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Крайни множества
Неправилна дефиниция

Дефиницията “множество е крайно, ако има краен брой
елементи” е некоректна. По същество тя казва “множество е
крайно, ако е крайно”. Очевидно това е порочно зациклена
дефиниция!
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Крайни множества и кардиналност
Правилна дефиниция

Дефинирането на “крайно множество” става чрез биекция
между него и някое множество t1, 2, . . . , nu.

Определение 1 (крайно множество, кардиналност)

Множество A е крайно, ако
или A “ H, в който случай кардиналността на A е 0,
или съществува n P N`, такова че съществува биекция
f : AÑ t1, 2, . . . , nu; тогава кардиналността на A е n.

На прост български, кардиналността на крайно множество A е
броят на елементите на A и се бележи с |A|. “Кардиналността
на множество A” и “мощността на множество A” са синоними.
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Свойства на крайните множества

Приемаме за очевидна следната теорема.

Теорема 1

Нека X и Y са крайни множества, като |X | “ m и |Y | “ n.
m ď n тстк съществува инекция от X в Y .
m “ n тстк съществува биекция от X в Y .
m ě n тстк съществува сюрекция от X в Y .
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Безкрайни множества

Определение 2 (безкрайно множество)

Множество е безкрайно, ако не е крайно.

Пример за безкрайно множество е N: колкото и голямо
естествено число n да вземем, n` 1 е по-голямо. Ерго, за всяко
естествено n е вярно, че n` 1 R t0, 1, . . . , nu.
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Равномощни множества (равенства на кардиналности)

Следната дефиниция е в сила за крайни и за безкрайни м-ва.

Определение 3 (равномощност на множества)

Множества A и B са равномощни, или съизброими, тстк
съществува биекция от едното в другото. Пишем |A| “ |B|.

На английски терминът е equinumerous.

Ако A и B са крайни, записът “|A| “ |B|” касае равенство на
числа, което вече видяхме в Теорема 1.

Ако A е безкрайно, нотацията “|A|” се ползва и пак казваме, че
е кардиналността на A, но сега смисълът е различен от брой
елементи. Кардиналността на безкрайно множество е
абстрактно понятие. Равенството на кардиналностите на
безкрайни множества не е равенство на числа!
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Свойства на равномощността на множества

Равномощността на множества е еквивалентност. Независимо
от това дали A, B , C са крайни или безкрайни,
равномощността на множества има тези свойства.

|A| “ |A| (рефлексивност),
|A| “ |B| Ø |B| “ |A| (симетричност),
|A| “ |B| ^ |B| “ |C | Ø |A| “ |C | (транзитивност).

Ако множествата са крайни, тези свойства са свойства на
релацията равенство върху числа, която е релация на
еквивалентност. Ако обаче множествата са безкрайни, тези
свойства следват от свойства на биекциите.
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Неравенства между кардиналности чрез инекции

Следната нотация е в сила за крайни и за безкрайни м-ва.

Нотация 1 (|A| ď |B|)

Ако има инекция от м-во A в м-во B , пишем |A| ď |B|.

Ако A и B са крайни, то символът “ď” означава познатата ни
релация на нестрого неравенство върху естествените числа и
Теорема 1 ни дава право да се изразим така.

Ако обаче става дума за безкрайни множества или поне B е
безкрайно, не става дума за брой елементи и |A| ď |B| не е
неравенство между числа. В този случай, нотацията “|A| ď |B|”
е формален запис на абстрактно свойство на A и B .
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Теорема на Cantor–Schröder–Bernstein

В следната теорема, A и B може да са крайни или безкрайни.

Теорема 2 (Теорема на Cantor–Schröder–Bernstein)

Ако |A| ď |B| и |B| ď |A|, то |A| “ |B|.

Доказателство: Ако става дума за крайни множества, то
Теорема 1 доказва твърдението, понеже релацията ď върху
естествените числа е антисиметрична. Интересен е случаят, в
който множествата са безкрайни.

Следното доказателство е взето буквално от “Записки по
дискретна математика” на доцент Христо Ганчев от ФМИ.
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Теорема на Cantor–Schröder–Bernstein
Една ключова лема (1)

Лема 1

Нека C Ď A и |A| ď |C |. Тогава |A| “ |C |.

