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Abstraci

Flajolet, P., Salvy, B. and Zimmermann, P., Automatic average-case analysis of algorithms,
Theoretical Computer Science 79 (1991) 37-109.

Many probabilistic properties of elementary discrete combinatorial structures of interest for the
average-case analysis of algorithms prove to be decidable. This paper presents a general framework
in which such decision procedures can be developed. It is based on a combination of generating
function techniques for counting, and complex analysis techniques for asymptotic estimations.

We expose here the theory of exact analysis in terms of generating functions for four different
domains: the iterative/recursive and unlabelled/labelled data type domains. We then present
some major components of the associated asymptotic theory and exhibit a class of naturally
arising functions that can be automatically analyzed.

A fair fragment of this theory is also incorporated into a system called Lambda-Upsilon-Omega.
In this way, using computer algebra, one can produce auiomatically non-trivial average-case
analyses of algorithms operating over a variety of “*decomposable” combinatorial structures.

At a fundamental level, this paper is part of a global attempt at understanding why so many
elementary combinatorial problems tend io have elementary asymptotic -olutions. In several cases,
it proves possible to relate entire classes of elementary combinatorial problems whose structure
is well defined with classes of elementary “special” functions and classes of asymptotic forms
relative to counting, probabilities, or average-case complexity.

1. Introduction

This paper presents a systematic framework in which combinatorial enumerations
and probabilistic properties of combinatorial structures can be studied formally.

The analysis system that we propose is ‘“‘algebraically complete with respect to
a large category of so-called decomposable data types and their associated
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asymptotic form.

A correlate of this is the possibility of designing an automatic analyzer of average
case performance for several interesting ciasses of algorithms and programmes.
Based on this theory, we have actually built a prototype system called Lambda-
Upsilon-Omega (Ay(}) that is capable of producing rather non-trivial average-case
analyses of algorithms.

Here is a small sample of properties amenable to automatic analysis in this
context: (i) the average number of cycles in a random permutation of n elements
is ~log n and the probability that such a permutation has no 1-cycle is ~e~ Y (ii)
path length in a random heap-ordered tree of n elements is on average ~2n log n,
which represents also the comparison cost of Quicksort; (iii) path length in a random
(uniform) plane tree is ~ jnvwn; (iv) the symbolic differentiation algorithms of
computer algebra gain on average a factor of O(+v/n) if shared representations (i.e.,
dags) are used, etc.

The paper consists of two major parts that reflect the two components of the
theory. The first one, the ‘““algebraic”” component, deals with exact counting through
the algebra of generating functions. The second one, the “analytic”” component,

uses analytic properties of these generating functions in order to recover relevant
asymptotic informations.

1.1. Algebraic enumeration

For the class of decomposable combinatorial structures under consideration, it
is possible to compile automatically structural specifications into equations over
counting generating functions. These equations represent in a compact format either
explicit or else recursive forms of count sequences. For the associated algorithms,
we introduce generating functions of average costs called complexity descriptors, and
we provide similar translation mechanisms from programme specifications to these
compiexity descriptors.

The 2quations that one generates in this way are meaningful in the sense that all
coefficients of generating functions—providing either the number of combinatorial
structures of size n or the average case complexity of algorithms over random clata
of siz¢ n—are computable in time thai is pclynomial in n.

1.2. Asymptotic analysis

It is known from classical analysis and analytic number theory that the asymptotic
growth of coefficients of a series is determined by analytic properties of the series
‘viewed then as an u.alytic function of a complex argument). In this domain,
singularities and saddle points play an essential role.
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One of the major benefits of the generating function approach is to associate well
identified classes of special functions to well characterized classes of combinatorial
structures and programmes. We can then systematically relate classes deiined by
special coiabinatorial constructions, classes of special functions with specific analytic
properties, and asymptotic properties of structures.

We first illustrate the principles of our approach by discussing two examples
drawn from the classical theory of formal languages and enumerations.

Example 1.1 (Regular events and finite automata). Combinatorial structures defined
by regular languages and finite automata have rational generating functions
[9, 27, 71]. The counting sequences accordingly satisfy linear recurrences with con-
stant coefficients. From elementary analysis, we know that a rational ggnevating
function f(z) admits a partial fraction decomposition, so that its coefficierits f, have
an explicit form as “exponential polynomials”,

.ﬁv=§Pk(n)w29 (1)

for a finite family of polynomials P,(x) and a family of algebraic numbers w,.

In other words, for this restricted class of devices, we are able to predict in which
class of formulae, either exact or asymptotic, counting sequences and exvected
values of parameters are going to fall. For instance, a priori, the problem of run
length statistics—What is the probability that a random binary string of length n
contains no run of k consecutive 1s?—lies in this class for each fixed k. (See [28,
XIIL.7] for a classical introduction.) Further analytic properties are available; most
notably the Perron-Frobenius theory [11, 51] predicts that the ws of largest modulus
in (1) have arguments that are commensurable with , a fact that further restricts
the range of fluctuations (due to complex ws) to those that are asymptotically
periodic. The whole theory [27] is a combinatorial analogue of the classical theory
of Markov chains.

Example 1.2 (Context-free languages). Trees and various types of lattice paths can
be described by context-free grammars [9, 10, 26, 56, 71]. The corresponding generat-
ing functions are algebraic, as follows by the classical Chomsky-Schiitzenberger
theorem [16]. Accordingly, the counting sequences satisfy linear recurrences with
polynomial coefficients (‘“‘P-recursive” sequences). An algebraic function f(z) has
only algebraic singularities; from this fact, its coefficients f, are found to be
asymptotic to a sum of ‘“‘algebraic” elements,

fi~Yen""hwf, with r,s;eNand ¢, weC. (2)
J

This again characterizes the allowed types of probabilistic behaviours for all com-
binatorial processes that can be described by context-free languages. This asymptotic
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theory of context-free languages was worked out in [30}; it constitutes a com-
binatorial analogue of the probabilistic theory of branching processes.

The examples above illustrate a typical situation: A class of combinatorial proces-
ses (finite automata, context-free grammars) is associated to a class of special
functions (rational functions, aigebraic functions). Anaiytic properties of these
functions, especially the nature of their singularities, are well characterized (polcs,
algebraic singularities). This in turn entails that the major asymptotic properties of
the original processes are fully characterized (exponential polynomials, algebraic
elements), and thus decidable and computable.

Our objective here is only to extend this philosophy to an appreciably larger class
of combinatorial structures. Our approach to the automatic analysis of algorithms
and data structures is thus a *“‘pipe” between two technologies: the symbolic (or
formal) methods of combinatorial enumerations and the complex-analytic methods
of asymptotic analysis.

1.3. The automatic analyzer, Lambda-Upsilon-Omega

An automatic analyzer, the Ay} system' implements the fundamental theoretical
ideas that we have just outlined. One of the primary aims of the Ay{) system is to
provide a tool for aiding the analysis of various types of algorithms. it is also meant
to experiment with the descriptive power of the theories developed here.

The system itself is described elsewhere by its two implementers (see also Fig.
1): Zimmermann is responsible for the algebraic analyzer [89] and Salvy has designed
the asymptotic analyzer [72]. The algebraic analyzer compiles data type and pro-
cedure specifications into equations over generating functions (that are counting
generating functions or complexity descriptors). It is implemented in CAML. The
analytic analyzer is an extensive collection of routines that manipulate generalized
asymptotic series and perform asymptotic ¢ .lysis o generating functions, produc-
ing final asymptotic results. The inierface between tae two components is ensured
by the “solver” module that relies on computer zigebra capabilities for solving
elementary equations (linear equations; algebraic equations; simple differential
equations).

As of 1990, the programme has over 10 000 instructions, partly in a high level
functional language—CAML, a dialect of ML [84]—and partly in a computer
algebra language—Maple [15].

In the present paper, we have used the Ay{2 system in order to produce what is
called automatic theorems. In principle, an automatic theorem is a statement that is
derived automatically from formal specifications by the logical framework exposed
in this paper. We have however decided to enforce a stricter discipline and retain,

' The name Lambda-Upsilon-Omega derives from the Greck verb root Avw which means “1 solve”

and which is at the heart of the word ana-ly-sis. Ay should be pronounced as liio, and its Latin
rendering is LUO.
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Fig. 1. The general structure of the AYQ system. The diagram shows the three major components of the
system, the Algebraic Analyzer (ALAS), the Solver, and the Analytic Analyzer (ANANAS).

for the twenty odd automatic theorems given here, only those results that are also

derived automatically by the Ay programme. This attitude is meant to emphasize

that the effective procedures described here are also practically implementable. The
human interaction is limited to trivial editing of resulting formulae, and the reader
can consult the Ay Cookbook [34] for complete listings of analyses that were

produced by the system in 1989.

The current functionality of the Ay} system is as follows:

® for exact counting in terms of GFs, the rules of Section 3 relating to labelled/un-
labelled recursive/iterative stiuctures and their associated algorithms;

e for the solver, the amount of algebraic manipulation discussed in Section 5.2
regarding substitution, linear and quadratic equations;

@ for the analytic analyzer, the theory of algebraic-logarithmic (AL) structures of
Section 4, plus the extensions relating to saddle point methods described in Section
5.3.

This specification of a precise mathematical level of expertise also ensures that our

“automatic theorems” actually represent automatic results (and not a haphazard

collection of ad hoc recipes put into a large programme!).
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The capabilities of the logical framework—and its corresponding implementa-
tion—extend to a number of combinatorial and computational problems. Examples
are spread over this paper and in the Ay{ Cockbook, and they can be organized
roughly into three categories.

(i) Regular languages and finite automata. Addition chains ard related optimiz-
ation problems; long term behaviour of finite state controls in systems; various
combinatorial problems (compositions, partitions, runs in sequences) that are
expressible in terms of regular languages.

(ii) Terms and trees: Differentiation algorithms, higher derivatives; some sim-
plification algorithms; a class of term rewriting systems; partial analyses of
unification algorithms and related pattern occurrence problems.

(iii) Combinatorial problems: Random tree problems; mappings and functional
graphs; partitions and ordered partitions; Banach’s matchbox problem; some special
permutation problems.

For instance, the problems on addition chains are of some relevance to integer
primality testing using elliptic curves and a small percentage of computer time was
gained using optimizations guided by the Ay{) system [60]. In the next section, we
show that the symbolic computation of derivatives has an average cost over (random)
expressions of size n that is O(n*'?). The Ay € system was first used to verify the
conjecture that the cost of a dth order derivative varies on average like O(n'*%/?),
for d =2,3.

Within the system’s capabilities, we find many examples of rewriting systems that
belong to the class of so-called regular systems [17,75]. Ay was used to check
several of the corresponding analyses of Michéle Soria’s thesis in this context [75],
or in the context of random functional graph problems (model sensitivity issues of
[31,75]).

Several automatic analyses on paitern occurrence problems in random trees have
been used in the performance study of unification algorithms given in [2]. One of
the authors’ little rewards occurred when they discovered that the Ay{2 system was
capable of ““doing” a paper published as a note (on injective partial transformations)
in the journal Discrete Mathematics [12], and even obtain more complete resuits
including asymptotics.

A few historical comments on the ancestry of these ideas are now in order.

Formal or symbolic methods in combinatorial enumerations take their roots in
actual enumeration practice in various domains. However, the first general theories
seem to have started in the 1960s. The Chomsky-Schiitzenberger theory of context-
free languages [16] is amongst the first traceable sources where very systematic
correspondences are exploited between combinatorial structures (words and
languages) and generating functions. Other sources are the theory of graphical
e-umerations [41], Rota’s thec y o, generating functions [69,70], Bender and
Goldman’s theory of “‘prefabs™ [5], or Foata’s theory of the partitional complex
[38]. Each of these theories deals with combinatorial structures that are either
labelled or unlabelled, but not both. A unifying framework comprising both types
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was proposed by Joyal [49] in 1981. Finally, a systematic exposition of combinatorial
enumerations in this context is the subject of a book by Jackson and Goulden 39].

: §

On the analytical side, the tradmon of relating analytic properties of a functlon
to asymptotic properties of its Taylor coefficients is older. Its roots lie in part in
classical analysis (e.g., Darboux’s method), and in part in analytic number theory
(e.g., the additive theory of partitions). We shall simply refer to classical treatises
like those of De Bruijn and Olver [25, 63] for a general treatment. The two major
techniques that we use are: (i) singularity analysis for functions that do not grow
too fast; (ii) saddle point techniques for functions with a more violent growth at
either a finite or infinite distance.

Turning from theory to practice, the first

-

automatic performance ana )
we are aware of was built by Wegbrelt in the early 1970s [83]. Wegbreit’s pioneer
system, Metric, aimed at deriving closed form expressions for execution behaviour
of programs, and it included modules to cairy out average-case analysis. However,
the underlying principles were Markovian approximations (fixing the probabilities
of tests to constants) and an amount of symbolic manipulation limited to linear
recurrenices with constant coefficients.

The present work is based on works of Flajolet and Steyaert [29, 36,79, 37]. In
particular, the articles [36, 37] proposed a complexity calculus for a class of simple
recursive programmes over tree structures; that calculus in turn gave rise to a
prototype implementation which is described in [33] and which constitutes a direct
ancestor of the current Ay{) system.

The algebraic part of our system also bears some resemblance to the interesting
theory of labelled grammars due to Greene [40]. Greene’s theory concerns primarily
combinatorial enumerations; he used it for constructing an automatic generator of
random combinatorial structures, but he did not pursue the formal side of the
analysis of algorithms. The influence of Greene’s excellent work is to be found not
so much in the core of our system, but rather in several extensions (automatic
generation of random structures, counting of abelled structures with order con-
straints). The Darwin system developed by Bergeron and Cartier [6, 7] determines
generating functions within Joyal’s enumerative theory; it is a distant cousin to the
algebraic engine of the Ay{} system. A system also designed to enumerate com-
binaiorial structures that is based on the Jackson-Goulden formalism is reported
in [58].

Amongst other proposals, we mention the approach of Hickey and Cohen to the
automatic analysis of programmes in [18,47]; it relies in part on Ramshaw’s
frequency system (which corresponds roughly to Floyd-Hoare complexity assertions
[66]) and in part on Kozen’s semantics of probabilistic programmes. The Hickey-
Cohen framework appears to have a rich expressive power, however it is not clear
how a complete calculus (with simplification rules and normal forms) can be
developed. Perhaps most of the interest of their approach lies in correctness
verification of complexity assertions. Zimmermann in [92] developed a system,
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Complexa, based on recurrence relations which extends Wegbreit’s approach since
more elaborate control mechanisms are allowed and more complicated recurrences
are dealt with by the algebraic unit.

Finally, a few other works have dealt with automatic worst-case analysis of
algorithms, a rather different domain. For this, we refer to the work of Le Métayer
[55] and references therein.

2. An example: symbolic differentiation

In order to illustrate the range of problems that we want to attack, we start by
presenting an example of a simplified programme for computing derivatives of
formal expressions.

Such algorithms form the core of classical algebra systems and provide classical
programming exercises [52, p. 336-340). Our programme is a simple tree rewriting
process that recursively implements the differentiation rules

Dx =i

De’ = e’ x(Df)

D(f+g) = (Df)+(Dg).
It should be stressed that the analysis that follows was produced automatically by
the Ay{Q system. (We follow the standard conventions of the system for specifying
data types and algorithms, but these should be transparent in the various examples.)

We consider a programme that operates on formal expressions composed simply
of exponentials (expo), sums (plus), and a simple variable (x).

type Expression=expo Expression|plus Expression Expression|x;
expo, plus, x=atom(1);
The data type specification is recursive. Its presentation resembles a classical context-
free grammar, and atom(1) refers to objects that are atomic (i.e., terminals in
standard context-free language parlance) with size equal to 1 (the standard size for
an atomic object). A symbolic expression like x+e° *~ is thus of the Expression
type, with size 7, being represented as
plus X expo plus expo x x
The differentiation algorithm has a simple top down recursive structure which,
in our formalism, we specify as follows:
function diff(e : Expression);
begin
case e of
(expo,f) : times(expo(copy(f)),.diff(f));
(plus,f,g) : plus(diff(f),diff(g));
X : one;
end;
end;

The ouiput expressions then belong to a richer set with, in addition, producis



Automatic average-case analysis nf algorithms 45

(times) and the constant 1 {cne) being allowed. The copy procedure creates a
carbon copy of its argument:

function copy(e : Expression);
begin

case e of

(expo,f) expoicopy(f));

(plus,f,g) : plus(copy(f),copy(g)):;
X X,

end;
end;

We thus specify a version of the algorithm that computes diff(e) by creatiag its
own independent linked structure.

