies the 
two properties: 

(1) each non-terminal has a finite valuation; 
(2) for each non-terminal S, the subset Y-‘,, of objects of size n generated by S is 

finite. 

Here are two instances of specifications that are not well defined. First, 

type A = sequence(B); 
B= sequence (x) ; 

X= atom(l) ; 

What happens is that B contains the empty structure E, with I&I= 0. Thus A contains 
any sequence E’ = (E, E, . . . , E) for any k 20. Each of the &k has size 0, so that 
A0 = 00. The other example is 

typeS=SL; 
L= x I Y; 
x* Y = atom(l) ; 

In that case, S does not specify any finite structure. In a sense, the solution for S 
in this equational specification is the set of injinite sequences, {x, y}“, and we cannot 
assign to it any combinatorial (finite) meaning. 

We naturally want to restrict attention to well defined specifications. The following 
proposition expresses the possibility of doing this algorithmically. 

Proposition 3.4. It is algorithmically aecidable whether a type specijication is well 
dejned or not. 

The proof is based on two lemmas that take care of each of the conditions 
occurring in the notion of well definedness. 



54 P. Flajolet et al. 

Lemma 3.5. Given a specijcation, the valuation of each non-terminal is computable. 

Proof. The following algorithm computes the valuation of all symbols (atoms and 
non-terminals) by maintaining a dynamically changing array v( .) whose final values 
coincide with the valuation function. 

Algorithm Valuations: 

for each atom a, v(a) * Ial 
for each non-terminal S, v(S) * 00 

repeat 

for each non-terminal S do 

if S + a! where ar is an atom or a non-terminal then 

v(SMG-4 
if S + union( R, , . . . , &) then 

v(S)+min(v(R,), . . . ,v(&)) 

if S+product(W,, . . . , &) then 

v(S)+v(R,)+ l l . +v(&) 

if S + Q(R) where @ E {sequence, set, multiset) then 

v(S)+0 

if S + cycle(R) then 

v(S)+v(R) 
od 

until v(.) is unchanged. 

First this algorithm terminates because the vector v has components that lie in 
Nu {a), which is a well ordered set, and, by construction, the vector decreases at 
each iteration (in the partially ordered product set). Second, after k loops, v(S) is 
the least size of the objects derived from S in at most k steps. As v converges, the 
output value is the least size of all objects derived from S. Cl 

Observe that algorithms that identify non-terminals with valuation 0 in context-free 
grammars are well known (cf. [40, p. 69-701 or [ 11). 

The next step consists of eliminating specifications with a non-terminal T such 
that T, = 00. We need to define a reduced specification as one in which: (i) all 
valuations val( S) are finite; (ii) no production is of the form X + @( Y) with @ one 
of {sequence, multiset, cycle, set} and val( Y) = 0. It is easy to decide using Lemma 
3.5 whether a specification is reduced. Then, we have 

. Consider a reduced specification. Then the following two conditions are 

(1) for some integer n and non-terminal T, we have T, = 00; 

(2) there exists a ‘I), such that X”’ appears in the 
production defining productions, X”-I’-+ X”‘Y or 
X (’ -‘)-+ YX”‘, we have val( Y) = 0. 
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roof. See Zimmermann’s thesis [90]. This lemma shows 
T, = 00) reduces to cycle detection in an appropriate graph. 
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that circularity (i.e., 
cl 

We can now complete the proof of Proposition 3.4 and actually derive an algorithm 

for deciding well defined specifications. 

Algorithm WelbDefinedness 
(1) Valuation: Apply algorithm Valuations that determines all valuations 

(Lemma 3.5). If one valuation equals 00, the data type specification is not well defined. 
(2) Reduction: Check that the specification is reduced. If not, the specification 

is not well defined. 
(3) Circukrity: Perform the cycle detection test of Lemma 3.6 on the reduced 

specification. 

Thus, we now know how to test algorithmically for well defined specifications. 
For instance, consider the following three tree specifications. 

Ta = o 1 o Ta 1 o Ta Ta Ta; 
Tb= 0IwTbIoTbTbTb; 
Tc = o 1 o Tc 1 w Tc Tc Tc; 
0= atom(l); w = atom(O); 

Each of the three types represents a class of unary-ternary trees, the difference being 
related to which nodes contribute to size and which do not. Type Ta is such that 
all nodes count, and its specification is well defined. Type 7% is not well defined 
(we can add to a tree 78 an arbitrary number of unary nodes without changing its 
size); type Tc is well defined in agreement with the conservation laws for trees (one 
cannot add ternary nodes without increasing the number of nullary nodes that 
contribute to size j. 

In the sequel, we assume that we are only dealing with well defined specifications. 

3.3. Translation rules for counting generating functions 

In this section, we provide translation rules from specifications to generating 
function equations. The main point is that the constructions that we introduced 
earlier (Section 3.1) are all “admissible” in the sense that they translate into 

generating functions. 
A typical translation rule is the rule for Cartesian products. Let % = 94 x 3 be a 

(Cartesian) product construction. By our standard convention, we let 
C(z) denote the associated ordinary generating functions. Then, we have 

C(z)= c zly’= c Zlnl+lPI 
Y‘ t ( 1r.p br .d x .fi 

= 
c 

z’-’ x C z’~’ = A(z) l B(z). 
trc..J pc .!A 
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The first sum is the definition of C(z); the second sum follows from the definition 
of a Cartesian product and of its size, cf. (12); the third sum results from distributivity. 

This example shows an instance of a translation rule: Cartesian products of sets 
translate into products of corresponding generating functions. We shall present such 
correspondences in the form of a rule, 

A=BxC 

A(z) = B(z)C(z)’ 

Unlabelled universe 
In this universe, structures are simply composed of undistinguishable atoms. 

Translations are in terms of ordinary generating functions. We first list the translation 
rules. 

Rule 1 ( Union): 

A(z)= B(z)+C(z) 

Rule 2 ( Cartesian product ): 

A=BxC 

A(z) = B(z)C(z) 

Rule 3 ( Sequence): 

A = sequence(B) 

A(z) = QUW)) 

where 

Rule 4 (Cycle): 

A = cycle(B) 

4.4 = @c(B)(z) 

where 

@&-)(z) = c yog l 
Ii-1 1 -f(2) 

(4 is the Euler totient function, that is, 4(k) is the number of positive integers not 
exceeding k and relatively prime to k: 4( 1) = 1, +(2) = 1,4(3) = 2,4(4) = 2,4(s) = 

4 ). , . . . 

Rule 5 (Set): 

A = sef( B) 

A(,_) = s(B)(z) 
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where 
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@&f)(z) = exp ( f+-f$+fF- . . . ). 

Rule 6 (Multiset): 

A = multiset( B) 

A(z) = %,(R)(z) 

where 

f(z) +f(zz) +f(z’) + %(f)(z)=exp -i--- 2 3 ‘** ( > 
. 

We can now state our main theorem for unlabelled structures. 

Theorem 3.7. The constructions of Union, Product, Sequence, Cycle, Set and Multiset 
are admissible, and their translations to ordinary generating functions are given by 
Rules 1-6. 

The collection of unlabelled iterative structures defines a class ofgenerating functions 
that is contained in the class of elementary functions de$nable explicitly from 1, z by 
application of operators Lnunlabelled = (+, X, Q, @+, Gs, aM}. 

The collection of unlabelled recursive structures defines a class of generating functions 
that is contained in the class of elementary functions dejnable implicitly from 1, z by 
application of operators S2unlabelled. 

Proof (Indications). The proof reduces to proving the correctness of translation 
Rules 1-6. This has been done already for products. 

For unions, we clearly have, when %Z = ~4 + 3: 

c zlyl= c 
YE % ac.d 

so that unions map to sums. For the sequence construction, %‘= &*, since Ce is a 
union of products, we find that the GF C(z) is a sum of products, namely: 

C(z)= I+A(z)+(A(z) l A(z))+(A(z) l A(Z) 9 A(z))+ l . l =i 
1 
A(z). 

The rule for the set construction is valid because b(d) is isomorphk to an infinite 
Cartesian product, 

with E a structure of size 0. In other words, we view a subset w c & as an infinite 
array indexed by the domain ~4, w ere each array element is either an E or an CY E d. 
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Thus, in terms of generating functions, we find 

C(z)= n (1+z’“‘)= fi (l+zpA,a 
ae.d I1 = 1 

=exp 
( 

i A,,log(l+z”) . 
II - 1 ) 

By using the Taylor expansion of log( 1 +x), we obtain 

-- . . . . 

The derivation for multisets is entirely similar. It relies on the isomorphism M( ~4) = 
flfii .d {a)*. The translation for cycles4 is due to Read [67]. 

Once the translation of basic constructions is known, the translation of complete 
specifications follows. Iterative specifications give rise to collections of functional 
equations built from 1, z by application of flUnlabelled. Recursive specifications give 
rise to the corresponding class of functional equations. 0 

We observe that there are several easy extensions of these rules to slightly modified 
constructions. For instance, we may use 

C = sequence(A, 

to construct A-sequences with at 
to GFs is easily found to be 

C(z) = 
A(# 

1 -A(z)’ 

For set and cycle constructions, the corresponding functionals over GFs can be 

car&=b ) ; 

least b components. In that case, the translation 

derived from Polya‘s theory of counting. For instance, we have 

“C = set(A,card = 2);” implies C(z)=~A(z)‘+~A(z’). 

We use occasionally these modified rules in examples. 
As an illustration of the power of this formalism, we treat a few examples giving 

rise to automatic theorems. 

(Bracketing problems). These problems are treated by Comtet [N, 
pp. X2-57] as an illustration of the technique of generating functions. Here, we are 
able to obtain their solutions automatically. 

a This construction together wit 

theory of counting 164,651. 

the set and multiset constructions can also be attached to Pblya‘s 
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core . (i) The number qf binary bracketings of a non-conzntutatitie 
non-associative product involving n factors is the coeBcient of 2” in 

BB(z) = ;( 1 -Jr -42). (18) 

(ii) The number of binary bracketings qf a commutative non-associative product 
involving n factors is the coefieient of 2” in the function B(z) that satisfies the 
functional equation 

CB(z) = z+;CB’(z)+:CB$). (19) 

(iii) The number of generalized bracketings of a non-commutative product involving 
n factors ( where each bracket can contain two or more factors) is the coeficient of 9’ 
in 

GB(t)=~(lfz-J1-6z+t). (20) 

For part (i), there follows by the binomial expansion of ( h + x)“’ the wel! known 
form of the Catalan numbers, BB, = i(‘,“--,‘>. For part (ii), Qtter used the functional 
equation to prove, in 19 8, that CB, -0.318(2.483)Rn-“” For part (iii), we shall 
see in the asymptotic section how to derive the asymptotic form 

GB,, = 35J3+W(1+0(;)). 

Proof. The specifications corresponding to the three problems are 

type BB = BB o BB 1 X; 
CB = X 1 o multiset(CB, card=2); 
GB = X 1 o sequence(GB, card>=2); 
X= atom(l); o=atomO; 

The corresponding equations for BB(z) and GB(z) are 

BB(z)=z+BB’(z) and GB(z)=z+ 
GB’( z) 

1 -GB(z)’ 

The solutions for BB, GB then follow automatical y through the resoldon Q 

algebraic equations: BB is deifned directly by a quad atic equation (with a rsnique 
formal power series solution); GB satisfies an equation that reduces to a quadratic 
form. As to CB, its definition is (intrinsically) by means of a functional equation. 

Labelled universe 
These structures are composed of atoms labelled by distinct an 

ktegers. Translations are now in terms of exponential 
if A! is a class of labelled structures, we o crate with its EGF, 
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which we write as A(z) for notational simplicity. We again start by listing the 
translation rules. 

Rule 7 ( Wnion): 

A=BuC 

A(z) = B(z)+ C(z) 

Rule 8 ( Partitional product): 

A=BxC 

A(z) = B(z)C(z) 

Rule 9 (Sequence): 

A = sequence(B) 

A(z) = QW4) 

where 

Rule 10 (Cycle): 

A = c_yclet B) 

A(z) = L(B(z)) 

where 

1 
L(f) = log - 

1 -.f’ 

Pule 11 (Set): 

A = set(B) 

A(z) = WW) 

where 

E(f) = exp(f). 