Доказателство: Ако C “ A, няма какво да доказваме. Нека
C Ă A. Разглеждаме произволна инекция f : AÑ C .
Конструираме множествата D0, D1, D2, D3, . . . ето така:

D0 “ AzC // непразно по допускане
D1 “ f pD0q

D2 “ f pD1q

D3 “ f pD2q

. . .

Накратко, D0 “ AzC и Dn`1 “ f pDnq за n ě 0. Нека
D “

Ť

nPNDn.
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Теорема на Cantor–Schröder–Bernstein
Една ключова лема (2)

Разглеждаме изображението h : AÑ A, дефинирано така:

@x P A : hpxq “

#

f pxq, ако x P D

x , в противен случай

Сега ще докажем, че h е биекция от A в C .
1 Ще докажем, че @x P A : hpxq P C .

Ако x P D, то hpxq “ f pxq по дефиницията на h. Но
f pxq P C , понеже C е кодомейнът на f .
Ако x R D, то hpxq “ x по дефиницията на h. Но щом
x R D, в частност x R D0. Щом x R D0, x P C , понеже
D0 “ AzC .
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Теорема на Cantor–Schröder–Bernstein
Една ключова лема (3)

2 Ще докажем, че h е инекция от A в C . Разглеждаме
произволни x , y P A, такива че x ­“ y .

Да допуснем, че x P D и y P D. Тъй като f е инекция,
изпълнено е f pxq ­“ f pyq. Но hpxq “ f pxq и hpyq “ f pyq,
щом x , y P D. Заключаваме, че hpxq ­“ hpyq.
Да допуснем, че x P D и y R D. Щом x P D, hpxq “ f pxq по
дефиницията на h. Щом x P D, f pxq P D. Ерго, hpxq P D.

Щом y R D, hpyq “ y . Тогава hpyq R D.

Заключаваме, че hpxq ­“ hpyq.
Ако x R D и y P D, доказваме, че hpxq ­“ hpyq аналогично.
Да допуснем, че x R D и y R D. Тогава hpxq “ x и hpyq “ y
по дефиницията на h. Заключаваме, че hpxq ­“ hpyq.

Заключаваме, че h е инекция от A в C .
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Теорема на Cantor–Schröder–Bernstein
Една ключова лема (4)

3 Ще докажем, че h е сюрекция от A в C . Разглеждаме
произволно z P C .

Да допуснем, че z P D. Тогава Dn P N : z P Dn. Но
D0 “ AzC . Тогава z R D0. Тогава Dn P N` : z P Dn. Но по
дефиниция, Dn “ f pDn´1q, щом n ą 0. Тогава
Dx P Dn´1 : f pxq “ z . Тогава hpxq “ f pxq. Тогава hpxq “ z .
Да допуснем, че z R D. Тогава hpzq “ z по определението
на h.

И в двата случая, z се явява образ на елемент под h.
Заключаваме, че h е сюрекция от A в C .

Щом h е инекция и сюрекция от A в C , h е биекция от A в C .
Щом съществува биекция от A в C , в сила е |A| “ |C |. С това
доказахме Лема 1. l

Минко Марков minkom@fmi.uni-sofia.bg Лекция 4: Крайни и безкрайни м-ва



Теорема на Cantor–Schröder–Bernstein
Доказателството на Теорема 2

Връщаме се на доказателството на Теорема 2. Нека u : AÑ B
и v : B Ñ A са инекции. Кодомейнът на v е A. Нека C “ vpBq.
Очевидно C Ď A. Очевидно v е инекция от B в C .
Но v е сюрекция от B в C , защото всеки елемент на C е образ
на някой елемент на B под v . Щом v е инекция и и сюрекция
от B в C , v е биекция от B в C . Тогава |B| “ |C |.
Разглеждаме v ˝ u. Приемаме за очевидно, че композицията на
инекции е инекция. Но u и v са инекции. Тогава v ˝ u е
инекция. Нещо повече, тя инекция от A в C . Щом има такава
инекция, в сила е |A| ď |C |. Щом C Ď A и |A| ď |C |, съгласно
Лема 1, в сила е |A| “ |C |.

Щом |A| “ |C | и |B| “ |C |, в сила е |A| “ |B|. Това е краят на
доказателството на Теорема 2. l
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Изброими множества

Определение 4 (изброимо безкрайно множество)

Множество A е изброимо безкрайно, ако е равномощно на N.

Определение 5 (изброимо множество)

Множество A е изброимо, ако A е крайно или изброимо
безкрайно.

Определение 6 (неизброимо множество)

Множество е неизброимо, ако не е изброимо.

