Problem 1. Let B^n be an n-dimensional hypercube graph. Let A be a subset of the vertices of B^n such that $|A| > 2^{n-1}$. Let H be the subgraph of B^n induced by A. Prove that H has at least n edges.

Solution:

We use the notation $\{ \}_M$ for multisets as in $\{1, 2, 2, 3, 3, 3\}_M$. We identify the vertex set of B^n with the set of all binary vectors of length n. Let m = |A| and $A = \{\widetilde{\alpha_1}, \widetilde{\alpha_2}, \ldots, \widetilde{\alpha_m}\}$. Let $\widetilde{\alpha_i} = (\alpha_i^1, \alpha_i^2, \ldots, \alpha_i^n)$ for $1 \le i \le m$, where $\alpha_i^j \in \{0, 1\}$ for $1 \le i \le m$ and $1 \le j \le n$. For every k such that $1 \le k \le n$, define that the k-th contraction of A is the multiset of vectors obtained from A after removing the k-th position of each vector. We denote the k-th contraction of A by "A|_k". Formally, $A|_k = \{\widetilde{\alpha_1}|_k, \widetilde{\alpha_2}|_k, \ldots, \widetilde{\alpha_m}|_k\}_M$ where

$$\widetilde{\alpha_i}|_k = \left(\alpha_i^1, \alpha_i^2, \dots, \alpha_i^{k-1}, \alpha_i^{k+1}, \dots, \alpha_i^n\right) \ \, \mathrm{for} \ 1 \leq i \leq m$$

Clearly, the vectors in $A|_k$ have length n - 1. There can be at most 2^{n-1} distinct binary vectors of length n. But by construction $A|_k$ has $m > 2^{n-1}$ vectors, therefore at least two vectors in $A|_k$ are the same. Let $\widetilde{\alpha_{p_k}}|_k$ and $\widetilde{\alpha_{q_k}}|_k$ be any two vectors in $A|_k$ that are the same for some indices p_k and q_k such that $1 \le p_k < q_k \le m$. The indices are themselves indexed by k because they depend on the value of k.

Note that A is not a multiset but a normal set, *i.e.* without repeating elements. Therefore it must be the case that $\widetilde{\alpha_{p_k}} \neq \widetilde{\alpha_{q_k}}$. But $\widetilde{\alpha_{p_k}}$ and $\widetilde{\alpha_{q_k}}$ can differ only in the k-th position. Therefore, by the definition of the hypercube graph, for every k such that $1 \leq k \leq n$, there is an edge $e_k = (\widetilde{\alpha_{p_k}}, \widetilde{\alpha_{q_k}})$ both in Bⁿ and H.

Next we argue that for any two distinct values of k, say s and t, the edges e_s and e_t are distinct. Assume the opposite:

$$(\widetilde{\alpha_{p_s}}, \widetilde{\alpha_{q_s}}) = (\widetilde{\alpha_{p_t}}, \widetilde{\alpha_{q_t}}) \text{ for some } s, t, \text{ such that } 1 \le s < t \le n$$
(1)

Recall that $\widetilde{\alpha_{p_s}}$ and $\widetilde{\alpha_{q_s}}$ differ in precisely one position, namely the s-th position. Therefore,

$$\widetilde{\alpha_{p_s}} = \beta_s, 0, \gamma_s \text{ and}$$
(2)

$$\widetilde{\alpha_{q_s}} = \beta_s, 1, \gamma_s \tag{3}$$

or

$$\widetilde{\alpha_{p_s}} = \beta_s, 1, \gamma_s \text{ and}$$
(4)

$$\widetilde{\alpha_{q_s}} = \beta_s, 0, \gamma_s \tag{5}$$

where β_s and γ_s are binary vectors such that $|\beta_s| + |\gamma_s| = n - 1$. Likewise,

$$\begin{split} \widetilde{\alpha_{p_t}} &= \beta_t, 0, \gamma_t ~\mathrm{and} \\ \widetilde{\alpha_{q_t}} &= \beta_t, 1, \gamma_t \end{split}$$

or

$$\begin{split} \widetilde{\alpha_{p_t}} &= \beta_t, 1, \gamma_t \text{ and } \\ \widetilde{\alpha_{q_t}} &= \beta_t, 0, \gamma_t \end{split}$$

where β_t and γ_t are binary vectors such that $|\beta_t| + |\gamma_t| = n - 1$. Furthermore, $|\beta_s| = s-1 \ \mathrm{and} \ |\beta_t| = t-1. \ \mathrm{As} \ s < t, \ \mathrm{it} \ \mathrm{must} \ \mathrm{be} \ \mathrm{the} \ \mathrm{case} \ \mathrm{that} \ |\beta_s| < |\beta_t|.$ By our assumption $\widetilde{\alpha_{p_s}} = \widetilde{\alpha_{p_t}}$ and $\widetilde{\alpha_{q_s}} = \widetilde{\alpha_{q_t}}$. It follows that β_t has the form:

$$\beta_t = \beta_s, 0, \dots$$
 because of (2) and (4) (6)

and

$$\beta_t = \beta_s, 1, \dots$$
 because of (3) and (5) (7)

Because of the contradiction between (6) and (7), our assumption (1) is wrong.

We proved that for each value of k, such that $1 \leq k \leq n$, there is a distinct edge e_k in \mathbb{B}^n and in \mathbb{H} . It follows \mathbb{H} has at least \mathfrak{n} edges.

Problem 2. Prove the n-dimensional hypercube graph is Hamiltonian for any $n \geq 2$.

Solution:

By induction on n.

Basis: n = 2. Clearly, the graph $\bigcup_{n=0}^{n-1}$ is Hamiltonian. **Induction hypothesis:** For some $n \ge 2$, B^n is Hamiltonian.

Induction step: Consider B^{n+1} . Let $m = 2^n$. Let the vertex set of B^{n+1} be partitioned into V^0 , the vectors having 0 in the leftmost position, and V^1 , the vectors having 1 in the leftmost position. Let H^i be the subgraph of B^{n+1} induced by V_i , for i = 0, 1. It is known that both H^0 and H^1 are isomorphic to B^n . By the inductive hypothesis there is a Hamiltonian cycle c_0 in H_0 . Clearly, $|c_0| = m$. Let

 $c_0 = u_1, u_2, \ldots, u_m$

where u_1, u_2, \ldots, u_m is some permutation of the vectors of V^0 . Let v_i be the vector obtained from u_i by replacing the leftmost 0 by 1, for $1 \le i \le m$. Then $\{v_1, v_2, \ldots, v_m\} = V^1$. Furthermore,

 $c_1 = v_1, v_2, \ldots, v_m$

is a Hamilton cycle in H^1 .

Consider any edge $e = (u_k, u_{k+1})$ in c_0 . Define that p_0 is the Hamilton path in H^0 obtained by removing e from c_0 . Clearly, $e' = (v_k, v_{k+1})$ is an edge in c_1 . Define that p_1 is the Hamilton path in H^1 obtained by removing e' from c_1 . Note that (u_k, v_k) is an edge, call it e_k , in B^{n+1} because by construction the vectors u_k and v_k differ only at the leftmost position. Likewise, (u_{k+1}, v_{k+1}) is an edge, call it e_{k+1} , in B^{n+1} .

The paths p_0 and p_1 together with the edges e_k and e_{k+1} form a Hamilton cycle in B^{n+1} .