Theory of Computer Science C5. Post Correspondence Problem

Gabriele Röger
University of Basel

April 25/27, 2021

Post Correspondence Problem

More Options for Reduction Proofs?

- We can prove the undecidability of a problem with a reduction from an undecidable problem.
- The halting problem and the halting problem on the empty tape are possible options for this.
- both halting problem variants are quite similar Θ

More Options for Reduction Proofs?

- We can prove the undecidability of a problem with a reduction from an undecidable problem.
- The halting problem and the halting problem on the empty tape are possible options for this.
- both halting problem variants are quite similar $)^{(}$
\rightarrow We want a wider selection for reduction proofs
\rightarrow Is there some problem that is different in flavor?

More Options for Reduction Proofs?

- We can prove the undecidability of a problem with a reduction from an undecidable problem.
- The halting problem and the halting problem on the empty tape are possible options for this.
- both halting problem variants are quite similar $)^{()}$
\rightarrow We want a wider selection for reduction proofs
\rightarrow Is there some problem that is different in flavor?
Post correspondence problem
(named after mathematician Emil Leon Post)

Post Correspondence Problem: Example

Example (Post Correspondence Problem)

Given: different kinds of "'dominos"'

(an infinite number of each kind)

Post Correspondence Problem: Example

Example (Post Correspondence Problem)

Given: different kinds of "'dominos"'

(an infinite number of each kind)

Question: Is there a sequence of dominos such that the upper and lower row match (= are equal)

Post Correspondence Problem: Example

Example (Post Correspondence Problem)

Given: different kinds of "'dominos"'

(an infinite number of each kind)

Question: Is there a sequence of dominos such that the upper and lower row match (= are equal)

1
101
1

Post Correspondence Problem: Example

Example (Post Correspondence Problem)

Given: different kinds of "'dominos"'

(an infinite number of each kind)

Question: Is there a sequence of dominos such that the upper and lower row match (= are equal)

1
101
1

Post Correspondence Problem: Example

Example (Post Correspondence Problem)

Given: different kinds of "'dominos"'

(an infinite number of each kind)

Question: Is there a sequence of dominos such that the upper and lower row match (= are equal)

1
101
1

Post Correspondence Problem: Example

Example (Post Correspondence Problem)

Given: different kinds of "'dominos"'
1: 1

2: | 10 |
| :--- |
| 00 |

3: | 011 |
| :--- |
| 11 |

(an infinite number of each kind)

Question: Is there a sequence of dominos such that the upper and lower row match (= are equal)

1	011
101	11
1	3

Post Correspondence Problem: Example

Example (Post Correspondence Problem)

Given: different kinds of "'dominos"'
1: 1

2: | 10 |
| :--- |
| 00 |

3: | 011 |
| :--- |
| 11 |

(an infinite number of each kind)

Question: Is there a sequence of dominos such that the upper and lower row match (= are equal)

1	011
101	11
1	3

Post Correspondence Problem: Example

Example (Post Correspondence Problem)

Given: different kinds of "'dominos"'
1: 1

2: | 10 |
| :--- |
| 00 |

3: | 011 |
| :--- |
| 11 |

(an infinite number of each kind)

Question: Is there a sequence of dominos such that the upper and lower row match (= are equal)

1	011
101	11
1	3

Post Correspondence Problem: Example

Example (Post Correspondence Problem)

Given: different kinds of "'dominos"'
1: 1

2: | 10 |
| :--- |
| 00 |

3: | 011 |
| :--- |
| 11 |

(an infinite number of each kind)

Question: Is there a sequence of dominos such that the upper and lower row match (= are equal)

1	011
101	11
1	3

Post Correspondence Problem: Example

Example (Post Correspondence Problem)

Given: different kinds of "'dominos"'

(an infinite number of each kind)

Question: Is there a sequence of dominos such that the upper and lower row match (= are equal)

1	011	10
101	11	00 1

Post Correspondence Problem: Example

Example (Post Correspondence Problem)