Очевидно всяко неизброимо множество е безкрайно. Не е
очевидно, че съществуват неизброими множества.
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За безкрайните множества (1)
Потенциална и актуална безкрайност

Естествените числа се генерират от процес, който започва от 0
с добавяне на единица:

0` 1 “ 1
1` 1 “ 2

. . .

1 000 000` 1 “ 1 000 001
. . .

Аристотел характеризира този процес като “потенциална
безкрайност”. Кулминацията на процеса, а именно множеството
от всички естествени числа, е “пълна безкрайност”, или
“актуална безкрайност”.
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За безкрайните множества (2)
Потенциална и актуална безкрайност

От Аристотелово време чак до 19 век мнозинството от
мислителите отхвърлят актуалната безкрайност като
нелегитимно понятие. Гаус (Carl Friedrich Gauss), най-великият
математик на своето време, пише:

But concerning your proof, I protest above all against
the use of an infinite quantity as a completed one, which
in mathematics is never allowed. The infinite is only
façon de parler, in which one properly speaks of limits.

Georg Cantor, His Mathematics and Philosophy of the Infinite,

Dauben, pp. 120
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За безкрайните множества (3)
Потенциална и актуална безкрайност – допълнителна илюстрация на разликата

Редът на Лайбниц е

π

4
“ 1´

1
3
`

1
5
´

1
7
`

1
9
´ ¨ ¨ ¨

Ако гледаме на сумата вдясно като на процес, който
апроксимира π

4 все по-добре с добавяне на все повече
събираеми, имаме предвид потенциална безкрайност. Тогава π

4
е само граница, по израза на Гаус, към която клони сумата, без
да я достига никога. Тук и дума не става за пълна
безкрайност: на всеки етап от сумирането сме събрали краен
брой събираеми.

Ако гледаме на сумата вдясно като на едно цяло нещо, което е
точно равно на π

4 , имаме предвид актуална безкрайност.
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За безкрайните множества (4)
Парадоксът на Галилео Галилей

Има проблем при безкрайните множества: цялото е “равно” на
своя част в смисъл, че елементите им може да бъдат съчетани
перфектно.

Множеството на естествените числа (без нулата) t1, 2, 3, . . .u и
множеството на точните квадрати t1, 4, 9, . . .u са равномощни.
Интуитивно, естествените са повече, защото има естествени
нечетни числа, които не са точни квадрати. От друга страна,
биекцията f : t1, 2, 3, . . .u Ñ t1, 4, 9, . . .u:

@n P N : f pnq “ n2

съчетава перфектно елементите на двете множества.

Оттук и мнението, че да се говори за “броя на всички числа” и
да се приема съществуването на актуалната безкрайност е
безсмислица.
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За безкрайните множества (5)

Георг Кантор (Georg Cantor) е първият математик, който
разглежда сериозно безкрайните множества и създава
кохерентна и задълбочена теория за тях. Той въвежда понятия,
имащи смисъл на бройки на елементите на безкрайни
множества, и работи с тези понятия.

Кантор показва, че множества като Q (рационалните числа)
или множеството на алгебричните ирационални числа (като?
2), които в днешната терминология са строги надмножества

на N, са равномощни с N. След това показва, че R не е
равномощно на N.
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За безкрайните множества (6)

Основен резултат на Кантор е, че има различни видове
безкрайност. И естествените, и реалните числа са безброй
много, но реалните са повече в смисъл, че няма биекция
между тях и естествените.
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Очевидно изброими безкрайни множества

N` е изброимо. Примерно, разглеждаме f : N` Ñ N, където
@n P N` : f pnq “ n´ 1.

Ne “ tn P N | n е четноu е изброимо. Примерно, разглеждаме
f : Ne Ñ N, където @n P Ne : f pnq “ n

2 .

M “ tn P N | n е точна степен на 2u е изброимо. Примерно,
разглеждаме f : M Ñ N, където @n P M : f pnq “ log2 n.

Z “ t. . . ,´1, 0, 1, . . .u е изброимо. Примерно, разглеждаме

f : ZÑ N, където @n P Z : f pnq “

$

’

&

’

%

0, ако n “ 0,
2n´ 1, ако n ą 0,
´2n, ако n ă 0.