The constructions of Union, Product, Sequence, Cycle, Set in the labelled 
universe are admissible, and their translations to exponential generating functions are 
given by Rules 7-I 1. 

The collection of labelded iterative structures dejnes a class of generating functions 
that is contained into the class of elementary functions de3nable explicitly from 1, z 
bq’ application of operators nldbellcd = {-I-, x, Q, L, E). 

The collection of labelled recursive structures defines class of generating functions 
that is contained into the class of e~eme~tar~~.fM~ctio~~s ejnable implicitly from 1, z 

b_v application of operators fllilhcllcd. 
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roof (Indications). The major point that needs justification is the rule for products. 
We observe that the cardinality of the partitional product (a * p) is equal to (‘“I,‘;“). 
Thus, if % = &’ * 3, we find 

The rule for partitional sequences follows as in the unlabelled case. The rule for 
sets is simpler here. From (17), a k-set is asb,ociated to k! sequences (all sequences 
associated to a set by permuting its elements are distinct, because of the labelling 
of atoms!). Thus Y = b(d) translates into 

1 1 1 
C(z)=1+~A(z)+~A2(zj-i- -0. +cA’(z)-f- -- =eA(‘). 

. . . 

A simiEar reasoning gives the translation for cycles with l/k replacing the factor 
l/k!. 0 

Labelled constructions greatly add to the expressive power of our language. ‘We 
start with examples of iterative structures and then continue with recursive types. 
We occasionally appeal to direct variants of the rules above. For instance, for a set 
of cardinality larger than 6, we have 

“A = 
’ W(z))’ set(B, card>b);ll ---s, A(z)=e”“- 1 

j=O j! * 

Automatic Theorem 5. The number &, of partitions of a set of cardinality n into 
equivalence classes is the coeficient of [z”/n !] in the function 

exp(e’- 1). 

The number of ordered partitions of a set of cardinality n into classes (where classes 

are ordered between themselves) is the coeficient of [z”ln !] in the function 

1 
2-e” 

The partition numbers are known 
be obtained by expanding the EGF, 

as Bell numbers [24] and an expression can 

a well known formula obtained by Dobiiiski in 1877. 
constitute a classiciil example of the asy 
and we shall derive an asymptotic form for them in the next section. 
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Proof. It directly results from the specification 

type Partition = set(Block); 
Block = set(Element,card>O); 
OrderedPartition = sequence(Block); 
Element = Latom(1); Cl 

Theorem 3.10. Given a type specijication 2, the number of arithmetic operations 
necessary for computing all the counting sequences associated with non-terminals up 
to size n is O(lZin’). 

Proof. We consider the additional cost of computing a new coefficient A,# = [z”]A(z) 
where A(z) = Z( B( z), C(Z)), assuming that we know already the values of Ak for 
k c n, and &, Ck for k s n. The proof proceeds by cases on 5’. 

Union: If 5 = +, A,, is simply given by B,, + C,,, thus the additional cost for 
getting A,# is O(1). 

Product: If E = x, A, is given by a convolution, A,, =zz=, B&-k, and the cost 
is O(n). 

Sequence: If A = l/( 1 - B), we also have A = 1+ BA. Thus, taking coefficients, 
we get a recurrence’ A, = [z”]( 1+ BA), i.e., A, = Cl=, BkAH_k, so that the additional 
cost for A,, is O(n). 

Labelled set: If A = exp( B), A’= AB’ thus A, = (l/n&“-‘]AB’ and the cost is 
again O(n). 

Labelled cycle: If A = log(1 -B)-‘, we have A’= B’/( 1 - B) or A’= B’+ BA’. 
Using the corresponding recurrence, we see that the additional cost for A,, is O(n). 

Unlabelled set: If A(z)=exp(B(z)+ B(z’)/2+ l l l ), we have A,, = 
[z”] exp(F(z)), where F(z)= B(z)+ B(z’)/2+ l l l . The coeEcients of F are stored 
and computed along with the other coefficients. In this way, the cost of computing 
a new coefficient [z”] F( z) and the new value A, = [z”] exp( F( z)) adds only O(n) 
extra cost. 

Unlabelled cycle: We have A(z) = log( 1 - B(z))-’ + i log( 1 - B( z*))-’ + l . 9 . We 
need to compute incrementally and store the coefficients of f,(z) = log( 1 - B(z))-‘. 
The additional cost of obtaining a new coetficient for L(z) and for A, is O(n). 

We have seen that the cost of incrementally computing one A,, is O(n). Thus the 
total cost is O(n’). 

The proof also shows that in the formula O( n’), there is an implied constant that 
is proportional to the size of the specification Z. 0 

Note that the complexity bounds are obtained with nai’ve algorithms. They could 
be improved by using Fast Fourier Transform techniques or other classical algorithms 
on power series [54]. 

5 This technique of forming recurrences derived from algebraic or differential equations is a familiar 
algorithmic trick of computer algebra. 
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This result, together with the companion result on the complexity of programmes, 

shows that exact counting results can be obtained with low computational com- 
plexity. Accordingly, this has consequences in the automatic generation of random 
structures in the class, since the top-down generation of structures of size n relies 
on these splitting probabilities. Hickey and Cohen [19] use similar techniques in 
order to generate words in context-free languages uniformly. Greene has given an 
interesting discussion of more general issues, as well as an implementation for 
structures definable by his “labelled grammars”’ [40, Ch. 41. 

3.4. Programme constructions 

We now introduce the class of programmes that naturally correspond to the 
decomposable data types that we have introduced. As we shall see, we also have 
translation rules into generating function equations for these schemes. 

A programme consists of a type specijication part-based on the admissible 
constructors described earlier-and of one or more procedure definitions. 

Procedures are of a functional form and they are built out of a small collection 
of programme constructions, also called programme schemes. 

The basic idea is to capture in the language a class of extended traversal pro- 
cedures. Basically, we can chain operations by means of a sequential composition 

scheme. We can test cases for structures whose underlying type is a union of two 
types. We can operate on composite structures-sequences, cycles, or sets-and 
pick up information by either selecting a single component (selection) or by traversing 
all of them (iteration). 

The basic operations are detailed below. Writing a procedure P[a : A] specifies 
that the argument of P is a, and that the type of a is A. 

Sequential composition. This is used for sequentially chaining operations. Our 
syntax here is Pascal-like and uses “;” for this scheme. 

P[a : A] = Q[a];R[a] where Q[a : A], R[a : A]. 

Union. For a type defined by a union, there is a test by cases. 

A = union(B, C) 

P[a:A]-if a. 3 t en Q[a] else R[a] 

where Q[b: B], R[c: C]. 

Product. The selection scheme descends into one component of a product: 

A = product( B, C) 

P[( b, c) : A] = Q[ b] 

where Q[ b : B]. 

equence, Cycle, Set an he selection scheme extracts one component 

(a fixed component like the first one for a sequence, and a random component for 
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a cycle or a set). For instance, we have 

A = sequence(C) 

P[a : A] = Q[a[l]] 

where Q[ c : C]. 

The corresponding iteration scheme examines all components: 

A = <yc!e( C) 
P[a : A] = forall 6 in a do Q[6] 

where Q[c : C]. 

These schemes exist in parallel in the unlabelled and the labelled universe, with 
the obvious restrictions: the notion of product is that of the universe under consider- 
ation; multisets are distinguished from sets only in an unlabelled universe. 

Observe that there are no explicit variable assignments, and in a deep sense, one 

cannot modify structures nor create new structures. Operations are thus in essence 
limited to traversal procedures? HowLvet, as we shall see, many algorithms that do 
modify their data can be emulated in the language. 

The concrete syntax that we use in examples is an incarnation of the abstract 
schemes above; it should be self-explanatory; see the example of symbolic differenti- 
ation discussed in Section 2. 

For programmes, there is a notion of well-definedness that is analogous to that 
of type specifications. 

Definition 3.11. A programme over a well defined type specification is itself wefl 

dejined iff for each procedure Q and each input X, the execution of Q on x terminates 
in a finite number of steps. 

The situation is made easy here since all programmes satisfy a descent property: 
Given a procedure call Q(x), all the calls R(y) that are generated operate with y’s 
that are substructures of x. The only way a procedure Q can loop is therefore by 
generating a caili sequence, 

o(x) + Q,(x) + l l l + Q,(x) + Q(x), 

with a stationary argument. Such a property is in fact syntactically decidable. (See 
our earlier discussion about circularity in data type specifications and Zimmermann’s 
thesis [90] for details.) 

’ Judging from the entirety of the analyses contained in Knuth‘s volume on sorting and searching 
[53], the only algorithms that we know how to analyze are those whose complexity is equivalent to a 
parameter of a static structure. No general method is known in order to analyze intrinsically dynamic 

algorithms that repeatedly modify a structure. Examples that typically leave us helpless are heapsort 
and balanced trees that modify either an ordered array structure cr a tree strircture. The reader can 
consult the classic paper of Jonassen and Knuth [48] to see what awaits the analyst confronted with 
such problems, when the size is restricted to 11 = 3! Thus, the limitation under discussion is not an 
essential bottleneck, given our current state of knowledge in the analysis of algorithms. 
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osition 3.12. It is algorithmically decidable if a programnie is well-defined or not. 

3.5. Complexity descrip tots 

The ordinary complexity descriptor of a procedure P with input in a set CaQ is the 
generating function 

rP(z) = c TP{Q}z’a! 
aEd 

The exponential complexity descriptor is 

There, rP{ a} denotes the complexity (cost) of procedure P applied to input a. The 
complexity is always represented by the number of times some explicitly designated 
operations (basic procedure calls) are performed. On our examples, this is represen- 
ted by the “measure” directive. 

The rules that follow enable us to translate programme schemes into functional 
equations over complexity descriptors. The complexity descriptors and counting 
GFs appearing there are to be taken as either ordinary (in an unlabelled universe) 
or exponential (in a labelled universe); in the latter case, we omit the “A ” token of 
EGFs. With this convention some of the rules can be grouped together: for instance, 
the rule for sequences is to be understood as a rule for ordinary GFs and complexity 
descriptors in the unlabelled case, and to be interpreted as a rule for exponential 
GFs in the labelled case. 

to 

to 

Whenever we need to emphasize that the complexity of P is taken with respect 
inputs in A, we write rPJA(z) instead of QP(z). 
Rule 12 (Elementary costs): This corresponds to a cost measure that is declared 
assign constant cost p to each procedure call Q(.). 

P[a:A]=Q[a] rQ{a}=p 

rP(z) = p l A(z) 

Rule 13 ( Sequencing) : 

P[a : A] = Q[a];R[a] 

TP(z) = TQ(z)+TR(z) 

Rule 14 ( Union ): 

A=union(B,C) P[a:A]=i 

rP&) = ~QJ&) + &W 

Rule 15 (Product): 



66 P. Flajolet et al. 

Rule 16 ( Sequence: selection): 

A = sequence(B) P[a : A] = Q[a[l-]] 

- rP(z) = ~Q(z)/(l- B(z)) 

Rule 17 (Sequence : iteration ) : 

A = sequence(B) P[a : A] = ball b in a do Q[ b] 

rP(z) = ~Q(z)/(l- B(z))* 

Rule 18 (Set: selection): In an unlabelled universe, 

.4=set(B) P[a:A]=Q[a[l]] 

rP(z) =C,“=, rQ”zn 
I 

where Bs( Z, U) = flbEB (1 + uz’-“!). In a labelled universe, 

A=set(B) P[a:A]= Q[a[l]] 

~P(z)=(exp(P(z))--l)/B(z)~Q(z) 

Rule 19 (Set: iteration): In an unlabelled universe, 

A=set(B) P[a:A]=fora!l b in a do Q[b]_ 

~P(z)=@#)(z)(rQ(z)-rQ(r’*)+~Q(z’)- . ..) 