The algorithm has worst-case complexity O(n®) when applied to an input
expression of size n. This worst case is attained with chains of exponentials. For
instance the verbatim output of the differentiation command applied to the sixfold
iteration of the exponential function in Maple is:

X
X et e

et e’

e"ee e e e
The best-case complexity is clearly O(n).

Our interest in this paper lies in average-case analysis of algorithms under uniform
combinatorial models where all input structures of a given size n are taken equally
likely. The differentiation algorithni under consideration operates in a purely recur-
sive fashion over a recursively defined data type and thus it falls under the class of
algorithms that our system car. approach. For instance, if we specify a complexity
measure of 1 for each of the output symbols,

measure expo, plus, x, times, one : 1;
the cost of the algorithm coincides with the size of the expression that it outputs.
In that case, the Ay{) system automatically produces the answer:
Average cost for diff on random inputs of size n is:
s1/2 .3/2
(1/3 L’ﬁ
(4/3)"
Floating point evaluation:
(.5116633543 n*?) + {.8333333333 n) + (0(n'’?))

Thus, we obtain the automatically produced theorem:

) + (5/6 n) + (0(n'2))

Automatic Theorem 1. The complexity of the diffc entiation algorithm applied to
random expressions of size n is on average®

/1 3/2+§ +0(n'"? (3)
T " O(n""").

2 This “automatic theorem’ was produced in 75 s of computing time on a machine (Sun3) that performs
about 3 x 10° elementary instructions per seconds and has 12 x 10° byte; of core memory.
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(Also a fuli asymptotic expansion in descending powers of vn can be obtained.)

Proof. Let us examine now the way that such an analysis is produced. Let 7diff,
represent the expected complexity of procedure diff over a random expression
of size n. The basic equation is

_ rdiff,,
rdiff, =—7F
Expression,,

(4)

where Expression, is the number of expressions of size n while +diff, represents
the sum of the execution costs of the procedure over all expressions of size n. The
analysis problem thus reduces to a counting problem, namely determining
Zxpression,,, and a modified counting problem where we need to find the total cost
of the diff-algorithm.

The two problems are attacked by generating function (GF) techniques; see
Section 3 for basic definitions. We thus define the GFs.

Expression(z) = ) Expression,-z" and =difi(z)= Y ~diff,- z".

n=0 n=0

n

The first one is the standard counting generating function of the expression structures.
The second one is called the complexity descriptor of the algorithm.

Algebraic enumeration: Translation mechanisms that we are going to review with
some detail in the next section imply that these GFs satisfy equations that are direct
“images” of the data type and of the algorithm specifications.

First, the recurs:ve nature of the expression type leads to a fixed point equation
for Expression(z)

Expression(z) = z(Expression(z))” + zExpression(z) + z.

In this particular case, we found a quadratic equation whose explicit solution is

1-z-V1-2z-32°
2z )

Expression(z) =

See [24, p. 56] for the classical solution to similar problems.

Second, the complexity descriptor rdiff(z) satisfies a simpler equation which
rationally relates it to Expression(z) and rcopy(z), and this is again a direct reflection
of the recursive specification of the diff routine. Finally, we find that all intervening
GFs are rational functions in z and in the singular part

A(z)=V1-2z-32> (5)

Asymptotic analysis: The problem is now to extract the coefficients of the GFs.
The major idea is to avoid the computation of explicit forms of the coefficients
Expression,,, rdiff, and aim at direct asymptotic analysis from the GFs themselves.

It turns out that the dominant singularities—the singularities of smallest modulus—
of a generating function determine the asymptotic growth of its coefficients. The
modulus p of the dominant singularity (-ies) contributes for the coefficients a driving
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exponential factor of p™" while the nature of the singularity is reflected by a
subexponential factor. These questions are discussed in Sectior 4.

Here, the singularities of 4(z) and hence of Expression(z) are the branch points
z=-1 and z =3}. The dominant singularity is thus p =}. Locally, we find that for
some constants ¢, ¢, C5, ..., we have

Expression(z) =co+¢,v1-3z+0(1-3z) and
C> + C3
1-3z V1-3z

By virtue of general theorems to be detailed in Section 4, these local expansions
can be transferred to coefficients and they provide the expansions

(6)

rdiff(z) = +0(1).

. [ 3"
Expression, = ;% 3"+0 (—n—) and

: 3 3" ™
rdiff, = ¢33" +—=75 3" +O(-—) .
n n
Dividing these two asymptotic forms yields the main term in the statement of
Automatic Theorem 1; the expansion as stated follows from suitably refined versions
of (6). This completes the account of the (automatic) proof of the Automatic Theorem
1. O

The same approach will enable us to analyze a number of variants to this algorithm.
For instance, by just deleting the references to the copy procedure, we obtain an
algorithm that is equivalent to operating with shared pointer representations. A very
similar analysis can be performed (still automatically!).

Automatic Theorem 2. The average complexity of the differentiation algorithm applied
to random expressions of size n when sharing of subexpressions is used is

4 1 1)
-n+-+0{—). 8
3"t o(n) (8)

By examining Eqs. (3) and (8), we are thus able to compare two versions of the
differentiation algorithm. We see that by doing (some) sharing of common subex-
pressions, complexity is reduced from O(n*/?) to O(n), and very precise estimates
are obtained. This represents a fairly typical use of an automatic system like Ay}

In passing, we have also obtained results about the ceunting of *“‘expressions’ or
what amounts to the same the counting of their associated trees. Rephrasing results
slightly, we have found:

Automatic Theorem 3. The number of unary-binary irees with n nodes is the coefficient
of z" in the generating function

1-z-v1-2z-32°

2z

Expression(z) =



48 P. Flajolet et al.

Asymptotically, this number is
/ 3 45 1 3"
1 = n__ 3" +0 (__) .
Expression,, - 3 2 fan 772

In other words, an automatic analyzer can be used for doing some amount of
combinatorial counting as well. The sequence of coefficients of Expression(z) starts
as 1, 1, 2, 4, 9, 21, 51, 127; these numbers are classically known as the Motzkin
numbers in combinatorial theory and they appear in Sloane’s book [74], under the
name “‘generalized ballot numbers”, as sequence 456.

We now propose to explain precisely on which mathematical principles such an
automatic analysis can be based.

3. Algebraic analysis

The purpose of this section is to show how specifications of certain combinatorial
structures together with their associated algorithmic schemes admit translations into
generating functions.

We first introduce combinatorial constructions (or data type constructions, if one
prefers) that form the skeleton of our system (Section 3.1). Roughly speaking, we
deal with structures that are definable using products, unions, sequences, cycles,
and sets (or in programming parlance, records, variable records, lists, circular lists,
and unordered lists). The definitions may be either iterative (non-recursive) or
recursive.

Thus, we operate with basic structures that could be termed constructible or
decomposable, since they can be specified starting from basic elements by means of
a fixed collection of standard set-theoretic constructions. To be more precise, the
constructions operate in a parallel manner in two different universes, the “unlabel-
led” and the “labelled” universe—a dichotomy that is familiar from classical
combinatorial analysis [38, 39, 49, 76].

An issue to be discussed is the notion of well-definedness of specifications; this
is dealt with in Section 3.2. The situation there resembles that of context-free
languages with respect to properness of grammatical specifications.

Next, we describe the schemes that allow us to translate combinatorial construc-
tions into operations over generating functions (Section 3.3). The constructions that
we introduce are all “admissible” in the sense that they translate into generating
functions. Each universe is associated with its own type of generating function
{either ordinary or exponential).

In Section 3.4, we introduce a collection of programming mechanisms that are
in a sense the algorithmic counterpart of our standard combinatorial constructions.
Intuitively, we deal with extended traversal procedures for constructible/decompos-
able structures. The mechanisms considered are those of selecting a component in



Automatic average-case analysis of algorithms 49

unlabelled labelled
union [+]: union uition {+]: union
cartesian product [ x]: product partitional product [*]: product
sequence [(.)*]: sequence partitional sequence [(.)*]: sequence
cycle [C(.)]: cycle cycle [C(.)]: cycle
set [£(.)]: set partitional set [£(.)]: set

multiset [M(.)]: multiset

Fig. 2. The admissible constructions operate in twc parallel “‘universes™, the universe of plain unlabelled
structures and that of labelled structures. T ¢ AYQ forms of operators are also giver: {in pseudo-teletype
font).

a product (record field selection), testing definitions by cases (handling records with
variants), iterating over one or all components (selection/iteration) for set, cycle,
or sequence constructions. This defines a closed world of algorithmic processes for
which translation into complexity descriptors can be achieved automatically by
means of a fixed set of rules (Section 3.5). Thus for this class, exact average-case
analysis is decidable and, as it turns out, of low polynomial complexity (cf. Theorem
3.15).

3.i. Combinatorial constructions

This paper deals with discrete combinatorial models for average case analysis of
algorithms. This means averaging an algorithm’s cost over a class of structures (the
legal inputs) of a fixed size n, using the uniform distribution.

Definition 3.1. A class of combinatorial structures is a pair (%, |. ), where € is a
finite or denumerable set, |.| is a function from € to N called the size function,
and for all integers n, the number of elements of € that have size n is finite.

We let in general 6, denote the subset {ye €||y| = n}. We use C, to denote the
cardinality of %, and refer to the sequence of numbers {C,},-o as the counting
sequence of the class 6.

Typical objects that we shall consider here are words, permutations, trees and
graphs of various sorts. Typically, the “size” of a word is its length, the size of a
tree or a graph is the number of its nodes etc. Our main tool is going to be generating
Sfunctions (GFs) whose definitions we now recall.

Definition 3.2. Let {f,}.-o be a sequence of numbers. We define the ordinary
generating function (OGF) and the exponential generating function (EGF) of the
sequence by

Z"

f(2)= Y fuz" and f(z)=% fi=. 9)

n=0 n=o h!
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When € is a class of structures with {C,} as its counting sequence, we call C(z)
and C(z) the OGF and EGF of %. We may observe the alternate forms of GFs for
structures,

b7
C(z)=% z* and C(z2)=F . (10)
ye ' yee lyl!
In the sequel we stick to the notational convention of using the same groups of
letters for classes of structures (€), their counting sequences (C, or ¢,) and the
corresponding generating functions (C(z), é(z} or ¢(z), é(2)).
For instance, the class & of all binary strings is such that 3, = {0, 1}". Thus the
cardinality is B, =2", and the corresponding OGF and EGF are found to be

B(z)= ¥ 2""= and B(z)= Y 2"-2—'=e2’. (11)

n=0 1-2z n=0

We need a notation to go back from GFs to coefficients. If a(z) =Z:°=O a,z", in
accordance with well established practice, we use [z"]a(z) to denote the coefficient
of z" in a(z), that is to say a,. Thus, in the notation of Eq. (9), we have

fu=[2"11(2) = n[2"1f(2).

Abusing notations slightly, we sometimes use the convention
z" i
pr f(z)=nz"]1f(2).

In the sequel, we freely drop the “hat” in GFs whenever it is clear from context
with which family we are operating. (Normally, a “‘universe” dictates its own choice
of GFs.)

Unlabelled univer:»

In this universe, structures are simply composed of indistinguishable “atoms”
(nodes in graphs or trees, letters in words, etc.). The size of a structure is the number
of the atoms it contains. The operaiio.s allowed are

Cartesian Product, Union, Sequence, Set, Multiset, Cycle.

These operations have their usual set-theoretic meaning, except that we use a notion
of “marked union™ for the reason of zvoiding ambiguous specifications.
The product relation € = of x B means

€={ye€ly=(a,B),acd,BeB} with|y|=|(a, B)|=|a|+|Bl. (12)
The union € = of + B represents the marked union
E={uixsf)u({u'}xB), (13)

where u and u’ with ¢ # u' are “marks” of size 0, and “ U " represents the usual
set-theoretic union. In other words the (marked) union defined here coincides with
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the standard (set-theoretic) union whenever o/ N & =¢. Otherwise, we take two

disjoint copies #°, B° of &, B and form € = °uU B°. This convention is crucial

in that it eliminates all questions connected with the ambiguity of specifications.
The sequence class € = of* is defined in the usual way by

C={e}+A+(AXA)+(AXAXA)+ -+ . (14)

By the set construction applied to &, denoted €= 4(sf), we mean the class
formed by the collection of all the finite subsets of <.

C=p(A) & €={{a),...,x}|k=0,0a,,...,a,c A} (15)

The multiset construction M[.] exists only in the unlabelled universe; a multiset is
a set of elements with repetitions allowed. The cycle construction C[.] applied to a
set o is the set C(«f) whose elements are (non-empty) cycles of elements from .

In the unlabelled universe, a specification of a class of combinatorial structures
is a collection of (possibly recursive) equations over classes that uses only the
constructors above. The initial classes are defined by the atom primitive that
corresponds to a class only consisting of a single element (atom) of a size normally
equal to 1. Thus, the class of all binary strings with alphabet {a, b} can be specified
in a non-recursive way in Ay{} format as

type Word = sequence(Letter);
Letter = union(a,b);
a, b = atom;

and recursively as

type Word = Word Letter | epsilon;
Letter = a | b;
a, b = atom(1); epsilon = atom(0);

In passing, we have illustrated some possible variations in notations: The vertical
bar “|” is a synonym for union; product symbols may be omitted so that “prod-
uct(A,B)” can be abbreviated to ““A B’; the notation “atom(k)” defines an atom
of size k, so that atom is the same as atom(1), and atom(0) may be used to
represent the empty word.

Labelled universe
The main feature here is that structures are composed of ““atoms” that bear distinct
integer labels from 1 to n, when the structure has size n. For instance the permutation

_[1 2345 6]
7Tl245631
admits the cycle decomposition o ={(5, 3)(6, 1, 2, 4)}; it can be viewed as a graph

whose nodes are labelled by the integers 1, 2, 3, 4, 5, 6 and with two connected
components that are circular graphs.
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Clearly, the standard cartesian product cannot operate directly on labelled struc-
tures (otherwise, duplicate integer labels would result). The proper notion of product®
that is adapted to labelled structures forms pairs, but also accomplishes consistent
relabellings; it is called the partitional product. If a and B are two labelled structures,
their partitional product (a * B) is the collection of all ordered pairs y = (a®, B),
where a®, B° are obtained by performing order preserving relabellings of a, 8 in
such a way that the resulting y be well labelled.

The union operation has the same (marked) meaning in the labelled as in the
unlabelled case.

Once the partitional product has been defined, the corresponding notions of
partitional sequence, partitional set and partitional cycle constructions follow. We
define the partitional sequence by

A*={e}+ A+ (A % )+ (A% o % )+ - - - (16)

and, from there, we are led to the definition of partitional power set construction,
€ =p(A) iff

€={{a,,...,a}|(ay,..., o) e £* k=0}. (17)

Cycles are defined similarly.
For instance, the class of all permutations can be defined by

type Permutation = set(Circular);
Circular = cycle(Element);
Element = Latom(1);

where Latom means “labelled atom”. Sinice we operate within a labelled universe,

the set and cycle constructors are implicitly to be interpreted in the labelled parti-
tional sense.

3.2. Well defined specifications

We first need to isolate those type specifications that are well defined. Type
specifications resemble context-free grammars and our problems are anaicgous to
questions like so-called e-freeness for context-free grammars.

More precisely, a type specification is an equational specification that is composed
of

a set of atoms T,
a set of non-terminals N,
a set of productions P.