Изброяването е f p0q “ 0, f p1q “ 1, f p´1q “ 2, f p2q “ 3,
f p´2q “ 4, f p3q “ 5, f p´3q “ 6 и т. н. Ето наредбата:

0, 1,´1, 2,´2, 3,´3, 4,´4, 5,´5, . . .
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Безкрайността е КОНТРАИНТУИТИВНА
Хотелът на Hilbert

Хотел с безкрайно много стаи, номерирани с 1, 2, 3 и така
нататък. Във всяка стая има гост.

Може ли хотелът да приюти нов гост? Колкото и да е
контраинтуитивно, да: преместваме едновременно всеки от
вече настанените в следващата стая.

Графиките са взети от Интернет от сайт без лицензи.
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N ˆ N е изброимо

Теорема 3

Съществува биекция f : Nˆ NÑ N.

Доказателство: Твърди се, че има начин да бъдат изброени
наредените двойки от естествени числа.

Разбиваме множеството Nˆ N “ tpa, bq | a, b P Nu на
подмножества S0, S1, S2, . . . по следния начин

@k P N : Sk “ tpa, bq P Nˆ N | a` b “ ku
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N ˆ N е изброимо (2)

Изброяването е следното: при i ă j , наредените двойки от Si
преди наредените двойки от Sj , а вътре във всяко Si
нареждаме двойките по нарастващ втори елемент:

p0, 0q p1, 0q p0, 1q p2, 0q p1, 1q p0, 2q p3, 0q p2, 1q p1, 2q p0, 3q

p4, 0q p3, 1q p2, 1q p1, 3q p0, 4q ¨ ¨ ¨

0 1 2 3 4 5 6 7 8 9

10 11 12 13 14

S0 S1 S2 S3

S4
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N ˆ N е изброимо (3)

Да си представим наредените двойки pa, bq от естествени числа
в безкрайна таблица.
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N ˆ N е изброимо (4)

Да групираме наредените двойки по диагонали. Тогава diagi
съдържа точно елементите на Si .
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N ˆ N е изброимо (5)

Ето визуализация на изброяването
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N ˆ N е изброимо (6)
Функцията на изброяването f

Да разгледаме следната функция f : Nˆ NÑ N:

f ppa, bqq “

#

0, ако pa, bq “ p0, 0q
pa`bqpa`b`1q

2 ` b, в противен случай
(1)

Това е формалното описание на функцията на изброяването,
която въведохме на слайд 25 и илюстрирахме на слайд 28.

Лема 2

Функцията на изброяването f , дефинирана в (1), е инекция.

Преди формалното доказателство на Лема 2, малко пояснения
за смисъла на израза вдясно в (1).
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N ˆ N е изброимо (7)
Пояснения към функцията на изброяването (1)

Числата от вида kpk`1q
2 за k P N се наричат триъгълните числа.

В нарастващ ред на k , редицата от триъгълните числа започва
така: 0, 1, 3, 6, 10, 15, 21, . . .. Следната визуализация за
k P t1, 2, 3, 4, 5u показва защо се наричат “триъгълните числа”.

1 3 6 10 15

Лесно се вижда, че триъгълните числа са точно сумите
řk

i“0 i ,
за k P N.
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N ˆ N е изброимо (8)
Пояснения към функцията на изброяването (2)

В (1), в израза pa`bqpa`b`1q
2 ` b :

Събираемото pa`bqpa`b`1q
2 е броят на наредените двойки

във всички диагонали преди диагонал номер a `̀̀ b.
То е триъгълното число

pa` bqpa` b ` 1q
2

“ 1` 2` ¨ ¨ ¨ ` pa` bq

Забележете, че диагонал номер a `̀̀ b съдържа точно
a` b ` 1 наредени двойки.
Събираемото b е броят на наредените двойки преди pa, bq
в диагонал номер a `̀̀ b.
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N ˆ N е изброимо (9)
Доказателството на Лема 2 (1)

Да допуснем, че f не е инекция. Тогава съществуват наредени
двойки pa1, b1q и pa2, b2q, такива че pa1, b1q ­“ pa2, b2q и
f ppa1, b1qq “ f ppa2, b2qq. Нека a1 ` b1 “ m1 и a2 ` b2 “ m2.

