
Pancake Flipping Is Hard

Laurent Bulteau, Guillaume Fertin, Irena Rusu

Laboratoire d’Informatique de Nantes-Atlantique (LINA), UMR CNRS 6241

Université de Nantes, 2 rue de la Houssinière, 44322 Nantes Cedex 3 - France

{Laurent.Bulteau, Guillaume.Fertin, Irena.Rusu}@univ-nantes.fr

Abstract. Pancake Flipping is the problem of sorting a stack of pancakes of different
sizes (that is, a permutation), when the only allowed operation is to insert a spatula
anywhere in the stack and to flip the pancakes above it (that is, to perform a prefix
reversal). In the burnt variant, one side of each pancake is marked as burnt, and it
is required to finish with all pancakes having the burnt side down. Computing the
optimal scenario for any stack of pancakes and determining the worst-case stack for
any stack size have been challenges over more than three decades. Beyond being an
intriguing combinatorial problem in itself, it also yields applications, e.g. in parallel
computing and computational biology.
In this paper, we show that the Pancake Flipping problem, in its original (unburnt)
variant, is NP-hard, thus answering the long-standing question of its computational
complexity.

Keywords. Pancake problem, Permutations, Prefix reversals, Computational com-
plexity.

1

ar
X

iv
:1

11
1.

04
34

v1
 [

cs
.C

C
]

 2
 N

ov
 2

01
1

1 Introduction

The pancake problem was stated in [7] as follows:

The chef in our place is sloppy, and when he prepares a stack of pancakes they come out all different
sizes. Therefore, when I deliver them to a customer, on the way to the table I rearrange them (so
that the smallest winds up on top, and so on, down to the largest at the bottom) by grabbing several
from the top and flipping them over, repeating this (varying the number I flip) as many times as
necessary. If there are n pancakes, what is the maximum number of flips (as a function of n) that
I will ever have to use to rearrange them?

Stacks of pancakes are represented by permutations, and a flip consists in reversing a prefix of any length.
The previous puzzle yields two entangled problems:

• Designing an algorithm that sorts any permutation with a minimum number of flips (this optimization
problem is called MIN-SBPR, for Sorting By Prefix Reversals).

• Computing f(n), the maximum number of flips required to sort a permutation of size n (the diameter
of the so-called pancake network).

Gates and Papadimitriou [9] introduced the burnt variant of the problem: the pancakes are two-sided,
and an additional constraint requires the pancakes to end with the unburnt side up. The diameter of the
corresponding burnt pancake network is denoted g(n). A number of studies [4, 5, 6, 9, 11, 12, 13] have aimed
at determining more precisely the values of f(n) and g(n), with the following results:

• f(n) and g(n) are known exactly for n ≤ 19 and n ≤ 17, respectively [5].

• 15n/14 ≤ f(n) ≤ 18n/11 +O(1) [12, 4].

• b(3n+ 3)/2c ≤ g(n) ≤ 2n− 6 [5] (upper bound for n ≥ 16).

Considering MIN-SBPR, 2-approximation algorithms have been designed, both for the burnt [6, 8] and
unburnt [8] variants. Moreover, Labarre and Cibulka [13] have characterized a subclass of permutations,
which they called simple permutations, and which can be sorted in polynomial time.

The pancake problems have various applications. For instance, the pancake network, having both a small
degree and diameter, is of interest in parallel computing. The algorithmic aspect, i.e. the sorting problem,
has applications in comparative genomics, since prefix reversals are possible elementary modifications that
can affect a genome during evolution. A related problem is Sorting By Reversals [1] where any subsequence
can be flipped at any step, not only prefixes. This problem is now well-known, with a polynomial-time exact
algorithm [10] for the signed case, and a 1.375-approximation [2] for the APX-hard unsigned case [3].

In this paper, we prove that the MIN-SBPR problem is NP-hard (in its unburnt variant), thus answering
an open question raised several decades ago. We in fact prove a stronger result: it is known that the number
of breakpoints of a permutation (that is, the number of pairs of consecutive elements that are not consecutive
in the identity permutation) is a lower bound on the number of flips necessary to sort a permutation. We
show that deciding whether this bound is tight is already NP-hard.

2 Notations

We denote by Ja ; bK the interval {a, a+ 1, . . . , b} (for b < a, we have Ja ; bK = ∅). Let n be an integer. Input
sequences are permutations of J1 ; nK, hence we consider only sequences where all elements are unsigned, and
there cannot be duplicates. When there is no ambiguity, we use the same notation for a sequence and the
set of elements it contains. We use upper case for sets and sequences, and lower case for elements.

Consider a sequence S of length n, S =
〈
x1, x2, . . . , xn

〉
. Element x1 is said to be the head element

of S. Sequence S has a breakpoint at position r, 1 ≤ r < n if xr 6= xr+1 − 1 and xr 6= xr+1 + 1. It has
a breakpoint at position n if xn 6= n. We write db(S) the number of breakpoints of S. Note that having

2

5
2
3
1
4

↗

1
3
2
5
4

→ ⊥

↘
4
1
3
2
5

1
4
3
2
5

→ ⊥

↗

→

2
3
1
4
5

→

3
2
1
4
5

→

1
2
3
4
5

5
2
3
4
1

→

1
4
3
2
5

→ ⊥

Figure 1: Examples of efficient flips. Sequence
〈
5, 2, 3, 1, 4

〉
is efficiently sortable (in four flips), but〈

5, 2, 3, 4, 1
〉

is not.

x1 6= 1 does not directly count as a breakpoint, and that db(S) ≤ n for any sequence of length n. For any
p ≤ q ∈ N, we write Ipq the sequence

〈
p, p+ 1, p+ 2, . . . , q

〉
. I1

n is the identity. For a sequence of any length

S =
〈
x1, x2, . . . , xk

〉
, we write ?S the sequence obtained by reversing S: ?S =

〈
xk, xk−1, . . . , x1

〉
. Given

an integer p, we write p+ S =
〈
p+ x1, p+ x2, . . . , p+ xk

〉
.

The flip of length r is the operation that consists in reversing the r first elements of the sequence. It
transforms

S =
〈
x1, x2, . . . , xr, xr+1, . . . , xn

〉
into

S′ =
〈
xr, xr−1, . . . , x1, xr+1, . . . , xn

〉
.

Note that the flip of length 1 does not modify S, and the flip of length n transforms S into ?S.

Property 1. Given a sequence S′ obtained from a sequence S by performing one flip, we have db(S
′)−db(S) ∈

{−1, 0, 1}.
A flip from S to S′ is said to be efficient if db(S

′) = db(S) − 1, and we reserve the notation S → S′ for
such flips. A sequence of size n, different from the identity, is a deadlock if it yields no efficient flip, and we
write S → ⊥. By convention, we underline in a sequence the positions corresponding to possible efficient
flips: there are at most two of them, and at least one if the sequence is neither a deadlock nor the identity.

We call path a series of flips. A path is efficient if each flip is efficient in the series. A sequence S is
efficiently sortable if there exists an efficient path from S to the identity permutation (equivalently, if it can
be sorted in db(S) flips). See for example Figure 1.

Let S be a sequence different from the identity, and T be a set of sequences. We write S =⇒ T if both
following conditions are satisfied:

1. for each T ∈ T, there exists an efficient path from S to T .

2. for each efficient path from S to the identity, there exists a sequence T ∈ T such that the path goes
through T .

If T consists of a single element (T = {T}), we may write S =⇒ T instead of S =⇒ {T}. Note that
condition 1. is trivial if T = ∅, and condition 2. is trivial if there is no efficient path from S to I1

n. Note
that given a sequence S, there can be several different sets T such that S =⇒ T. However, two are especially
relevant:

Property 2. Given any sequence S 6= I1
n,

S =⇒ I1
n ⇔ S is efficiently sortable.

S =⇒ ∅ ⇔ S is not efficiently sortable.

3

Proof. For S =⇒ I1
n: condition 1. is true iff there exists an efficient path from S to the identity, that is S is

efficiently sortable. Condition 2. is always true.
For S =⇒ ∅: condition 1. is always true. If there exists at least one efficient path from S to I1

n, then,
since there exists no sequence T ∈ ∅, Condition 2. cannot be true. Hence Condition 2. is false when there
exists an efficient path from S to the identity and true otherwise, so it is equivalent to the fact that S is not
efficiently sortable.

The following property is easily deduced from the definition.

Property 3. If S =⇒ {S1, S2}, S1 =⇒ T1 and S2 =⇒ T2, then S =⇒ T1 ∪ T2.

3 Reduction from 3-SAT

The reduction uses a number of gadget sequences in order to simulate boolean variables and clauses with
subsequences. They are organized in two levels (where level-1 gadgets are directly defined by sequences of
integers, and level-2 gadgets are defined using a pattern of level-1 gadgets). For each gadget we define, we
derive a property characterizing the efficient paths that can be followed if some part of the gadget appears
at the head of a sequence.