The productions in P are written as equations,
S=¢(Rl9°"5 Rk),
* This is a classical concept in combinatorial analysis. We just give here minima! definitions. The

reader is referred to [24, 38, 39, 78] foi background and compiete definitions, or to [81] for uses in the
analysis of algorithms.
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where S is a non-terminal, @ is a constructor, and the R, are either atoms or
non-terminals. Each non-terminal appears on the left-hand side of exactly one
production.

One defines derivations, like for standard grammars: we write A~ B if B derives
from A in a single step and A > B if B derives from A in a sequence of steps. In
this way a production can also be written S @. Then, we have a precise definition
of the class of structures generated by a specification.

A type specification is said to be iterative or non-recursive when the corresponding
dependency graph of the productions is acyclic; otherwise, it is said to be recursive.
For example, the class of non-recursive type specifications with the set of constructors
{union, product, sequence} corresponds to regular expressions; the class of recursive
type specifications with the same constructors corresponds to usual context-free
grammars.

The valuation of a symbol S (atom or non-terminal) is denoted by val(S), and
it is the least size of the objects generated by S (possibly o).

Definition 3.3. A data type specification is said to be well defined if it satisfies the
two properties:

(1) each non-terminal has a finite valuation;

(2) for each non-terminal S, the subset &, of objects of size n generated by S is
finite.

Here are two instances of specifications that are not well defined. First,

type A = sequence(B);
B = sequence(x);
x = atom(1);

What happens is that B contains the empty structure €, with |e| = 0. Thus A contains
any sequence €“=(g,¢,...,€) for any k=0. Each of the e* has size 0, so that
Ao=00. The other example is
type S =S L;

L=x|y;

X, y = atom(1);
In that case, S does not specify any finite structure. In a sense, the solution for §
in this equational specification is the set of infinite sequences, {x, y}*, and we cannot
assign to it any combinatorial (finite) meaning.

We naturally want to restrict attention to well defined specifications. The following

proposition expresses the possibility of doing this algorithmically.

Proposition 3.4. It is algorithmically aecidable whether a type specification is well
defined or not.

The proof is based on two lemmas that take care of each of the conditions
occurring in the notion of well definedness.
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Lemma 3.5. Given a specification, the valuation of each non-terminal is computable.

Proof. The following algorithm computes the valuation of all symbols (atoms and
non-terminals) by maintaining a dynamically changing array v(.) whose final values
coincide with the valuation function.

Algorithm Valuations:
for each atom a, v(a) «|a|
for each non-terminal S, v(S) e
repeat
for each non-terminal S do
if S-> a where a is an atom or a non-terminal then
v(S) «v(a)
if S- union(R,,..., R,) then
v(S) «min(v(R,), ..., V(Ry))
if $- product(R,, ..., R,) then
v(S)«Vv(R))+ -+ +V(Ry)
if S @(R) where P € {sequence, set, multiset} then
v(S)<0
if S cycle(R) then
v(S) < Vv(R)
od
until v(.) is unchanged.

First this algorithm terminates because the vector v has components that lie in
Nu {00}, which is a well ordered set, and, by construction, the vector decreases at
each iteration (in the partially ordered product set). Second, after k loops, v(S) is
the least size of the objects derived from S in at most k steps. As v converges, the
output value is the least size of all objects derived from S. [

Observe that algorithias that identify non-terminals with valuation 0 in context-free
grammars are weil known (cf. [40, p. 69-70] or [1]).

The next step consists of eliminating specifications with a non-terminal T such
that T, =c0. We need to define a reduced specification as one in which: (i) all
valuations val(S) are finite; (ii) no production is of the form X » &(Y) with @ one
of {sequence, multiset, cycle, set} and val(Y)=0. It is easy to decide using Lemma
3.5 whether a specification is reduced. Then, we have

Lemma 3.6. Consider a reduced specification. Then the following two conditions are
equivalent:

(1) for some integer n and non-terminal T, we have T, = ;

(2) there exists a cycle (X', X'V, ..., X' = X'?), such that X" appears in the
production defining X''"', and for product based productions, X" "> XY or
XY Vs yYX'" we have val(Y) =0.
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Proof. See Zimmermann’s thesis [90]. This lemma shows that circularity (i.e.,
T, = o0) reduces to cycle detection in an appropriate graph. [

We can now complete the proof of Proposition 3.4 and actually derive an algorithm
for deciding well defined specifications.

Algorithm Well-Definedness

(1) Valuation: Apply algorithm Valuations that determines all valuations
(Lemma 3.5). If one valuation equals o0, the data type specification is not well defined.

(2) Reduction: Check that the specification is reduced. If not, the specification
is not well defined.

(3) Circulcrity: Perform the cycle detection test of Lemma 3.6 on the reduced
specification.

Thus, we now know how to test algorithmically for well defined specifications.
For instance, consider the following three tree specifications.

Ta=0]|0Ta| o Ta Ta Ta;
T=0|wTb | oTb Tb Tb;
Tc =0 | o Tc | wTc Tc Tc;
o = atom(1); w = atom(0);

1

Each of the three types represents a class of unary-ternary trees, the difference being
related to which nodes contribute to size and which do not. Type Ta is such that
all nodes count, and its specification is well defined. Type Tb is not well defined
(we can add to a tree Tb an arbitrary number of unary nodes without changing its
size); type Tc is wel! defined in agreement with the conservation laws for trees (one
cannot add ternary nodes without increasing the number of nullary nodes that
contribute to size).

In the sequel, we assume that we are only dealing with well defined specifications.

3.3. Translation rules for counting generating functions

In this section, we provide translation rules from specifications to generating
function equations. The main point is that the constructions that we introduced
eariier (Section 3.1) are all “admissible” in the sense that they translate into
generating functions.

A typical translation rule is the rule for cartesian products. Let €= AXB be a
(cartesian) product construction. By our standard convention, we let A(z), B(z),
C(z) denote the associated ordinary generating functions. Then, we have

C(z)= Z Y = Z Slal+iBl

yc f (a, Bl x.A

= ¥ zZix ¥ 2¥'=A(z) B(2).

aec.d BB
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The first sum is the definition of C(z); the second sum follows from the definition
of a cartesian product and of its size, cf. (12); the third sum results from distributivity.

This example shows an instance of a translation rule: Cartesian products of sets
translate into products of corresponding generating functions. We shall present such
correspondences in the form of a rule,

A=BxC
A(z)=B(z)C(z)

Unlabelled universe

In this universe, structures are simply composed of undistinguishable atoms.
Translations are in terms of ordinary generating functions. We first list the translation
rules.

Rule 1 (Union):

A=BuC
A(z)=B(2)+C(2)

Rule 2 (Cartesian product):

A=BxC
A(z)=B(2)C(2)

Rule 3 (Sequence):

A = sequence(B)
A(z)=Q(B(z2))

where

1
Q(f)—l—_—f-
Rule 4 (Cycle):
A = cycle(B)
A(z)=D-(B)(2)

where

_ ¢ o) 1
Pe(f)a)= T F = log

(& is the Euler totient function, that is, ¢ (k) is the number of positive integers not

exceeding k and relatively prime to k: ¢(1) =1, ¢(2) =1, ¢(3) =2, ¢p(4) =2, ¢(5) =
4,...).

Rule 5 (Set):

A =set(B)
A(2)=Dy(B)(z)
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where

‘Ps(f)(z)=exp(f(lz)—f(; )+f(; )_ L )

Rule 6 (Multiset):

A = multiset(B)
A(z) = &y (B)(z)

where

(2) S S), )

¢M(f)(z)=exp(f 2,00, [

We can now state our main theorem for uniabelled structures.

Theorem 3.7. The constructions of Union, Product, Sequence, Cjcle, Set and Multiset
are admissible, and thcir translations to ordinary generating functions are given by
Rules 1-6.

The collection of unlabelled iterative structures defines a class of generating functions
that is contained in the class of elementary functions definable explicitly from 1, z by
application of operators (0, .pe11ea = {+, X, Q, D¢, D5, Pp,}.

The collection of unlabelled recursive structures defines a class of generating functions
that is contained in the class of elementary functions definable implicitly from 1, z by
application of operators {2, .pciicd -

Proof (Indications). The proof reduces to proving the correctness of translation
Rules 1-6. This has been done already for products.
For unions, we clearly have, when € = o + %:
z 27 = z zlal 4 z ZIBI’
ye€ ac.d Be R

so that unions map to sums. For the sequence construction, € = &/*, since € is a
union of products, we find that the GF C(z) is a sum of products, namely:

C(z) =1+ A()+(A(2) - A) +(AG) - A@) - A@)+ -+ =

The rule for the set construction is valid because #(sf) is isomorph‘c to an infinite
cartesian product,

#(d)= 1 ({e}+{a}),

acd

with € a structure of size 0. In other words, we view a subset w < & as an infinite
array indexed by the domain &, where each array element is eitheran e oran a € 4.
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Thus, in terms of generating functions, we find

C(z)= T 1+ = [ (1+2")"

aey n=1

= exp( Y A, log(1+ z")).
n=1
By using the Taylor expansion of log(1+ x), we obtain

m+l1 Ef
C(2)=exp(2 Y (-)"A, m)

n=1l m=1

B A(z) A(ZY) A(ZY)
=exp 1—2+3—---.

The derivation for multisets is entirely similar. It relies on the isomorphism M(&/) =
I1... ; {a}*. The translation for cycles® is due to Read [67].

Once the translation of basic constructions is known, the translation of complete
specifications follows. Iterative specifications give rise to collections of functional
equations built from 1, z by application of £2,,1.benea- Recursive specifications give
rise to the corresponding class of functional equations. O

We observe that there are several easy extensions of these rules to slightly modified
constructions. For instance, we may use

C = sequence(A, card>=b);

to construct A-sequences with at least b components. In that case, the translation
to GFs is easily found to be

A(2)"

C(z)=——l_A(z).

For set and cycle constructions, the corresponding functionals over GFs can be
derived from Pdlya’s theory of counting. For instance, we have

"C = set(A,card = 2);" implies C(z)=1A(z)*+1A(z%).

We use occasionally these modified rules in examples.
As an illustration of the power of this formalism, we treat a few examples giving
rise to automatic theorems.

Example 3.8 (Bracketing problems). These problems are treated by Comtet [24,
pp. 52-57] as an illustration of the technique of generating functions. Here, we are
able to obtain their solutions automatically.

* This construction together with the set and multiset constructions can also be attached to Polya’s
theory of counting [64, 65].
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Automatic Theorem 4. (i) The number of binary bracketings of a non-commutative
non-associative product involving n factors is the coefficient of z" in

BB(z) =3(1-v1-4z). (18)

(ii) The number of binary bracketings of a commutative non-associative preduct
involving n factors is the coefficient of z" in the function CB(z) that satisfies the
Junctional equation

CB(z) = z+3iCB*(z)+1CB(z%). (19)

(iii) The number of generalized bracketings of a non-commutative product involving
n factors (where each bracket can contain two or more factors) is the coefficient of z"
in

GB(z)=l1+z-V1-6z+2). (20)

For part (i), there follows by the binomial expansion of (i + x)"/* the well known
form of the Catalan numbers, BB, = 1(*"-). For part (ii), Otter used the functional
equation to prove, in 1948, that CB, ~0.318(2.483)"n"**? For part (iii), we shall
see in the asymptotic section how to derive the asymptotic form

GB, = i\/\/;_;(3+\/_)"(1+0(n)) (21)

Proof. The specifications corresponding to the three problems are

type BB = BB o BB | X;
CB = X | o multiset(CB, card=2);
GB = X | o sequence(GB, card>=2);

X = atom(1); o=atom(0);
The corresponding equations for BB(z) and GB(z) are

GB’(z)
1-GB(z)’

The solutions for BB, GB then follow automatically through the resolution of
algebraic equations: BB is defined directly by a quadratic equation (with a unique
formal power series soiution); GP satisfies an equation that reduces to a quadratic
form. As to CB, its definition is (intrinsically) by means of a functional equation. [J

BB(z)=z+BB(z) and GB(z)=

Labelled universe

These structures are composed of atoms labelled by distinct and consecutive
irtegers. Translations are now in terms of exponential generating functions. Thus,
if s¢ is a class of labelled structures, we operate with iis EGF,
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which we write as A(z) for notational simplicity. We again start by listing the
translation rules.
Ruie 7 (Union):
A=BuC
A(z)=B(z)+C(2)

Rule 8 ( Partitional product):

A=BxC
A(z)=B(z)C(z2)

Rule 9 (Sequence):

A = sequence(B)

A(z) = Q(B(2))

where

1
Q) 1=
Rule 10 (Cycle):

A = cycle’ B)
A(z) = L(B(z))

where

1
L(f)=log T—_f
Pule 11 (Set):
A = set(B)
A(z)=E(B(z))

where

E(f)=exp(/f).

Theorem 3.9. The constructions of Union, Product, Sequence, Cycle, Set in the labelled
universe are admissible, and their translations to exponential generating functions are
given by Rules 7-11.

The collection of labelled itcrative structures defines a class of generating functions
that is contained into the class of elementary functions definable explicitly from 1, z
by application of operators 0, penea={+, X, Q, L, E}.

The collection of labelled recursive structures defines a class of generating functions
that is contained into the class of elementary functions definable implicitly from 1, z
by application of operators £, ,p.11eq-
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Proof (Indications). The major point that needs justification is the rule for preducts.
We observs that the cardinality of the partitional product (a * ) is equal to ("*[3[#').
Thus, if € =9 * B, we find

Il lal+B]
T ) Pl
vee |¥l! (@prewxa \ |a| /] (la|+]|B)!

Slal lal

= —-xz

aca ||l ga '8!

Z__ A(2) - B(2).

The rule for partitional sequences follows as in the unlabelled case. The rule for
sets is simpler here. From (17), a k-set is as.ociated to k! sequencss (all sequences
associated {o a set by permuting its elements are distinct, because of the labelling
of atoms!). Thus € = 4(sf) translates into

— _1_ __!_ 203 1 LI — aAl2)
C(z)—-1+l!A(z)+2!A (z)+ - +EA (z)+4 -+ =%,
A similar reasoning gives the translation for cycles with 1/k replacing the factor
1/k!. O

Labelled constructions greatly add to the expressive power of our language. We
start with examples of iterative structures and then continue with recursive types.
We occasionally appeal to direct variants of the rules above. For instance, for a set
of cardinality larger than b, we have

b
"A = set(B, card>b);" = A(z)=e"*'-}

Automatic Theorem §. The number B, of partitions of a set of cardinality n into
equivalence classes is the coefficient of [z"/n!] in the function

exp(e’—1).

The number of ordered partitions of a set of cardinality n into classes (where classes
are ordered betwecn themselves) is the coefficient of [z"/n!] in the function

2—¢*’

The partition numbers are known as Bell numbers [24] and an expression can
be obtained by expanding the EGF,

g K
k=1 kY’
a well known formula obtained by Dobinski in 1877. Ordered partitions [70, p. 99,

constitute a classical example of the asymptotic analysis of meromorphic functions,
and we shall derive an asymptotic ferm for them in the next section.

B.=¢
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Proof. It directly results from the specification

type Partition = set(Block);
Block = set(Element,card>0);
OrderedPartition = sequence(Block);
Element = Latom(1); O

Theorem 3.10. Given a type specification X, the number of arithmetic operations
necessary for computing all the counting sequences associated with non-terminals up
to size n is O(|X|n?).

Proof. We consider the additional cost of computing a new coefficient A, =[z"]A(z)
where A(z) = E(B(z), C(z)), assuming that we know already the values of A, for
k <n, and By, C; for k < n. The proof proceeds by cases on =.

Union: If E =+, A, is simply given by B, + C,, thus the additional cost for
getting A, is O(1).

Product: If = =x, A, is given by a convolution, A, =Z:=0 B,C, i, and the cost
is O(n).

Sequence: 1If A=1/(1- B), we also have A =1+ BA. Thus, taking coefficients,
we get a recurrence’ A, =[z"](1+ BA),i.e., A, =Y, _, BiA,_, so that the additional
cost for A, is O(n).

Labelled set: If A=exp(B), A'= AB’ thus A, =(1/n)[z""']JAB’ and the cost is
again O(n).