In a labelled universe, 

A=set(B) P[a:A]=forall b in a do Q[b] 

7P(z) = ewUW)~QW 
Rule 20 (Multiset: selection): In an unlabelled universe,’ 

A = multiset( B) P[a : A] = Q[a[l]] 

TP(z)=C~=~ rQnzn 
I 

where B”( z, u) = nbEB l/( 1 - uz’“‘). 
Rule 21 (Multiset: iteration): In an unlabclled universe, 

A = multiset( B) P[ a : A] = forall b in a do Q[ b] 

~P(z)=&,,(B)(z)(rQ(z)+rQ(z’)+~Q(z~)+ l 0 j 

Rule 22 (Cycle: selection): In an unlabelled universe, 

A=cycle(B) P[a:A]=Q[a[_l]] 

d(k) +(z) =x&l - k log 
1 *rQtzk) _- 

1- B(zk) B(zk) 

In a labelled universe, 

A=cycle(B) P[a:A]= Q[a[l]] 

1 ~Q(z) 
I- 

’ The multiset constructor differs from the set constructor only in an unlabelled universe. 
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Rule 23 (Cycle: iteration): In an unlabelled universe, 

A=cycle(B) P[a:A]=forall b in a do Q[b] 

In a labelled universe, 

A = cycle(B) P[a : A] = forall b in a do Q[ b] 

rP( 2) = 
1 

1 -B(z) 
TQW 

That these rules are correct follows from techniques akin to those employed in 
proving the corresponding results for counting generating functions,8 the cases of 
the unlabelled set/multiset/cycle constructions being trickier. We shall refer to 
Zimmermann’s thesis [90] for detailed proofs. 

Theorem 3.13. (i) For each of the four data type classes- unlabelled iterative, labelled 
iterative, unlabelled recursive, labelled recursive-the corresponding class ofprogramme 
schemes translates in to functional equations over complexity descriptors. 

(ii) 77re complexity descriptors of programmes operating on a collection of labelled 
iterative structures are definable explicitly from 1, z by application of operators a zbelled = 
I-k, X, Q, E, L, E*, L*}, where 

E*(f) = (E(f) - U/J L”(f) = Uf j/f: 

(iii) TIte complexity descriptors of programmes operating on a collection of labelled 
recursive structures satisfy syste,ms oJf linear equations whose coeficients are definable 
from 1, z by application of operators Og,,,,,, . 

For unlabelled types, in general, we obtain functional equations involving the @ 

operators of type constructions and a class of operators V associated with selection 
and iterat,on on sets, multisets and cycles. 

Example 3.14 (Cycles in a random permutation). Our first example is a programme 

that counts the number of cycles in a permutation. 

Automatic eorem 6. (i) The expected number of cycles in a random permutation of 
n elements is equal to the coeficient of [z”] in the generating function 

H(Z) =+ 
1 

A 
log=* 

-z - 
(22) 

’ In a sense, the rules for data types are reduced (homomorphic) images of the type specifications 
themselves. The translation to complexity descriptors instead resembles a generalized derivation on type 
specifications. 
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(ii) This expected number has the asymptotic form 

1 1 1 
WYW =log n+ y +&-s+s+O 7 , 0 (23) 

where y = 0.57721 is the Euler constant. 

The first part is equivalent to the well known assertion that the mean number of 
cycles is given by a harmonic number, 

1 1 1 
Hn=1+2+3+ -0. +-. 

n 

The “automatic” character of part (ii) results from the developments of the next 
section. 

. The type specification of permutations has been studied already in Section 3.1. 

type Permutation = set(Circular); 
Circular = cycle(Element); 
Element = Latom(1); 

To count the number of cycles in a permutation, it suffices to traverse the permutation 
and on each cycle trigger a procedure, count, which does nothing but whose cost 
is declared to be equal to I: 

procedure CountCycles(p : Permutation); 
begin 

forall c in p 
count(c) ; 

end; 

measure count : 

The type specifications lead 
functions. 

do 

1; 

to a collection of equations for counting generating 

Permutation(z) = exp( Circular( z)) 
Circular(z) = log( 1 - Element(z))-’ 
Element(z) = z. 

(24) 

Turning to procedures, the rule for initial costs gives 

1 
rcount( z) = Circular(z) = log I; - (25) 

the rule for set iteration provides 

7CountCycles( z) = 7count( z) l Permueation( z) (26) 
ich is equivalent to the first assertion of the theorem, with (z) being an 

abbreviation for SountCycles( z). Cl 
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Finally, these (often huge!) generating function equations also convey some 
meaning, as the following theorem shows. 

Theorem 3.15. Given a programme specification II’ the average cost of its procedures 

operating on uniform random inputs of size up to n can be determined in 0(lIIln3 

x log n) arithmetic operations. 

The proof proceeds along the lines of that of data types which we have given in 
sufficient detail. 

3.6. Examples 

We Llect here a few more examples meant to illustrate the expressive power of 
our formalism. In order not to make the statements too cumbersome we sometimes 
directly cite an asymptotic result. In that case, it is to be understood that the 
asymptotic part of the proof will follow from the developments given in the next 
section. 

Example 3.16 (Denumerants). In how many ways can one attain a total of n centimes, 
with coins of denominations 1, 2 and 3 centimes? The problem is one of special 
integer partition counting [24, p. 1081. 

Automatic Theorem 7. 77je number of partitions of n into summands equal to 1, 2, or 
3 is 

+*+&+0(l). 

Proof. The formal description of the problem is the following. 

typo sum = multiset(Coin); 
Coin = one 1 two 1 three; 
oTi2 = atom(l); two = atom(Z); three = atom(3); 

According to rules 1 and 6, the ordinary generating function is computed explicitly 
from this description. 

1 
SUm(z)=(l_z)(l_z’)(l-z~) 

From this generating function, and with theorems of the following section, one 
deduces the asymptotic expansion given above. Cl 

7 (Compositions). A l-2-composition of n is a sequence of integers 

(i , , . . . , ik) in {1,2} whose sum equals n. 

The number of I-2-compositions of n is asymptotically 
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roof. A composition is simply a list of summands 

type Composition = sequence(Summand); 
Summand = one 1 two; 
one = atom(l); two = atom(2); 

According to rules 1 and 3, the ordinary GF for l-2-compositions 

Composition( 2) = 
1 

1 -(z+z2)’ 

is thus 

The coefficient of z” is a Fibonacci number. The well known asymptotic expansion 
follows automatically from the algorithms of Section 4. Cl 

Example 3.18 (Push length in trees). Our problem here is to analyze path length in 
general plane trees where all node degrees are allowed. The programme operates 
on an unlabelled, recursively defined type. Its specification closely mimics the 
inductive definition of path length: if t = (0, 1, , . . . , tk), then 

rr[f] = Irl+ R[f*]+ l l l + w[fJ. 

Automatic Theorem 9. The expected path length in a general plane tree with n nodes 
is asymp to f ically 

~&P2i++O(n”‘). 

Proof. It suffices to translate the classical inductive definition of path length into 
our framework. 

type Tree = Node sequence(Tree); 
Node = atom(l); 

procedure Size(t : Tree); 
begin 

count ; 
case t of 

(root,subtrees): forall u in subtrees do 
Size(u) ; 

end; 
end; 

procedure PathLength(t : Tree); 
begin 

Size(t); 
case t of 

(root,subtrees): forall u in subtrees do 
PathLength( 

end ; 
end ; 

easure co : I; 
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From rules 2 and 3, we obtain the counting GF for trees 

Tree(z)= 
I-di=E 

2 . 

From rules 12, 13, 15 and 17, the complexity descriptor for the procedure 
PathLength is obtained (before simplification) by the A@ system as 

TPathLength( z) = 
(R-1)(1+I&z)4 

16+8~-96z+8(1-4~)~‘~+ 128z2-32zdm’ 

From these two GFs, the result follows by asymptotic expansion of coefficients. 0 

Example 3.19 (Derangements and singleton cycles in permutations). We want to prove 
here the assertions made in the introduction regarding fixed points in permutations. 

Automatic Theorem 10. The number of derangements (permutations without fixed 

point) of l..n is equal to 

&=n!m[zn]fi. - 

The expected number of singleton cycles (cycles of size 1) in a random permutation of 

n is equal to 1. 

Proof. The formal description of derangements and singleton cycles iollows, and 
the procedure FixedPoints counts the number of singleton cycles in a permutation. 

type Derangement = set(Circular2); 
Circular2 = cycle(Node,card>=2); 
Node = Latom(1); 
Permutation = set(Singleton 1 Circular2); 
Singleton = Latom(1) ; 

procedure FixedPoints(p : Permutation); 
begin 

forall c in p 
case c of 

Singleton 
end; 

end; 

measure count : 

do 

: count 

1; 

According to rules 10,11,12 and 19, the counting GF for the number of derangements 
and the complexity descriptor of the procedure are 

exp(-z) Z 
Derangement(z) = ~ , - z 

from which both statements of the theorem result immediately. 0 
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Example 3.20 (Cyclic points in random mappings). We consider random mappings 
from a finite set to itself with the special property that each point has either 0 or 2 
antecedents. This is an approximate mode1 for Quadratic functions xwx’+ a 
(mod n). Such a mapping is equivalent to a binary functional graph, i.e., a digraph 
in which each point has outdegree 1 and indegree 0 or 2. A binary functional graph 
can be specified in our formalism; it is a set of connected components; each 
component has a unique cycle; on each point of the cycle are planted binary trees. 
For motivations related to cryptography and random number generation (see, e.g., 
[31]), our goal is to determine the average proportion of points that lie on a cycle 
(cyclic points). 

type PPing = set(Component); 
Component = cycle ( PlantedTree ) ; 

PlantedTree = node Trear 
Tree = node 1 node set(Tree,card=2); 
node = LatomW; 

procedure CountCyclicPoints (m : pping) ; 

begin 
forall c in m do 

CountCyclicPointsInComponent(c); 
end; 

procedure CountCyclicPointsInComponent 
begin 

forall t in c do 
count ; 

end; 

measure count : 1; 

(c : Component) ; 

u?omatic eorem 11. The average number of cyclic points in a random binary 
functional graph of n points is for n = 0 (mod 2) 

n I-Jl-2s 
I 1 z 

l-22 
. 

roof. The exponential GF for binary functional mappings and the complexity 
descriptor for the number of cyclic points in such mappings are found to be 

apping( 2) = 
1 

Ji-77’ 



This asymptotic result is of some relevance to the analysis of an inre 
tion algorithm due to Pollard, the so-called Pollard rho-method (see, 

. Asymptotic analysis of class of element 

At this stage, the a ebraic theory of generatin fun~ti~~s~~t least in cases where 
explicit solutions e t=--provides an expressio of a function in terms of basic 
operators associated with combinatorial constructions. In this way, we are confronte 
with tire problem of estimating coefficients of generating functions of rather diverse 
and complicated forms. 

Apart from the simplest cases (like the GF of Fibonacei numb 
encountered when analyzing 1-2 compositions), no “closed form” for the coefficients 
is available in general. However, it appears that a considerable amount of asymptotic 
information on the coefficients of a GFf(z) is contained in the .+tgrr!~?rikc off(z), 
itself viewed as an urr@G~ jkri~tion of the complex variable z. For the automatic 
extraction process that we envision, we must also render the method free from 
analysis, and purely formal or “algebraic”. This is made possible by the approach 
explained here. The end result is quite simple. For a large class of functions f arising 
from combinatoriaf enumerations, the nth Taylor coefficient fn = [z” ]f< z) has an 
asymptotic form, 

fn - C~?r”(log n)‘, (27) 

with k an integer, C, p, s real numbers. All the quantities appearing in the estimate 
(27) are algorithmically computable. 