Given: different kinds of "'dominos"'

2: | 10 |
| :--- |
| 00 |

(an infinite number of each kind)

Question: Is there a sequence of dominos such that the upper and lower row match (= are equal)

1	011	10	011
101	11	00 1	3

Post Correspondence Problem: Example

Example (Post Correspondence Problem)

Given: different kinds of "'dominos"'

2: | 10 |
| :--- |
| 00 |

(an infinite number of each kind)

Question: Is there a sequence of dominos such that the upper and lower row match (= are equal)

1	011	10	011
101	11	00	11
1	3	2	3

Post Correspondence Problem: Definition

Definition (Post Correspondence Problem PCP)

Given: Finite sequence of pairs of words $\left(t_{1}, b_{1}\right),\left(t_{2}, b_{2}\right), \ldots,\left(t_{k}, b_{k}\right)$, where $t_{i}, b_{i} \in \Sigma^{+}$ (for an arbitrary alphabet Σ)

Question: Is there a sequence

$$
\begin{aligned}
& i_{1}, i_{2}, \ldots, i_{n} \in\{1, \ldots, k\}, n \geq 1 \\
& \text { with } t_{i_{1}} t_{i_{2}} \ldots t_{i_{n}}=b_{i_{1}} b_{i_{2}} \ldots b_{i_{n}} \text { ? }
\end{aligned}
$$

A solution of the correspondence problem is such a sequence i_{1}, \ldots, i_{n}, which we call a match.

Exercise (slido)

Consider PCP instance (11, $),(0,00),(10,01),(01,11)$.

Is $2,4,3,3,1$ a match?

Given-Question Form vs. Definition as Set

So far: problems defined as sets
Now: definition in Given-Question form
Definition (new problem P)
Given: Instance \mathcal{I}
Question: Does \mathcal{I} have a specific property?

Given-Question Form vs. Definition as Set

So far: problems defined as sets
Now: definition in Given-Question form
Definition (new problem P)
Given: Instance \mathcal{I}
Question: Does \mathcal{I} have a specific property?
corresponds to definitions
Definition (new problem P)
The problem P is the language
$\mathrm{P}=\{w \mid w$ encodes an instance \mathcal{I} with the required property $\}$.

Definition (new problem P)
The problem P is the language
$\mathrm{P}=\{\langle\langle\mathcal{I}\rangle| \mathcal{I}$ is an instance with the required property $\}$.

PCP Definition as Set

We can alternatively define PCP as follows:
Definition (Post Correspondence Problem PCP)
The Post Correspondence Problem PCP is the set

$$
\begin{aligned}
\mathrm{PCP}=\{w \mid & w \text { encodes a sequence of pairs of words } \\
& \left(t_{1}, b_{1}\right),\left(t_{2}, b_{2}\right), \ldots,\left(t_{k}, b_{k}\right), \text { for which there is a } \\
& \text { sequence } i_{1}, i_{2}, \ldots, i_{n} \in\{1, \ldots, k\} \\
& \text { such that } \left.t_{i_{1}} t_{i_{2}} \ldots t_{i_{n}}=b_{i_{1}} b_{i_{2}} \ldots b_{i_{n}}\right\} .
\end{aligned}
$$

Questions

Questions?

(Un-)Decidability of PCP

Post Correspondence Problem

PCP cannot be so hard, huh?

Post Correspondence Problem

PCP cannot be so hard, huh?

- Is it?

Post Correspondence Problem

PCP cannot be so hard, huh?
 - Is it?

1101	0110	1	Formally: $K=((1101,1),(0110,11),(1,110))$
1	11	110	

Post Correspondence Problem

PCP cannot be so hard, huh?
 - Is it?

1101	0110	1	Formally: $K=((1101,1),(0110,11),(1,110))$ 1

Post Correspondence Problem

PCP cannot be so hard, huh?