Labelled cycle: 1f A=log(1—-B)™', we have A’=B'/(1-B) or A'=B'+BA'.
Using the corresponding recurrence, we see that the additional cost for A, is O(n).

Unlabelled set: If A(z)=exp(B(z)+B(z)/2+---), we have A,=
[z"]exp(F(z)), where F(z) = B(z)+ B(z°)/2+ - - - . The coefficients of F are stored
and computed along with the other coefficients. In this way, the cost of computing
a new coefficient [2z"]1F(z) and the new value A, =[z"] exp(F(z)) adds only O(n)
extra cost.

Unlabelled cycle: We have A(z)=log(1—-B(z)) '+ilog(1-B(z?)) '+ ---. We
need to compute incrementally and store the coefficients of L(z)=log(1- B(z))™".
The additional cost of obtaining a new coefficient for L(z) and for A, is O(n).

We have seen that the cost of incrementally computing one A, is O(n). Thus the
total cost is O(n?).

The proof also shows that in the formula O(n?), there is an implied constant that
is proportional to the size of the specification £. [J

Note that the complexity bounds are obtained with naive algorithms. They could

be improved by using Fast Fourier Transform techniques or other classical algorithms
on power series [54].

3 . . . . . . . . . ™
This technique of forming recurrences derived from algebraic or differential equations is a familiar
algarithmic trick of computer algebra.
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structures in the class, since the top-down generation of structures of size n relies
on these splitting probabilities. Hickey and Cohen [19] use similar techniques in
order to generate words in context-free ianguages uniformly. Greene has given an
interesting discussion of more general issues, as well as an implementation for
structures definable by his “labelled grammars™ [40, Ch. 4].

3.4. Programme constructions

We now introduce the class of programmes that naturally correspond to the
decomposable data types that we have introduced. As we shall see, we also have
translation rules into generating function equations for these schemes.

A programme consists of a type specification part—based on the admissible
constructors described earlier—and of one or more procedure definitions.

Procedures are of a functional form and they are built out of a small collection
of programme constructions, also called programme schemes.

The basic idea is to capture in the language a class of extended traversal pro-
cedures. Basically, we can chain operations by means of a sequential composition
scheme. We can test cases for structures whose underlying type is a union of two
types. We can operate on composite structures—sequences, cycles, or sets—and
pick up information by either selecting a single component (selection) or by traversing
all of them (iteration).

The basic operations are detailed below. Writing a procedure P[a: A] specifies
that the argument of P is a, and that the type of a is A.

Sequential composition. This is used for sequentially chaining operations. Our
syntax here is Pascal-like and uses *;”" for this scheme.

Pla:A]l=Q[a];R[a] where Q[a:A], R[a:A].
Union. For a type defined by a union, there is a test by cases.

A =union(B, C)
Pla:A]=if a. 3 then Q[a] else R[a]
where Q[b: B], R[c: C].

Product. The selection scheme descends into one component of a product:

A = product(B, C)
P[(b, c):A]=Q[b]
where Q[b: B].

Sequence, Cycle, Set and Multiset. The selection scheme extracts one component
(a fixed component like the first one for a sequence, and a random component for
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a cycle or a set). For instance, we have

A = sequence(C)
Pla:A]=Q[a[1]]
where Q[c:C].

The corresponding iteration scheme examines all components:

A=cycle(C)
P[a:A]=forall b in a do Q[b]
where Q[c: C).

These schemes exist in parallel in the unlabelled and the labelled universe, with
the obvious restrictions: the notion of product is that of the universe under consider-
ation; multisets are distinguished from sets only in an unlabelled universe.

Observe that there are no explicit variable assignments, and in a deep sense, one
cannot modify structures nor create new structures. Operations are thus in essence
limited to traversal procedures.® How.ver, as we shall see, many algorithms that do
modify their data can be emulated in the language.

The concrete syntax that we use in examples is an incarnation of the abstract
schemes above; it should be self-explanatory; see the example of symbolic differenti-
ation discussed in Section 2.

For programmes, there is a notion of well-definedness that is analogous to that
of type specifications.

Definition 3.11. A programme over a well defined type specification is itself well
defined iff for each procedure Q and each input x, the execution of Q on x terminates
in a finite number of steps.

The situation is made easy here since all programmes satisfy a descent property:
Given a procedure call Q(x), all the calls R(y) that are generated operate with y’s

that are substructures of x. The only way a procedure Q can loop is therefore by
generating a call sequence,

Qx)=> Qi(x)~> - -+ > Qix)- Q(x),

with a stationary argument. Such a property is in fact syntactically decidable. (See

our earlier discussion about circularity in data type specifications and Zimmermann'’s
thesis [90] for details.)

¢ Judging from the entirety of the analyses contained in Knuth’s volume on sorting and searching
[53], the only algorithms that we know how to analyze are those whose complexity is equivalent to a
parameter of a static structure. No general method is known in order to analyze intrinsically dynamic
algorithms that repeatedly modify a struciure. Examples that typically leave us helpless are heapsort
and balanced trees that modify either an ordered array structure cor a tree structure. The reader can
consult the classic paper of Jonassen and Knuth [48] to see what awaits the analyst confronted with
such problems, when the size is restricted to n=3! Thus, the limitation under discussion is not an
essential bottleneck, given our current state of knowledge in the analysis of algorithms.
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Proposition 3.12. It is algorithmically decidable if a programme is well-defined or not.

3.5. Complexity descriptors

The ordinary complexity descriptor of a procedure P with input in a set & is the
generating function
TP(z)= ¥ rP{a}z".

acsd

The exponential complexity descriptor is

lal

P(z)= ¥ 7P{a}=

acsAd |a|!

There, 7P{a} denotes the complexity (cost) of procedure P applied to input a. The
complexity is always represented by the number of times some explicitly designated
operations (basic procedure calls) are performed. On our examples, this is represen-
ted by the “measure” directive.

The rules that follow enable us to translate programme schemes into functional
equations over complexity descriptors. The complexity descriptors and counting
GFs appearing there are to be taken as either ordinary (in an unlabelled universe)
or exponential (in a labelled universe); in the latter case, we omit the “**’ token of
EGFs. With this convention some of the rules can be grouped together: for instance,
the rule for sequences is to be understood as a rule for ordinary GFs and complexity
descriptors in the unlabelled case, and to be interpreted as a rule for exponential
GFs in the labelled case.

Whenever we need to emphasize that the complexity of P is taken with respect
to inputs in A, we write 7P, 5(z) instead of 7P(z).

Rule 12 (Elementary costs): This corresponds to a cost measure that is declared
to assign constant cost u to each procedure call Q(.).

Pla:A]=Q[a] Q{a}=pu
TP(z)=p - A(2)

Rule 13 (Sequencing):

Pla:A]=Qla];R[a]
TP(z) =7Q(z)+ 7R(z)

Rule 14 (Union):

A=union(B,C) Pl[a:A]l=if ac B then Q[a] else R[a]
TP a(2) = 7Q,5(2) + TR (2)

Rule 15 (Product):

A=product(B,C) Pla:A]l=Qla[l]]
TPM(Z) = TQLB(Z)C(Z)
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Rule 16 (Sequence: selection):

A= sequence(B) Pla:A]l=Qla{l]]

7P(z) = 7Q(2)/(1- B(2))

Rule 17 (Sequence: iteration):

A = sequence(B) P[a:A]=forall b in a do Q[b]

7P(z) = 1Q(z)/(1- B(2))
Rule 18 (Set: selection): In an unlabelled universe,
A=set(B) Pla:A]l=0Q[a[i]]

1 RS
P(z) =%, ran"U B—(Z’—“—)du]

o 1+uz"

where B3(z, u) =[],. (1+uz"™). In a labelled universe,
A=set(B) Pla:A]l=Qlall]]
7P(z) = (exp(B(z)) - 1)/ B(2)7Q(z)
Rule 19 (Set: iteration): In an unlabelled universe,
A=set(B) Pla:A]=fora'il bin a do Q[b]
TP(z) = Ds(B)(2)(7Q(2) = 7Q(*) +7Q(2}) — - - +)
In a labelled universe,
A=set(B) Pl[a:A]=forall bin a do Q[b]
7P(z) = exp(B(2))7Q(2)
Rule 20 (Multiset: selection): In an unlabelled universe,’
A = multiset(B) Pla:A]=0Ql[a[1]]

P(2) =3, 70.2" [Jﬂ Mdu]

0 1-uz"

where BM(z, u) =[],_, 1/(1—uz').

Rule 21 (Multiset: iteration): In an unlabelled universe,
A = multiset(B) P[a:A]=forall b in a do Q[b]
7P(2) = @y (B)(2)(7Q(2) + 1Q(2*) + 7Q(2)) + - - +)

Rule 22 (Cycle: selection): In an unlabeiled univesse,

A=cycle(B) Pla:A]l=Q[a[1]]

k 1 Q"
mP(Z) =Ly ¢§c log 1-B(z) rBQ((zz'*))

In a labelled universe,
A=cycle(B) Pla:A]l=Qla[1]]

1 7Q(z)
—B(z) B(z2)

7P(z) =log "

7 . . . .
The multiset constructor differs from the set constructor only in an unlabelled universe.
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Rule 23 (Cycle: iteration): In an unlabelled universe,
A=cycle(B) Pja:A]=forall b in a do Q[b]

P(z) = Eym $(K) T gr Q)

In a labelled universe,

A=cycle(B}) Pla:A]j=forall b in a do Q[b]
1B @@

1
P(z)=
That these rules are correct follows from techniques akin to those employed in
proving the corresponding results for counting generating functions,® the cases of
the unlabelled set/multiset/cycle constructions being trickier. We shall refer to
Zimmermann’s thesis [90] for detailed proofs.

Theorem 3.13. (i) For each of the four data type classes—unlabelled iterative, labelled
iterative, unlabelled recursive, labelled recursive—the corresponding class of programme
schemes translates into functivnal equations over complexity descriptors.

(ii) The complexity descriptors of programmes operating on a collection of labelled

iterative structures are definable explicitly from 1, z by application of operators Q{eieqa =
{+, %, Q, E, L, E*, L*}, where

EXN)=(E(NY-1/f, L*)=LN/f.

(iii) The complexity descriptors of programmes operating on a collection of labelled
recursive structures satisfy systems of linear equations whose coefficients are definable
from 1, z by application of operators Q.cq-

For unlabeiled types, in general, we obtain functional equations involving the @
operators of type constructions and a class of operators ¥ associated with selection
and iterat.on on sets, multisets and cycles.

Example 3.14 (Cycles in a randorm: permutation). Our first example is a programme
that counts tiie number of cycles in a permutation.

Automatic Theorem 6. (i) The expected number of cycles in a random permutation of
n elements is equal to the ccefficient of [2z"] in the generating function

H(z )——logl—l-; (22)

8 In a sense, the rules for data types are reduced (homomorphic) images of the type specifications
themselves. The translation to complexity descriptors instead rescmbles a generalized derivation on iype
specifications.
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(ii) This expected number has the asymptotic form

11 1 1
n = _— -+ + -1, 23
["]H(z)=log n+y+ = Toon® O(n") (23)

where y=0.57721 is the Euler constant.

The first part is equivalent to the well known assertion that the mean number of
cycles is given by a harmonic number,

1 1 1
H,=1+=+=+ - +—,
2 3 n
The “‘automatic” character of part (ii) results from the developments of the next

section.

Procf. The type specification of permutations has been studied already in Section 3.1.

type Permutation = set(Circular);
Circular = cycle(Element);
Element = Latom(1);

To count the number of cycles in a permutation, it suffices to traverse the permutation

and on each cycle trigger a procedure, count, which does nothing but whose cost
is declared to be equal to 1:

procedure CountCycles(p : Permutation);
begin
forall ¢ in p do
count(cj;
end;

measure count : 1;

The type specifications lead to a collection of equations for counting generating
furnctions.

Permutation(z) = exp(Circular(z))
Circular(z) =log(1 — Element(z))™" (24)
Element(z) = z.

Turning to procedures, the rule for initial costs gives
rcount(z) = Circular(z) = log l—l—; (25)
-2z

the rule for set iteration provides
7CountCycles(z) = rcount(z) - Permutation(z) (26)

which is equivalent to the first assertion of the thecrem, with H(z) being an
abbreviation for 7CountCycles(z). O
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Finally, these (oiten huge!) generating function equations also convey some
meaning, as the following theorem shows.

Theorem 3.15. Given a programme specification II, the average cost of its procedures
operating on uniform random inputs of size up to n can be determined in O(|/IT|n’
x log n) arithmetic operations.

The proof proceeds along the lines of that of data types which we have given in
sufficient detail.

3.6. Examples

We < llect here a few more examples meant to illustrate the expressive power of
our formalism. In order not to make the statements too cumbersome we sometimes
directly cite an asymptotic result. In that case, it is to be understood that the
asymptotic part of the proof will follow from the developments given in the next
section.

Example 3.16 ( Denumerants). In how many ways can one attain a total of n centimes,
with coins of denominations 1, 2 and 3 centimes? The problem is one of special
integer partition counting [24, p. 108].

Automatic Theorem 7. The number of partitions of n into summands equal te 1, 2, or
3is

1z’ +3in+0(1).
Proof. The formal description of the problem is the following.

type Sum = multiset(Coin);
Coin = one | two | three;
one = atom(1); two = atom(2); three = atom(3);
According to rules 1 and 6, the ordinary generating function is computed explicitly
from this description.

1
(1-2)1-2)(1-2%

From this generating function, and with theorems of the following section, one
deduces the asymptotic expansion given above. [J

Sum(z) =

Example 3.17 (Compositions). A 1-2-composition of n is a sequence of integers
(iy,...,0) in {1, 2} whose sum equals n.

Automatic Theorem 8. The number of 1-2-compositions of n is asymptotically

A5 -((57) /)
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Proof. A composition is simply a list of summands

type Composition = sequence(Summand);
Summand = one | two;
one = atom(1); two = atom(2);

According to rules 1 and 3, the ordinary GF for 1-2-compositions is thus

- 1
Composition(z) = 1—(z+7)’
The coefficient of z" is a Fibonacci number. The well known asymptotic expansion
follows automatically from the algsrithms of Section 4. 0O

Example 3.18 (Path length in trees). Our problem here is to analyze path length in
general plane trees where all node degrees are allowed. The programme operates
on an unlabelled, recursively defined type. Its specification closely mimics the
inductive definition of path length: if t= (o, 1,,..., ), then

wlt]l=|t+#a[t,]+ - +7[1]

Automatic Theorem 9. The expected path length in a general plane tree with n nodes
is asymptotically

Wan*?+in+0(n'?).

Proof. It suffices to translate the classical inductive definition of pzth length into
our framework.

type Tree = Node sequence(Tree);
Node = atom(1);

procedure Size(t : Tree);
begin
count;
case t of
(root,subtrees): forall u in subtrees do
Size(u);

end;
end;

procedure PathLength(t : Tree):
begin
Size(t);
case t of
(root,subtrees): forall u in subtrees do

PathLength(u);
end;
end;

measure count : 1;



Automatic average-case analysis of algorithms ]

From rules 2 and 3, we obtain the counting GF for trees
1-v1-4z
—

From rules 12, 13, 15 and 17, the complexity descriptor for the procedure
PathLength is obtained (before simplification) by the Ay {2 system as

V1-4z-1)(1+V1-42)*
16+8V1-4z-96z+8(1—-4z)*%+12822-322/1—-4z°

From these two GFs, the result follows by asymptotic expansion of coefficients. [J

Tree(z) =

7PathLength(z) =

Example 3.19 ( Derangements and singleton cycles in permutations). We want to prove
here the assertions made in the introduction regarding fixed points in permutations.

Automatic Theorem 10. The number of derangements ( permutations without fixed
point) of 1..n is equal to

e
D,=n!-[2"]—.
1-z
The expected number of singleton cycles (cycles of size 1) in a randem permutaiion of
n is equal to 1.