A sample of functions related to combinatorial enumerations that we discuss 
throughout this section is the following. 

sow = l fA=) =+-$, f2W = 
1 

l-z-z” 1 -log[l/(l -z-z2)]’ 

1 1 -P-V 
IX=) -JE I,_ =3’ 

1 P 

og[l/(l-z’)l+(l-z’)s 
+ exp( z e’), 
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In this sectioin, we propose an algorithm that operates on explicitly defined 
functions of w‘lich fO, . . . , f, are typical. All these examples have singularities at a 

finite distance. When analyzing such a function f( z), the following strategy is used. 
(1) The analytic properties off are first introduced into the game by means of 

the Cauchy coeficient formula 

(2) It is well known from the theory of Cauchy’s formula (28), see [80], that the 
singularities of a function nearest to the origin determine the radius of convergence 
of the function (i.e., the series defining the function). Such singularities are known 
as dominant singularities and the discussion above reduces to the assertion: rhe 
modulus of the dominant singularities of an analytic function *f(z) gives the radius of 
convergence of the series form of f(z). Then, if we let p denote the radius of 
convergence off(z), the coefficients {f,l)nzo satisfy the basic relation 

1 
lim suplf,,l”” = 7 

?I=0 P 
(29) 

This property is often written in a more suggestive way as an approximation relation 

J, = p-” where p = min(ltl 1 f(z) is singular}. 

The precise meaning of the formula fn = p-” is that fn - p-“o( n), where o(n) satisfies 
lim suplo( n)l”” = 1, i.e., the growth of o is slower than any increasing exponential 
but faster than any decreasing exponential infinitely often. The formula fn =r p-” 
thus indicates that p-” captures the main exponential growth of fn. 

For instance, the dominant singularity off,(z) is at p = log 2 which cancels the 
denominator. The dominant singularity of f?(z) can be determined by looking at 
places where either the logarithm becomes singular or the denominator cancels. In 
this fashion, we obtain the approximate formulae 

I 1 
1 

f 

-l+& -4e-’ --I’ 

?’ I-log[l/(l-z-z’)]== .-- 2 ) l 

he modulus of the dominant singularities of f(z) thus provides the first level 
of information on coefficients of a function, ifl ihe approximate form of an exponen- 
tial term. If a function has a unique dominant singularity, this is usually enough to 
conclude the analysis by local sip?gularity analysis, as explained below. 

owever, some functions hid eriodicities in the behavicur of their coefficients. 
er instance the GT j&z) expa 
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Plotting the values of these coefficients (see Fig. 3) suggests that the coefficients go 
by groups of three. It is indeed the case, and this is due to the presence of three 
dominant singularities, namely 

1, 1 . eZi7r/3, 1 . e-2in/3, 

presence of (1 - 2’) in 
whenever periodicities 

these singularities being related to the the denominator. 
Therefore, one of the major problems, arise, consists of 
determining the directions where the dominant singularities lie. These directions 
are called dominant directions. The process of analyzing the coefficients of a function 
is shown to decompose into a finite collection of aperiodic problems of a simpler 
form. 

(4) Leaving apart the periodicity phenomena- this is possih:e either because the 
function to analyze J(z) has no periodicities, or because J(z) has a!ready been 
decomposed-the problem is thus to quantify the subexponential factor w(n) in 
the formula fn N p-“w( n). 

It turns out that there is a correspondence between the singular rates of growth 
of functions around their singularities and the asymptotic (subexponential) rates of 
growth of their coefficients. Here are a few examples of the correspondence, for 
functions singular at 1, 

1 1 1 1 
J11-ZH&9 - - l_z*ogl_zHlogn, 

z 

( ) 

e 2~ n 

exp 1_z -- 2(?re)l/2n3;4’ 

(The last transformation belongs to the theory of saddle point integrals which we 
discuss in Section 5.5.) 

(5) In our approach, the problem of finding the asymptotic growth of coefficients 
off(z) reduces to determining locally the behaviour of the function around all its 
dominant singularities. If the collection of these is {a, = pe”l}+, , for a finite index 
set J and real angles 6)i, then, under normal circumstances, by recomposing elements 
of the form cf*w(n), ‘we obtain 

where the o,(n) are functions of subexponential growth. 

Fig. 3. A graph of the toe cients of :” in ./it : I. as a function of 11. 
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The general principle that guides us is that functions arising from the automatic 
algebraic construction of generating functions have coefficients that are also 
automatically analyzable. More will be said to support this broad claim in Sections 
5 and 6. 

We now propose to implement this programme in detail on the class g of 
elementary functions that appear as generating functions of well defined labelled 
iterative structures. (This class should be called in full the class of LI-elementary 
functions.) 

.l. The class of elementary functions 8 is defined as the class of functions 
containing the monomials 1, z and closed under the operations of alilheIIed = 

1+,x, 0, W3, where 

Q(f) =+-f, 
1 

L(f) = log - 
1 -f’ 

W7 = exp(f), 

with the further restriction that all operations take place in the ring of formal power 

The requirement that operations be cormal means that Q, L and E can only be 
applied to functions J such that J(O) = 0, a restriction which is satisfied exactly by 
those generating functions that arise from weI\ dejned specifications in the sense 
of algebraic enumerations (Section 3) 

The restriction to 0 and UJ is not strict. The algorithms we shall develop apply 
almost verbatim to enriched classes, where we allow modified operators like E*(f) = 
(et- 1)/f etc. Thus, though we state propositions for 8, trivially amended results 
hold true for larger classes, from which we occasionally borrow examples such as 
fi or _t;. The remaining functions A,, f?, f4, JIS, h, f, all belong to 8, and thus they 
are generating functions of some elementary (i.e., labelled iterative) structures. 

There is an important subclass of the elementary class g-the class gAL of 
“algebraic-logarithmic” functions-for which a complete asymptotic analysis of 
coefficients can be developed automatically by means of the strategy that we have 
exposed. It is our purpose now to explore properties of the class 8 and its distin- 
guished subclass, and to illustrate our general philosophy by working out the 
algorithms in some detail. 

The programme presented in the next paragraphs can be outlined as follows: 

~gorit~ uivalent 
Input: A function f from the elementary class 8. 
Output: An asymptotic form of [z”]_N z) when f is in a proper subclass, f E iSA,_. 

(1) Radius: Find the radius of convergence p of J 
(2) Directions: Compute the dominant directions. 
(3) Expansion: Determine the growth of the function about its dominant 

singularities. 
(4) Transfer: rowth of the toe 
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The labels Radius, Directions, Expansion, Transfer refer to specific algorithms. 
Other methods, like saddle-point analysis, that are operational for dealing with 

functions of “violent” singular growth, like entire functions, are discussed in 
Section 5.3. 

4.1. Dominant singularities and principal exponential growth 

Our first result shows that the dominant exponential growthf, = p-n is computable 
for all f in the class 8. We start to exploit the analytic fact that functions in 8 have 
positive coefIicients (they are GFs) and rely on structural induction. 

Proposition 4.2. Let f (z) be an elementary function in the class SF. Then 
( 1) the radius of convergence p off satisjes 0 < p s 00; 

(2) it is decidable whether f is entire or not, i.e., whether p = 00 or p < 00; 
(3) whenever p < 00, p is a dominant singularity off; furthermore, function f is 

infinite at p, which means that f (x) + -1-00 as x + p from the left; 
(4) the radius of convergence p off; when it is jinite, is computable to any preciston 

E > 0. 

Proof. (1) These functions are analytic at the origin because they are either poly- 
nomials or compositions of exp, L, Q, with functions that are 0 at 0. Hence by 
induction they are analytic at 0. 

(2) By induction it is easy to see that f is entire if and only if neither Q nor L 

appear in its expression. 
(3) This is a special case of Pringsheim’s theorem [80]. Since the coefficients of 

our functions are positive, using the triangular inequality shows that they are maximal 
along the real axis. That they are infinite at their singularity follows again by 
induction since singularities in this class can only arise by Q or L. 

(4) The computation of p is done by the following algorithm: 

Input: An expression f c i%. 
Output: The radius of convergence off within a fixed accuracy E > 0. 

(2) If f is a polynomial, then its radius of convergence is infinite. 
(2) If f is exp(g) then its radius is that of g. 
‘3) If f is Q(g) or L(g), then the radius is the smallest real positive root of g(x) = 1 l 
(4) If f is a sum or a product, then its radius is the minimum of those of its 

arguments. 

The main observation is relative to Step 3: g( 
IO, p[ with p the radius of conve 
accuracy by classical numerical al 
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.3. We consider the function f4 defined by 

1 1 
h(z) = log 

I-zlog[l/(l-z~)]+(~-~~)~ 
+ exp( 2 e’). 

Although the smallest real singularity p off, cannot be expressed in closed form, 
it is not difficult to see (automatically by the above algorithm, or by hand) that p 

is the smallest singularity of the outer logaci.nm and to compute an approximate value 

p = 0.835408159 = min 1 I O< x C 1 x log 
1 

-=l . 
l-x? 1 

4.2. Dominant directions and periodicities 

In order to take into account the periodicities that may occur in coefi&nts of 
functions, we introduce the reduced form of a function. The reduced form off is a 
triple (a, g, p) such that 

f(z)= r”g(zP), 

with g satisfying g(0) # 0, p and a two integers 0~ a < p, and p a 1 as large as 
possible. The number p is called the period of j: 

Observe also that the period p is visible on the Taylor coefficients off: the indices 
of the non-zero coefficients of $ are included in a unique arithmetic progression of 
ratio p, 

in IL f 0) E {a + jp);L,,. 

A function that has a period p 2 2 is said to be purel’t periodic. For instance, any 
odd or even function is purely periodic. 

A functionfin % has a reduced form f( z) = z”g( z P), with g belonging 

to 8. The quantities a, p, g are eflectively computable. 

Both parts of the proof are consequences of the following algorithm. 

orit ctio 

Input: _f~ 8. 
Output: A pair (a, p) and a function g. 

(1) Iff is a polynomial, expand it, take p as the gcd of the differences of the 
nts of the monomials, and a as the smallest exponent modulo p. 

f J is Q(g), L(g), or exp( g), apply the algorithm to its argument, then take 

to its components, a 
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All these operations are purely syntactical, and one can check that the final g 
appearing in the reduced form is always a function of E’. Full details will appear 
in [73]. Cl 

This algorithm will serve to compute all the dominant singularities of a function. 
But we first need to introduce an oracle which plays an important role. 

S. We call 6, the following oracle: Given two functions g and h in $$f 
that are 0 at the origin, with rR and r!, the smallest real positive roots of g(x) = 1 
and h(x) = 1. the oracle outputs one of 

‘g < rh, 5 = f-h, ru > rh. 

The oracle enables us to state the following proposition. 

Proposition 4.6. The Dominant directions of a function f E 2% are computable condi- 

tionally upon oracle 0, . These directions are all commensurable with VL 

Proof. It operates by a structural induction that we embody in the algorithm 
Directions. 

Algorithm Directions 
Input: SE SK 
Output: A set of angles. 

(1) If f is exp(g) then apply the algorithm to g. 
(2) If f is Q(g) or L(g) then apply Reduction to reduce g(z) into z”h( zp); set 

9 = gcd( a, p) and return {(2kn/9), k = 1..9}. 

(3) Iff=g+h orf= g l h, then first use algorithm Radius to compute the radii 
of convergence of g and h, then use the oracle 6, to compare them; if they are 
different then apply Directions on the function with the smallest one, otherwise 
apply it to both of them and return the union of their dominant directions. Cl 

We observe that the corresponding problems are well worked out in the case of 
rational series [ 11,27,7 11. 

.7. Let fS(z) be the following function: 

h(z) =exp z log ( 2 yI.$-q+&* 
An application of the al thm leads to the c 
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Note on the role of oracles 

We made our first encounter with oracles here. It sho id that we live in 

a world where the status-transcendent, algebraic, or ra f constants like 

‘e-“-l ucI e-” 
Y = 

I 
-dx+ -dx, e+n, 

0 x I 1 x 
C(S)= c 4, 

n3~ n 

is still undecided. Consequently, in view of some the xpansions that result from 
our automatic analysis, it is not too surprising that one should appeal to oracles of 
sorts. 

Fortunately, a reliable oracle of the type 6, is easily implemented in practice by 
evaluating the quantities involved numerically, with a high enough precision. It 
should also be noted that given such an oracle, we can then compute symbolically 

ius of convergence of functions in SE, that is, compute the smallest subex- 
pression of the input function whose root is the smallest positive singularity. The 
radius of convergence of any function in g is thus given as a simple root of a 
elementary equation. We shall henceforth assume that this is the form returned by 
algorithm Radius. 

