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1 Принцип на Dirichlet
Задача 1. Петима приятели тичат, състезавайки се, по един път на ден в продължение на
четири цели последователни месеца, но февруари не е измежду тези месеци. В нито един
ден никои двама от тях не са завършили по едно и също време. Докажете, че е имало два
различни дни, в които те са финиширали в един и същи ред.

Решение. Възможните наредби от състезание на петима човека са 5! = 120, ако е казано, че
никои двама не финишират едновременно. От друга страна, щом четирите месеца не включ-
ват февруари, тези месеци имат общо поне 122 дена. Прилагаме принципа на Дирихле, като
дните са ябълките, а различните начини за финиширане са чекмеджетата. Заключаваме, че
е имало различни дни, в които петимата са финиширали по един и същи начин. �

Задача 2. Даден е квадрат със страна 1 м. Докажете, за произволни пет точки в него е
вярно, че съществуват две точки измежду петте, такива че между тях (двете) разстоянието
е не повече от 1 м.

Решение. Да си представим диагоналите на квадрата и получените четири равнобедрени
правоъгълни триъгълника, които покриват квадрата. Очевидно всеки от тези триъгълници
се вписва в окръжност с диаметър единица, следователно всеки две точки в него са на
разстояние не повече от единица. Съгласно принципа на Дирихле, за произволни пет точки
в квадрата, поне две от тях са в един от тези триъгълници, което означава на разстояние не
повече от единица една от друга. �
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Задача 3. Нека ABC е равностранен триъгълник със страна 1. Докажете, че както и да
изберем 5 точки от вътрешността на ABC, поне две от тях са на разстояние, по-малко от 1

2
.

Решение. Нека средата на страната AB се нарича X, средата на страната BC да е Y и
средата на страната AC да е Z. Построяваме отсечките XY, YZ и XZ. Разглеждаме разбиване
на вътрешността на триъгълника ABC на четири множества:

• вътрешността на триъгълника AXZ плюс вътрешността на отсечката XZ,

• вътрешността на триъгълника BXY плюс вътрешността на отсечката XY,

• вътрешността на триъгълника CYZ плюс вътрешността на отсечката YZ,

• вътрешността на триъгълника XYZ.

Това са чекмеджетата. Както и да сложим пет точки във вътрешността на ABC (петте точки
са ябълките), има поне едно чекмедже с поне две ябълки. Но за всяко от въпросните четири
множества е вярно, че всеки две негови точки са на разстояние, по-малко от 1

2
. �

Задача 4. Даден е квадрат със страна 14 м. Докажете, че за произволни 50 точки в квадрата,
поне две от тях са на разстояние не по-голямо от 3 м.

Решение. Да покрием квадрата с квадратчета 2×2, така че произволни две от тях да имат
празно сечение или сечение-страна, но нито две да нямат обща вътрешна точка. За всяко от
тези квадратчета е вярно, че произволни негови две точки са на разстоятие не повече от три
една от друга. За да съобразите защо, забележете, че всяко квадратче има диагонал < 3,
следователно се вписва в окръжност с диаметър < 3. Квадратчетата са общо 49. Съгласно
принципа на Дирихле, за произволни 50 точки в големия квадрат е вярно, че поне две от
тях са от едно от 49-те квадратчета, тоест на разстояние < 3 една от друга. �

Задача 5. Докажете, че за всеки избор на пет точки с целочислени координати в равнината,
съществуват поне две точки a и b измежду петте, такива че средата на отсечката с краища
a и b има целочислени координати.

Решение. Съществуват точно четири различни възможности за четността на координатите
на петте точки. А именно, за всяка от петте точки, да я наречем p = (q1, q2):

1. q1 е четно и q2 е четно,

2. q1 е нечетно, а q2 е четно,

3. q1 е четно, а q2 е нечетно,

4. q1 е нечетно и q2 е нечетно.