Proof. The formal description of derangements and singleton cycles iollows, and
the procedure FixedPoints counts the number of singleton cycles in a permutation.

type Derangement = set(Circular2);
Circular2 = cycle(Node,card>=2);
Node = Latom(1);
Permutation = set(Singleton | Circular?);
Singleton = Latom(1);

procedure FixedPoints(p : Permutation);
begin
forall ¢ in p do
case ¢ of
Singleton : count
end;
end;

measure count : 1;

According to rules 10, 11, 12 and 19, the counting GF for the number of derangements
and the complexity descriptor of the procedure are

exp(=2) +FixedPoints(z) = —,

Derangement(z) = -7 -2

from which both statements of the theorem result immediately. [
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Example 3.20 (Cyclic points in random mappings). We consider random mappings
from a finite set to itself with the special property that each point has either 0 or 2
antecedents. This is an approximate model for cuadratic functions x—x’+a
(mod n). Such a mapping is equivalent to a binary functional graph, i.e., a digraph
in which each point has outdegree 1 and indegree 0 or 2. A binary functional graph
can be specified in our formalism; it is a set of connected components; each
component has a unique cycle; on each point of the cycle are planted binary trees.
Fer motivations related to cryptography and random number generation (see, e.g.,
[31]), our goal is to determine the average proportion of points that lie on a cycle
(cyclic points).

type Mapping = set(Component);
Component = cycle(PlantedTree);
PlantedTree = node Tree:
Tree = node | node set{Trse,card=2);
node = Latom(1);

procedure CountCyclicPoints (m : Mapping);
begin
forall ¢ in m do
CountCyclicPointsInComponent(c);

end;
procedure CountCyclicPointsInComponent (¢ : Component);
begin
forall t in ¢ do
count ;
end;

measure count : 1;

Automatic Theorem 11. The average number of cyclic points in a random binary
Junctional graph of n points is for n=0 (mod 2)

1-v1-22°
1-22°

[2"]——
V| —222.

=]

Proof. The exponential GF for binary functional mappings and the complexity
descriptor for the number of cyclic points in such mappings are found to be

Mapping(z) =
1-2z°
1-vV1-22°

7CountCyclicPoints(z) = =2,
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This asymptotic result is of some relevance to the analysis of an integer factoriza-
tion algorithm due tc Pollard, the so-called Pollard rho-method (see, e.g., [31]).

4. Asymptotic analysis of a class of elementary functions

At this stage, the algebraic theory of generating functions—at least in cases where
explicit solutions exist—provides an expression of a function in terms of basic
operators associated with combinatorial constructions. In this way, we are confronted
with the pioblem of estimating coefficients of generating functions of rather diverse
and complicated forms.

Apart from the simplest cases (like the GF of Fibonacci numbers which we
encouniered when aﬁalyimg 1-2 C(‘)mp()Suu‘mS ), no ‘‘closed form’ for the coefficienis
is available in general. However, it appears that a considerable amount of asymptotic
information on the coefficients of a GF f(z) is contained in the singularities of f(z),
itself viewed as an anaiyiic junction of the complex variable z. For the automatic
extraction process that we envision, we must also render the method free from
analysis, and purely formal or “algebraic™. This is made possible by the approach
explained here. The end result is quite simple. For a large class of functions f arising
from combinatorial enumerations, the nth Taylor coefficient f,=[z"]f(z) has an
asymptotic form,

f,~Cp "n*(log n)*, (27)

with k an integer, C, p, s real numbers. All the quantities appearing in the esiimate
(27) are algorithmically computable.

A sample of functions related to combinatorial enumerations that we discuss
throughout this section is the following.

1
1-log[1/(1-z-2%)]

1 1
Sl =17"7 Hay=3-5 fz)=

1 1
fi(2)= A1
1 I :
Ji(z)=log + —+exp(ze’),

1-zlog[1/(1-2%)] (1-2Y)

1
j},(z)=exp(z log 4)+l—22"’

+1+ 2z,

3 1
/(l-:*) + :l -
) € Og!—Zz“

f(,(z)=exp(z log,

f(2) =exr>(log
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In this section, we propose an algorithm that operates on explicitly defined
functions of which f;, ..., f; are typical. All these examples have singularities at a
finite distance. When analyzing such a function f(z), the following strategy is used.

(1) The analytic propetties of f are first introduced into the game by means of
the Cauchy coefficient formuia

ﬁ,s[z"]f(z>=ﬁ—§f(z>;‘3—f,. (28)

(2) Itis well known from the theory of Cauchy’s formula (28), see [80], that the
singularities of a function nearest to the origin determine the radius of convergence
of the function (i.e., the series defining the function). Such singularities are known
as dominant singularities and the discussion above reduces to the assertion: the
modulus of the dominant singularities of an analytic function f(z) gives the radius of
convergence of the series form of f(z). Then, if we let p denote the radius of
convergence of f(z), the coefficients {f,}. - satisfy the basic relation

: I/n 1
lim sup|f;,|" = (29)

n=0

This property is often written in a more suggestive way as an approximation relation

fo=p " where p=min{|z]|f(z) is singular}.

The precise meaning of the formula f,, = p ™" is that f,, ~ p ""w(n), where w(n) satisfies
lim suplw(n)|'’" =1, i.e., the growth of w is slower than any increasing exponential
but faster than any decreasing exponential infinitely often. The formula f,=p™"
thus indicates that p™" captures the main exponential growth of f,.

For instance, the dominant singularity of f,(z) is at p =log 2 which cancels the
denominator. The dominant singularity of f(z) can be determined by looking at
places where either the logarithm becomes singular or the denominator cancels. In
this fashion, we obtain the approximate formulae

[""]m»l..._z(_l_.)" [’u] 1 ~(—I+VI§-_-—4;)‘"
T 2.6 log2/ ) l—log[l/(l_z__zz)]“' > .

(3) The modulus of the dominant singularities of f(z) thus provides the first level
of information on coefficients of a function, in ine approximate form of an exponen-
tial term. If a function has a unique dorainant singularity, this is usually enough to
conclude the analysis by local singularity analysis, as explained below.

However, some functions hide periodicities in the behavicur of their coefficients.
For instance the GT j(z) expands as

1.0+0.50z+0.382"+ 1.3+ 0.772*+0.622" + 1.52°+ 09827 + 0.82 2

+ 172412240992 + 192+ 132+ 11294202+ O(2'9).
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Plotting the values of these coefficients (see Fig. 3) suggests that the coefficients go
by groups of three. Ii is indeed the case, and this is due to the presence of threc
dominant singularities, namely

2iw/3 -2imn/3
1, 1-e , l-e °'™",

these singularities being related to the presence of (1—2z°) in the denominator.
Therefore, one of the major problems, whenever periodicities arise, consists of
determining the directions where the dominant singularities lie. These directions
are called dominant directions. The process of analyzing the coefficients of a function
is shown to decompose into a finite collection of aperiodic problems of a simpler
form.

(4) Leaving apart the periodicity phenomena—this is possibie either because the
function to anaiyze f(z) has no periodicities, or because ){z) has already been
decomposed—the problem is thus to quantify the subexponential factor w(n) in
the formula f,, ~ p "w(n).

It turns out that there is a correspondence between the singular rates of growth
of functions around their singularities and the asymptotic (subexponential) rates of
growth of their coefficients. Here are a few examples of the correspondence, for
functions singular at 1,

1 1 1 1
. 1
s/l—zH\/'rrn 1-2 ogl—z

(—_Z__ _ eZvn

XP\1- z) ™ 2(me) 0

(The last transformation belongs to the theory of saddle point integrals which we
discuss in Section 5.5.)

(5) In our approach, the problem of finding the asymptotic growth of coefficients
of f(z) reduces to determining locally the behaviour of the function around all its
dominant singularities. If the collection of these is {g, = pe'®}, ,, for a finite index
set J and real angles 6, then, under normal circumstances, by recomposing elements
of the form o "w(n), we obtain

> log n,

1 .
ﬁ,~__" Z wj(n)enm"
je d

where the w,(n) are functions of subexponential growth.

\

Fig. 3. A graph of the coefficients of =" in fi(z), as a function of n.
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The general principle that guides us is that functions arising from the automatic
algebraic construction of generating functions have coefficients that are also
automatically analyzable. More will be said to support this broad claim in Sections
S and 6.

We now propose to implement this programme in detail on the class & of
elementary functions that appear as generating functions of well defined labelled
iterative structures. (This class should be called in full the class of Ll-elementary
functions.)

Definition 4.1. The class of elementary functions & is defined as the class of functions
containing the monomials 1, z and closed under the operations of £,,,ciica =
{+, %, Q, L, E}, where
1 1
=— L(f)=log—, E(f)=ex ,

eN=1 LN=logi (f)=exp(f)
with the further restriction that all operations take place in the ring of formal power
series Q[[z]].

The requirement that operations be {ormal means that Q, L and E can only be
applied to functions f such that f(0) =0, a restriction which is satisfied exactly by
those generating functions that arise from well defined specifications in the sense
of algebraic enumerations (Section 3)

The restriction to £2 and Q is not strict. The algorithms we shall develop apply
almost verbatim to enriched classes, where we allow modified operators like E*(f) =
(e’ =1)/f etc. Thus, though we state propositions for &, trivially amended results
hold true for larger classes, from which we occasionally borrow examples such as
Ji or f;. The remaining functions f;, f2, f3, fs, fe, f; all belong to &, and thus they
are generating functions of some elementary (i.e., labelled iterative) structures.

There is an important svbclass of the elementary class €—the class &,, of
“‘algebraic-logarithmic™ functions—for which a complete asymptotic analysis of
coefficients can be developed automatically by means of the strategy that we have
exposed. It is our purpose now to explore properties of the class € and its distin-
guished subclass, and to illustrate our general philosophy by working out the
algorithms in some detail.

The programme presented in the next paragraphs can be outlined as follows:

Algorithm Equivalent
Input: A function f from the elementary class &.
Output: An asymptotic form of [z"]f(z) when f is in a proper subclass, fe €., .
(1) Radius: Find the radius of convergence p of f.
(2) Directions: Compute the dominant directions.
(3) Expansion: Determine the growth of the function about its dominant
singularities.
(4) Transfer: Deduce the growth of the coefficients.
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The labels Radius, Directions, Expansion, Transfer refer to specific algorithms.

Other methods, like saddle-point analysis, that are operational for dealing with
functions of ‘‘violent™ singular growth, like entire functions, are discussed in
Section 5.3.

4.1. Dominant singularities and principal exponential growth

Our first result shows that the dominant exponential growth f,, = p~" is computable
for all f in the class &. We start to exploit the analytic fact that functions in € have
positive coefficients (they are GFs) and rely on structural induction.

Proposition 4.2. Let f(z) be an elementary function in the class €. Then

(1) the radius of convergence p of f satisfies 0< p < o0;

(2) it is decidable whether f is entire or not, i.e., whether p =00 or p < 00;

(3) whenever p <o, p is a dominant singularity of f, furthermore, function f is
infinite at p, which means that f(x) - + as x> p from the left,

(4) the radius of convergence p of f, when it is finite, is computable to any precision
e>0.

Proof. (1) These functions are analytic at the origin because they are either poly-
nomials or compositions of exp, L, Q, with functions that are 0 at 0. Herce by
induction they are analytic at 0.

(2) By induction it is easy to see that f is entire if and only if neither Q nor L
appear in its expression.

(3) This is a special case of Pringsheim’s theorem [80]. Since the coefficients of
our functions are positive, using the triangular inequality shows that they are maximal
along the real axis. That they are infinite at their singularity follows again by
induction since singularities in this class can only arise by Q or L.

(4) The computation of p is done by the foilowing algorithm:

Algorithm Radius
Input: An expression fe€ &.
Output: The radius of convergence of f within a fixed accuracy € > 0.
(1) If f is a polynomial, then its radius of convergence is infinite.
(2) If f is exp(g) then its radius is that of g.
‘3) If fis Q(g) or L(g), then the radius is the smallest real positive root of g(x) = 1.
(4) If f is a sum or a product, then its radius is the minimum of those of its
arguments.

The main observation is relative to Step 3: g(x) =1 has a single root in the interval
10, p[ with p the radius of convergence of g. This root can be computed to any
accuracy by classical numerical algorithms. [J
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Example 4.3. We consider the function f; defined by

P 1 .1 N
j"(‘,—logl—zlog[l/(l—z:)]T(l-—z’)S

+exp(ze’).

Although the smallest real singularity p of f; cannot be expressed in closed form,
it is not difficult to see (automatically by the above algorithm, or by hand) that p
is the smallest singularity of the outer logari.znm and to compute an approximate value

i
1-x

~0.835408159 = minl{ﬂ<x< 1 !x log——

=I_1-
)

4.2, Dominant directions and

In order to take into account the periodicities that may occur in coefhients of
functions, we introduce the reduced form of a function. The reduced form of f is a
triple (a, g, p) such that

f(z)=12z(z"),

with g satisfying g(0)#0, p and a two integers 0<a<p, and p=1 as large as
possible. The number p is called the period of f.

Observe also that the period p is visible on the Taylor coefficients of f: the indices
of the non-zero coefficients of f are included in a unique arithmetic progression of
ratio p,

{n|f, #0}<{a+jpi,-o.

A function that has a period p =2 is said to be purely periodic. For instance, any
odd or even function is purely periodic.

Proposition 4.4. A funciion fin € has a reduced form f(z) = z2°g(z"), with g belonging
to €. The quantities a, p, g are effectively computable.

Proof. Both parts of the proof are consequences of the following algorithm.

Algorithm Reduction
Input: fe &
Output: A pair (a, p) and a function g.

(1) If f is a polynomial, expand it, take p as the gcd of the differences of the
exponents of the monomials, and a as the smallest exponent modulo p.

(2) If fis Q(g), L(g), or exp(g), apply the algorithm to its argument, then take
the ged of a 2nd p as the new p while a becomes 0.

(3) If fis a sum or a product, apply the algorithm to its components, and take
the proper gcds.
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All these operations are purely syntactical, and one can check that the final g
appearing in the reduced form is always a function of &. Full details will appear
in [73]. O

This algorithm will serve to compute all the dominant singularities of a function.
But we first need to introduce an oracle which plays an important role.

Definition 4.5. We call 0, the following oracle: Given two functions g and h in &
that are 0 at the origin, with r, and r, the smallest real positive roots of gix)=1
and h(x) =1, the oracle outputs one of

rg<r,,, e = rp, g > rp.

The oracle enables us to state the following proposition.

Proposition 4.6. The dominant directions of a function fe & are computable condi-
tionally upon oracle O,. These directions are all commensurable with .

Proof. It operates by a structural induction that we embody in the algorithm
Directions.

Algorithm Directions
Input: fe &.
Output: A set of angles.

(1) If f is exp(g) then apply the algorithm to g.

(2) If fis Q(g) or L(g) then apply Reduction to reduce g(z) into z°h(z?); set
q =gcd(a, p) and return {(2kw/q), k=1..q}.

(3) If f=g+h or f=g- h, then first use algorithm Radius to compute the radii
of convergence of g and h, then use the oracle 0, to compare them; if they are
different then apply Directions on the function with the smallest one, otherwise
apply it to both of them and return the union of their dominant directions. [

We observe that the corresponding problems are well worked out in the case of
rational series [11,27,71].

Example 4.7. Let fs(z) be the following function:

) 1 1
= - + .
Ss(2) exp(z Iogl__z,,) Py

An application of the alzorithm leads to the computation of the radii of convergence
1 and 27"/° for the two terms. Oracle O, then declares the second quantity to be the
smaller one. Next we apply the algorithm recursively on Q(2z°). This needs the
direct reduction of 2z° from which we deduce that the singular directions are
{(2k=n/6),k=1...6}.



80 P. Flajolet et al.

Note on the role of oracles
We made our first encounter with oracles here. It should be said that we live in
a world where the status—transcendent, algebraic, or rational—of constants like

1 -X _ a o —-X 1
y=I ¢ ldx+j E_dx, e+w, ((5)=% =,
0 T n

X ~ n=l

is still undecided. Consequently, in view of some the expansions that result from
our automatic analysis, it is not too surprising that one should appeal to orac'es of
sorts.