4.3. Singular growth 

All the algorithms we have presented so far work with any function of 8. We 
now isolate a subclass gAL of elements of 28 for which one can automatically compute 
the asymptotic expansion of the Taylor coefficients. This class is characterized by 
the moderate growth of its elements about their singular 

We actually construct a partition of ‘8 into three disjoi 

8 AL9 8entirrr 8*xp such that 28’ = %‘AL u @fentire u fiSexp. (31) 

The class gentire consists of all entire functi Jns, and it is clearly a decidable subclass 
of K The class gAL consists of functions with a radius of convergence p c 00 and 
with a so-called algebraico-logarithmic ( 

s( ) 
1 1 

z -(II -z/p)” 
log& i--- -w p+p-9 

where a! is real and k is a non-negative integer. These are our main objects of study. 
In this subsection we show that one can decide membership to gAL thanks to a 

gap property. In the class %‘\&,,,,, of functions sin ular at JJ, it is found that 
functions of the form 

lay a special role as threshold functions. 
e fact that its ele row too fast an 

that 

will be characterized by 
e easily recognizable by the property 
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ositio Conditioned upon oracle 6,) membership of a function in Z&_ is 
decidable. A singular expansion of a function in SEAL around its positive dominant 
singularity is also computable. 

roof. We define 3 classes GPA&}, g regularly}, g&-,(p), that reflect the partition (3 1) 
at z = p. These are respectively, the functions with an algebraic-logarithmic singular- 
ity at p9 the functions regular at p, and the functions with an exponential singularity 
at p. Proving that f E 2&L is equivalent to proving that f E iZAL{p} for p the dominant 
singularity oft< a quantity that is assumed to be known from our previous algorithms. 
Finding the nature of the singularity is done by the following algorithm. 

The algorithm essentially composes generalized algebraic-logarithmic expansions. 
If a fast growing function is detected, the algorithm only returns the proposition 

‘YE %X,M”. 

orithm Expansion 
Input: A function f in %’ and a positive real number p. 
Output: An asymptotic form off at pt or the answer “f E 8&,(p)“. 
Comment: Assume p s R, with R the radius of convergence off: Also assume that 
p is itself the root of an elementary equation. 

(1) Compute the radius of convergence R off by the algorithm Radius. 
(2) Appeal to I for deciding whether R > p or R = p. 
(3) If R>p, then return f(p)+f’(p)(z-p)+O((l-z/&. 
(4) Otherwise, R = p. Consider cases according to t&r: nature of J 
(a) If f is Q(g) then return 

1 1 g”(P) 

pg’(p) 1 -ZIP +w(P) 
-+0(1 -t/p). 

(b) If f is L(g) then if (by 0,) pg’(p) # I then return 

log 
1 

I-ZlP 
-log(pg’(p))+W -Z/P), 

else return 

10 
1 +Pg”(P) -(l-z/p~+o((l-~lp~*~. 

1 - zip 2g’tp) 

(c) Hj=g+h or f =g* h, then apply 
the results, retu 
f is exp(g) then 

if it is of the form 

-Z/P), 
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then return 

eh 1 -=- 
(P - rf,o)” +O (l-z/p)“-’ ( > ’ 

otherwise return If”eXP. 

The complete proof of the proposition reduces to checking the correctness of the 
algorithm; see Salvy’s thesis [73] for details. Cl 

.9, Consider the function f6 deEned as follows: 

f6(z) = exp ( 1 
2 log --- 

1-4z4e 
z/(1-z3) 

> 
+e’ log, 

1 
-++++. 
P -2r* 

Applying algorithm adius, we find that the radius of convergence is I/& Then 
we apply Expansion to (fa, I/a). Sincef, is a sum, the algorithm is called recursively 
on each of the summands. The algorithm yields 

4 -a 

( 

1 

(l-rJZ)“+O (l-&2)“- ) ) 

with 

Jz ala+2 

a =T-exp- 7 ’ 

symptotic analysis of coeficients 

The singular expansions that we have computed can now be transferred to 
coefficients. The case of a unique dominant singularity is naturally simpler (Theorem 

JO), but information can also be obtained in several periodic cases (Theorem 

rithmic function of with a unique dominant 

ave an asymptotic form 

fn = [z”]f(t) = Cp-“n’ log’ it I 1 +O 
( (i&J 

er. Using oracle 6, , all these numbers 
erms of elementary functions and roots 

statements become naturally mor 
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Odlyzko [32], is a variant of the classical arboux method. For its statement, we 
need the following notation for Camembert domains, 

A = {z, lzl s 1+ r), /arg(z - l)] 3 4p}, 

for some q>o and oCq<lr/2. 

( Flajolet-Odlyzko [3 I]). ssume that f (2) is analytic in 

ax-,1 ind, 

f(z)=0 
1 

(1-z)” logy-- 
) 1-z 9 

for some real numbers cy, y. Then the n-th Taylor coeficient off (t ) satisjies 

[z”]f(r)=O(n”-‘logYn). 

Note that the condition of being analytic in a domain larger than the circle of 
convergence is always fulfilled by our functions which are composed of a finite 
number of entire and meromorphic functions. 

The next theorem is older and was stated by Jungen in 1931 [SO]. 

Lem 4.12 (Jungen [SO]). Define the coeficienrs a,, by the expansion 

(I-z)-t log”&- f a&‘, 
n=O 

where k 2 0 is an integer and s is an arbitrary complex number. en the coeficientz 
a,, are given asymptotically by the following formulae: 

(1) Ifs#O,-I,-2,...,then 

a~=~[log’nrp,o+log”ncp,(n)+ l l l +Cgdn)l, 

)- 1 +co,/n+co2/n2+ l l l 
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The proof of the theorem is easily completed. Each function satisfying the 
assumptions has a singular expansion of the form given by Proposition 4.8. 
Coefficients of the main term can be extracted by Jungen’s theorem; the remainder 
term is itself amenable to Lemma 4.11. 

This double transfer completes the proof of the theorem, and the underlying 
algorithm constitutes the algorithm Transfer referred :o in the introduction to this 
section. Cl 

Many of the examples we have considered so far fall into this class, which permits 
US to complete the proofs of a few statements made earlier in anticipation of 
asymptotic methods. Our simple examples here all have explicit singularities that 
can be found by a reasonable computer algebra system. A first batch deals with 
meromorphic iklctions. 

eorem 12. The asymptotic number of 1-2 compositions of n is 

1 n+l 

1 Zn 1 1-z-z’ =-+o 4 J5 ( - 4” 1 where n Q = - 1+J3 2 ’ 

The asymptotic number of ordered partitions of n is 

2” 1 

[ I 1 

z 2-e’== (log2)” n! +O( n(kYg2)“)’ 

The number of derangements D,, satisjes 

D”=$ f& ’ 1 n! 
e-h!+0 - . 0 n 

roof. The first two examples (they are also functions fc and f, of our example list) 
are direct consequences of our algorithms: we have a rational function and a 
meromorphic function with an explicit dominant singularity at p = log 2. The case 
of derangements follows that of ordered partitions. 0 

The second batch of examples is relative to functions with algebraic and logarith- 
mic singularities. 

atic eorc 3. The mean number of cycles in a random permutatiort of n is 

E =“1_z I 1 log -=logn+y+--- 1 1 l+l -+o 
1 _ 2 2n 12n2 120n4 

( - 1 1 
n6 

. 
The asymptotic number of unary-binary expressions of size n is 
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The asymptotic number of generalized bracketings of size n is 

GB,=[z”];(l+z-m)= 
-4+3x0 

4Jn;;s 
(3tJi)“( 1+0(i)). 

The expected path length in a random plane tree of size n is asymptotically 

i J- 7e n3/2+$n+O(n”‘). 

Notice that several examples here are relative to implicitly defined recursive 
structures. As we have seen, the corresponding generating functions are all expressible 
in closed form. The square-root singularities are amenable to the ireatment given 
here for the class 8&_. 

The last batch of examples deals with the more general case of functions whose 
singularities are defined as roots of various elementary equations. 

Automatic Theorem 14. Tbie following coejicient expansions hold. Let 

f2H = 
1 

1 -log[l/(l -z-z2)]’ 

then 

where CY = $JS -4 e-’ - 1). Let 

$4(z) = 1% 
1 1 

1-zlog[l/(l-z~)]+(l-zz)’ 
+ exp( z e’), 

then 

where p is the smallest positive root of 

1 
l=plog- l_+’ 

Let 

f,(z) = exp ( log 
1 :,,I-:,’ 

1 9 

then 

Iz”lfb9 = (5)‘” 
where 4 is the golds? r,ntio. 

e&--l n 4” 
W+Y 

+O(n em-24n)9 



86 I? Flajolet c f al. 

f. For ff , the sin ularity can be made explicit. Note the example off4 for which 
the singularity p could not be written in closed for , but this raised n 
in the automatic computation. Function f7 corresponds to a function l 

singular behaviour at 4. 

4.5. Periodicities 

The esat case’ rf* functions in zcPAL several dominant sin 
treatm Such functions are callied periodic (purely periodic funct 
earlier in Section 4.2 are periodic). A singular expansion must be computed around 
each dominant singularity, and then translated by the previous theorems into a 
partial expansion. These partial expansions are then added together, and this yields 
an expansion for the coefficients. 

Difficulties may arise for some functions that do not differ too much from a purely 
periodic function. in that case, the main asymptotic terms cancel for certain values 
of the index n, and subdominant terms dictate the asymptotic behaviour of 
coeficients in this case. There is then a~ ex onential cancellation to be taken into 
account. 

Consider for instance the problem of extracting 

[z”]J(z) where j(t) =L+-!- 1-2ra 1-r’ 

from this point of view. We have 

[P] 
I 1 

------=2”, [yy--= 
l-29 1-Z 

1. 

nus. _fq,, = 2” + 1, but for n f 3 (mod 4), we have fH = 1. When computing fm, the 
asyPmptotic forms deriving from the singularities 2-l” e”“” (k = 0, 1,2,3) cancel 
exactf’ when n is not a multiple of 4. There’s the rub! 

In fact, by performing only real computations, it is possible to derive an interesting 
h not always complete) part of the asymptotic information. 

4c cients of a function oj’ kYAL with p 2 2 dominant singularities 

sntis$k an as~~~ptoti~ estimate of tk$mn 

A, ==p %‘log%l c+px’ CY, cos- 
2jrr 77 

+O(p-“n’ log’-’ n), 
I 1 P 

u-here C, p, s, k are as in ?%eorem 4.10, arod 0 s C, s C. Using oracle ?, the constants _ 
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Wnder severah circumstances the expansion we 0bta.n from thi 
fide asymptotic e ifhculties may arise if the 

in which case we only 
s is a dominant asymptoti 
i.e., a non-zero proportion) 

Proof. The basic idea consists of computing expansions related to sin 
of the same form as before, 

except that now a may be complex, o = p eiH, with p the radius of conver 
the series under consideration and 8 a real angle. 

The translation to coefficients is effected like before, and each dominant sin 
may contribute. We should simply add the corresponding contributions. The 
then lies with the precise determination of the constants C,. Although they aqe 
computed by the same type of expansions as in th real case, this calculation presents 

an additional difficulty: we have to decide whether a function in 25 which is regular 
at a complex point (the singularity under study) is zero there or not. This task is 
accomplished by oracle G2. When examining the behaviour of a function S at a; 
we modify step 3 of algorithm Expansion in the following way: 

(a) Check wh th J e er is a polynomial or not (this is decidable in Q. 
(b) If it is not, compute values off”‘(cr), k 2 0 until (5, finds two of them, f”l’, 

Jtliz’, to be non-zero. Return 

(c) If it is, do the same operations but stop when k > deg(J). Return the expansion 
so obtained. 

The rest of algorithm Expansion works unchanged, mainly because, in steps 4a 
and 4b, g is necessarily real on the ray from 0 to Q. 