We have not aimed at providing the smallest possible gadgets (the overall reduction for a formula con-
taining l variables and k clauses creates a stack of 31l + 98k elements with 16l + 50k breakpoints), and we
preferred straightforward proofs and easy-to-combine gadgets over short sequences. A rough analysis shows
that the final stack size could easily be reduced to 22l + 71k, with the same number of breakpoints.

3.1 Level-1 gadgets

3.1.1 Docks

The dock gadget is the simplest we define. Its only goal is to store sequences of the kind ?Ip+1
q (with p < q)

out of the head of the sequence, without “disturbing” any other part.

Definition 1. Given two integers p and q with p < q, the dock for ?Ip+1
q is the sequence

Dock(p, q) = D

where D =
〈
p− 1, p, q + 1, q + 2

〉
.

It has the following property:

Property 4. Let p and q be any integers with p < q, D = Dock(p, q), and X and Y be any sequences. We
have

?Ip+1
q

X
D
Y

=⇒
X

Ip−1
q+2

Y

Proof. An efficient path from
〈
?Ip+1
q , X, D, Y

〉
to
〈
X, Ip−1

q+2 , Y
〉

is given in Figure 2. For each sequence in

the path, we apply the only possible efficient flip, hence every efficient path between
〈
?Ip+1
q , X, D, Y

〉
and

I1
n (if such a path exists) begins with these two flips, and goes through

〈
X, Ip−1

q+2 , Y
〉
.

4

?Ip+1
q

X
D
Y

=

q
q − 1

...
p+ 2
p+ 1
X

p− 1
p

q + 1
q + 2
Y

→

p
p− 1
?X
p+ 1
p+ 2

...
q − 1
q

q + 1
q + 2
Y

→

X
p− 1
p

p+ 1
p+ 2

...
q − 1
q

q + 1
q + 2
Y

=

X

Ip−1
q+2

Y

Figure 2: Proof of Property 4. (Dock gadget)

3.1.2 Lock

A lock gadget contains three parts: a sequence which is the lock itself, a key element that “opens” the lock,
and a test element that checks whether the lock is open.

Definition 2. For any integer p, Lock(p) is defined by

Lock(p) = (key, test, L)

where key = p+ 10

test = p+ 7

L = p+
〈
1, 2, 9, 8, 5, 6, 4, 3, 11, 12

〉
Given a lock (key, test, L) = Lock(p), we write

Lo = p+
〈
1, 2, 3, 4, 6, 5, 8, 9, 10, 11, 12

〉
.

Sequences L and Lo represent the lock when it is respectively closed or open. If a sequence containing a
closed lock has key for head element, then efficient flips put the lock in open position. If it has test for head
element, then it is a deadlock if and only if the lock is closed.

Property 5. Let p be any integer, (key, test, L) = Lock(p), and X and Y be any sequences. We have

a.

key
X
L
Y

=⇒
X
Lo

Y
b.

test
X
Lo

Y

=⇒
X

Ip+1
p+12

Y

c.

test
X
L
Y

→ ⊥

Proof. See Figure 3. Note that for readability reasons, the proof is given for p = 0. It can obviously be
extended to any value of p (each element would then be increased by p).

We use locks to emulate literals of a boolean formula: variables “hold the keys”, and in a first time open
the locks corresponding to true literals. Each clause holds three test elements, corresponding to its three
literals, and the clause is true if the lock is open for at least one of the test elements.

3.1.3 Hook

A hook gadget contains four parts: two sequences used as delimiters, a take element that takes the interval
between the delimiters and places it in head, and a put element that does the reverse operation. Thus, the

5

a.

key
X
L
Y

=

10
X
1
2
9
8
5
6
4
3
11
12
Y

↗

2
1

?X
10
9
8
5
6
4
3
11
12
Y

→ ⊥

↘

3
4
6
5
8
9
2
1

?X
10
11
12
Y

→

9
8
5
6
4
3
2
1

?X
10
11
12
Y

→

X
1
2
3
4
6
5
8
9
10
11
12
Y

=
X
Lo

Y

b.

test
X
Lo

Y

=

7
X
1
2
3
4
6
5
8
9
10
11
12
Y

↗

4
3
2
1

?X
7
6
5
8
9
10
11
12
Y

→ ⊥

↘

5
6
4
3
2
1

?X
7
8
9
10
11
12
Y

→

6
5
4
3
2
1

?X
7
8
9
10
11
12
Y

→

X
1
2
3
4
5
6
7
8
9
10
11
12
Y

=
X
I1

12

Y

c.

test
X
L
Y

=

7
X
1
2
9
8
5
6
4
3
11
12
Y

→ ⊥

Figure 3: Proof of Property 5. (Lock gadget)

6

sequence between the delimiters can be stored anywhere until it is called by take, and then can be stored
back using put.

Definition 3. For any integer p, Hook(p) is defined by

Hook(p) = (take, put, G,H)

where take = p+ 10

put = p+ 7

G = p+
〈
3, 4

〉
H = p+

〈
12, 11, 6, 5, 9, 8, 2, 1

〉
.

Given a hook (take, put, G,H) = Hook(p), we write

G′ = p+
〈
12, 11, 6, 5, 4, 3

〉
H ′ = p+

〈
10, 9, 8, 2, 1

〉
G′′ = p+

〈
3, 4, 5, 6, 7

〉
H ′′ = p+

〈
12, 11, 10, 9, 8, 2, 1

〉
.

Property 6. Let p be an integer, (take, put, G,H) = Hook(p), and X, Y and Z be any sequences. We have

a.

take
X
G
Y
H
Z

=⇒

Y
G′
?X
H ′

Z

b.

put
X
G′
?Y
H ′

Z

=⇒

Y
G′′

X
H ′′

Z

c.

G′′

X
H ′′

Y

=⇒
X

?Ip+1
p+12

Y

Proof. See Figure 4 (with p = 0).

3.1.4 Fork

A fork gadget implements choices. It contains two parts delimiting a sequence X. Any efficient path
encountering a fork gadget follows one of two tracks, where either X or ?X appears at the head of the
sequence at some point. Sequence X would typically contain a series of triggers for various gadgets (key,
take, etc.), so that X and ?X differ in the order in which the gadgets are triggered.

Definition 4. For any integer p, Fork(p) is defined by

Fork(p) = (E,F)

where E = p+
〈
11, 8, 7, 3

〉
F = p+

〈
10, 9, 6, 12, 13, 4, 5, 15, 14, 2, 1

〉
.

Given a fork (E,F) = Fork(p), we write

F 1 = p+
〈
10, 9, 6, 7, 8, 11, 12, 13, 14, 15, 5, 4, 3, 2, 1

〉
F 2 = p+

〈
3, 7, 8, 11, 10, 9, 6, 12, 13, 4, 5, 15, 14, 2, 1

〉
Property 7. Let p be an integer, (E,F) = Fork(p), and X, Y be any sequences. We have

a.

E
X
F
Y

=⇒

X
F 1

Y
,

?X
F 2

Y

 b.
F 1

Y
=⇒

?Ip+1
p+15

Y
c.

F 2

Y
=⇒

?Ip+1
p+15

Y

7

a.

take
X
G
Y
H
Z

=

10
X
3
4
Y
12
11
6
5
9
8
2
1
Z

→

5
6
11
12
?Y
4
3

?X
10
9
8
2
1
Z

→

Y
12
11
6
5
4
3

?X
10
9
8
2
1
Z

=

Y
G′
?X
H ′

Z

b.

put
X
G′
?Y
H ′

Z

=

7
X
12
11
6
5
4
3
?Y
10
9
8
2
1
Z

→

11
12
?X
7
6
5
4
3
?Y
10
9
8
2
1
Z

→

Y
3
4
5
6
7
X
12
11
10
9
8
2
1
Z

=

Y
G′′

X
H ′′

Z

c.

G′′

X
H ′′

Y

=

3
4
5
6
7
X
12
11
10
9
8
2
1
Y

→

8
9
10
11
12
?X
7
6
5
4
3
2
1
Y

→

X
12
11
10
9
8
7
6
5
4
3
2
1
Y

=
X

?I1
12

Y

Figure 4: Proof of Property 6. (Hook Gadget)

8

Proof. See Figures 5 and 6 (with p = 0).

3.2 Level-2 gadgets

In this section, we define new gadgets based on the four level-1 gadgets. From now on, each property
proof uses exclusively properties from smaller gadgets. In order to help the reader follow the ever-present
references, we use the following notations. Bold font is used to emphasise the “active” parts of the gadget
currently having an element at the head of the sequence. For each relation S =⇒ T , we give the relevant
reference below (e.g. S

4.
=⇒ T if it is obtained from Property 4). Finally, a summary of all gadget properties

(either level-1 or -2) is given in Figure 7.