Случай 1: m1 ­“ m2. БОО, нека m1 ă m2. Тогава
m1pm1`1q

2 и
m2pm2`1q

2 са различни триъгълни числа, като
m1pm1`1q

2 ă
m2pm2`1q

2 . Ще докажем, че
m1pm1`1q

2 ` b1 ă
m2pm2`1q

2 . Наистина,

m1pm1 ` 1q
2

` b1 ă
m2pm2 ` 1q

2
Ø

b1 ă
1
2
`

m2
2 `m2 ´m2

1 ´m1
˘

Ø

b1 ă
1
2
ppm2 ´m1qpm2 `m1q ` pm2 ´m1qq Ø

b1 ă
1
2
pm2 ´m1qpm2 `m1 ` 1q
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N ˆ N е изброимо (10)
Доказателството на Лема 2 (2)

Но m2 ´m1 ě 1, понеже m2 ą m1 по допускане. Да разгледаме
множителя m2 `m1 ` 1. Но това е a2 ` b2 ` a1 ` b1 ` 1.
Очевидно a2 ` b2 ą b1 в текущите допускания, а също така
b1 ` 1 ą b1. Тогава a2 ` b2 ` a1 ` b1 ` 1 ą 2b1. Тогава

1
2
pm2 ´m1
looomooon

ě1

qpm2 `m1 ` 1
loooooomoooooon

ą2b1

q ą b1.

Доказахме, че b1 ă
1
2pm2 ´m1qpm2 `m1 ` 1q. Тогава

m1pm1`1q
2 ` b1 ă

m2pm2`1q
2 . Но m1pm1`1q

2 ` b1 “ f ppa1, b1qq, а
m2pm2`1q

2 ď f ppa2, b2qq. Показахме, че f ppa1, b1qq ă f ppa2, b2qq.

Заключаваме, че допускането, че f ppa1, b1qq “ f ppa2, b2qq, е
погрешно в Случай 1.  
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N ˆ N е изброимо (11)
Доказателството на Лема 2 (3)

Случай 2: m1 “ m2. Тогава трябва b1 да е различно от b2,
иначе a1 “ a2, което влече pa1, b1q “ pa2, b2q. Щом b1 ­“ b2 и
m1 “ m2, то

m1pm1`1q
2 ` b1 ­“

m2pm2`1q
2 ` b2. С други думи,

f ppa1, b1qq ­“ f ppa2, b2qq. Заключаваме, че допускането, че
f ppa1, b1qq “ f ppa2, b2qq, е погрешно в Случай 2.  

Тъй като Случай 1 и Случай 2 са изчерпателни,
заключаваме, че допускането, че съществуват наредени двойки
pa1, b1q и pa2, b2q, такива че pa1, b1q ­“ pa2, b2q и
f ppa1, b1qq “ f ppa2, b2qq, е погрешно. Заключаваме, че f е
инекция. Доказахме Лема 2. l
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N ˆ N е изброимо (12)
f е сюрекция (доказателството на Лема 3), (1)

Лема 3

Функцията на изброяването f , дефинирана в (1), е сюрекция.

Доказателство: Щом f е инекция, f ´1 е частична функция.
Очевидно следният алгоритъм с вход n реализира f ´1.

if (n == 0) {a = 0; b = 0;}
else {c = 1;

while (c <= n) {n = n - c; c ++;}
a = c - 1 - n; b = n;}

return (a, b);

Приемаме за очевидно, че за изхода pa, bq е вярно, че
pa`bqpa`b`1q

2 е най-голямото триъгълно число, по-малко или
равно на входа n.

Минко Марков minkom@fmi.uni-sofia.bg Лекция 4: Крайни и безкрайни м-ва



N ˆ N е изброимо (13)
f е сюрекция (доказателството на Лема 3), (2)

Но този алгоритъм работи коректно за всеки вход n. Тогава f ´1

е тотална функция. Ерго, f е сюрекция. Доказахме Лема 3. l

Лема 2 и Лема 3 доказват Теорема 3.
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Множеството от рационалните числа е изброимо (1)
Кои са рационалните числа

Определение
Множеството от рационалните числа е

Q “
"

p

q
: p P Z, q P Zzt0u

*

Забелязваме, че (изброимо безкрайно) множество обикновени
дроби p

q съответстват на едно и също число; примерно 1
2 ,

´1
´2 ,

2
4 ,

1000001
2000002 и така нататък съответстват на, или представляват,

едно и също число. И така, рационалните числа нямат
уникално представяне чрез обикновени дроби. Може да
въведем релация на еквивалентност (каква?) върху
множеството от дробите и да кажем, че нейните класове на
еквивалентност са рационалните числа.
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Множеството от рационалните числа е изброимо (2)
Контраинтуитивно, рационалните числа са изброими

Да кажем, че Q` “
!

p
q : p P N, q P N`

)

. Лесно следствие на
Теорема 3 е това:

Следствие 1

Съществува биекция f : Q` Ñ N.