A few of the functions we h met in our exa ples present several s arities 

on their circle of conver e first case is ea ucti 

ces to analyze t . 

4 expectai ~~~~~? of cyclic points in 

21, 
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(The functions involved in this analysis are purely periodic, being simply functions 
of z2, see Automatic Theorem 11.) 

The next batch of examples illustrates more intricate situations, and in one case 
only partial coefficient information is available from the algorithms we have just 
discussed. 

eoretn 16. The following asymptotic coeficient expansions hold. 

1 1 2 --- f;(z)-J1= 1_z” * [,nl.Md=~ ~ J 
1+0(I). 

4 2” 
Js( z) = exp 

t 
1 

z’ log - 
> 

+ d 
l-z4 - 

1 * [z6”]f5(z) =2”‘+0 ; 
0 

f&) =exp z log-- 
( 

1 
e”“+” 

) 
1 

l-4z4 , 
+e’ log 12r’+ I+ z, 

kc! n n”-’ 
* Cz”l_&W = 4arfaI +OW-2fi), 

with 

a 4&-2 cy=- 3 exp 7 l 

L I 

Proof. In the case of x1, the colnprex singularities are of a smaller order than the 
real one. This is not the case with fj for which we only get an expansion for indices 
n that are multiples of 6. More complete estimates can be found for products like 
f6, where we get all coefficients. 0 

Even though in case of periodicities the raw version of the algorithms we have 
described is not guaranteed to produce an asymptotic expansion for all coeficients, 
in practice an expansion can often be obtained by computing singular expansions 
with more terms. We do not attempt to develop the theory in this case as it becomes 
naturally rather intricate. 

. Extensions 

We discuss here some of the possible extensions of our approach. Clearly, 
theoretical advances can be used to great advantage in extending the functionality 
of an automatic analysis system. 

We saw (briefly) in Section 1 that there are three components in our automatic 
analysis system. The two major ones correspond to the computation of generating 
functions (the algebraic analyzer) based on the algebraic enumeration techniques 
of Section 3 and to the asymptotic analysis (the analytic analyzer) based on the 

niques of Section he interface is ensured by the solver. 
ur discussion will fohow this tern 
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5.1. Algebraic counting 

We have seen how to analyze four major classes in terms of automatically 
determined generating functions. Each new combinatorial construction or pro- 
gramme control structure that admits a translation into GFs will enable us to solve 
an enlarged class of problems. 

Minimum rooting 
Many algorithms deal with ordered structures. A particularly interesting construc- 

tion that fixes the localization of the smallest label in a labelled structure (min- 
rooting) has been formalized by Greene in his thesis [40] under the name of box 
operator. The equation 

d=93°* % (33) 

means that ,a0 is the usual partitional product of 3 and %, with the condition that 
the smallest label lies in the B-component. Greene has proved that labelled context- 
free grammars augmented with the box construction translate over generating 
functions through integro-differential operators. For instance, in the case of (33), 
we have the recurrence, 

where the modified binomial coefficient takes care of the fact that only n - 1 labels 
need to be distributed between B? and CG. In terms of EGFs, this means 

(34) 

It can be shown that an interesting set of programmes on structures defined with 
the box operator are admissible too. They then translate into differential equations 
for the complexity descriptors. We will not give the complete rules here; they will 
appear in [go]. Let us just cite an example, that of heap-ordered trees.’ 

Automatic Theorem 17. The average internal pathlength in a heap-ordered tree of size 
n is asymptotically 

roof. Heap-ordered trees admit the specification, 

type Heap = leaf 1 min( key) Heap Hx~.p; 
key = Latom(1); 
leaf = Latom(0) ; 

9 A heap-ordered tree is a labelled binary tree with labels that are in increasing order along any branch 

starting from the .U rPot. Such trees have strong relations to binary search trees and quicksort. We refer to 

Vuillemin’s article [82] for a discussion of combinatorial aspects of these trees that are known there as 
“tournament” trees. 
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The programme 8br analyzing internal pathlength follows closely the one used for 

procedure PathLength (h : Heap ); 
begin 

size(h); 
case h of 

leaf : zero; 
(k,hl,h2) : begin PathLength(h1); Pat ngth(h2) end; 

end; 
end; 

procedure size (h : Heap ); 
begin 

case h of 
leaf : zero; 
(k,hl,h2) : begin one; size(h1); size(h2) end; 

end; 
end; 

measure one : 1; 
zero : 0; 

The rule (33-34) gives us an equation for Heap(z), namely, 

Heap(z) = 1 + 

an equation that leads to a non-linear differential equation with variables that 
separate, 

d 
-& Y(z)= Y2(z), Y(0) = 1. 

Such problems are well within the capabilities of computer algebra systems, and 
one finds, as expected, 

1 
Heap(z) =G. - 

The rules given in [90] allow us further to compute the ssmpiexity descriptor of 
the procedure PathLength, and the litera’l form produced by Aya is in this case 

7PathLength(z) = - ’ 
2 log(l-Z) 

z2-2z+1- z2-2z+1 = 

The automatic theore follows from these functions and from theorems of Section 
4. a 
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This analysis is of special interest as it relates to the analysis of binary search 
trees and of the quicksort algorithm. 

Boolean functions 

The programme constructions of Section 3 operate with “pure” procedures in 
which no result is ever passed and reused by another procedure. This corresponds 
to our general and informal notion of pure traversal procedures. The possibilities 
for extensions in this area are of course limited by undecidability considerations. 
However, a nice class of functions returning boolean values can also be integrated 

f!cr the system. An example of this is a programme that checks the occurrence of 
certain symbols in binary trees. 

type 2eroJ.g = z&o&); 
T = zero i X 1 product(g,T,T): 

function Occurs(t : T) : boolean; 
begin 

Visit; 
case t of 

zero : false; 
x : true; 
!g,u,v) : if Occurs(u) then true else Occurs(v); 

end; 
end; 

measure Visit : 1; 

This determines whether an expression contains the variable X or not; the cost of 
Occurs ( t ) is the number of nodes visited. This programme is in none of the four 
classes defined earlier (see Theorem 3.13), because in the statement “if Occurs ( u ) 
then true else Occurs(v) ” we (recursively) use the result of another computation. 

For a boolean function f, several well defined rules allow us to compute two type 
specifications of data items for which f returns tiue and false. Once these type 

specifications are known, the schemes “if f ix)=true then l l - ” and “if 
f (x)=false then . . . ” become admissible. 

Automatic Theorem 1 Consider expressions built with the symbol 0, a variable X 
and a binary operator g. The average number of nodes of a random expression of size 

n that are visited in the course of a preorder traversal before Jnding X is 

x&8&1 

[Zn1-Z~+ZGi7 

L 1 z* - 
T/I-8z2-1 

22 

Asymptotically, this quantity 

4+ATI-0(1/Jn). 

. 

is, for n odd, 
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roof. The number of nodes visited is the number of times the function Visit is 
called in the above programme, whence the cost of this programme. The rules given 
in this paper enable to compute the GF for expressions 

T(z) J1-82- 1 =- 
22 

and the rules given in [92] enable us to compute the complexity descriptor which 
is found to be 

rOccurs( 2) = - 
h-8z2-1 

e?Jiz7+ zJiz7’ 

The asymptotic result foliows from direct singularity analysis. Cl 

Such a scheme has been introduced into the A@ system and it has proved useful 
in an average-case analysis of several unification algorithms [2]. 

5.2. Implicit and explicit generuting functions (the Soher) 

The algebraic analysis produces functional equations, while the asymptotic analysis 
techniques that we have used so far require an explicit form for generating functions 
and complexity descriptors. 

At the interface between these two components of the analysis process” there 
should (ideally) lie a well defined model of algebraic manipulation. In order not 
to obscure the picture, we have been discreet so far on this subject. A few explanations 
mixing theoretical considerations as well as implementation problems will now be 
offered. 

Clearly, some amount of algebraic manipulation is needed, at least because of 
machine-man interaction. For instance, it may be desirable to incorporate sim- 
plification rules such that 

1 
exp log- ( > 1 

l-z 
*- 

1-Z’ 

This simplification occurs in the analysis of the cycle decomposition of permutations 
and is the one that enables us to corrclude that the EGF of permutations is l/( 1 -z), 
i.e., the number of permutations of n is n !. 

On another register, usual simplifications like 

Xx0 * 0,Xx1 * X,X+Y+X * 2X-tY,RootOf(x’-4,xBO) a 2,..., 

are certainly a necessity. The status of simplification rules of the form 

log(X* Y) * log x+1og Y, J_ * fl*Ji7, 

is much more debatable and their usefulness depends upon context. 

lo In the .ZyQ system, this interface is the function of the Solver module. 
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In this paper, at theory level, we have generally assumed the common rules of 
elementary algebra when manipulating generating functions. The designer of an 
automatic analyzer (like the A@ system) should in principle take full contrcl over 
the simplification rules that are employed. However, for obvious efficiency reasons, 
it is usually not possible to enforce such a vigorous policy. So, the algebraic 
capabilities of the Ayn system rely on those of the host computer algebra language, 
namely the Maple system. As is natural, this occasionally creates conflicts between 
what is needed of a general purpose computer algebra system and the stricter 
simplification discipline that a system like llya requires for its more limited universe 
of special functions. Examples of such problems are well-known to designers, e.g., 
the rules 

(R,-,)m + (l-z) and (R,)m * m * (z-l), 

though being each reasonable under certain conditions, may lead to inconsistent 
results. (This is in no way meant as a criticism of the Maple system without which 
the A$ enterprise would not have existed. Such problems are bound to occur with 
any system currently in existence [61].) 

In the sequel, we assume in our discussion that we have available an ideal engine 
for algebra manipulations. 

The two issues to be discussed are: (i) simplication and resolution of equations; 
(ii) the universes of special functions. 

Simplijica tion and resolution of equations 
(1) In the universe of purely iterative labelled structures, an equational definition 

of structures leads to a chain of equations that can be solved by direct substitution. 
For instance this remark is at the origin of the result that the class of associated 
GFs is the elementary class % defined as the closure of I, z by operators of L$abelled. 

(2) For programmes over labelled recursive structures, the complexity descriptors 
are plainly given by linear equations over GFs. In that case, explicit solutions are 
derived automatically from the counting GFs assuming only that a linear equation 
solver is available. In a way, the most difficult part” of an analysis is the one relative 
to counting GFs. 

(3) For recursive structures in the labelled universe (and simpler recursive 
unlabelled structures that do not involve sets or cycles), the GFs appear as fixed 
point equations over the class of elementary functions. Such equations are in general 
highly non-linear, but it is possible to trap interesting subclasses. 

For instance, we may consider the class of quadratic structures in which all GFs 

are resolved by: (i) substitution; (ii) linear equations; (iii) quadratic equations. 
There are obvious examples of quadratic structures, the simplest being the pure 

” This observation reflects the fact that time is an additive complexity measure that is in a loosely 
defined sense “linear”, and resembles a “derivation*‘. Our approach cannot be extended to space 

complexity measures that replace sums by maximum operators. 
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binary trees 

type BB = BB o BB 1 X; 
X = atom(l); 0 = atom(O); 

or the unary-binary expression types. Other cases, like the binary functional graphs 
or the generalized bracketings with OGF 

GB( z) = z + GB’(z) 
1 -GB(z)’ 

illustrate the fact that the precise notion of a quadratic structure is relative to a 
given model” of algebraic simplification. 

(4) Our understanding of the algebra of P6lya operators @ (for data types) and 
V (for programmes) is not too advanced. We only know that certain identities exist, 
for instance, 

@M(f(d) = @S(f(Z))@M(f(Z’)), 

which corresponds to (1 - z)-! = (I i z)( I- z’)-‘. This does not seem to be a major 
drawback however since most of the work in this case should be rejected to the 
asymptotic analyzer, using techniques that we detail below. 

Function universes 
The remarks above show that a complete discussion of automatic analysis must 

include a precise discussion of simplification issues for the class of functions used. 
This in turn is related to a notion of which special functions and corresponding 
properties are regarded as known. 