- Is it?
$11010110 \quad 1 \quad$ Formally: $K=((1101,1),(0110,11),(1,110))$
$111 \quad 110 \rightarrow$ Shortest match has length 252!

10	0	100	
0	001	1	

Post Correspondence Problem

PCP cannot be so hard, huh?

- Is it?
$11010110 \quad 1 \quad$ Formally: $K=((1101,1),(0110,11),(1,110))$
$111 \quad 110 \rightarrow$ Shortest match has length 252 !

10	0	100	Formally: $K=((10,0),(0,001),(100,1))$
0	001	1	\rightarrow Unsolvable

PCP: Turing-recognizability

Theorem (Turing-recognizability of PCP)
PCP is Turing-recognizable.

PCP: Turing-recognizability

Theorem (Turing-recognizability of PCP)

PCP is Turing-recognizable.

Proof.

Recognition procedure for input w :
■ If w encodes a sequence $\left(t_{1}, b_{1}\right), \ldots,\left(t_{k}, b_{k}\right)$ of pairs of words: Test systematically longer and longer sequences $i_{1}, i_{2}, \ldots, i_{n}$ whether they represent a match. If yes, terminate and return "yes".

- If w does not encode such a sequence: enter an infinite loop.

If $w \in \mathrm{PCP}$ then the procedure terminates with "yes", otherwise it does not terminate.

PCP: Undecidability

Theorem (Undecidability of PCP)
PCP is undecidable.

PCP: Undecidability

Theorem (Undecidability of PCP)
 PCP is undecidable.

Proof via an intermediate other problem modified PCP (MPCP)
(1) Reduce MPCP to $\mathrm{PCP}(\mathrm{MPCP} \leq \mathrm{PCP})$
(2) Reduce halting problem to MPCP $(H \leq \mathrm{MPCP})$

PCP: Undecidability

Theorem (Undecidability of PCP)
PCP is undecidable.

Proof via an intermediate other problem modified PCP (MPCP)
(1) Reduce MPCP to PCP (MPCP $\leq \mathrm{PCP}$)
(2) Reduce halting problem to MPCP $(H \leq \mathrm{MPCP})$
\rightarrow Let's get started. . .

MPCP: Definition

Definition (Modified Post Correspondence Problem MPCP)

Given: Sequence of word pairs as for PCP
Question: Is there a match $i_{1}, i_{2}, \ldots, i_{n} \in\{1, \ldots, k\}$ with $i_{1}=1$?

Reducibility of MPCP to PCP(1)

$\mathrm{MPCP} \leq \mathrm{PCP}$.

Reducibility of MPCP to $\operatorname{PCP}(1)$

Lemma

$\mathrm{MPCP} \leq \mathrm{PCP}$.

Proof.

Let $\#, \$ \notin \Sigma$. For word $w=a_{1} a_{2} \ldots a_{m} \in \Sigma^{+}$define

$$
\begin{aligned}
\bar{w} & =\# a_{1} \# a_{2} \# \ldots \# a_{m} \# \\
\grave{w} & =\# a_{1} \# a_{2} \# \ldots \# a_{m} \\
\bar{w} & =a_{1} \# a_{2} \# \ldots \# a_{m} \#
\end{aligned}
$$

Reducibility of MPCP to $\mathrm{PCP}(1)$

Lemma

$\mathrm{MPCP} \leq \mathrm{PCP}$.

Proof.