3.2.1 Literals

The following gadget is used only once in the reduction. It contains the locks corresponding to all literals of
the formula.

Definition 5. Let p and m be two integers, Literals(p,m) is defined by

Literals(p,m) = (key1, . . . , keym, test1, . . . , testm,Λ)

where Λ =
〈
L1, L2, . . . , Lm

〉
∀i ∈ J1 ; mK , (keyi, testi, Li) = Lock(p+ 12(i− 1))

Let O and I be two disjoint subsets of J1 ; mK. We write ΛOI the sequence obtained from Λ by

• replacing Li by Loi for all i ∈ O,

• replacing Li by Ip+12i−11
p+12i for all i ∈ I.

Elements of O correspond to open locks in ΛOI , while elements of I correspond to open locks which have

moreover been tested. Note that Λ∅∅ = Λ, and that Λ∅J1 ;mK = Ip+1
p+12m.

Property 8. Let p and m be two integers, (key1, . . . , keym, test1, . . . , testm,Λ) = Literals(p,m), O and I be
two disjoint subsets of J1 ; mK, and X be any sequence. We have

a. ∀i ∈ J1 ; mK−O − I,
keyi
X
ΛOI

=⇒ X

Λ
O∪{i}
I

b. ∀i ∈ O,
testi
X
ΛOI

=⇒
X

Λ
O−{i}
I∪{i}

c. ∀i ∈ J1 ; mK−O,
testi
X
ΛOI

→ ⊥

Proof. The proof follows from Property 5.
a. Let i ∈ J1 ; mK−O − I. Then ΛOI can be written ΛOI =

〈
A, Li, B

〉
. Hence〈

keyi, X, ΛOI
〉

=
〈
keyi, X, A, Li, B

〉
5.a
=⇒

〈
X, A, Loi , B

〉
=
〈
X, Λ

O∪{i}
I

〉
9

a.

E
X
F
Y

=

11
8
7
3
X
10
9
6
12
13
4
5
15
14
2
1
Y

↗

?X
3
7
8
11
10
9
6
12
13
4
5
15
14
2
1
Y

=

?X
F 2

Y

↘

6
9
10
?X
3
7
8
11
12
13
4
5
15
14
2
1
Y

→

3
X
10
9
6
7
8
11
12
13
4
5
15
14
2
1
Y

13
12
11
8
7
6
9
10
?X
3
4
5
15
14
2
1
Y

→ ⊥

↗

→

14
15
5
4
13
12
11
8
7
6
9
10
?X
3
2
1
Y

→

4
5
15
14
13
12
11
8
7
6
9
10
?X
3
2
1
Y

→

X
10
9
6
7
8
11
12
13
14
15
5
4
3
2
1
Y

=
X
F 1

Y

b.
F 1

Y
=

10
9
6
7
8
11
12
13
14
15
5
4
3
2
1
Y

→

8
7
6
9
10
11
12
13
14
15
5
4
3
2
1
Y

→

6
7
8
9
10
11
12
13
14
15
5
4
3
2
1
Y

→

15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
Y

=
?I1

15

Y

Figure 5: Proof of Properties 7.a and 7.b (Fork gadget).

10

c.
F 2

Y
=

3
7
8
11
10
9
6
12
13
4
5
15
14
2
1
Y

↗

13
12
6
9
10
11
8
7
3
4
5
15
14
2
1
Y

→ ⊥

↘

14
15
5
4
13
12
6
9
10
11
8
7
3
2
1
Y

→

4
5
15
14
13
12
6
9
10
11
8
7
3
2
1
Y

→

7
8
11
10
9
6
12
13
14
15
5
4
3
2
1
Y

→

9
10
11
8
7
6
12
13
14
15
5
4
3
2
1
Y

→

11
10
9
8
7
6
12
13
14
15
5
4
3
2
1
Y

→

6
7
8
9
10
11
12
13
14
15
5
4
3
2
1
Y

→

15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
Y

=
?I1

15

Y

Figure 6: Proof of Property 7.c (Fork gadget).

11

Dock gadget〈
?Ip+1

q , X, D, Y
〉

4.
=⇒

〈
X, Ip−1

q+2 , Y
〉

Lock gadget〈
key, X, L, Y

〉
5.a
=⇒

〈
X, Lo, Y

〉
〈
test, X, Lo, Y

〉
5.b
=⇒

〈
X, Ip+1

p+12, Y
〉〈

test, X, L, Y
〉

5.c
→ ⊥

Hook gadget〈
take, X, G, Y, H, Z

〉
6.a
=⇒

〈
Y, G′, ?X, H ′, Z

〉〈
put, X, G′, ?Y, H ′, Z

〉
6.b
=⇒

〈
Y, G′′, X, H ′′, Z

〉
〈
G′′, X, H ′′, Y

〉
6.c
=⇒

〈
X, ?Ip+1

p+12, Y
〉

Fork gadget〈
E, X, F , Y

〉
7.a
=⇒

{〈
X, F 1, Y

〉〈
?X, F 2, Y

〉}〈
F 1, Y

〉
7.b
=⇒

〈
?Ip+1
p+15, Y

〉
〈
F 2, Y

〉
7.c
=⇒

〈
?Ip+1
p+15, Y

〉
Literals gadget

∀i /∈ O ∪ I,
〈
keyi, X, ΛO

I

〉
8.a
=⇒

〈
X, Λ

O∪{i}
I

〉
∀i ∈ O,

〈
testi, X, ΛO

I

〉
8.b
=⇒

〈
X, Λ

O−{i}
I∪{i}

〉
∀i /∈ O,

〈
testi, X, ΛO

I

〉
8.c
→ ⊥

Variable gadget〈
ν, X, V , Y, ΛO

I

〉
9.a
=⇒

{〈
X, V 1, Y, ΛO∪PI

〉〈
X, V 2, Y, ΛO∪NI

〉}〈
V 1, X, D, Y, ΛO

I

〉
9.b
=⇒

〈
X, Ip+1

p+31, Y, ΛO∪NI

〉
〈
V 2, X, D, Y, ΛO

I

〉
9.c
=⇒

〈
X, Ip+1

p+31, Y, ΛO∪PI

〉
Clause gadget

〈
γ, X, Γ, Y, ΛO

I

〉
10.
=⇒


〈
X, Γ1, Y, Λ

O−{a}
I∪{a}

〉
iff a ∈ O〈

X, Γ2, Y, Λ
O−{b}
I∪{b}

〉
iff b ∈ O〈

X, Γ3, Y, Λ
O−{c}
I∪{c}

〉
iff c ∈ O

〈
Γ1, Y, ∆, Z, ΛO

I

〉
11.a
=⇒

〈
Y, Ip+1

p+62, Z, Λ
O−{b,c}
I∪{b,c}

〉
〈
Γ2, Y, ∆, Z, ΛO

I

〉
11.b
=⇒

〈
Y, Ip+1

p+62, Z, Λ
O−{a,c}
I∪{a,c}

〉
〈
Γ3, Y, ∆, Z, ΛO

I

〉
11.c
=⇒

〈
Y, Ip+1

p+62, Z, Λ
O−{a,b}
I∪{a,b}

〉
Figure 7: Compilation of all gadget properties. As a general rule, X, Y , Z can be any sequences, O and I
any disjoint subsets of J1 ; mK. See respective definitions and properties for specific constraints and notations

12

b. Let i ∈ O. Then ΛOI can be written ΛOI =
〈
A, Loi , B

〉
. Hence〈

testi, X, ΛOI
〉

=
〈
testi, X, A, L

o
i , B

〉
5.b
=⇒

〈
X, A, Ip+12i−11

p+12i , B
〉

=
〈
X, Λ

O−{i}
I∪{i}

〉
c. Let i ∈ J1 ; mK − O. If i ∈ I, then testi ∈ Ip+12i−11

p+12i ⊂ ΛOI , and
〈
testi, X, ΛOI

〉
is not a valid

sequence (it contains a duplicate). Otherwise, i ∈ J1 ; mK−O− I, and ΛOI can be written ΛOI =
〈
A, Li, B

〉
.

Hence 〈
testi, X, ΛOI

〉
=
〈
testi, X, A, Li, B

〉
5.c
→ ⊥

3.2.2 Variable

In the following two sections, we assume that pΛ andm are two fixed integers, and we define the Literals(,g)adget
(key1, . . . , keym, test1, . . . , testm,Λ) = Literals(pΛ,m). Thus, we can use elements keyi and testi for i ∈
J1 ; mK, and sequences ΛOI for any disjoint subsets O and I of J1 ; mK.

We now define a gadget simulating a boolean variable xi. It holds two series of key elements: the ones
with indices in P (resp. N) open the locks corresponding to literals of the form xi (resp. ¬xi). When the
triggering element, ν, is brought to the head, a choice has to be made between P and N , and the locks
associated with the chosen set (and only them) are open.