As an example, the family of Cayley trees defined by 

Cayley = 0 set(Cayley); 0 = Latom(1); 

corresponds to the implicit equation, 

Though 
session 

Cayley( 2) = z exp(Cayley( z)). 

this equation could be regarded as not elementarily solvable, the Maple 

> solve(Cayley(z)=z*exp(Cayley(z)),Cayley(z)); 
- w(- z) 

expresses it in terms of a special transcendentall W(z) (the root of W ew = z) 
which is regarded as known by the system. We could thus define W-structures, in 
the same way as we have defined quadratic structures. However, the proliferation 
of such definitions is best avoided. Probably a more general approach based on an 
extensive use of standardized implicit functions reusable by the asymptotic analyzer 
is to be preferred. 

” Throughout the paper, in our automatic theorems, we have operated with the nai’ve notion induced 
by the capabilities of the Maple “solve” routine. Then, for us, GB is a quadratic structure. 

” This function was considered by Eisenstein and Cayley, amongst others. 
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Another example is provided by the family of ternary trees. In that case, the 
specification is 

type Ternary = o Ternary Ternary Ternary 1 X; 
X = atom(l); 0 = atom(O); 

The corresponding solution is known, 

Ternary(z) = 
( 

1 
-i+ 

J=Z% “3+ 

) ( 

1 6iZi2 t’3 --- 6J3 2 6Js ) 3 

meaning that ternary trees belong to the class of “radical” structures. However, the 
asymptotic analysis of the GF Ternary(z), though feasible from the explicit form, 
is best carried out by subjecting anonymously Ternary(z) to a general asymptotic 
treatment of algebraic functions. 

Finally, we saw in the analysis of heap-ordered trees that certain constructions 
relating to order constraints introduce integro-differential operators. (The capability 
of Maple’s ‘dsolve” differential equation solver was used on that occasion.) In 
this context, an interesting class of functions is that of combinatorial holonomic 
systems of Zeilberger [88], which, in the univariate case, reduces to the class of 
D-finite functions described by Stanley [77]. 

In other words, we could also regard as known the solution Y(z) of any equation 

; wfg YW=O, 
j=O 

where the Qj are rational functions, and proper initial conditions completely deter- 
mine Y(z). This class has rich closure properties. To a large extent, the corresponding 
asymptotic problems on coefficients are solvable; this results from either Birkhoff’s 
theory of difference equations [85], or from the singularity analysis techniques that 
we have utilized in Section 4. 

Differential operators will not be discussed further here. 

5.3. Analytic schemes 

In Section 4, we have seen how to analyze a particular subclass of problems 
arising from labelled iterative functions. In that case, a full characterization of r:he 
possible asymptoti= behaviours was attained. Our knowledge of the other types is 
not so systematic. However, several analytic techniques from earlier works can be 
put to work for us. In this subsection, we propose to summarize the main idaas that 
extend the automatic approach to a much larger class of problems. 

Labelled iterative structures: In order to complete the classification of these 
structures, we need to analyze elementary functions with “exponential” Erowth SC 
their dominant singularities, 2&,, and the entire functions gentire l Saddle point 
integrals are the major tool for this range of problems. 
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Labelled recursive structures: The EGFs are then defined implicitly by elementary 
equations. This vastly gercralizes the situation of context-free gi:ammars. Singularity 
analysis techniques are known to be applicable to several intel*esting subcases, and 
they prove to be the essential tool in this range of problems.. 

Unlabelled structures: The set and cycle constructions lead to Polya operators 
that have complicated explicit forms. However, a simple technique that goes back 
to Polya and that has been used extensively in analyzing trees and graphs makes 
singularity analysis applicable to a wide range of problems in this class. 

Labelled iterative structures and saddle point analysis 
Still starting from Cauchy’s formula, the method which is used for 

faster growth is the saddle-point method. It attempts to find a suit 
integration through a remarkable point called the saddle poini. The Ca 
is concentrated about this point, and it is possible to obtain precis 
information by neglecting the other parts of the contour (see e.g., [25, 
problem with this method is that it is difficult in the most general setting to prove 
the validity of neglecting these other parts of the path. 

In 1955, Hayman [4SJ delimited a class of functions for which one can compute 
systematically an asymptotic form of coefficients by a saddie point method. This 
class of so-called H-admissible functions also enjoys nice closure properties which 
make it a useful tool for automatic computations. There are two main theorems in 
Hayman’s theory. 

Theorem 5.1 (Hayman 1451). uf = C fnz” is H-admissible, then as n + 00, 

f 
f( ) r 

“-r”J2nbo’ 

wherer=r(n) isthesmallesIpositiverootofrf’(r)/f(r)=n,andb(r)=rd(rf’(r))/dr. 

This first theorem is typical of the form of estimates that one expects when using 
saddle-point methods. The second theorem provides closure properties that are 
important for our purposes. 

eorem 5.2 (Hayman 145-J). Properties of H-admissible functions: 
( 1) Closure property: If f and g are H-admissible, P is a polvnomial with real 

coeficients and positive leading coeficient, then exp( f ), f + g, f -kSPJ P( f ), Pa f are 
H-admissible. 

(2) If P is an aperiodic polynomial with positive coeficients, then exp(P) is 
.Y~admissible. 

(3) Let cy, p, be positive real numbers and &, p3 real numbers, then % . 
: 

[ 6 f(z)=exp &(1-z)-” pgi= 1 1 I( 2 1 1 6 
- ;log -log- 

( 

Z ‘) 1-z). 

is 
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We s2y here that P(z) is aperiodic when P is not 2 function of 9 for arq p > 1. 
The first part of this theorem reduces the test for H-admissibility to simpler tests, 
the second part provides the basis for most of the entire H-admissible functions, 
and the last part deals with functions with singularities at a finite distance. 

The simplest example of H-admissible function is exp(z). From it we get Stirling’s 
formula: 

1. 1 en 
z-s n l 0 

Another example is provided by Bell numbers. 

Automatic Theorem 19. The number of partitions of size n satisjes 

e e'-1 

P* = n![z”] exp(e’- l)- n! 
r 
n+, 

4277 exp( r) ’ 

where r = r(n) is the positive root of r exp( r) = n, 

r(n)=logn-loglogn+ 
log log n+O log log n\ 

log n ( log2 n /’ 

The next example is tvpical of what can happen at a finite distance. It deals with 
so-called “Laguerre contigurations”. (The name derives from the resemblance of 
the GF of Laguerre configurations with the GF of Laguerre polynomials.) A Laguerre 
configuration is a permutation in which each cycle carries exactly one mark. Since 
we can “open” cycles at their mark, we can define a Laguerre configuration by the 
specification: 

type Laguerre = set(OpenCycle); 
OpenCycle = sequence(Node, card>=l); 
Node=Latom(l); 

From the specification, we obtain the EGF of Laguerre configurations as 

exp(N -4). 

Automatic Theore 
cally 

The number qf Laguerre conjigurations of size n is asymptoti- 

n![z”] exp 
z 

--n! 
e2J;; 

1-Z 2&zn3’4’ 

Verify automatically admissibility fwm Theorem 5.2, :hen insert the saddle 
point formula of Theorem 5.1. Cl 
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An unfortunate drawba(,k of Hayman’s method is that it provides only the main 
term of the expansion of coefficients. Another class of functions was subsequently 
introduced by Harris and Schoenfeld 1441. By imposing more stringent conditions 
on the functions in their class, called the class of HS-admissible functi 
were able to derive a full asymptotic expansion of function coefficients. As such, 
the HS-admissible functions did not lend themselves to a direct implementation 
until Odlyzko and Richmond 1621 noted the following property: iff is H-admissible, 
exp(f) is I-IS-admissible. It then becomes feasible to automatically derive a full 
asymptotic expansion of Bell numbers, for exa :Fle. 

Two gaps are still to be tilled. First neither the method of Hayman nor that of 
Harris and Schoenfeld can produce a full asymptotic expansion for functions of 
“fast but moderate” growth. Thus one cannot find the other terms in Stirling’s 
formula by their method. This problem has been partially resolved by Wyman [87], 
but the corresponding class cannot be implemented easily. Also, t‘unctions of an 
even slower growth do not fit in any known class yet; an instance is the slowly 
growing function 

exp(zlog’+-). 

As a last remark, let us note that it is far from easy to manipulate automatically 
expansions in such general scales. A good theoretical framework for this kind of 
work lies in Hardy’s tract on “orders of infinity” 1431 and in their generalization 
by Hardy fields 1131. More about this will be said elsewhere [73]. 

Labelled recursive struck 84 yes and implicit functions 
In a long series of papers, Meir and Moon (see, e.g., [59]), have considered 

so-called simple families of trees (Meir and Moon say “simply generated”‘). Essen- 
tially, these are classes of recursive tree structures, either labelled or unlabelled, 
whose generating function is defined by an equation 

(The various tree examples that we have considered so far ar: closely related to 
this notion.) 

The interest of this class for us is to provide a protypical treatment of recursive 
structures. We may as well assume without great loss o gsnerality that 4 (y ) is a 

polynomial in y with positive coefficients, in which case (35) implicitly defines J(z) 
as an algebraic function of its argument. 

In outline, the analysis of the coefficients of f proceeds as follows. Let (z,, yO) 
be a point on the algebraic curve defined by (35), so that y. = zo4(yo), or equivalently 
yo=f(zoJm Let P(z,y)=y-z4(y). y expanding the equation P( z, y) = 0, we obtain 

a 
(Z-ZOkg 

a 
(zo,Yo)+(Y -Yo) ay - P(z0, Yo) - 0, 
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?qcally. Thus, around an ordinary point, we have a linear dependence between 
Z = z - z. and Y = y - yo, provided that the partial derivatives are non-zero. A close: 
examination reveals that the dependence is actually analytic. 

The analytic dependence breaks down when the partial derivative with respect 
to y vanishes. In that case, pushing to the next order in y, we find a relation 

a 
(z’ ““kg 

1 
P(zo, Yo) +2 (Y -yoJ2 

a2 
ay’ P(z9, Yo) - 0. (36) 

Thus the function f(z) admits a branch point at z,; its value there is yo, and its 

singularity is of the square-root type, as seen from the approximate solution of (36), 

A*=2 

a 
G P(zo, Yo) 

a* 
ayz mo, Yo)’ 

Thus, for a singularity, z;, and y. are algebraic numbers determined by a system 
of two equations. Details can be worked out for the particular equation (35). With 
T the positive root of $(r) = 4(r), the dominant singularity off is p = r/4(r), 
and the square root growth yields a coefficient of the form =p3z-3’2. 

Theorem 5.3 (Meir and Moon [59]). The coeficient of zn inside the implicitly defined 
function 

YW = Zd)(YW) 

has the asymptotic form 

_#+[z”]f(z)-6p+X3/*, S= 
J 

2 ‘jz: ), 
Tr 7 

where r@(r) = 4(~). 

In summary, this approach consists of looking at places where the implicit function 
theorem fails to provide an analytic solution. This defines a collection of elementary 
equations amongst which the singularities of implicit functions lie. By expanding 
further, we obtain non-linear dependencies resulting in branch points (through 
inversion). These algebraic branch points cause coefficients to be composed 
asymptotically of algebraic elements of the form p-‘W’~ with p, q integers. 

The “implicit function method” applies par excellence to the coefficients of 
arbitrary algebraic functions, see [30] for enumerative applications. It is applicable 
to a large class of transcendentals, such as the Cayley function. It must constitute 
the method of choice when attempting a complete asymptotic classification of 
labelled recursive structures via appropriate multidimensiona! generalizations. 
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Unlalielled structures and Po’lya operators 

We start the discussion by two examples, integer partitions and xnultisets of words 

(which we ~11 

type 

here “languages”). 