Let $\#, \$ \notin \Sigma$. For word $w=a_{1} a_{2} \ldots a_{m} \in \Sigma^{+}$define

$$
\begin{aligned}
& \bar{w}=\# a_{1} \# a_{2} \# \ldots \# a_{m} \# \\
& \grave{w}=\# a_{1} \# a_{2} \# \ldots \# a_{m} \\
& \dot{w}=a_{1} \# a_{2} \# \ldots \# a_{m} \#
\end{aligned}
$$

For input $C=\left(\left(t_{1}, b_{1}\right), \ldots,\left(t_{k}, b_{k}\right)\right)$ define $f(C)=\left(\left(\overline{t_{1}}, \grave{b}_{1}\right),\left(\dot{t}_{1}^{\prime}, \grave{b}_{1}\right),\left(t_{2}^{\prime}, \grave{b}_{2}\right), \ldots,\left(t_{k}^{\prime}, \grave{b}_{k}\right),(\$, \# \$)\right)$

Reducibility of MPCP to PCP(2)

Proof (continued).
$f(C)=\left(\left(\overline{t_{1}}, \grave{b}_{1}\right),\left(t_{1}^{\prime}, \grave{b}_{1}\right),\left(t_{2}^{\prime}, \grave{b}_{2}\right), \ldots,\left(t_{k}^{\prime}, \grave{b}_{k}\right),(\$, \# \$)\right)$
Function f is computable, and can suitably get extended to a total function. It holds that
C has a solution with $i_{1}=1$ iff $f(C)$ has a solution:

Reducibility of MPCP to PCP(2)

Proof (continued).

$f(C)=\left(\left(\overline{t_{1}}, \grave{b}_{1}\right),\left(t_{1}^{\prime}, \grave{b}_{1}\right),\left(t_{2}^{\prime}, \grave{b}_{2}\right), \ldots,\left(t_{k}^{\prime}, \grave{b}_{k}\right),(\$, \# \$)\right)$
Function f is computable, and can suitably get extended to a total function. It holds that
C has a solution with $i_{1}=1$ iff $f(C)$ has a solution:
Let $1, i_{2}, i_{3}, \ldots, i_{n}$ be a solution for C. Then
$1, i_{2}+1, \ldots, i_{n}+1, k+2$ is a solution for $f(C)$.

Reducibility of MPCP to PCP(2)

Proof (continued).
$f(C)=\left(\left(\overline{t_{1}}, \grave{b}_{1}\right),\left(t_{1}^{\prime}, \grave{b}_{1}\right),\left(t_{2}^{\prime}, \grave{b}_{2}\right), \ldots,\left(t_{k}^{\prime}, \grave{b}_{k}\right),(\$, \# \$)\right)$
Function f is computable, and can suitably get extended to a total function. It holds that
C has a solution with $i_{1}=1$ iff $f(C)$ has a solution:
Let $1, i_{2}, i_{3}, \ldots, i_{n}$ be a solution for C. Then
$1, i_{2}+1, \ldots, i_{n}+1, k+2$ is a solution for $f(C)$.
If i_{1}, \ldots, i_{n} is a match for $f(C)$, then (due to the construction of the word pairs) there is a $m \leq n$ such that $i_{1}=1, i_{m}=k+2$ and $i_{j} \in\{2, \ldots, k+1\}$ for $j \in\{2, \ldots, m-1\}$. Then $1, i_{2}-1, \ldots, i_{m-1}-1$ is a solution for C.

Reducibility of MPCP to PCP(2)

Proof (continued).

$f(C)=\left(\left(\overline{t_{1}}, \grave{b}_{1}\right),\left(t_{1}^{\prime}, \grave{b}_{1}\right),\left(t_{2}^{\prime}, \grave{b}_{2}\right), \ldots,\left(t_{k}^{\prime}, \grave{b}_{k}\right),(\$, \# \$)\right)$
Function f is computable, and can suitably get extended to a total function. It holds that
C has a solution with $i_{1}=1$ iff $f(C)$ has a solution:
Let $1, i_{2}, i_{3}, \ldots, i_{n}$ be a solution for C. Then
$1, i_{2}+1, \ldots, i_{n}+1, k+2$ is a solution for $f(C)$.
If i_{1}, \ldots, i_{n} is a match for $f(C)$, then (due to the construction of the word pairs) there is a $m \leq n$ such that $i_{1}=1, i_{m}=k+2$ and $i_{j} \in\{2, \ldots, k+1\}$ for $j \in\{2, \ldots, m-1\}$. Then $1, i_{2}-1, \ldots, i_{m-1}-1$ is a solution for C.
$\Rightarrow f$ is a reduction from MPCP to PCP .