Definition 6. Let P,N be two disjoint subsets of J1 ; mK (P = {p1, p2, . . . , pq}, N = {n1, n2, . . . , nq′}) and
p be an integer, Variable(P,N, p) is defined by

Variable(P,N, p) = (ν, V,D)

where (take, put, G,H) = Hook(p+ 2)

(E,F) = Fork(p+ 14)

in ν = take

V =
〈
G, E, keyp1 , . . . , keypq , put, keyn1

, . . . , keynq′
, F, H

〉
D = Dock(p+ 2, p+ 29)

Given a variable gadget (ν, V,D) = Variable(P,N, p), we write

V 1 =
〈
G′′, keyn1

, . . . , keynq′
, F 1, H ′′

〉
V 2 =

〈
G′′, keypq , . . . , keyp1 , F

2, H ′′
〉

where G′′, H ′′, F 1, F 2, come from the definitions of Hook (Definition 3) and Fork (Definition 4).

The following property determines the possible behavior of a variable gadget. It is illustrated by Figure 8.

Property 9. Let P , N be two disjoint subsets of J1 ; mK, p be an integer, X and Y be two sequences, O,
I be two disjoint subsets of J1 ; mK, and (ν, V,D) = Variable(P,N, p). For sub-property (a.) we require that
(P ∪N) ∩ (O ∪ I) = ∅, for (b.) that N ∩ (O ∪ I) = ∅, and for (c.) that P ∩ (O ∪ I) = ∅ (these conditions
are in fact necessarily satisfied by construction since all sequences considered are permutations). We have

a.

ν
X
V
Y

ΛOI

=⇒


X
V 1

Y
ΛO∪PI

,

X
V 2

Y
ΛO∪NI

 b.

V 1

X
D
Y

ΛOI

=⇒
X

Ip+1
p+31

Y
ΛO∪NI

c.

V 2

X
D
Y

ΛOI

=⇒
X

Ip+1
p+31

Y
ΛO∪PI

13

V

S1 S2keyp1...keypq

keyn1...keynq′

V1 V2keyn1...keynq′

keyp1...keypq

I

keyn1...keynq′

keyp1...keypq

Figure 8: Initially, a variable gadget contains mainly the sequence V . Property 9a proves that two paths
are possible, leading to sequences containing either V 1 or V 2. Along the first (resp. second) path, the locks
with indices in P (resp. N) are opened. By Property 9b (resp. c), there exists a path transforming V 1 (resp.
V 2) into the identity over Jp+ 1 ; p+ 31K, which opens the remaining locks.

Proof.

a.
〈
ν, X, V, Y, ΛOI

〉
=
〈
take, X, G, E, keyp1 , . . . , keypq , put, keyn1

, . . . , keynq′
, F, H, Y, ΛOI

〉
6.a
=⇒

〈
E, keyp1 , . . . , keypq , put, keyn1

, . . . , keynq′
, F , G′, ?X, H ′, Y, ΛOI

〉
7.a
=⇒ {S1, S2} (where sequences S1 and S2 are described below)

First,

S1 =
〈
keyp1

, keyp2 , . . . , keypq , put, keyn1
, . . . , keynq′

, F 1, G′, ?X, H ′, Y, ΛO
I

〉
8.a
=⇒

〈
keyp2

, . . . , keypq , put, keyn1
, . . . , keynq′

, F 1, G′, ?X, H ′, Y, Λ
O∪{p1}
I

〉
...

8.a
=⇒

〈
put, keyn1

, . . . , keynq′
, F 1, G′, ?X, H ′, Y, ΛO∪PI

〉
6.b
=⇒

〈
X, G′′, keyn1

, . . . , keynq′
, F 1, H ′′, Y, ΛO∪PI

〉
=
〈
X, V 1, Y, ΛO∪PI

〉

14

Second,

S2 =
〈
keynq′

, keynq′−1
, . . . , keyn1

, put, keypq , . . . , keyp1 , F
2, G′, ?X, H ′, Y, ΛO

I

〉
8.a
=⇒

〈
keynq′−1

, . . . , keyn1
, put, keypq , . . . , keyp1 , F

2, G′, ?X, H ′, Y, Λ
O∪{nq′}
I

〉
...

8.a
=⇒

〈
put, keypq , . . . , keyp1 , F

2, G′, ?X, H ′, Y, ΛO∪NI

〉
6.b
=⇒

〈
X, G′′, keypq , . . . , keyp1 , F

2, H ′′, Y, ΛO∪NI

〉
=
〈
X, V 2, Y, ΛO∪NI

〉

b.
〈
V 1, X, D, Y, ΛOI

〉
=
〈
G′′, keyn1

, . . . , keynq′
, F 1, H ′′, X, D, Y, ΛOI

〉
6.c
=⇒

〈
keyn1

, keyn2
, . . . , keynq′

, F 1, ?Ip+3
p+14, X, D, Y, ΛO

I

〉
8.a
=⇒

〈
keyn2

, . . . , keynq′
, F 1, ?Ip+3

p+14, X, D, Y, Λ
O∪{n1}
I

〉
...

8.a
=⇒

〈
F 1, ?Ip+3

p+14, X, D, Y, ΛO∪NI

〉
7.b
=⇒

〈
?Ip+15

p+29 ,
?Ip+3

p+14, X, D, Y, ΛO∪NI

〉
4.

=⇒
〈
X, Ip+1

p+31, Y, ΛO∪NI

〉

c.
〈
V 2, X, D, Y, ΛOI

〉
=
〈
G′′, keypq , . . . , keyp1 , F

2, H ′′, X, D, Y, ΛOI
〉

6.c
=⇒

〈
keypq

, keypq−1
, . . . , keyp1 , F

2, ?Ip+3
p+14, X, D, Y, ΛO

I

〉
8.a
=⇒

〈
keypq−1

, . . . , keyp1 , F
2, ?Ip+3

p+14, X, D, Y, Λ
O∪{pq}
I

〉
...

8.a
=⇒

〈
F 2, ?Ip+3

p+14, X, D, Y, ΛO∪PI

〉
7.c
=⇒

〈
?Ip+15

p+29 ,
?Ip+3

p+14, X, D, Y, ΛO∪PI

〉
4.

=⇒
〈
X, Ip+1

p+31, Y, ΛO∪PI

〉

3.2.3 Clause

The following gadget simulates a 3-clause in a boolean formula. It holds the test elements for three locks,
corresponding to three literals. When the triggering element, γ, is at the head of a sequence, three distinct
efficient paths may be followed. In each such path, one of the three locks is tested: in other words, any
efficient path leading to the identity requires one of the locks to be open.

15

Γ

S0 S3

S1 S2 testctesta testb Γ3

Γ1 Γ2 S4 S5testb testa testa testbtestb testatestc
I

testb testa testb testatestc
Figure 9: Initially, a clause gadget contains mainly the sequence Γ. Property 10 proves that three paths may
be possible, leading to sequences containing either Γ1, Γ2 or Γ3. Because of the test elements, each path
requires one lock to be open (either a, b or c). By Property 11a (resp. b, c), there exists a path transforming
Γ1 (resp. Γ2, Γ3) into the identity over Jp+ 1 ; p+ 62K, provided the remaining locks are open.

Definition 7. Let a, b, c ∈ J1 ; mK be pairwise distinct integers and p be an integer, Clause(a, b, c, p) is defined
by

Clause(a, b, c, p) = (γ,Γ,∆)

where (E1, F1) = Fork(p+ 2)

(E2, F2) = Fork(p+ 45)

(take1, put1, G1, H1) = Hook(p+ 21)

(take2, put2, G2, H2) = Hook(p+ 33)

D1 = Dock(p+ 2, p+ 17)

D2 = Dock(p+ 21, p+ 60)

in γ = take1

Γ =
〈
G1, E1, take2, put1, testc, F1, G2, E2, testa, put2, testb, F2, H2, H1

〉
∆ =

〈
D1, D2

〉
Given a clause gadget (γ,Γ,∆) = Clause(a, b, c, p), we write

Γ1 =
〈
G′′1 , testc, F

1
1 , G

′′
2 , testb, F

1
2 , H

′′
2 , H

′′
1

〉
Γ2 =

〈
G′′1 , testc, F

1
1 , G

′′
2 , testa, F

2
2 , H

′′
2 , H

′′
1

〉
Γ3 =

〈
G′′1 , take2, F

2
1 , G2, E2, testa, put2, testb, F2, H2, H

′′
1

〉
The following two properties determine the possible behavior of a clause gadget. They are illustrated by

Figure 9.