Fortunately, a reliable oracle of the type O, is easily implemented in practice by
evaluating the quantities involved numerically, with a high enough precision. It
should also be noted that given such an oracle, we can then compute svmbolically
the radius of convergence of functions in &, that is, compute the smallest subex-
pression of the input function whose root is the smallest positive singularity. The
radius of convergence of any function in & is thus given as a simple root of an
elementary equation. We shall henceforth assume that this is the form returned by
algorithm Radius.

4.3. Singular growtk

All the algorithms we have presented so far work with any function of &. We
now isolate a subclass €, of elements of & for which one can automatically compute
the asymptotic expansion of the Taylor coefficients. This class is characterized by
the moderate growth of its elements about their singular points.

We actually construct a partition of & into three disjoint classes,

gz\L' igenlirc- geup SUCh that g = gALLJ gemireu gcxp- (31)

The class &, consists of all entire functins, and it is clearly a decidable subclass
of & The class &4, consists of functions with a radius of convergence p <0 and
with a so-called algebraico-logarithmic (AL) growth,

1 log* 1
(1-2z/p)" g 1-z/p
where a is real and k is a non-negative integer. These are our main objects of study.

In this subsection we show that one can decide membership to &,, thanks to a

gap property. In the class &\ &, of functions singular at p, it is found that
functions of the form

exp(clcgzl l/ ), c>0,

play a special role as threshold functions. The class &..p Will be characterized by

the fact that its elements f grow too fast and are easily recognizable by the property
that

f(2)~

e

log f(z) > log’ as z->p .

1
1-z/p
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Proposition 4.8. Conditioned upon oracle 0,, membership of a function in €,, is
decidable. A singular expansion of a functivn in €,; around its positive dominant

clnauln,nn; is also computable

= SeeSls SUATsp st e

Proof. We define 3 classes €, {p}, & puarip}, Eexplp}, that reflect the partition (31)
at z = p. These are respectively, the functions with an algebraic-logarithmic singular-
ity at p, the functions regular at p, and the functions with an exponential singularity
at p. Proving that fe€ €, is equivalent to proving that fe €4, {p} for p the dominant
singularity of /] a quantity that is assumed to be known from our previous algorithms.
Finding the nature of the singularity is done by the following algorithm.

The algorithm esseniially composes generalized algebraic-logarithmic expansions

1€ o foct senurinn firsmntinn 1o datantad tha aloarithen ~nly returns the sroposition
if a fast 5|uwu|5 function s getecteaq, tne algunuuu Ooniy rewurns the plupumuuu
(1] ”"
fG gexp{p} .

Algorithm Expansion
Input: A function f in &€ and a positive real number p.
Output: An asymptotic form of f at p, or the answer “f€ &, {p}".
Comment: Assume p < R, with R the radius of convergence of f. Also assume that
p is itself the root of an elementary equation.
(1) Compute the radius of convergence R of f by the algorithm Radius.
(2) Appeal to O, for deciding whether R>p or R=p.
(3) If R> p, then return f(p)+f'(p)(z—p)+O((1-z/p)>).
(4) Otherwise, R = p. Consider cases according to t..2 nature of f.
(a) If fis Q(g) then return

i 1 g"(p)
pg'(p) 1-2z/p 2g'(p)

(b) If fis L(g) then if (by 0,) pg'(p) #1 then return

+0(1-2z/p).

log —log(pg'(p))+O(1-2/p),

1
1-z/p

else return

1 +pg"(p)
1-z/p 28'(p)

(c) If f=g+h or f=g- h, then apply Expansion to both g and h and add or
multiply the results, returning &.,,{p} if one of the results was &expin}
(d) If f is exp(g) then apply Expansion to g, and discuss according to the result:

if it is of the form

log (1-2z/p)+0O((1-2/p)?).

+b+0(1-2/p), (32)

1
alogs

1
-z/p
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then return

e’ 1
(i- z,-'_.o)"‘“o(u —z/p)“")’

otherwise return &,p.

The complete proof of the proposition reduces to checking the correctness of the
algorithm; see Salvy’s thesis [73] {or details. O

Example 4.9. Consider the function f; deiined as follows:

SR W 1
j},(z):exp(zlogm?e"" : ')+e log;—:—z-?+l+z.

Applying algorithm Radius, we find that the radius of convergence is 1/v2. Then
we apply Expansion to (f;, 1/v2). Since f; is a sum, the algoriti:m is called recursively
on each of the summands. The algorithm yields

o)
(1-2zV2)" (1-zv2)*')?
with

V2. 4V2+2

@="Cexp———.

4.4, Asymp:otic analysis of coefficients

The singular expansions thai we have computed can now be transferred tc
coefficients. The case of a unique dominant singularity is naturally simpler (Theorem
4.10), but information can also be obtained in several periodic cases (Theorem 4.13).

Theorem 4.10. Let fbe an algebraic-logarithmic function of & .; with a unique dominant
singularity. Then, the coefficients of f have an asymptotic form

n -ns k ! 1
n = = + .
Jo=[2"1f(2)=Cp~"n" log n\l O(Iog "))
There, C, p, s are real numbers, k is an integer. Using oracle 0,, all these numbers

are computable numerically and expressible in terms of elementary functions and roots
of elementary equations.

(Better error estimates are available, but the statements become naturaliy more
complicated; see Salvy’s thesis for details [73].)

Procf. The class &,, is a source of standardized singular expansions that can now
be exploited by means of two theorems. The first theorem, due to Flajolet and
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Odlyzko [32], is a variant of the classical Darboux method. For its statement, we
need the following notation for Camembert domains,
4 ={z|z|<1+n,larg(z-1)|= ¢},
for some >0 and 0< ¢ <7/2.

Lemma 4.11 (Flajolet-Odlyzko [31]). Assume that f(z) is aralytic in A\{1}, and that
as z~-1 in 4,

f(z)=0((l—z)"" log”"— )

1-z
Jor some real numbers a, . Then the n-th Taylor coefficient of f(z) satisfies

[2"1f(2) =O(n" " log” n).

Note that the condition of being analytic in a domain larger than the circle of
convergence is always fulfilled by our functions which are composed of a finite
number of entire and meromorphic functions.

The next theorem is older and was stated by Jungen in 1931 [50].

Lemma 4.12 (Jungen [50]). Define the coefficien:s a, by the expansion

| «
1-2)""1 ke = n ﬁ,
(1-2)"log T anz

where k =0 is an integer and s is an arbitrary complex number. Then the coefficients
a, are given asymptotically by the following formulae:
(1) Ifs#0,-1,-2,..., then

s—1

a, =F(s—)[log"n ‘Po(")+10gk-|" ei(n)+ - +ou(n)],
where
‘Po(")~l+00|/n+c02/n2+ PR

oi(n)~cioten/n+e/n’+ - -

(2) Ifs=0,-%,-2,...and k>0, then
a, = (=1)’kr’(i - s)n* "'[log" 'n po(n)+log* *neun)+ - -+ +@,_(n)j
with the ¢, as in (1).
The proc* provided by Jungen can be turned into an algorithm for the computation

of the ¢,, but a more efficient algorithm can be extracted from proofs of similar
theorems in [32].
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The proof of the theorem is easily completed. Each function satisfying the
assumptions has a singular expansion of the form given by Proposition 4.8.
Coefficients of the main term can be extracted by Jungen’s theorem; the remainder
term is itself amenable to Lemma 4.11.

This double transfer completes the proof of the theorem, and the underlying
algorithm constitutes the algorithm Transfer referred o in the introduction to this
section. []

Many of the examples we have considered so far fall into this class, which permits
us to complete the proofs of a few statements made earlier in anticipation of
asymptotic methods. Our simple examples here all have explicit singularities that
can be found by a reasonable computer algebra system. A first batch deals with
meromorphic {uictions.

Automatic Theorem 12, The asymptotic number of 1-2 coinpositions of n is

. 1 ¢n+| (d’") _l+\/§
[z]l—z p; J§+O where ¢ = >

The asymptotic number of ordered partitions of n is

[_z:]l_l n!+0( n!)
n!]2-e 2log2 (log2)" n(log2)"/)"

The number of derangements D, satisfies
-z n!

D,= [z ]———e_'n'-i-O( )
Y n

Proof. The first two examples (they are also functions f; and f, of our example list)
are direct consequences of our algorithms: we have a rational function and a
meromorphic function with an explicit dominant singularity at p =log 2. The case
of derangements follows that of ordered partitions. [J

The second batch of examples is relative to functions with algebraic and logarith-
mic singularities.

Automatic Theorcm 13. The mean number of cycles in a random permutation of n is

1 1 11 1
2" —log —=1 +tyt+t————+
[ loe o =logn+y+o— st oos +0( )

The asymptotic number of unary-binary expressions of size n is

. n -V1-2z—- 3z
Expression, =[z ] 3 2 3340 5/2
wn’
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The asymptotic number of generalized bracketings of size n is

GB, =[z"]i(1 +z-—\/l—6z+zz)=j—t§-\/—§-(3+\/§)"(l +0(l))
4V1Tn3 n

The expected path length in a random plane tree of size n is asymptotically
Wan*2+in+0(n'?).

Notice that several examples here are relative to implicitly defined recursive
structures. As we have seen, the corresponding generating functions are all expressible
in closed form. The square-root singularities are amenable to the ireatment given
here for the class &,, .

The last batch of examples deals with the more general case of functions whose
singularities are defined as roots of various elementary equations.

Automatic Theorem 14. The following coefficient expansions hold. Let

1
1-log[1/(1-z~2))

Sf(z)=

then

(1) = e a0 (%)

S_L/s_4e'-2e

where a =3(V5—4e '—1i). Let

Ji(z) =log s texp(ze’),

=+ l,
1-zlog[l/(1-27)] (1-27)

ln-F()(_T;—;)’
np np

where p is the smallest positive root of

then

[z"1fi(2) =

1=plog

1-p%

Let

] . _-\
f,(z)=exp(log-—-———5e‘/“ "),

l-2z-2
then

e?® e®-14n
[2"]f(2)=(%) %@%mW%"),

where ¢ is the goldc= ratio.
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Proof. For f>, the singularity can be made explicit. Note the example of £, for which
the singularity p could not be written in closed form, but this raised no difficulty
in the automatic computation. Function f; corresponds to a function with a curious
singular behaviour at ¢. O

4.5. Periodicities

The general case of functions in &, with several dominant singularities needs
treatment. Such functions are called periodic (purely periodic functions introduced
earlier in Section 4.2 are periodic). A singular expansion must be computed around
each dominant singularity, and then translated by the previous theorems into a
partial expansion. These partial expansions are then added together, and this yields
an expansion for the coefficients.

Difficulties may arise for some functions that do not differ too much from a purely
periodic function. In that case, the main asymptotic terms cancel for certain values
of the index n, and subdominant terms dictate the asymptotic behaviour of
coefficients in this case. There is then 2n exponential cancellation to be taken into
account.

Consider for instance the problem of extracting

1
1-22*

-

1
[z"1f(z) where f(z)= 1=
from this point of view. We have

n 1 n n I
("m=2y 7]

=1.
1-z
Ttus, fi,, =2" +1, but for n #9 (mod 4), we have f, =1. When computing f,, the
asymptotic forms deriving from the singularities 27"/ e'*™? (k=0, 1, 2, 3) cancel
exactly when » is not a multiple of 4. There's the rub!

In fact, by performing only real computations, it is possible to derive an interesting
(though not always complete) part of the asymptotic information.

Theorem 4.13. The coefficients of a function of &€, with p =2 dominant singularities
satisfy an asymptotic estimate of ti:e farm

\ pt 2 «
Li=p iyt |ogk"[(‘+ z C, COS%’“]"'O(p’"n‘ lngvl n),
-1

where C, p, s, k are as in Thearem 4.10, and 0< C, < C. Using oracle O, the constants
C, can be computed.

Oracle €. is defined as follows.

Deﬁ.nition 4.14. Given a function fe ¢ and a dominant (complex) singularity o =
p €77 7 of another function of & such that f is regular at o, oracle €, outputs one
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of the assertions

fla)=0, flo)#0.

Under several circumstances the expansion we obta n frem this theorem is a bona
fide asymptotic equivalent. Difficulties may arise if the fluctuating sum of cosines
vanishes, in which case we only get a rather weak ()(.) estimate for f,. At least,
what stays is a dominant asymptotic regime that describes tie behaviour of 2 “*dense”
fraction (i.e., a non-zero proportion) of the f,,.

Proof. The basic idea consists of computing expansions related to singular terms
of the same form as before,

z\™* 1
- log*
(l o‘) o8 1-z/0’

except that now o may be complex, o = p e'®, with p the radius of convergence of
the series under consideration and 6 a real angle.

The translation to coefficients is effected like before, and each dominant singularity
may contribute. We should simply add the corresponding contributions. The problem
then lies with the precise determination of the constants C,. Although they are
computed by the same type of expansions as in the real case, this calculation presents
an additional difficulty: we have to decide whether a function in € which is regular
at a complex point (the singularity under study) is zero there or not. This task is
accomplished by oracle €,. When ¢xamining the behaviour of a function f at o,
we modify step 3 of algorithm Expansion in the following way:

(a) Check whether f is a polynomial or not (this is decidable in &).

(b) If it is not, compute values of f'*'(¢), k = 0 until 0, finds two of them, f'*'',
f*2, to be non-zero. Return

SH oWz =) k1 1 (0)(z - o)/ k! +OW(z - o)),

(c) Ifitis,do the same operations but stop when k > deg( /). Return the expansion
so obtained.

The rest of algorithm Expansion works unchanged, mainly because, in steps 4a
and 4b, g is necessarily real on the ray from 0 to ¢. I

A few of the functions we have met in our examples present several singularities
on their circle of convergence. The first case is easy, since a single step of reduction
suffices to analyze the coefficients of the functions involved.

Automatic Theorem 15. The expected number of cyclic points in a random binary
Junctional graph of size n is for n=0 (mod 2),

\/gn”z—l+0(n":).
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(The functions involved in this analysis are purely periodic, being simply functions
of z2, see Automatic Theorem 11.)

The next batch of examples illustrates more intricate situations, and in one case
only partial ccefficient information is available from the algorithms we have just
discussed.

Automatic Theorem 16. The following asymptotic coefficient expansions hold.

fi(z)= \/—1 l - = [z2"1f:(2)= \/%+0(1)-

/ 2”
fs(z)=exp(zzlog1_124\)+1_1226 = [2*"1fi(2) = 2"+0( )

1 /(1—-3)\) z 1

——— eV ) 47 +1+2z
fo(2)= exp(zlog1 el J+elog 5= z
\/_nna—l

a-2 n
aT(a )+0(n V2"),

= [2"1fl(2) =

with

V2 422
@="-exp—

Prooi. In the case of f;, the ccinpiex singularities are of a smaller order than the
real one. This is not the case with f; for which we only get an expansion for indices
n that are multiples of 6. More complete estimates can be found for products like
Jo, where we get all coefficients. [

Even though in case of periodicities the raw version of the algorithms we have
described is not guaranteed to produce an asymptotic expansion for all coefficients,
in practice an expansion can often be obtained by computing singular expansions
with more terins. We do not attempt to develop the theory in this case as it becomes
naturally rather iniricate.

5. Extensions

We discuss here some of the possible extensions of our approach. Clearly,
theoretical advances can be used to great advantage in extending the functionality
of an auiomatic analysis systein.

We saw (briefly) in Section 1 that there are three components in our automatic
analysis system. The iwo major ones correspond to the computation of generating
functions (the algebraic analyzer) based on the algebraic enumeration techniques
of Section 3 and to the asymptotic analysis (the analytic analyzer) based on the

function-theoretic techniques of Section 4. The interface is ensured by the solver.
Our discussion will foilow this templaie.
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5.1. Algebraic counting

We have seen how to analyze four major classes in terms of automatically
determined generating functions. Each new combinatorial construction or pro-
gramme control structure that admits a translation into GFs will enable us to solve
an enlarged class of problems.