Questions

Questions?

PCP: Undecidability - Where are we?

Theorem (Undecidability of PCP)
PCP is undecidable.

Proof via an intermediate other problem modified PCP (MPCP)
(1) Reduce MPCP to PCP ($\mathrm{MPCP} \leq \mathrm{PCP}$)
(2) Reduce halting problem to MPCP $(H \leq M P C P)$

PCP: Undecidability - Where are we?

Theorem (Undecidability of PCP)

PCP is undecidable.

Proof via an intermediate other problem modified PCP (MPCP)
(1) Reduce MPCP to PCP $(\mathrm{MPCP} \leq \mathrm{PCP})$
(2) Reduce halting problem to MPCP $(H \leq M P C P)$

PCP: Undecidability - Where are we?

Theorem (Undecidability of PCP)

PCP is undecidable.

Proof via an intermediate other problem modified PCP (MPCP)
(1) Reduce MPCP to PCP $(\mathrm{MPCP} \leq \mathrm{PCP}) \checkmark$
(2) Reduce halting problem to MPCP $(H \leq M P C P)$

Reducibility of H to $\operatorname{MPCP}(1)$

Lemma

$H \leq M P C P$.

Proof.

Goal: Construct for Turing machine $M=\left\langle Q, \Sigma, \Gamma, \delta, q_{0}, q_{\text {accept }}, q_{\text {reject }}\right\rangle$ and word $w \in \Sigma^{*}$ an MPCP instance $C=\left(\left(t_{1}, b_{1}\right), \ldots,\left(t_{k}, b_{k}\right)\right)$ such that M started on w terminates iff $C \in$ MPCP.

Reducibility of H to $\operatorname{MPCP}(2)$

Proof (continued).

Idea:

- Sequence of words describes sequence of configurations of the TM
- "t-row" follows "b-row"

$$
\begin{aligned}
& x: \# c_{0} \# c_{1} \# c_{2} \# \\
& y: \# c_{0} \# c_{1} \# c_{2} \# c_{3} \#
\end{aligned}
$$

■ Configurations get mostly just copied, only the area around the head changes.

- After a terminating configuration has been reached: make row equal by deleting the configuration.

Reducibility of H to MPCP(3)

Proof (continued).

Alphabet of C is $\Gamma \cup Q \cup\{\#\}$.

1. Pair: (\#, \# $\left.q_{0} w \#\right)$

Other pairs:
(1) copy: (a, a) for all $a \in \Gamma \cup\{\#\}$
(c) transition:

$$
\begin{aligned}
\left(q a, c q^{\prime}\right) \text { if } \delta(q, a) & =\left(q^{\prime}, c, R\right) \\
\left(q \#, c q^{\prime} \#\right) \text { if } \delta(q, \square) & =\left(q^{\prime}, c, R\right)
\end{aligned}
$$

Reducibility of H to MPCP(4)

Proof (continued).

$$
\begin{aligned}
& \left(b q a, q^{\prime} b c\right) \text { if } \delta(q, a)=\left(q^{\prime}, c, L\right) \text { for all } b \in \Gamma \\
& \left(b q \#, q^{\prime} b c \#\right) \text { if } \delta(q, \square)=\left(q^{\prime}, c, L\right) \text { for all } b \in \Gamma \\
& \left(\# q a, \# q^{\prime} c\right) \text { if } \delta(q, a)=\left(q^{\prime}, c, L\right) \\
& \left(\# q \#, \# q^{\prime} c \#\right) \text { if } \delta(q, \square)=\left(q^{\prime}, c, L\right)
\end{aligned}
$$

(3) deletion: $(a q, q)$ and ($q a, q)$ for all $a \in \Gamma$ and $q \in\left\{q_{\text {accept }}, q_{\text {reject }}\right\}$
(9) finish: $(q \# \#, \#)$ for all $q \in\left\{q_{\text {accept }}, q_{\text {reject }}\right\}$

Reducibility of H to MPCP(5)

Proof (continued).