От принципа на Dirichlet следва, че поне две от точките имат една и съща четност на ко-
ординатите си: или и двете координати са четни, или и двете са нечетни. Да наречем тези
точки a и b и нека a = (x1, y1) и b = (x2, y2). Нека средата на отсечката с краища a и b е
точка c. Извесно е, че c =

(
x1+x2
2
, y1+y2

2

)
. Щом x1 и x2 имат една и съща четност, сумата им е

четно число, така че x1+x2
2

е цяло число. Напълно аналогично, y1+y2
2

е цяло число. �

Задача 6. Представете си правоъгълна мрежа с размери 5× 20 като тази:
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Докажете, че както и да се оцветяват пресечните точки в цветовете зелен, червен и син,
примерно така:

винаги има четири пресечни точки, две по две различни, оцветени в един и същи цвят, които
образуват правоъгълник. В нашия пример, ето правоъгълник със зелени върхове, очертан с
жълто:

Решение. В действителност, дори по-слабо твърдение е вярно: достатъчно е мрежата да е
с размери 4× 19, за да има такъв правоъгълник. Ще докажем за 4× 19.

Щом редовете са четири, а цветовете са три, всяка от 19-те колони има повтарящ се цвят
по принципа на чекмеджетата. Във всяка колона избираме двойка пресечни точки с един и
същи цвят. Има най-много

(
4
2

)
= 6 възможности за тези две точки (с повтарящи се цветове),

защото общо колоната има 4 точки. Освен това, има 3 възможности за цвета на такава
двойка, откъдето има 3 · 6 = 18 различни възможности за комбинации от цвят и позиции
на такава двойка точки. А колоните са 19. Прилагаме пак принципа на чекмеджетата, като
комбинациите от цвят и позиция на двойката са чекмеджетата, а колоните са ябълките.
Заключаваме, че има поне две ябълки в чекмедже, тоест, за две различни колони е вярно,
че и позициите на двойката точки са еднакви, и цветът е еднакъв. Това очевидно дава
правоъгълник, чиито върхове са в един и същи цвят. �

Задача 7. Даден е прав кръгов цилиндър с радиус на основата 1 и височина 7. Докажете,
че за всеки 10 точки† от цилиндъра е вярно, че поне две от тях са на разстояние, по-малко
или равно на

√
5 една от друга.

Решение. Да си представим, че цилиндърът е “нарязан” на 7 конгруентни цилиндъра C1,
. . . , C7, всеки с височина 1, чрез шест равнини, успоредни на основите. Лесно се вижда,
че във всеки Ci, всеки две точки са на разстояние по-малко или равно на

√
22 + 12 =

√
5,

понеже сечението на Ci с равнина, съдържаща оста на Ci, е правоъгълник със страни с
†Забележка: твърдението е вярно и за 8 точки.
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дължини 1 и 2. Прилагаме принципа на Дирихле, като точките са ябълките, а C1, . . . , C7 са
чекмеджетата. Съгласно принципа на Дирихле, поне две от десетте точки са в един и същи
Ci, което означава, че са на разстояние ≤

√
5 една от друга. �

Задача 8. В 8 чекмеджета има 87 молива. Определете най-голямото цяло число n, такова
че задължително има чекмедже с n молива.

Решение. Иначе казано, търсим числото n, такова че твърдението “Съществува поне
едно чекмедже с n молива” е задължително вярно, но твърдението “Съществува поне едно
чекмедже с n+ 1 молива” може и да не е вярно. Съгласно обобщения принцип на Dirichlet,
съществува чекмедже с 11 молива. От друга страна, може да няма чекмедже с 12 молива—
когато всички кутии имат по 10 или 11 молива. Отговорът е n = 11. �

Задача 9. Дадена е редица от n2 + 1 числа, нито две от които не са равни. Да се докаже,
че тази редица съдържа монотонна поредица с дължина n+ 1.