Забелязваме, че рационалните числа може да се записват като
наредени двойки: дали ще напишем “ pq ” или “pp, qq” не е
съществено.
Един начин да бъдат изброени елементите на Q` е да вземем
таблицата от слайд 28, да изтрием най-лявата колона (за да
няма деление на нула) и след това да “вървим” в реда на онова
изброяване, като прескачаме наредените двойки, които
представляват числа, които вече са били изброени:

0, 1, 2,
1
2
, 3,

1
3
, 4,

3
2
,
2
3
,
1
4
, 5,

1
5
, 6,

5
2
, . . .
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Nk е изброимо

След като се убедихме, че Nˆ N е изброимо, забелязваме, че
Nˆ Nˆ N също е изброимо. Може да си представим тримерна
безкрайна таблица от наредените тройки, да вземаме двумерни
“разрези” от нея, състоящи се от тройките с една и съща сума,
да наредим “разрезите” по сумите им, а в рамките на един
“разрез” лесно може да наредим линейно тройките.

Може да обобщим така.

Теорема 4

За всяко цяло положително k , множеството Nk е изброимо.
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2N не е изброимо (1)

Теорема 5

Не съществува биекция f : 2N Ñ N.

Доказателство: В доказателството на Теорема 3 беше
достатъчно да покажем само един начин за изброяване. Сега
обаче не е достатъчно да покажем, че един определен начин за
изброяване “не работи”. Сега се иска да покажем, че никой
начин за изброяване “не работи”. Ще извършим
доказателството с допускане на противното. Допускаме, че 2N е
изброимо, тоест, съществува биекция h : 2N Ñ N.
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2N не е изброимо (2)

Характеристична редица е безкрайна булева редица
pa0, a1, a2, . . .q, която характеризира, или определя, дадено
подмножество X на N по следното правило. За всяко n P N:

ако an “ 1, то n се съдържа в X ,
ако an “ 0, то n не се съдържа в X .

Ето няколко примера за характеристични редици и
подмножествата на N, които те определят:

p0, 0, 0, . . .q /*само нули*/ определя празното множество;
p1, 1, 1, . . .q /*само единици*/ определя самото N;
p1, 0, 1, 0, 1, 0, . . .q /*повтаряне на 10*/ определя четните
числа;
p0, 1, 1, 0, 0, . . .q /*само две единици*/ определя t1, 2u.
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2N не е изброимо (3)

Нека A е множеството от характеристичните редици.
Съществува очевидна биекция между A и 2N.

Твърдението “подмножествата на N могат да бъдат изброени”
става “елементите на A могат да бъдат изброени”. Това е
допускането, което ще опровергаем.
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2N не е изброимо (4)

Допускаме изброяване на характеристичните редици: A0, A1,
. . . , като всяка характеристична редица се появява точно
веднъж. Нека A0 “ pa0,0, a0,1, . . .q, A1 “ pa1,0, a1,1, . . .q, и така
нататък. Представяме си ги написани в безкрайна колона:

A0 “ pa0,0, a0,1, a0,2, a0,3, . . .q

A1 “ pa1,0, a1,1, a1,2, a1,3, . . .q

A2 “ pa2,0, a2,1, a2,2, a2,3, . . .q

A3 “ pa3,0, a3,1, a3,2, a3,3, . . .q

¨ ¨ ¨
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2N не е изброимо (5)

Разглеждаме главния диагонал: редицата
X “ pa0,0, a1,1, a2,2, a3,3, . . .q.

A0 “ pa0,0, a0,1, a0,2, a0,3, . . .q

A1 “ pa1,0, a1,1, a1,2, a1,3, . . .q

A2 “ pa2,0, a2,1, a2,2, a2,3, . . .q

A3 “ pa3,0, a3,1, a3,2, a3,3, . . .q

¨ ¨ ¨

Образуваме нейната “побитова инверсия”, редицата
X “ pa0,0, a1,1, a2,2, a3,3, . . .q.

За всяко i , j , ai ,j “ 0, ако ai ,j “ 1, и обратно.
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2N не е изброимо (6)

Щом всяка булева числова редица се среща в изброяването
(колоната), трябва и X да се среща. Но X не може да е A0,
защото се различават в поне една позиция – нулевата. Ако
a0,0 “ 0, то a0,0 “ 1; ако a0,0 “ 1, то a0,0 “ 0.