16

Property 10. Let X and Y be any sequences, and O, I be two disjoint subsets of J1 ; mK. We have

γ
X
Γ
Y

ΛOI

=⇒ T

where T contains from 0 to 3 sequences, and is defined by:

X
Γ1

Y

Λ
O−{a}
I∪{a}

∈ T iff a ∈ O

X
Γ2

Y

Λ
O−{b}
I∪{b}

∈ T iff b ∈ O

X
Γ3

Y

Λ
O−{c}
I∪{c}

∈ T iff c ∈ O

Proof.〈
γ, X, Γ, Y, ΛOI

〉
=
〈
take1, X, G1, E1, take2, put1, testc, F1, G2, E2, testa, put2, testb, F2, H2, H1, Y, ΛOI

〉
6.a
=⇒

〈
E1, take2, put1, testc, F1, G2, E2, testa, put2, testb, F2, H2, G

′
1,

?X, H ′1, Y, ΛOI
〉

7.a
=⇒ {S0, S3}

S0 =
〈
take2, put1, testc, F

1
1 , G2, E2, testa, put2, testb, F2, H2, G

′
1,

?X, H ′1, Y, ΛOI
〉

6.a
=⇒

〈
E2, testa, put2, testb, F2, G

′
2,

?F 1
1 , testc, put1, H

′
2, G

′
1,

?X, H ′1, Y, ΛOI
〉

7.a
=⇒ {S1, S2}

S1 =
〈
testa, put2, testb, F

1
2 , G

′
2,

?F 1
1 , testc, put1, H

′
2, G

′
1,

?X, H ′1, Y, ΛO
I

〉
if a /∈ O then S1

8.c
→ ⊥

if a ∈ O then

S1
8.b
=⇒

〈
put2, testb, F

1
2 , G

′
2,

?F 1
1 , testc, put1, H

′
2, G

′
1,

?X, H ′1, Y, Λ
O−{a}
I∪{a}

〉
6.b
=⇒

〈
put1, testc, F

1
1 , G

′′
2 , testb, F

1
2 , H

′′
2 , G

′
1,

?X, H ′1, Y, Λ
O−{a}
I∪{a}

〉
6.b
=⇒

〈
X, G′′1 , testc, F

1
1 , G

′′
2 , testb, F

1
2 , H

′′
2 , H

′′
1 , Y, Λ

O−{a}
I∪{a}

〉
=
〈
X, Γ1, Y, Λ

O−{a}
I∪{a}

〉
S2 =

〈
testb, put2, testa, F

2
2 , G

′
2,

?F 1
1 , testc, put1, H

′
2, G

′
1,

?X, H ′1, Y, ΛO
I

〉
if b /∈ O then S2

8.c
→ ⊥

if b ∈ O then

S2
8.b
=⇒

〈
put2, testa, F

2
2 , G

′
2,

?F 1
1 , testc, put1, H

′
2, G

′
1,

?X, H ′1, Y, Λ
O−{b}
I∪{b}

〉
6.b
=⇒

〈
put1, testc, F

1
1 , G

′′
2 , testa, F

2
2 , H

′′
2 , G

′
1,

?X, H ′1, Y, Λ
O−{b}
I∪{b}

〉
6.b
=⇒

〈
X, G′′1 , testc, F

1
1 , G

′′
2 , testa, F

2
2 , H

′′
2 , H

′′
1 , Y, Λ

O−{b}
I∪{b}

〉
=
〈
X, Γ2, Y, Λ

O−{b}
I∪{b}

〉
17

S3 =
〈
testc, put1, take2, F

2
1 , G2, E2, testa, put2, testb, F2, H2, G

′
1,

?X, H ′1, Y, ΛO
I

〉
if c /∈ O then S3

8.c
→ ⊥

if c ∈ O then

S3
8.b
=⇒

〈
put1, take2, F

2
1 , G2, E2, testa, put2, testb, F2, H2, G

′
1,

?X, H ′1, Y, Λ
O−{c}
I∪{c}

〉
6.b
=⇒

〈
X, G′′1 , take2, F

2
1 , G2, E2, testa, put2, testb, F2, H2, H

′′
1 , Y, Λ

O−{c}
I∪{c}

〉
=
〈
X, Γ3, Y, Λ

O−{c}
I∪{c}

〉

Property 11. Let Y and Z be any sequences, and O, I be two disjoint subsets of J1 ; mK. We have

a. If b, c ∈ O, then

Γ1

Y
∆
Z

ΛOI

=⇒

Y

Ip+1
p+62

Z

Λ
O−{b,c}
I∪{b,c}

b. If a, c ∈ O, then

Γ2

Y
∆
Z

ΛOI

=⇒

Y

Ip+1
p+62

Z

Λ
O−{a,c}
I∪{a,c}

c. If a, b ∈ O, then

Γ3

Y
∆
Z

ΛOI

=⇒

Y

Ip+1
p+62

Z

Λ
O−{a,b}
I∪{a,b}

Proof.

a.
〈
Γ1, Y, ∆, Z, ΛOI

〉
=
〈
G′′1 , testc, F

1
1 , G

′′
2 , testb, F

1
2 , H

′′
2 , H

′′
1 , Y, D1, D2, Z, ΛOI

〉
6.c
=⇒

〈
testc, F

1
1 , G

′′
2 , testb, F

1
2 , H

′′
2 ,

?Ip+22
p+33 , Y, D1, D2, Z, ΛO

I

〉
8.b
=⇒

〈
F 1
1 , G

′′
2 , testb, F

1
2 , H

′′
2 ,

?Ip+22
p+33 , Y, D1, D2, Z, Λ

O−{c}
I∪{c}

〉
7.b
=⇒

〈
?Ip+3

p+17, G
′′
2 , testb, F

1
2 , H

′′
2 ,

?Ip+22
p+33 , Y, D1, D2, Z, Λ

O−{c}
I∪{c}

〉
4.

=⇒
〈
G′′2 , testb, F

1
2 , H

′′
2 ,

?Ip+22
p+33 , Y, Ip+1

p+19, D2, Z, Λ
O−{c}
I∪{c}

〉
6.c
=⇒

〈
testb, F

1
2 ,

?Ip+34
p+45 ,

?Ip+22
p+33 , Y, Ip+1

p+19, D2, Z, Λ
O−{c}
I∪{c}

〉
8.b
=⇒

〈
F 1
2 ,

?Ip+34
p+45 ,

?Ip+22
p+33 , Y, Ip+1

p+19, D2, Z, Λ
O−{b,c}
I∪{b,c}

〉
7.b
=⇒

〈
?Ip+46

p+60 ,
?Ip+34

p+45 ,
?Ip+22

p+33 , Y, Ip+1
p+19, D2, Z, Λ

O−{b,c}
I∪{b,c}

〉
4.

=⇒
〈
Y, Ip+1

p+19, Ip+20
p+62 , Z, Λ

O−{b,c}
I∪{b,c}

〉
=
〈
Y, Ip+1

p+62, Z, Λ
O−{b,c}
I∪{b,c}

〉
18

b.
〈
Γ2, Y, ∆, Z, ΛOI

〉
=
〈
G′′1 , testc, F

1
1 , G

′′
2 , testa, F

2
2 , H

′′
2 , H

′′
1 , Y, D1, D2, Z, ΛOI

〉
6.c
=⇒

〈
testc, F

1
1 , G

′′
2 , testa, F

2
2 , H

′′
2 ,

?Ip+22
p+33 , Y, D1, D2, Z, ΛO

I

〉
8.b
=⇒

〈
F 1
1 , G

′′
2 , testa, F

2
2 , H

′′
2 ,

?Ip+22
p+33 , Y, D1, D2, Z, Λ

O−{c}
I∪{c}

〉
7.b
=⇒

〈
?Ip+3

p+17, G
′′
2 , testa, F

2
2 , H

′′
2 ,

?Ip+22
p+33 , Y, D1, D2, Z, Λ

O−{c}
I∪{c}

〉
4.

=⇒
〈
G′′2 , testa, F

2
2 , H

′′
2 ,

?Ip+22
p+33 , Y, Ip+1

p+19, D2, Z, Λ
O−{c}
I∪{c}

〉
6.c
=⇒

〈
testa, F

2
2 ,

?Ip+34
p+45 ,

?Ip+22
p+33 , Y, Ip+1

p+19, D2, Z, Λ
O−{c}
I∪{c}

〉
8.b
=⇒

〈
F 2
2 ,

?Ip+34
p+45 ,

?Ip+22
p+33 , Y, Ip+1

p+19, D2, Z, Λ
O−{a,c}
I∪{a,c}

〉
7.c
=⇒

〈
?Ip+46

p+60 ,
?Ip+34

p+45 ,
?Ip+22

p+33 , Y, Ip+1
p+19, D2, Z, Λ

O−{a,c}
I∪{a,c}

〉
4.