Minimum rooting

Many algorithms deal with ordered structures. A particularly interesting construc-
tion that fixes the localization of the smallest label in a labelled structure (min-
rooting) has been formalized by Greene in his thesis [40] under the name of box
operator. The equation

A=RB* € (33)

means that .« is the usual partitional product of 3 and €, with the condition that
the smallest label lies in the %-component. Greene has proved that labelled context-
free grammars augmented with the box construction trunslate over generating
functions through integro-differential operators. For instance, in the case of (33),
we have the recurrence,

" (n—1
A = B'Cn—'s
" jgl (j"l) 7

where the modified binomial coefficient takes care of the fact that only n —1 labels
need to be distributed between B and 4. In terms of EGFs, this means

A(z)= J'Oz (% B(r)) C(1)de. (34)

It can be shown that an in:eresting set of programmes on structures defined with
the box operator are admissible too. They ihen translate into differential equations
for the complexity descriptors. We will not give the complete rules here; they will
appear in [90]. Let us just cite an example, that of heap-ordered trees.’

Automatic Theorem 17. The average internal pathlength in a heap-ordered tree of size
n is asymptotically

2nlogn+(2y—3)n+2log n+0(1).

Proof. Heap-ordered trees admit the specification,

type Heap = leaf | min(key) Heap Huap;
key = Latom(1);
leaf = Latom(0);

9 A heap-ordered tree is a labelled binary tree with labels that are in increasing order along any branch
starting from the root. Such trees have strong relations to binary search trees and quicksort. We refer to
Vuillemin's article [82] for a discussion of combinatorial aspecis of these trees that are known there as

“tournament’ trees.
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The programme for analyzing internal pathlength follows closely the one used for
general plane trees.

procedure PathLength (h : Heap );
begin
size(h);
case h of
leaf : zero;
{(k,h1,h2) : begin PathLength(hl); PathLength(hZ) end;
end;
end;

procedure size (h : Heap );
begin
case h of
leaf : zero;
(k,h1,h2) : begin one; size(hl); size(h2) end;
end;
end;

measure one : 1;
zero : 0;

The rule (33-34) gives us an equation for Heap(z), namely,

Heap(z) =1+ J: (% t) (Heap(?))* ds,

an equation that leads to a non-linear differential equation with variables that
separate,

4 Y(2)= Y(2), Y(0)=1.
dz

Such problems are well within the capabilities of computer algebra systems, and

one finds, as expected,

1
Hea =—,
p(z) =173
The rules given in [90] allow us further to compute the compiexity descriptor of
the procedure PathLength, and the literai form produced by Ay$ is in this case

z __2log(1—z)
2°=2z+1 z?-2:+41"

7PathLength(z) = —

The automatic theorem follows from these functions and from theorems of Section
4. O
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This analysis is of special interest as it relates to the analysis of binary search
trees and of the quicksort algorithm.

Boolean functions

The programme constructions of Section 3 operate with “pure” procedures in
which no result is ever passed and reused by another procedure. This corresponds
to our general and infoermal notion of pure traversal procedures. The possibilities
for extensions in this area are of course limited by undecidability considerations.
However, a nice class of functions returning boolean values can also be integrated
info the system. An example of this is a programme that checks the occurrence of
certain symbols in binary trees.

type zero,X.g = atom(1);
i

T = zero | X | product(g,T,T):
function Occurs(t : T) : boolean;
begin
Visit;
case t of
zero : false;
X : true;
(g,u,v) : if Occurs(u) then true else Occurs(v):
end;
end;

measure Visit : 1;

This determines whether an expression contains the variable X or not; the cost of
Occurs(t) is the number of nodes visited. This programme is in none of the four
classes defined earlier (see Theorem 3.13), because in the statement “if Occurs(u)
then true else Occurs(v)” we (recursively) use the result of another computation.

For a boolean function f; several well defined rules allow vs to compute two type
specifications of data items for which f returns fiue and false. Once these type
specifications are known, the schemes “if f(x)=true then...” and “if
f(x)=false then . . . ” become admissible.

Automatic Theorem 18. Consider expressions built with the symbol 0, a variable X
and a binary operator g. The average number of nodes of a random expression of size
n that are visited in the course of a preorder traversal before finding X is

JT87-1

z"]—-
2] V1 -82%+ zv1-47>
V1-8z2—1 '
z

Asymptotically, this quantity is, for n odd,

4+./2+0(1/Vn).
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Proof. The number of nodes visited is the number of times the function Visit is
called in the above programme, whence the cost of this programme. The rules given
in this paper enable to compute the GF for expressions

v1-8z°—1

1_
T(z)=~ 2z

and the rules given in [91] enable us to compute the complexity descriptor which
is found to be

v1-8z2-1
wW1-822+2zV1-42%

7Occurs(z) =—

The asymptotic result foliows from direct singularity analysis. [

Such a scheme has been introduced into the Ay<l system and it has proved useful
in an average-case analysis of several unification algorithms [2].

5.2. Implicit and explicit generating functions (the Solver)

The algebraic analysis produces functional eguations, while the asymptotic analysis
techniques that we have used so far require an explicit form for generating functions
and complexity descriptors.

At the interface between these two components of the analysis process'® there
should (ideally) lie a well defined model of algebraic manipulation. In order not
to obscure the picture, we have been discreet so far on this subject. A few explanations
mixing theoretical considerations as well as implementation problems will now be
offered.

Clearly, some amount of algebraic manipulation is needed, at least because of
machine-man interaction. For instance, it may be desirable to incorporate sim-
plification rules such that

1 1
exp logl—_; = 1—2

This simplification occurs in the analysis of the cycle decomposition of permutations
and is the one that enables us to conclude that the EGF of permutations is 1/(1 - z),
i.e., the number of permutations of n is n!.

On another register, usual simplifications like

Xx0 = 0,Xx1 = X,X+Y+X = 2X+Y,RootOf(x*~4,x>0) = 2,...,
are certainly a necessity. The status of simplification rules of the form
log(X-Y) = logX+logY, VX-Y = vX-JY,

is much more debatable and their usefulness depends upon context.

'” In the Ay{2 system, this interface is the function of the Solver module.
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In this paper, at theory level, we have generally assumed the common rules of
elementary algebra when manipulating generating functions. The designer of an
automatic analyzer (like the Ay} system) should in principle take full contrc] over
the simplification rules that are employed. However, for obvious efficiency reasons,
it is usually not possible to enforce such a vigorous policy. So, the algebraic
capabilities of the Ayl system rely on those of the host computer algebra language,
namely the Maple system. As is natural, this occasionally creates conflicts between
what is needed of a general purpose computer algebra system and the stricier
simplification discipline that a system like Ay{2 requires for its more limited universe
of special functions. Examples of such problems are well-known to designers, e.g.,
the rules

(R)V(1-2)> = (1-2) and (R)V(1-2)® = J(z=-1)? = (z-1),

though being each reasonable under certain conditions, may lead to inconsistent
results. (This is in no way meant as a criticism of the Maple system without which
the Ay} enterprise would not have existed. Such problems are bound to occur with
any system currently in existence [61].)

In the sequel, we assume in our discussion that we have available an ideal engine
for algebra manipulations.

The two issues to be discussed are: (i) simplication and resolution of equations;
(ii) the universes of special functions.

Simplification and resolution of equations

(1) Inthe universe of purely iterative labelled structures, an equational definition
of structures leads to a chain of equations that can be solved by direct substitutior.
For instance this remark is at the origin of the result that the class of associated
GFs is the elementary class & defined as the closure of 1, z by operators of ,.pciteq-

(2) For programmes over labelled recursive structures, the complexity descriptors
are plainly given by linear equations over GFs. In that case, explicit solutions are
derived automatically from the counting GFs assuming only that a linear equation
solver is available. In a way, the most difficult part'' of an analysis is the one relative
to counting GFs.

(3) For recursive structures in the labelled universe (and simpler recursive
unlabelled structures that do not involve sets or cycles), the GFs appear as fixed
point equations over the class of elementary functions. Such equations are in general
highly non-linear, but it is possible to trap interesting subclasses.

For instance, we may consider the class of quadratic structures in which ail GFs
are resolved by: (i) substitution; (ii) linear equations; (iii) quadratic equations.
There are obvious examples of quadratic structures, the simplest being the pure

"' This observation reflects the fact that time is an additive complexity measure that is in a loosely
defined sense “linear”, and resembles a ‘“‘derivation”. Our approach cannot be extended to space
complexity measures that replace sums by maximum operators.
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binary trees

type BB = BB o BB | X;
X = atom(1); o = atom(0);

or the unary-binary expression types. Other cases, like the binary functional graphs
or the generalized bracketings with OGF

GB(2)
1-GB(z)’

illustrate the fact that the precise notion of a quadratic structure is relative to a
given model'’ of algebraic simplification.

(4) Our understanding of the algebra of Pélya operators @ (for data types) and
V¥ (for programmes) is not too advanced. We only know that certain identities exist,
for instance,

P (£(2)) = Bs(f(2)) Pu (f(2%),

which corresponds to (1—2)""'={i+z){1—-2")"". This does not seem to be a major
drawback however since most of the work in this case should be rejected to the
asymptotic analyzer, using techniques that we detail below.

GB(z)=z+

Function universes

The remarks above show that a complete discussion of automatic analysis must
include a precise discussion of simplification issues for the class of functions used.
This in turn is related to a notion of which special functions and corresponding
properties are regarded as known.

As an example, the family of Cayley trees defined by

Cayley = o set(Cayley); o = Latom(1);
corresponds to the implicit equation,
Cayley(z) = z exp(Cayley(z)).

Though this equation could be regarded as not elementarily solvable, the Maple
session

> solve(Cayley(z)=z * exp(Cayley(z)),Cayley(z));
- W(- 2)
expresses it in terms of a special transcendental'> W(z) (the root of We" =z)
which is regarded as known by the system. We could thus define W-structures, in
the same way as we have defined quadratic structures. However, the proliferation
of such definitions is best avoided. Probably a more general approach based on an

extensive use of standardized implicit functions reusable by the asymptotic analyzer
is to be preferred.

'? Throughout the paper, in our automatic theorems, we have operated with the naive notion induced
by t‘he capabilities of the Maple “solve™ routine. Then, for us, GB is a quadratic structure.
'* This function was considered by Eisenstein and C ayley, amongst others.
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Another example is provided by the family of ternary trees. In that case, the
specification is

type Ternary = o Ternary Ternary Ternary | X;
X = atom(1); o = atom(0);

The corresponding solution is known,

Ternary(z) = (_1+___MW)"’+(_1___HW)"3

2 6v3 2 6v3 ’
meaning that ternary trees belong to the class of “radical” structures. However, the
asymptotic analysis of the GF Ternary(z), though feasible from the explicit form,
is best carried out by subjecting anonymously Ternary(z) to a general asymptotic
treatment of algebraic functions.

Finally, we saw in the analysis of heap-ordered trees that certain constructions
relating to order constraints introduce integro-di:ferential operators. (The capability
of Maple’s “dsolve” differential equation solver was used on that occasion.) In
this context, an interesting class of functions is that of combinatorial holonomic
systems of Zeilberger [88], which, in the univariate case, reduces to the class of
D-finite functions described by Stanley [77].

In other words, we could also regard as known the solution Y(z) of any equation

d dj
j§0 Q](Z) E Y(Z) =09

where the Q; are rational functions, and proper initial conditions completely deter-
mine Y(z). This class has rich closure properties. To a large extent, the corresponding
asymptotic problems on coefficients are solvable; this results from either Birkhoff’s
theory of difference squations [85], or from the singularity analysis techniques that
we have utilized in Section 4.

Differential operators will not be discussed further here.

5.3. Analytic schemes

In Section 4, we have seen how to analyze a particular subclass of problems
arising from labelled iterative functions. In that case, a full characterization of :he
possible asymptotic behaviours was attained. Our knowledge of the other types is
not so systematic. However, several analytic techniques from earlier works can be
put to work for us. In this subsection, we propose to summarize the main ideas that
extend the automatic approach to a much larger class of problems.

Labelled iterative structures: In order to complete the classification of these
structures, we need to analyze elementary functions with “exponential” srowth =t
their dominant singularities, &.,,, and the entire functions &.;.. Saddle point
integrals are the major tool for this range of problems.
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Labelled recursive structures: The EGFs are then defined implicitly by elementary
equations. This vastly ger.zralizes the situation of context-free grammars. Singularity
analysis techniques are known to be applicable to several interesting subcases, and
they prove to be the essential tool in this range of problems.

Unlabelled structures: The set and cycle constructions lead to Pdlya cperators
that have complicated explicit forms. However, a simple technique that goes back
to Pélya and that has been used extensively in analyzing trees and graphs makes
singularity analysis applicable to a wide range of problems in this class.

Labelled iterative structures and saddle point analysis

Still starting from Cauchy’s formula, the method which is used for functions of
faster growth is the saddle-point method. It attempts to find a suitable path of
integration through a remarkable point called the saddle poin.. The Cauchy integral
is concentrated about this point, and it is possible to obtain precise asymptotic
information by neglecting the other parts of the contour (see e.g., [25, 63, 86]). The
problem with this method is that it is difficult in the most general setting to prove
the validity of neglecting these other parts of the path.

In 1956, Hayman [45] delimited a class of functions for which one can compute
systematically an asymptotic form of coefficients by a saddle point method. This
class of so-called H-admissible functions also enjoys nice closure properties which
make it a useful tool for automatic computations. There are two main theorems in

Hayman’s theory.
Theorem 5.1 (Hayman [45]). If f=Y f.z" is H-admissible, then as n— oo,

fr)
r"V2=b(r)’

fu~
where r = r(n) is the smellesi positive root of rf'(r)/ f(r) = n, and b(r) = r d(rf'(r))/dr.

Ttis first theorem is typical of the form of estimates that one expects when using
saddle-point methods. The second theorem provides closure properties that are
important for our purposes.

Theorem 5.2 (Hayman [45]). Properties of H-admissible functions:
(1) Closure property: If f and g are H-admissible, P is a polynomial with real

coefficients and positive leading coefficient, then exp(f), f+g, f+ P, P(f), P- f are
H-admissible.

(2) If P is an aperiodic polynomial with positive coefficients, then exp(P) is
X .admissible.

(3) Let a, B, be positive real numbers and B,, B; real numbers, then

B, B,
f(Z)=exp[ﬁ.(l—2)‘“(§logl—1;) (flog(ilogl—};)) ]

is H-admissible.
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We say here that P(z) is aperiodic when P is not a function of z” for any p> 1.
The first part of this theorem reduces the test for H-admissibility to simpler tests,
the second part provides the basis for most of the entire H-admissible functions,
and the last part deals with functions with singularities at a finite distance.

The simplest example of H-admissible function is exp(z). From it we get Stirling’s

formula:
11 (.e.)
n' 2wn\n/

Another example is provided by Bell numbers.

Automatic Theorem 19. The number of partitions of size n satisfies
e’-1

e
P,=n1z" 2 _1)~n! :
nl[z"] exp(e”~1)~n r** V2 exp(r)

where r = r(n) is the positive root of r exp(r) = n,

1
r(n)=logn—loglogn +£gﬁg_"+o(10g logn

log n log’n ]’

The next example is typical of what can happen at a finite distance. It deals with
so-called “Laguerre configurations”. (The name derives from the resemblance of
the GF of Laguerre configurations with the GF of Laguerre polynomials.) A Laguerre
configuration is 2 permutation in which each cycle carries exactly one mark. Since
we can “open” cycles at their mark, we can define a Laguerre configuration by the
specification:

type Laguerre = set(OpenCycle);
OpenCycle = sequence(Node, card>=1);
Node=Latom(1);

From the specification, we obtain the EGF of Laguerre configurations as
exp(z/(1-2)).

Automatic Theorem 20. The number of Laguerre configurations of size n is asymptoti-
cally

ez\/;

n'[z"] ex Z
’ P12 M oavmen™

Proof. Verify automatically H-admissibility from Theorem 5.2, ..ien insert the saddle
point formula of Theorem 5.1. [
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An unfortunate drawback of Hayman’s method is that it provides only the main
si

term of the expansion of coefficients. Another class of functions was subsequently
introduced by Harris and Schoe eld [44]. By imposing more stringent conditions
on the functions in their class, called the class of HS-admissible functions, they

were able to derive a full asymptotic expansion of function coefficients. As such,
the HS-admissibie functions did not iend themselves to a direct impiementation
until Odlyzko and Richmond [62] noted the following property: if f is H-admissible,
exp(f) is HS-admissible. It then becomes feasible to automatically derive a full
asymptotic expansion of Bell numbers, for exa..nle.