" \Rightarrow " If M terminates on input w, there is a sequence c_{0}, \ldots, c_{t} of configurations with

- $c_{0}=q_{0} w$ is the start configuration
- c_{t} is a terminating configuration ($c_{t}=u q v$ mit $u, v \in \Gamma^{*}$ and $q \in\left\{q_{\text {accept }}, q_{\text {reject }}\right\}$)
- $c_{i} \vdash c_{i+1}$ for $i=0,1, \ldots, t-1$

Reducibility of H to $\operatorname{MPCP}(5)$

Proof (continued).

" \Rightarrow " If M terminates on input w, there is a sequence c_{0}, \ldots, c_{t} of configurations with

- $c_{0}=q_{0} w$ is the start configuration
- c_{t} is a terminating configuration

$$
\left(c_{t}=u q v \text { mit } u, v \in \Gamma^{*} \text { and } q \in\left\{q_{\text {accept }}, q_{\text {reject }}\right\}\right)
$$

- $c_{i} \vdash c_{i+1}$ for $i=0,1, \ldots, t-1$

Then C has a match with the overall word

$$
\# c_{0} \# c_{1} \# \ldots \# c_{t} \# c_{t}^{\prime} \# c_{t}^{\prime \prime} \# \ldots \# q_{e} \# \#
$$

Up to c_{t} : "'t-row"' follows"'b-row"'
From c_{t}^{\prime} : deletion of symbols adjacent to terminating state.

Reducibility of H to MPCP(6)

Proof (continued).

" \Leftarrow " If C has a solution, it has the form

$$
\# c_{0} \# c_{1} \# \ldots \# c_{n} \# \#,
$$

with $c_{0}=q_{0} w$. Moreover, there is an $\ell \leq n$, such that $q_{\text {accept }}$ or
$q_{\text {reject }}$ occurs for the first time in c_{ℓ}.
All c_{i} for $i \leq \ell$ are configurations of M and $c_{i} \vdash c_{i+1}$ for $i \in\{0, \ldots, \ell-1\}$.
c_{0}, \ldots, c_{ℓ} is hence the sequence of configurations of M on input w, which shows that the TM terminates.

PCP: Undecidability - Done!

Theorem (Undecidability of PCP)

PCP is undecidable.

Proof via an intermediate other problem modified PCP (MPCP)
(1) Reduce MPCP to PCP $(\mathrm{MPCP} \leq \mathrm{PCP}) \checkmark$
(2) Reduce halting problem to MPCP $(H \leq M P C P)$

PCP: Undecidability - Done!

Theorem (Undecidability of PCP)

PCP is undecidable.

Proof via an intermediate other problem modified PCP (MPCP)
(1) Reduce MPCP to PCP $(\mathrm{MPCP} \leq \mathrm{PCP}) \checkmark$
(2) Reduce halting problem to MPCP $(H \leq \mathrm{MPCP}) \checkmark$

PCP: Undecidability - Done!

Theorem (Undecidability of PCP)

PCP is undecidable.

Proof via an intermediate other problem modified PCP (MPCP)
(1) Reduce MPCP to PCP $(\mathrm{MPCP} \leq \mathrm{PCP}) \checkmark$
(2) Reduce halting problem to MPCP $(H \leq \mathrm{MPCP}) \checkmark$

Proof.

Due to $H \leq$ MPCP and MPCP \leq PCP it holds that $H \leq$ PCP. Since H is undecidable, also PCP must be undecidable.

Questions

Questions?

Summary

Summary

■ Post Correspondence Problem:
Find a sequence of word pairs s.t. the concatenation of all first components equals the one of all second components.
■ The Post Correspondence Problem is Turing-recognizable but not decidable.