=⇒
〈
Y, Ip+1

p+19, Ip+20
p+62 , Z, Λ

O−{a,c}
I∪{a,c}

〉
=
〈
Y, Ip+1

p+62, Z, Λ
O−{a,c}
I∪{a,c}

〉

c.
〈
Γ3, Y, ∆, Z, ΛOI

〉
=
〈
G′′1 , take2, F

2
1 , G2, E2, testa, put2, testb, F2, H2, H

′′
1 , Y, D1, D2, Z, ΛOI

〉
6.c
=⇒

〈
take2, F

2
1 , G2, E2, testa, put2, testb, F2, H2,

?Ip+22
p+33 , Y, D1, D2, Z, ΛOI

〉
6.a
=⇒

〈
E2, testa, put2, testb, F2, G

′
2,

?F 2
1 , H

′
2,

?Ip+22
p+33 , Y, D1, D2, Z, ΛOI

〉
7.a
=⇒ {S4, S5}
S4 =

〈
testa, put2, testb, F

1
2 , G

′
2,

?F 2
1 , H

′
2,

?Ip+22
p+33 , Y, D1, D2, Z, ΛO

I

〉
8.b
=⇒

〈
put2, testb, F

1
2 , G

′
2,

?F 2
1 , H

′
2,

?Ip+22
p+33 , Y, D1, D2, Z, Λ

O−{a}
I∪{a}

〉
6.b
=⇒

〈
F 2
1 , G

′′
2 , testb, F

1
2 , H

′′
2 ,

?Ip+22
p+33 , Y, D1, D2, Z, Λ

O−{a}
I∪{a}

〉
7.c
=⇒

〈
?Ip+3

p+17, G
′′
2 , testb, F

1
2 , H

′′
2 ,

?Ip+22
p+33 , Y, D1, D2, Z, Λ

O−{a}
I∪{a}

〉
4.

=⇒
〈
G′′2 , testb, F

1
2 , H

′′
2 ,

?Ip+22
p+33 , Y, Ip+1

p+19, D2, Z, Λ
O−{a}
I∪{a}

〉
6.c
=⇒

〈
testb, F

1
2 ,

?Ip+34
p+45 ,

?Ip+22
p+33 , Y, Ip+1

p+19, D2, Z, Λ
O−{a}
I∪{a}

〉
8.b
=⇒

〈
F 1
2 ,

?Ip+34
p+45 ,

?Ip+22
p+33 , Y, Ip+1

p+19, D2, Z, Λ
O−{a,b}
I∪{a,b}

〉
7.b
=⇒

〈
?Ip+46

p+60 ,
?Ip+34

p+45 ,
?Ip+22

p+33 , Y, Ip+1
p+19, D2, Z, Λ

O−{a,b}
I∪{a,b}

〉
4.

=⇒
〈
Y, Ip+1

p+19, Ip+20
p+62 , Z, Λ

O−{a,b}
I∪{a,b}

〉
=
〈
Y, Ip+1

p+62, Z, Λ
O−{a,b}
I∪{a,b}

〉

19

S5 =
〈
testb, put2, testa, F

2
2 , G

′
2,

?F 2
1 , H

′
2,

?Ip+22
p+33 , Y, D1, D2, Z, ΛO

I

〉
8.b
=⇒

〈
put2, testa, F

2
2 , G

′
2,

?F 2
1 , H

′
2,

?Ip+22
p+33 , Y, D1, D2, Z, Λ

O−{a}
I∪{a}

〉
6.b
=⇒

〈
F 2
1 , G

′′
2 , testa, F

2
2 , H

′′
2 ,

?Ip+22
p+33 , Y, D1, D2, Z, Λ

O−{a}
I∪{a}

〉
7.c
=⇒

〈
?Ip+3

p+17, G
′′
2 , testa, F

2
2 , H

′′
2 ,

?Ip+22
p+33 , Y, D1, D2, Z, Λ

O−{a}
I∪{a}

〉
4.

=⇒
〈
G′′2 , testa, F

2
2 , H

′′
2 ,

?Ip+22
p+33 , Y, Ip+1

p+19, D2, Z, Λ
O−{a}
I∪{a}

〉
6.c
=⇒

〈
testa, F

2
2 ,

?Ip+34
p+45 ,

?Ip+22
p+33 , Y, Ip+1

p+19, D2, Z, Λ
O−{a}
I∪{a}

〉
8.b
=⇒

〈
F 2
2 ,

?Ip+34
p+45 ,

?Ip+22
p+33 , Y, Ip+1

p+19, D2, Z, Λ
O−{a,b}
I∪{a,b}

〉
7.c
=⇒

〈
?Ip+46

p+60 ,
?Ip+34

p+45 ,
?Ip+22

p+33 , Y, Ip+1
p+19, D2, Z, Λ

O−{a,b}
I∪{a,b}

〉
4.

=⇒
〈
Y, Ip+1

p+19, Ip+20
p+62 , Z, Λ

O−{a,b}
I∪{a,b}

〉
=
〈
Y, Ip+1

p+62, Z, Λ
O−{a,b}
I∪{a,b}

〉

3.3 Reduction

Let φ be a boolean formula over l variables in conjunctive normal form, such that each clause contains exactly
three literals. We write k the number of clauses, m = 3k the total number of literals, and {λ1, . . . , λm} the
set of literals. Let n = 31l + 62k + 12m (thus, n = 31l + 98k).

Definition 8. We define the sequence Sφ as the permutation of J1 ; nK obtained by:

(key1, . . . , keym, test1, . . . , testm,Λ) = Literals(31l + 62k,m)

For all i ∈ J1 ; lK
Pi = {j ∈ J1 ; mK | λj = xi}
Ni = {j ∈ J1 ; mK | λj = ¬xi}
(νi, Vi, Di) = Variable(Pi, Ni, 31(i− 1))

For all i ∈ J1 ; kK
(ai, bi, ci) = indices such that the i-th clause of φ is λai ∨ λbi ∨ λci
(γi,Γi,∆i) = Clause(ai, bi, ci, 31l + 62(i− 1))

Sφ =
〈
ν1, . . . , νl, γ1, . . . , γk, V1, . . . , Vl,Γ1, . . . ,Γk, D1, . . . , Dl,∆1, . . . ,∆k,Λ

∅
∅
〉

Two things should be noted in this definition. First, elements keyi and testi are used in the clause and
variable gadgets, although they are not explicitly stated in the parameters (cf. Definitions 6 and 7). Second,
one could assume that literals are sorted in the formula (φ = (λ1 ∨ λ2 ∨ λ3) ∧ . . .), so that ai = 3i − 2,
bi = 3i− 1 and ci = 3i, but it is not necessary since these values are not used in the following.

We now aim at proving Theorem 18 (p. 25), which states that Sφ is efficiently sortable if and only if the
formula φ is satisfiable. Several preliminary lemmas are necessary, and the overall process is illustrated in
Figure 10.

3.3.1 Variable assignment

Definition 9. Let r ∈ J0 ; lK. An r-assignment is a partition P = (T, F) of J1 ; rK. An l-assignment is
called a full assignment. Using notations from Definition 8, we define the sequence Sφ[P] by:

20

Sφ =
〈
ν1, . . . , νl, γ1, . . . , γk, V1, . . . , Vl,Γ1, . . . ,Γk, D1, . . . , Dl,∆1, . . . ,∆k,Λ

∅
∅
〉

ν1 V ′
1

ν2 V ′
2

νl V ′
l

γ1 Γ′
1

γ2 Γ′
2

γk Γ′
k

I

Open lo
ks in P1

V1 7→ V ′
1 = V 1

1

Open lo
ks in N1

V1 7→ V ′
1 = V 2

1

Open remaininglo
ks in P1 ∪N1

D1 7→ I...
Open lo
ks in Pl

Vl 7→ V ′
l = V 1

l

Open lo
ks in Nl

Vl 7→ V ′
l = V 2

l

Open remaininglo
ks in Pl ∪Nl

Dl 7→ ITest lo
k a1
Γ1 7→ Γ′

1 = Γ1
1

Test lo
k b1
Γ1 7→ Γ′

1 = Γ2
1

Test lo
k c1
Γ1 7→ Γ′

1 = Γ3
1

Test remaininglo
ks in {a1, b1, c1}
∆1 7→ I...

Test lo
k ak
Γk 7→ Γ′

k = Γ1
k

Test lo
k bk
Γk 7→ Γ′

k = Γ2
k

Test lo
k ck
Γk 7→ Γ′

k = Γ3
k

Test remaininglo
ks in {ak, bk, ck}
∆k 7→ I

Figure 10: Description of an efficient sorting of Sφ. Circular nodes correspond to head elements or sequences
especially relevant (landmarks). We start with the head element of Sφ: ν1. From each landmark, one, two
or three paths are possible before reaching the next landmark, each path having its own effects, stated in
rectangles, on the sequence. Possible effects are: transforming a subsequence of Sφ (symbol 7→), opening a
lock, testing a lock (such a path requires the lock to be open). The top-left quarter, from ν1 to νl, is studied
in Section 3.3.1; the bottom-left quarter, from γ1 to γk, is studied in Section 3.3.2; and the right half, from
V ′1 to Γ′k, is studied in Section 3.3.3. Indices are removed from identity sequences (I) for readability.