Two gaps are still to be iulled. First neither the method of Hayman nor that of
Harris and Schoenfeld can produce a full asymptotic expansion for functions of
“fasi but moderate” growth. Thus one cannot find the other terms in Stirling’s
formula by their method. This problem has been partially resolved by Wyman [87],
but the corresponding class cannot be implemented easily. Also, tunctions of an
even slower growth do not fit in any known class yet; an instance is the slowly
growing function

, 1
exp ( z log” T:;) .

As a last remark, let us note that it is far from easy to manipulate automatically
expansions in such general scales. A good theoretical framework for this kind of
woik lies in Hardy’s tract on “orders of infinity” [43] and in their generalization
by Hardy fields [13]. More about this will be said elsewhere [73].

Labelled recursive struciures and implicit functions

In a long series of papers, Meir and Moon (see, e.g., [59]), have considered
so-called simple families of trees (Meir and Moon say “simply generated”). Essen-
tially, these are classes of recursive tree structures, either labelled or unlabelled,
whose generating function is defined by an equation

f(2) = 2¢(f(2)). (35)

(The various tree examples that we have considered so far arz closely related to
this notion.)

The interest of this class for us is to provide a protypical treatment of recursive
structures. We may as well assume without great loss of gcnerality that ¢(y) is a
polynomial in y with positive coefficients, in which case (35 implicitly defines f(z)
as an aigebraic function of its argument.

In outline, the analysis of the coefficients of f proceeds as follows. Let (2o, o)
be a point on the algebraic curve defined by (35), so that y, = zo¢ (o), or equivalently
Yo=f(z2o). Let P(z, y) =y —z¢(y). By expanding the equation P(z, y) =0, we obtain

0 0
(z—2p) a‘z‘ P(zq, yo) + (¥ —yo) 5“) P(zg, yo) ~0,
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'acally. Thus, around an ordinary point, we have a linear dependence between
Z=z-2zpand Y =y — y,, provided that the partial derivatives are non-zero. A close:
vxamination reveals that the dcpendence is actually analytic.

The analytic dependence breaks down when the partial derivative with respect
to y vanishes. In that case, pushing to the next order in y, we find a relation

) 1 9
(z- zo)a_zP(Zo,}’o)'l‘i(}"‘)’o)zg}?P(Zo,)’o)“'o- (36)

Thus the function f(z) admits a branch point at z,; its value there is Yo, and its
singularity is of th= square-root type, as seen from the approximate solution of (36),

d
g;P(zo’J’o)
f(Z)""‘yoi)VZo_Z, A2=2 > .
55 P(z,, Yo)

Thus, for a singularity, z, and y, are algebraic numbers determined by a system
of two equations. Details can be worked out for the particular equaticn (35). With
7 the positive root of ~$'(7) = ¢(7), the dominant singularity of f is p=7/¢(7),
and the square root growth yields a coefficient of the form =~p~"n~%2.

Theorem 5.3 (Meir and Moon [59]). The coefficient of z" inside the implicitly defined
Junction

y(z)=2¢(y(2))

has the asymptotic form

=[=" ~ -n_—3/2 = l(t)__
fu=[2"1f(z2)~8p "n""'7, 5—\/21"#,,(7),

where 7¢'(7) = ¢(7).

In summary, this approach consists of looking at places where the implicit function
theorem fails to provide an analytic solution. This defines a collection of elementary
equations amongst which the singularities of implicit functions lie. By expanding
further, we obtain non-linear dependencies resulting in branch points (through
inversion). These algebraic branch points cause coefficients to be composed
asymptotically of aigebraic elements of the form p~"n”’? with p, q integers.

The “implicit function method” applies par excellence to the coefficients of
arbitrary algebraic functions, see [30] for enumerative applications. It is applicable
to a large class of transcendentals, such as the Cayley function. It must constitute
the method of choice when aitempting a complete asymptotic classification of
labelled recursive structures via appropriate muitidimensional generalizaticns.
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Unlabelled structures and Polya operators
We start the discussion by two examples, integer partitions and multisets of words
(which we call here “languages”).

type Partition = multiset(Integer);
Integer = sequence(One, card>0);
One = atom(1);

Language = multiset(Word);
Word = sequence(Letter, card>0);
Letter = a | b; a, b = atom(1};

The corresponding OGFs P(z), L(z) are

P(2)= ﬁ =z ""'=exp(I(2)+ (D +I(P)+ -+ +)

x©

L(z)= ] (1-2")"" =exp(W(2) H3W(2") +HiW())+ - -+),
with
2z
1-2z

I(z)= ——’ and W(z)=

It turns out that the seemingly innocuous difference beiween I(z) and W(z) has
implications for the analysis.

The asymptotic theory of P,=[z"]P(z) is a classical ckapter (originating with
Hardy and Ramanujan) of additive analytic number theory. In fui! generality, it
involves a mixture of saddle-point analysis, modular transformations, Dedekind
sums, and Ford circies!

One main point is that P(z) has a natural boundary at |z| =1. The end result is
given by Rademacher’s form of the Hardy-Ramanujan theorem [3, p. 69].

Theorem 5.4 (Hardy-Ramanujan-Rademacher). The number of integer partiticns of
nis

i k(n)k!/z[_d_ Sinh(‘n‘/k)(%(x—l/24))l/2]

dx (x—1/24)"2 (37)

s|~

=n

where

_Z H ' .

Ak(n)= Z wh,ke m"'/ka
hmodk
(hk)=1

with @, a certain 24th root of unity.

The full analysis of P,, as suggested bv the statement of the theorem, is difficult.
In contrast, the asymptotic analysis of L(z) needs only a few lines.
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Theorem S.5. The isumber of **languages™ of size n is asynir tctically

€ wWn x 1 1
e s LY o = —— .
Waen’?© where k§= k+12%-1

]

L"

(Such a theorem is in principle well within the capabilities of an automatic
analyzer; it should really be an “autematic theorem™, but in the current implementa-
tion of Ay}, Pélya operators are not yet taken into account by the asymptotic
modules.)

Proof. We observe that W(z) is singular at p =3, and it has a simple pole there.
The crucial point is that we have p <1, so that when z is in the vicinity of p, t. -
arguments of W(z%), W(2),...,are near p°, p°, ..., that is to say well within the
disk |z| < p. Simple bounds show further that the series

A(2)=3W(Z)+iW(P)+ - -
is analytic at z=p =1.

Thus, from an asymptotic standpoint, our problem is reduced to analyzing a
simple function, namely

22 A(2)
exp(l_zz) € ’

where A(z) is analytic in |z] < p'/?=27"2 The saddle-point formula

P ezJZ
[z"] exp(l —z) " 2vme n®'®
yields the result: we need to change z to 2z which multiplies this form by 2". The
irfluence of the Polya operator is miraculously (?!) limited to the simple factor

CA(I/Z). O

The structures which, like partitions, have a radius of convergence equal to 1 are
(decidably) isolated wiihin the class of unlabelled structures. These require special
treatment. (Observe however that saddle-point techniques readily provide an
asymptotic equivalent of the number of partitions.)

Apart from this small fragment, unlabelled iterative structures can only lead to
isolated singularities. The composition rules for singularities are easily extracted
from the forms

Pc(f)=log(1—f(2)) " +£i(2),
Ps(f) =exp(f(2)) - f2(2),
Pu (f) =exp(f(2)) - f3(2),

where f,, f>, f; are analytic in larger areas. In other words, with respect tc singularity
analys; ; and saddle point, th: remainders play the role of additive or maltiplicative
modifiers that do not affect the nature of singularities, as we have seen in the case
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of “languages”. The types of singularities (either algebraic-logarithmic or exponen-
tial) remain of the same form as in the labelled case. The asymptotic shape of
coefficients thus remain decidable, though special constaats (like & above) are
introduced.

We shall not attempt any discussion of unlabelled recursive structures. The
techniques there mix what we have just seen concerning unlabelled iterative struc-
tures together with ideas stemming from the analysis of singularities for implicitly
defined generating functions. The reader should turn to the literature on graphical
enumerations [41], and especially to a paper by Harary et al. where a subclass of
asymptotic problems on graph trees is shown to be decidable [42].

6. Corclusions

A coherent class of elementary combinatorial problems can only lead to designated
“special” asymptotic forms.

We have mentioned in the introduction that properties definable by regular
languages (equivalently finite automata) and context-free languages all lead to
asymptotic expressions involving “rational” or “algebraic’” asymptotic elements of
the form

P(n)o" and n""e",

for algebraic numbers w.

As a particular case, the asymptotic density of an unambiguous context-free
language can only be an algebraic number, which constitutes Berstel’s density
theorem [8]. Generalized densities for context-free languages exist and they are
built from the algebraic elements described above. This means that any elementary
counting property of context-free languages can only involve exponentials and
rational powers of n but no logarithm. This observation is in agreement with standard
probability theory: for instance, the probability that a coin-tossing sequence of
length 2n is well-balanced (has n tosses of each type) is asymptotic to 1/v7n.
(Negative results also derive from this: for instance, square-free numbers and prime
numbers in binary representations cannot form context-free languages since the
corresponding arithmetic densities are ~6/ 7> and ~1/log n respectively.)

If we look back at the four combinatorial examples that we discussed at the
beginning of the introduction, we observe that they all deal with elementary com-
binatorial objects, namely cycles, permutations, heap-ordered trees, expression trees,
and elementary properties like number of components or cost of recursive transfor-
mations.

The symbols used in the results are all related to classical functions of analysis,
and we found “elements” like

exp(~1), V3, v, logn, Vn,

intervening in the asymptotic solutions.
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The discussion in Sections 3-5 should explain why this is so. Our purpose is now
to put the results and the methods of earlier sections in a broader perspective. This
is achieved by means of structure theorems.

Structure theorems

In this discussion, it proves convenient to use the same naming convention for
classes of structures and classes of equations satisfied by their generating functions.

In this way, we speak of rational structures for structures defined rationally, i.e.,
structures definable by finite automata and regular languages. In the same perspec-
tive, algebraic structures correspond to context-free languages. (These two conven-
tions are in agreement with the naming conventions of the “French School”.)

In Section 4, we have developed a part of the theory of elementary labelled iterative
(LI) structures, that of algebraic-logarithmic structures defined as those elementarv
LI-structures whose GFs lie in &€,, . In Section 5.3, we have provided indications
on the analytic treatment of either entire structures or exponentially singular structures
using saddle-point techniques. Apart from periodicity considerations'* this
classification exhausts the class of all labelled iterative structures.

The first basic structure theorem is naturally relative to algebraic-logarithmic
structures. We recall that the class & is defined as the closure of 1, z by

E(y)=exp(y), L(»)=log(1-y)", Q»)=(1-»7"
We have: Asymptotically, the elementary counting properties relative to strongly
aperiodic labelled iterative structures of the algebraic-logarithmic type are expressible
rationally in terms of a field of constants ¥,, defined below and of the elements

n!, n° logn, p™", I'(—a), (38)

with a, p € ¥4, . The field F 4, is the smallest field of constants containing the rationals
and the numbers

RootOf[f(p) =1}, fe¥§,

and closed under application of functions g € &.

The indications that we gave in Section 5.3 regarding the classes of entire or
exponentially singular functions could be cast in a similar mould. Statements become
naturally more cumbersome, and we shall only enunciate a very vague version whose
value is only to put saddle-point methods in the proper perspective.

The class of elementary counting properties relative to exponentially singular and
entire functions involves algebraic-logarithmic elements plus the class of functions
defined as roots of saddle-point equatinns,

g}g= nj, jor fe €.

14 Periodicity issues complicate the picture without significantly changing it, so that we do not discuss
them in depth in the present paper which is only a short introduction to the subject. Technically, one
way of avoiding periodicity problems consists in restricting attention to strongly aperiodic structures in
which all component GF’s are aperiodic. Noti<e that periodicity issues are well understood in the context
of rational structures, [11, 27, 71].

{(n)= Rooth[{
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The class of labelled recursive structures lead to another statement with the
constants involving systems of equations rather than single equations.

The unlabelled classes naturally lead to yet more complicated formulations, since
Pélya operators are involved. We have however explained in Section 5.3 that, in
general, their study is of the same mathematical and computational level of difficulty
as that of the correspending labelled classes. (The asymptotic forms remain of the
same type, only the field of constants is larger.)

We have summarized in Table 1 some of the classes of problems examined by
various authors and discussed throughout this paper. Our approach can thus be
viewed as a large programme to generalize and unify a number of results themselves
dealing with properties of classes of elementary structures.

Zero-one laws and distributions

A parallel enterprise of a generality comparable to ours is that of Compton [22,
20, 23, 21]. Compton starts from so-called 0-1 laws in logic and finite model theory.
For instance, (random) firiite graphs have a 0-1 law, since any first order property
of graphs is either true with asymptotic probability 1 or false with asymptotic
probability 1; examples of this situation are that almost all large graphs have
5-cliques, almost no graph has isolated points, etc. Compton is able to describe
whole classes of logical theories having 0-1 laws. Furthermore his results also cover
statistical regularities that are bound to occur in general classes of combinatorial
structures, regarding the mean number of components in random structures or the
existence of asymptotic probability (not necessarily 0 or 1), in first or second order
logical theories.

Another category of results stems from the original observations of Bender and
Canfield [4, 14] that certain general combinatorial schemes like sequence or set
iormation, whose translation into generating functions is

1——uC(z_) or exp(uC(z)), (39)

Table 1
A classification of some families of structures.

Labelled Iterative structures

® algebraic-logarithmic structures
© cxponentially singular structures
© entire structures

@ general LI structures

Unlabelled Iterative structures
& regular languages and finite automata
@ general Ul structures

Labelled Recursive structures

@ quadratic structures

@ algebraic structures; W-structures

@ simple families of Meir and Moon [59]
@ general LR structures

Unlsbelled Recursive structures

@ context-free languages [30]

© simple families of Meir and Moon [59]
© graph trees of Harary et al. [42]

@ gzneral UR structures
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lead to Gaussian distributions under quite general analytic conditions on the series
C. (These schemes give bivariate generating functions for the distribution of the
number of components in sequence or set constructions.)

Consider the number of cycies in a random permutation or a derangement, the
number of components in a random miapping, the number of irreducible factors in
a random polynomial over a finite field. The cccurrence of a common structural-
analytic scheme “explains™ the origin of a limiting normal distribution for these
rather diverse combinatorial structures [35].

Such questions can be pushed much further and one might aim at a compieic
characterization of limit distributions that occur inside elementary structures of the
L1, Ul LR, UR classes. The problems are naturally more complicated since we are
then dealing with bivariate problems.

For recursive structures, we are confronted with non-linear bivariate functional
equations. For instance, little is known (to us, at least) on the distribution of path
length in plane trees. The bivariate GF of the exact distribution satisfies the non-linear
difference equation,

-z
1-F(qz; q)°

and, though a limit distribution was proved to exist [57], no analytic ferm seems
to be known for the density. In the same vein, the existence of a limit law for the
comparison cost of Quicksort was established only recently [68]. This corresponds
to the non-linear differential equation

0C(z;9) _
0z -

F(z; q)=

C*(qz; q).

Many things are known about the moments [46], but the exact form of the density
remains a mystery.

For iterative structures, we deal with explicit functional forms, and there is good
hope of approaching a fairly extensive classification of problems. An important step
in this direction has been made by Michéle Soria in her thesis [75]. She is able to
detect schemes of considerable generality that are associated with the occurrence
of diverse limit distributions like Gaussian, Rayley, geometric, Poisson, and the like.

This suggests that a distributiona! counterpart of our framework should also exist.

As a final conclusion, we are led to believe in the existence of a fascinating domain
of investigation. Its scope is the relation betwcen combinatorial structure and
asymptotic form and we propose to call it statistical combizatorics.
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