Partition = multiset(Integer); 
Integer = sequence(One, card>O); 
One = atom(l); 

Language = multiset(Word); 
Word = sequencebtter, cardN); 
Letter = a 1 b; a, b = atom(l) ; 

The corresponding OGFs P(z), L(z) are 

P(Z)= fi (1-zn)-‘=exp(Z(z)+$(&+$Z(~3)+ . . l ) 
n=l 

L(z)= i (l-z”)-‘” =exp( W(z)+$W(z2)+fW(z3)-t l l l ), 
n=l 

with 

22 
Z(z)=k and W(z)==. 

It turns out that the seemingly innocuous difference between Z(z) and W(z) has 
implications for the analysis. 

The asymptotic theory of Pn = [z”] P( z) is a classical chapter (originating with 
Hardy and Ramanujan) of additive analytic number theory. In full generality, it 
involves a mixture of saddle-point analysis, modular transformations, Dedekind 
sums, and Ford circles ! 

One main point is that P(z) has a natural boundary at lzl = 1. The end result is 
given by Rademacher’s form of the Hardy-Ramanujan theorem [3, p. 69). 

Theorem 5.4 (Hardy-Ramanujan-Rademacher). The number of integer partitions of 
n is 

p, 
r d sinh(n/k)($(x - 1/24))“2 

=--&$, Ak(n)k”‘[z- 
(x - 1/24)“2 I x=n 

A,(n) = 1 Cr)},,k e-‘Tinhik3 
!a mod k 
(h.k)=l 

with q,,k a certain 24th root bf unity. 

(37) 

The full analysis of P,*, as suggested bv the statement of the theorem, is difficult. 
totic analysis of L(z) needs only a few lines. 



eorem 5.5. The irUth?r of “languages” of size n is asytq tGtically 

L,, - es 
“‘2” 

3? 

where 8 

1 

k=‘k+l 1 

1 
e 

z - - 
26 n314 2”-1’ 

(Such a theorem is in principle well within the capabilities of an automatic 
analyzer; it should really be an “automatic theorem”, but in the current implementa- 
tion of A+, Polya operat ors are not yet taken into account by the asymptotic 
modules.) 

Proof. We observe that W(z) is singular at p = l, and it has a simple pole there. 
The crucial point is that we have p < 1, so that when z is in the vicinity of p, t: - 

arguments of W(z*), W(z3), . . . , are near p*, p3,. . . , that is to say well within the 
disk lzl< p. Simple bounds show further that the series 

A(z) =qw(z2)+$w(z3)+ l l . 

is analytic at z = p = i. 
Thus, from an asymptotic standpoint, our problem is reduced to analyzing a 

simple function, namely 

2z 
exp 1 _2z ( > e- 

i(r) 
9 

where L1 (z) is analytic in Izi < p”’ = 2-‘! *. The saddle-point formula 

yields the result: we need to change z to 22 which multiplies this form by 2”. The 
influence of the Polya operator is miraculously (?!) hmited to the simple factor 
e”‘l/2’ 

. cl 

The structures which, like partitions, have a radius of convergence equal to 1 are 
(decidably) isolated within the class of unlabelled structures. These require special 
treatment. (Observe however that saddle-point techniques readily provide an 
asymptotic equivalent of the number of partitions.) 

Apart from this small fragment, unlabelled iterative structures can only lead to 
isolated singularities, The composition rules for singularities are easily extracted 
from the forms 

@c(f) = 1ogu -f(W+fl(z), 

Wf) = exp(fW +Az), 

@df) = exp(fW 4(z), 

where fi , f2, f3 are analytic in larger areas. In other words, with respect to singularity 
analys: i and saddle point, th: remainders play the role of additive or melltiplicative 
mo ers that do not affect t e nature of singularities, as we ave seen in the case 
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of “languages”. The types of singularities (either algebraic-logarithmic or exponen- 
tial) remain of the same form as in the labelled case. The asymptotic shape of 
coefficients thus remain decidable, though special constants (like 6 above) are 
introduced. 

We shall not attempt any discussion of unlabelled recursive structures. The 
techniques there mix what we have just seen concerning unlabelled iterative struc- 
tures together with ideas stemming from the analysis of singularities for implicitly 
defined generating functions. The reader should turn to the literature on graphical 
enumerations 1411, and especially to a paper by Harary et al. where a subclass of 
asymptotic problems on graph trees is shown to be decidable [42]. 

6. Conclusions 

A coherent class of elementary combinatorial problems can only lead to designated 
“special” asymptotic forms. 

We have mentioned in the introduction that properties definable by regular 
languages (equivalently finite automata) and context-free languages all lead to 
asymptotic expressions involving “rational” or “algebraic” asymptotic elements of 
the form 

P(n)& and n r/ “w “, 

for algebraic numbers o. 
As a particular case, the asymptotic density of an unambiguous context-free 

language can only be an algebraic number, which constitutes Berstel’s density 
theorem [8]. Generalized densities for context-free languages exist and they are 
built from the algebraic elements described above. This means that any elementary 
counting property of context-free languages can only involve exponentials and 
rational powers of n but no logarithm. This observation is in agreement with standard 
probability theory: for instance, the probability that a coin-tossing sequence of 
length 2n is well-balanced (has n tosses of each type) is asymptotic to l/G. 
(Negative results also derive from this: for instance, square-free numbers and prime 
numbers in binary representations cannot form context-free languages since the 
corresponding arithmetic densities are -6/rr2 and -l/log n respectively.) 

If we look back at the four combinatorial examples that we discussed at the 
beginning of the introduction, we observe that they all deal with elementary com- 
binatorial objects, namely cycles, permutations, heap-ordered trees, expression trees, 
and elementary properties like number of components or cost of recursive transfor- 
mations. 

The symbols used in the results are all related to classical functions of analysis, 
and we found “elements” like 

exp(- I), a, 6, log n, Jii, 

intervening in the asymptotic solutions. 
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The discussion in Sections 3-5 should explain why this is so. Our purpose is now 
to put the results and the methods of earlier sections in a broader perspective. This 
is achieved by means of structure theorems. 

Structure theorems 
In this discussion, it proves convenient to use the same naming convention for 

classes of structures and classes of equations satisfied by their generating functions. 
In this way, we speak of rational structures for structures defined rationally, i.e., 

structures definable by finite automata and regular languages. In the same perspec- 
tive, algebraic structures correspond to context-free languages. (These two conven- 
tions are in agreement with the naming conventions of the “French School”.) 

In Section 4, we have developed a part of the theory of elementary labelled iterative 
(LI) structures, that of algebraic-logarithmic structures defined as those elementary 
LI-structures whose GFs lie in Z?*,_. In Section 5.3, we have provided indications 
on the analytic treatment of either entire structures or exponentially singular structures 
using saddle-point techniques. Apart from periodicity considerations14 this 
classification exhausts the class of all labelled iterative structures. 

The first basic structure theorem is naturally relative to algebraic-logarithmic 
structures. We recall that the class % is defined as the closure of 1, z by 

E(Y) = exp(y), UY) =log(l -UC Q(y) = (1 -y)_‘. 

We have: Asymptotically, the elementary counting properties relative to strongly 
aperiodic labelled iterative structures of the algebraic-logarithmic type are expressible 
rationally in terms of a field of constants 9&_ defined below and of the elements 

n!, n”, log n, P-T n-4, (38) 

with a, p E Q. The field 3&_ is the smallest field of constants containing the rationals 
and the numbers 

RoorOf[f(p)= 13, f E %, 

and closed under application of functions g E 8. 
The indications that we gave in Section 5.3 regarding the classes of entire or 

exponentially singular functions could be cast in a similar mould. Statements become 
naturally more cumbersome, and we shall only enunciate a very vague version whose 
value is only to put saddle-point methods in the proper perspective. 

The class of elementary counting properties relative tn exponentially singular and 
entire functions involves algebraic-logarithmic elements plus the class of functions 
defined as roots of saddle-point equations, 

I4 Periodicity issues complicate the picture without significantly changing it, so that we do not discuss 
them in depth in the present paper which is only a short: introduction to the subject. Technically, one 
way of avoiding periodicity problems consists in restricting attention to strongly aperiodic structures in 
which all component GF’s are aperiodic. Notil:e that periodicity issues are well understood in the context 
of rational structures, [ 11,27,71]. 
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The class of labelled recursive structures lead to another statement with the 
constants involving systems of equations rather than single equations. 

The unlabelled classes naturally lead to yet more complicated formulations, since 
Polya operators are involved. We have however explained in Section 5.3 that, in 
general, their study is of the same mathematical and computational level of difficulty 
as that of the corresponding labelled classes. (The asymptotic forms remain of the 
same type, only the field of constants is larger.) 

We have summarized in Table I some of the classes of problems examined by 
various authors and discussed throughout this paper. Our approach can thus be 
viewed as a large programme to generalize and unify a number of results themselves 
dealing with properties of classes of elementary structures. 

Zero-one lu ws and distributions 

A parallel enterprise of a generality comparable to ours is that of Compton [22, 
20,23,21]. Compton starts from so-called O-1 laws in logic and finite model theory. 
For instance, (rand.om) firiite graphs have a O-1 law, since any first order property 
of graphs is either true with asymptotic probability 1 or false with asymptotic 
probability 1; examples of this situation are that almost all large graphs have 
5-cliques, almost no graph has isolated points, etc. Compton is able to describe 
whole classes of logical theories having O-1 laws. fiurthermore his results also cover 
statistical regularities that are bound to occur in general classes of combinatorial 
structures, regarding the mean number of components in random structures or the 
existence of asymptotic probability (not necessarily 0 or I), in first or second order 
logical theories. 

Another category of results stems from the original observations of Bender and 
Canfield [4,14] that certain general combinatorial schemes like sequence or set 
formation, whose translation into generating functions is 

1 

1 -UC(Z) or exp(uC(z)), (39) 

Table 1 
A classification of some families of structures. 

Labelled Iterative structures 
algebraic-logarithmic structures 

o exponentially singular structures 
entire structures 
general LI structures 

Unlabelled Iterative structures 
3 regular languages and finite automata 
o general UI structures 

abelled Recursive structures 
quadratic structures 
algebraic structures; W-structures 
simple families of Meir and Moon [59] 
general LR structures 

Unkbelled Recursive structures 
@ context-free languages [30] 

simple families of Meir and Moon [59] 
graph trees of Marary et al. [42] 
general UR structures 



Automatic average-case analysis of algorithms 105 

lead to Gaussian distributions under quite general analytic conditions on the series 
C. (These schemes give bivariate generating functions for the distribution of the 
number of components in sequence or set constructions.) 

Consider the number of cycies in a random permutation or a derangement, the 
number of components in a random mapping, the number of irreducible factors in 
a random polynomial over a finite field. The occurrence of a common structural- 
analytic scheme “explains” the origin of a limiting nor.mal distribution for these 
rather diverse combinatorial structures [35]. 

Such questions can be pushed much further and one might aim at a complete 
characterization of limit distributions that occur inside elementary structures of the 
LI, UI, LR, UR classes. The problems are naturally more complicated since we are 
then dealing with bivariate problems. 

For recursive structures, we are confronted with non-linear bivariate functional 
equations. For instance, little is known (to us, at least) on the distribution of path 
length in plane trees. The bivariate GF of the exact distribution satisfies the non-linear 
difference equation, 

F(z;q)= ’ 
1 - F(gz; 4)’ 

and, though a limit distribution was proved to exist [57], no analytic form seems 
to be known for the density. In the same vein, the existence of a limit law for the 
comparison cost of Quicksort was established only recently [68]. This corresponds 
to the non-linear differential equation 

aaz; 4) 
a2 

= C2(qz; q). 

Many things are known about the moments [46], but the exact form of the density 
remains a mystery. 

For iterative structures, we deal with explicit functional forms, and there is good 
hope of approaching a fairly extensive classification of problems. An importapt step 
in this direction has been made by Michkle Soria in her thesis [75]. She is able to 
detect schemes of considerable generality that are associated with the occurrence 
of diverse limit distributions like Gaussian, Rayley, geometric, Poisson, and the like. 

This suggests that a distribution -al counterpart of our framework should also exist. 
As a final conclusion, we are led to believe in the existence of a fascinating domain 

of investigation. Its scope is the relation betwc:en combinatorial structure dfld 
asymptotic form and we propose to call it statistical comblsatorics. 
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