21

For all i ∈ J1 ; rK , V ′i =

{
V 1
i if i ∈ T
V 2
i if i ∈ F

O =
⋃
i∈T

Pi ∪
⋃
i∈F

Ni

Sφ[P] =
〈
νr+1, . . . , νl, γ1, . . . , γk, V

′
1 , . . . , V

′
r , Vr+1, . . . , Vl,

Γ1, . . . ,Γk, D1, . . . , Dl,∆1, . . . ,∆k,Λ
O
∅
〉

Property 12. Let r ∈ J0 ; lK with r < l, P = (T, F) be any r-assignment, P1 = (T ∪ {r + 1}, F) and
P2 = (T, F ∪ {r + 1}). Then

Sφ[P] =⇒ {Sφ[P1], Sφ[P2]}

Proof. This is a direct application of Property 9.a on variable (νr+1, Vr+1, Dr+1), using sequences:

X =
〈
νr+2, . . . , νl, γ1, . . . , γk, V

′
1 , . . . , V

′
r

〉
Y =

〈
Vr+2, . . . , Vl,Γ1, . . . ,Γk, D1, . . . , Dl,∆1, . . . ,∆k

〉

With the following lemma, we ensure that any sequence of efficient flips from Sφ begins with a full
assignment of the boolean variables, and every possible assignment can be reached using only efficient flips.

Lemma 13.
Sφ =⇒ {Sφ[P] | P full assignment}

Proof. We prove Sφ =⇒ {Sφ[P] | P r − assignment} by induction for all r ∈ J0 ; lK, and the lemma is deduced
from the case r = l.

There is only one 0-assignment, which is P0 = (∅, ∅), and Sφ = Sφ[P0]. Consider now any r < l. We use
notations P1 and P2 from Property 12. Then any (r + 1)-assignment can be written P1 or P2, where P is
some r-assignment. We have

Sφ =⇒ {Sφ[P] | P r-assignment} by induction hypothesis

Sφ =⇒ {Sφ[P1], Sφ[P2] | P r-assignment} by Property 12

= {Sφ[P ′] | P ′ (r + 1)-assignment}

3.3.2 Going through clauses

Now that each variable is assigned a boolean value, we need to verify with each clause that this assignment
satisfies the formula φ. This is done by selecting, for each clause, a literal which is true, and testing the
corresponding lock. As in Definition 8, for any i ∈ J1 ; kK we write (ai, bi, ci) the indices such that the i-th
clause of φ is λai ∨ λbi ∨ λci (thus, ai, bi, ci ∈ J1 ; mK).

Definition 10. Let t ∈ J0 ; kK and P be a full assignment. A t-selection σ is a subset of J1 ; mK such that

• |σ| = t

• for each i ∈ J1 ; tK, |{ai, bi, ci} ∩ σ| = 1

22

A t-selection σ and a full assignment P = (T, F) are compatible, if, for every i ∈ σ, literal λi is true
according to assignment P (that is, λi = xj and j ∈ T , or λi = ¬xj and j ∈ F).

A k-selection is called a full selection. Given a t-selection σ and a full assignment P = (T, F) which are
compatible, we define the sequence Sφ[P, σ] by:

For all i ∈ J1 ; lK , V ′i =

{
V 1
i if i ∈ T
V 2
i if i ∈ F

For all i ∈ J1 ; tK , Γ′i =


Γ1
i if ai ∈ σ

Γ2
i if bi ∈ σ

Γ3
i if ci ∈ σ

O =
⋃
i∈T

Pi ∪
⋃
i∈F

Ni − σ

I = σ

Sφ[P, σ] =
〈
γt+1, . . . , γk, V

′
1 , . . . , V

′
l ,Γ
′
1, . . . ,Γ

′
t,Γt+1, . . . ,Γk, D1, . . . , Dl,∆1, . . . ,∆k,Λ

O
I

〉
Property 14. Let P be a full assignment and t ∈ J0 ; kK, t < k. Let σ′ be a (t+ 1)-selection compatible with
P, then there exists a t-selection σ compatible with P such that σ ⊂ σ′.

Proof. It is obtained by σ = σ′ − {at+1, bt+1, ct+1}. It is trivially a t-selection included in σ, and it is
compatible with P (all selected literals in σ are also selected in σ′, and thus are true according to P).

Property 15. Let t ∈ J0 ; kK, t < k, P be a full assignment, and σ be a t-selection compatible with P.

Sφ[P, σ] =⇒ {Sφ[P, σ′] | σ′ (t+ 1)-selection compatible with P;σ ⊂ σ′}

Note that the right-hand side can be the empty set, in which case Sφ[P, σ] =⇒ ∅.

Proof. First note that there are 3 (t + 1)-selections such that σ ⊂ σ′, and they are σ′1 = σ ∪ {at+1},
σ′2 = σ ∪{bt+1}, and σ′3 = σ ∪{ct+1}. Since σ is compatible with P, σ′1 is compatible with P iff literal λat+1

is true in P (and similarly with couples (σ′2, λbt+1) and (σ′3, λct+1)). We now define sequences X and Y and
sets I and O such that Sφ[P, σ] =

〈
γt+1, X, Γt+1, Y, ΛOI

〉
, that is:

X =
〈
γt+2, . . . , γk, V

′
1 , . . . , V

′
l ,Γ
′
1, . . . ,Γ

′
t

〉
Y =

〈
Γt+2, . . . ,Γk, D1, . . . , Dl,∆1, . . . ,∆k,

〉
O =

⋃
i∈T

Pi ∪
⋃
i∈F

Ni − σ

I = σ

Using Property 10 on clause gadget (γt+1,Γt+1,∆t+1), we obtain:

Sφ[P, σ] =⇒ T

where T is defined by: 〈
X, Γ1

t+1, Y, Λ
O−{at+1}
I∪{at+1}

〉
∈ T iff at+1 ∈ O〈

X, Γ2
t+1, Y, Λ

O−{bt+1}
I∪{bt+1}

〉
∈ T iff bt+1 ∈ O〈

X, Γ3
t+1, Y, Λ

O−{ct+1}
I∪{ct+1}

〉
∈ T iff ct+1 ∈ O

Note that at+1 /∈ σ, hence at+1 ∈ O iff ∃i ∈ T s.t. at+1 ∈ Pi or ∃i ∈ F s.t. at+1 ∈ Ni. Equivalently,
at+1 ∈ O iff λat+1

is a positive occurrence of a variable assigned True in P, or a negative occurrence of a

23

variable assigned False in P. Finally, at+1 ∈ O iff σ′1 is compatible with P. Likewise, bt+1 ∈ O iff σ′2 is
compatible with P, and ct+1 ∈ O iff σ′3 is compatible with P.

Sφ[P, σ′1] =
〈
X, Γ1

t+1, Y, Λ
O−{at+1}
I∪{at+1}

〉
∈ T iff σ′1 is compatible with P

Sφ[P, σ′2] =
〈
X, Γ2

t+1, Y, Λ
O−{bt+1}
I∪{bt+1}

〉
∈ T iff σ′2 is compatible with P

Sφ[P, σ′3] =
〈
X, Γ3

t+1, Y, Λ
O−{ct+1}
I∪{at+1}

〉
∈ T iff σ′3 is compatible with P

Thus T is indeed the set of sequences Sφ[P, σ′] where σ′ is a (t + 1)-selection which contains σ and is
compatible with P: the property is proved.

With the following lemma, we ensure that after the truth assignment, every efficient path starting from
Sφ needs to select a literal in each clause, under the constraint that the selection is compatible with the
assignment.