Аналогично, X не може да е A1, защото се различават в
първата позиция, X не може да е A2, защото се различават
във втората позиция, и така нататък.

Тогава X не се среща в колоната; иначе казано,
подмножеството B на N, съответстващо на X , няма образ в
хипотетичната биекция h : 2N Ñ N.  l
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2N не е изброимо (7)
Алтернативно доказателство

Теорема 6

За всяко множество A, не съществува сюрекция g : AÑ 2A.

Доказателство: Да допуснем противното. Тогава съществува
A, такова че съществува сюрекция g : AÑ 2A. Разглеждаме
множеството

S “ ta P A | a R gpaqu (2)

Но S P 2A и g е сюрекция, следователно Dx P A : gpxq “ S .
Дали x P S?

Ако x P S , то x R S съгласно (2).
Ако x R S , то x P S съгласно (2).
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2N не е изброимо (8)
Илюстрация на алтернативното доказателство
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Множеството от реалните числа е неизброимо (1)
Само числата от r0, 1s са неизброимо много

r0, 1s def“ tx P R | 0 ď x ď 1u. Нека A е множеството от всички
характеристични редици, което вече дефинирахме на слайд 41.
Съществува очевидна биекция f : r0, 1s Ñ A; разглеждаме
числата от r0, 1s, записани като двоични дроби в двоична
позиционна бройна система, без нулата вляво от двоичната
точка, без самата точка, с безкрайно дълъг запис, евентуално
попълнен с нули вдясно. Примено, числото една втора по
принцип се пише като 0.1 в двоична система, но ние ще го
запишем като 10000 . . ..

Маловажна особеност: някои числа имат по два записа.
Една втора има два записа по традиционния начин: 0.1 и
0.01111 . . .. По текущия начин на записване те стават
съответно 10000 . . . и 01111111 . . ..
Единицата има два записа по традиционния начин: 1.0 и
0.11111 . . .. По текущия начин те стават съответно 0000 . . .
и 11111 . . ..
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Множеството от реалните числа е неизброимо (2)
r0, 1s и p0, 1s са равномощни

p0, 1s def“ tx P R | 0 ă x ď 1u. Твърдим, че има биекция
f : r0, 1s Ñ p0, 1s. Доказателството не може да използва
функцията-идентитет idpxq “ x , защото p0, 1s не съдържа
нулата, така че idp0q би било извън p0, 1s.

Но може да ползваме идеята на хотела на Hilbert: 0 се
изобразява в 1

2 ,
1
2 се изобразява в 3

4 ,
3
4 се изобразява в 7

8 , и
така нататък. Формално, @n P r0, 1s:

f pnq “

#

2k`1´1
2k`1 , ако съществува k P N, такова че n “ 2k´1

2k ,

n, в противен случай

Аналогично се доказва, че r0, 1s и p0, 1q са равномощни. Вече
видяхме, че r0, 1s е неизброимо. Тогава и p0, 1q е неизброимо.
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Множеството от реалните числа е неизброимо (3)
p0, 1q и R са равномощни (1)

Нека a, b, c , d P R и b ą a и d ą c . Това, че ra, bs и rc, ds са
равномощни, е очевидно. Ако мислим за отсечки с различни
дължини:

Всеки от интервалите може да е затворен, отворен или
полузатворен, равномощността остава в сила.

Ще докажем нещо доста по-контраинтуитивно: кой да е
интервал, да кажем p0, 1q, е равномощен с R. Отсечка е
равномощна с безкрайна права!
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Множеството от реалните числа е неизброимо (4)
p0, 1q и R са равномощни (2)

tan
`

π
`

x ´ 1
2

˘˘

е биекция, изобразяваща p0, 1q в R.

Графиката е генерирана с Maple(tm).
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Реалните числа са (безкрайно) повече от рационалните

Видяхме, че Q е изброимо, а R е неизброимо. В някакъв
смисъл, реалните числа са повече от рационалните: не просто
Q е строго подмножество на R, но реалните числа са по-високо
в йерархията на безкрайностите. Това е доста
контраинтуитивно, понеже всеки отворен интервал в R
съдържа безкрайно много рационални числа. Ерго, през
колкото и силна “лупа” да разглеждаме реалната ос, няма да
видим реален интервал, в който няма рационални числа.
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КРАЙ
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