Lemma 16. Let P be a full assignment. Then

Sφ[P] =⇒ {Sφ[P, σ] | σ full selection compatible with P}

Proof. The proof follows the same pattern as the one of Lemma 13, that is, we prove

Sφ[P] =⇒ {Sφ[P, σ] | σ t-selection compatible with P}

by induction for all t ∈ J0 ; kK, and the lemma is deduced from the case t = k.
There is only one 0-selection, which is σ0 = ∅, it is compatible with P, and Sφ[P] = Sφ[P, σ0]. Consider

now any t < k. We have

Sφ[P] =⇒ {Sφ[P, σ] | σ t-selection compatible with P} (by induction hypothesis)

Sφ[P] =⇒ {Sφ[P, σ′] | σ′ (t+ 1)-selection compatible with P and

∃σ t-selection compatible with P, σ ⊂ σ′} by Property 15

= {Sφ[P, σ′] | σ′ (t+ 1)-selection compatible with P} by Property 14

3.3.3 Beyond clauses

Lemma 17. Let P be a full assignment and σ be a full selection, such that P and σ are compatible (provided
such a pair exists for φ). Then

Sφ[P, σ] =⇒ I1
n

Proof. Write P = (T, F). Since σ is a full selection, Sφ[P, σ] can be written (see Definition 10):

For all i ∈ J1 ; lK , V ′i =

{
V 1
i if i ∈ T
V 2
i if i ∈ F

For all i ∈ J1 ; kK , Γ′i =


Γ1
i if ai ∈ σ

Γ2
i if bi ∈ σ

Γ3
i if ci ∈ σ

O =
⋃
i∈T

Pi ∪
⋃
i∈F

Ni − σ

I = σ

Sφ[P, σ] =
〈
V ′1 , . . . , V

′
l ,Γ
′
1, . . . ,Γ

′
k, D1, . . . , Dl,∆1, . . . ,∆k,Λ

O
I

〉
24

We extend the definition of set O to Or, for any r ∈ J0 ; lK, as follows:

Or =
⋃

0<i≤r
(Pi ∪Ni) ∪

⋃
i∈T

Pi ∪
⋃
i∈F

Ni − σ

Note that O0 = O, and that Ol = J1 ; mK− σ.

Sφ[P, σ] =
〈
V ′1 , . . . , V

′
l ,Γ
′
1, . . . ,Γ

′
k,D1, . . . , Dl,∆1, . . . ,∆k,Λ

O0

I

〉
9.b/c
=⇒

〈
V ′2 , . . . , V

′
l ,Γ
′
1, . . . ,Γ

′
k, I1

31,D2 . . . , Dl,∆1, . . . ,∆k,Λ
O1

I

〉
9.b/c
=⇒

〈
V ′3 , . . . , V

′
l ,Γ
′
1, . . . ,Γ

′
k, I1

31, I32
62 ,D3 . . . , Dl,∆1, . . . ,∆k,Λ

O2

I

〉
· · ·

9.b/c
=⇒

〈
Γ′1, . . . ,Γ

′
k,I1

31,I
32
62 , . . . ,I

31l−30
31l ,∆1, . . . ,∆k,Λ

Ol

I

〉
=
〈
Γ′1, . . . ,Γ

′
k, I1

31l,∆1, . . . ,∆k,Λ
Ol

I

〉
Finally, for the last part, we use a similar procedure, with the following sets, for t ∈ J0 ; kK:

O′t = J1 ; mK−

σ ∪ ⋃
0<i≤t

{ai, bi, ci}


I ′t = σ ∪

⋃
0<i≤t

{ai, bi, ci}

Note that O′0 = Ol, I
′
0 = I, O′k = ∅, I ′k = J1 ; mK, and more importantly, for i > t, assuming that ai ∈ σ

(cases bi ∈ σ and ci ∈ σ are similar), then ai ∈ I ′t, bi ∈ O′t and ci ∈ O′t. Hence we can successively apply
Property 11 (either .a, .b or .c) on each clause gadgets.

〈
Γ′1, . . . ,Γ

′
k, I1

31l,∆1, . . . ,∆k,Λ
O′0
I′0

〉
11.
=⇒

〈
Γ′2, . . . ,Γ

′
k, I1

31l, I31l+1
31l+62,∆2, . . . ,∆k,Λ

O′1
I′1

〉
11.
=⇒

〈
Γ′3, . . . ,Γ

′
k, I1

31l, I31l+1
31l+62, I31l+63

31l+124,∆3, . . . ,∆k,Λ
O′2
I′2

〉
· · ·

11.
=⇒

〈
I1

31l,I
31l+1
31l+62,I

31l+63
31l+124, . . . ,I

31l+62k−61
31l+62k ,Λ

O′k
I′k

〉
=
〈
I1

31l, I31l+1
31l+62k,Λ

∅
J1 ;mK

〉
=
〈
I1

31l, I31l+1
31l+62k, I31l+62k+1

31l+62k+12m

〉
= I1

n

Theorem 18.
Sφ =⇒ I1

n iff φ is satisfiable.

Proof. Assume first that Sφ =⇒ I1
n. By Lemma 13, since Sφ =⇒ {Sφ[P] | P full assignment}, there exists

a full assignment P = (T, F) such that the path from Sφ to the identity uses Sφ[P]. Note that Sφ[P] =⇒
I1
n. Now, by Lemma 16, since Sφ[P] =⇒ {Sφ[P, σ] | σ full selection compatible with P}, there exists a full

selection σ, compatible with P, such that the path from Sφ[P] to the identity uses Sφ[P, σ]. Consider the

25

truth assignment xi := True ⇔ i ∈ T . Then each clause of φ contains at least one literal that is true (the
literal whose index is in σ), and thus φ is satisfiable.

Assume now that φ is satisfiable: consider any truth assignment making φ true, write T the set of indices
such that xi = True, and F = J1 ; lK − T . Write also σ a set containing, for each clause of φ, the index of
one literal being true under this assignment. Then σ is a full selection, compatible with the full assignment
P = (T, F). By Lemma 13, there exists an efficient path from Sφ to Sφ[P]. By Lemma 16, there exists an
efficient path from Sφ[P] to Sφ[P, σ]. And by Lemma 17, there exists an efficient path from Sφ[P, σ] to the
identity. Thus sequence Sφ is efficiently sortable.

Using Theorem 18, we can now prove the main result of the paper.

Theorem 19. The following problems are NP-hard:

• Sorting By Prefix Reversals (MIN-SBPR)

• deciding, given a sequence S, whether S can be sorted in db(S) flips

Proof. By reduction from 3-SAT. Given any formula φ, create Sφ (see Definition 8, the construction requires
a linear time). By Theorem 18, the minimum number of flips necessary to sort Sφ is db(Sφ) iff φ is satisfiable.

4 Conclusion

In this paper, we have shown that the Pancake Flipping problem is NP-hard, thus answering a long-standing
open question. We have also provided a stronger result, namely, deciding whether a permutation can be
sorted with no more than one flip per breakpoint is also NP-hard.

Among related important problems, the last one having an open complexity is now the burnt variant
of the Pancake Flipping problem. An interesting insight into this problem is given in a recent work from
Labarre and Cibulka [13], where the authors characterize a subclass of permutations that can be sorted in
polynomial time, using the breakpoint graph [1]. Another development consists in trying to improve the
approximation ratio of 2 for the Pancake Flipping problem, both in its burnt and unburnt versions.

26

References

[1] V. Bafna and P. Pevzner. Genome rearrangements and sorting by reversals. In FOCS, pages 148–157.
IEEE, 1993.

[2] P. Berman, S. Hannenhalli, and M. Karpinski. 1.375-approximation algorithm for sorting by reversals.
In R. Möhring and R. Raman, editors, ESA, volume 2461 of Lecture Notes in Computer Science, pages
200–210. Springer, 2002.

[3] P. Berman and M. Karpinski. On some tighter inapproximability results (extended abstract). In
J. Wiedermann, P. van Emde Boas, and M. Nielsen, editors, ICALP, volume 1644 of Lecture Notes in
Computer Science, pages 200–209. Springer, 1999.

[4] B. Chitturi, W. Fahle, Z. Meng, L. Morales, C.O. Shields, I. Sudborough, and W. Voit. An (18/11)n
upper bound for sorting by prefix reversals. Theoretical Computer Science, 410(36):3372–3390, 2009.

[5] J. Cibulka. On average and highest number of flips in pancake sorting. Theoretical Computer Science,
412(8-10):822–834, 2011.

[6] D. Cohen and M. Blum. On the problem of sorting burnt pancakes. Discrete Applied Mathematics,
61(2):105–120, 1995.

[7] H. Dweighter. American Mathematics Monthly, 82(1), 1975.

[8] J. Fischer and S. Ginzinger. A 2-approximation algorithm for sorting by prefix reversals. In G. S.
Brodal and S. Leonardi, editors, ESA, volume 3669 of Lecture Notes in Computer Science, pages 415–
425. Springer, 2005.

[9] W. Gates and C. Papadimitriou. Bounds for sorting by prefix reversal. Discrete Mathematics, 27(1):47–
57, 1979.

[10] S. Hannenhalli and P. Pevzner. Transforming cabbage into turnip: polynomial algorithm for sorting
signed permutations by reversals. In STOC, pages 178–189. ACM, 1995.

[11] M. Heydari and I. Sudborough. On sorting by prefix reversals and the diameter of pancake networks.
In Proceedings of the First Heinz Nixdorf Symposium on Parallel Architectures and Their Efficient Use,
pages 218–227, London, UK, 1993. Springer-Verlag.

[12] M. Heydari and I. Sudborough. On the diameter of the pancake network. Journal of Algorithms,
25(1):67–94, October 1997.

[13] A. Labarre and J. Cibulka. Polynomial-time sortable stacks of burnt pancakes. Theoretical Computer
Science, 412(8-10):695–702, 2011.

27