Пояснение: “Монотонна” означава или нарастваща, или намаляваща. “Поредица” озна-
чава числа от редицата, които не са непременно съседи в редицата, но са написани в същата
последователност, в която са в редицата. Например, ако n = 3 и редицата е

4, 7, 11, 2, 8, 3, 14, 1, 6, 9

монотонна поредица с дължина 4 е 4, 7, 8, 14:

4 , 7 , 11, 2, 8 , 3, 14 , 1, 6, 9

Решение. Да допуснем противното: всяка монотонна поредица е с дължина ≤ n. Нека A
означава дадената редица с дължина n2 + 1:

A = a1, a2, . . . , an2+1

За всяко i, такова че 1 ≤ i ≤ n2 + 1, дефинираме двете подредици†:

Ai = ai, ai+1, . . . , an2+1

Ai = a1, a2, . . . , ai

За всяко такова i, нека si е дължината на най-дълга растяща поредица в Ai с последен
елемент ai и нека ti е дължината на най-дълга намаляваща поредица в Ai с пръв елемент
ai. Очевидно, ∀i(s(i) ≥ 1∧ t(i) ≥ 1), тъй като такива поредици съдържат поне ai.

От началното допускане следва, че ∀i(si ≤ n∧ ti ≤ n). Следователно,

1 ≤ si ≤ n
1 ≤ ti ≤ n

за всяко i. Тъй като si и ti вземат цели стойности, следва, че за всяко от тях стойността
му е една от най-много n възможни. Прилагайки принципа на умножението заключаваме,
че наредената двойка (si, ti) има стойност измежду най-много n2 възможни. Но i-тата са
n2 + 1 на брой. Съгласно принципа па Dirichlet, съществуват две различни стойности на
променливата i, да ги наречем j и k, такива че (sj, tj) = (sk, tk), тоест

sj = sk

tj = tk

†За разлика от поредица, при подредица се иска елементите да са съседи в A
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Да разгледаме елементите на A, които са на позиции j и k, които ние наричаме съответно aj
и ak. Тъй като всички елементи на A са различни, aj 6= ak. Да допуснем, че без ограничение
на общността, че j < k. Значи, aj и ak са разположени в A така:

A = . . . . . . . . . . . . . . . . . . . . . . . . . . . aj . . . . . . . . . . . . . . . . . . . . . . . . . . . ak . . . . . . . . . . . . . . . . . . . . . . . . . . .

I Първо да допуснем, че aj < ak. Тъй като sj е дължината на най-дълга растяща поредица,
завършваща с aj:

A = . . . . . . . . . . . . . . . . . . . . . . . . . . . aj︸ ︷︷ ︸
нарастваща поредица с дължина sj

. . . . . . . . . . . . . . . . . . . . . . . . . . . ak . . . . . . . . . . . . . . . . . . . . . . . . . . .

и aj < ak, то в A има нарастваща поредица с дължина sj + 1, завършваща с ak; а именно,
състояща се от вече споменатата поредица, завършваща с aj, плюс ak накрая:

A = . . . . . . . . . . . . . . . . . . . . . . . . . . . aj︸ ︷︷ ︸
нарастваща поредица с дължина sj

. . . . . . . . . . . . . . . . . . . . . . . . . . . ak

︸ ︷︷ ︸
нарастваща поредица с дължина sj+1

. . . . . . . . . . . . . . . . . . . . . . . . . . .

Но тогава sk > sj, което противоречи на факта, че по конструкция sj = sk.
II Сега да допуснем, че aj > ak. Тъй като tk е дължината на най-дълга намаляваща
поредица, започваща с ak:

A = . . . . . . . . . . . . . . . . . . . . . . . . . . . aj . . . . . . . . . . . . . . . . . . . . . . . . . . . ak . . . . . . . . . . . . . . . . . . . . . . . . . . .︸ ︷︷ ︸
намаляваща поредица с дължина tk

и aj > ak, то в A има намаляваща поредица с дължина tk + 1, започваща с aj; а именно,
състояща се от вече споменатата поредица, започваща с ak, плюс aj в началото:

A = . . . . . . . . . . . . . . . . . . . . . . . . . . . aj . . . . . . . . . . . . . . . . . . . . . . . . . . . ak . . . . . . . . . . . . . . . . . . . . . . . . . . .︸ ︷︷ ︸
намаляваща поредица с дължина tk︸ ︷︷ ︸

намаляваща поредица с дължина tk+1

Но тогава tj > tk, което противоречи на факта, че по конструкция tj = tk.
Следователно, първоначалното ни допускане, че най-дългата монотонна поредица не е по-
дълга от n, е погрешно. �

Задача 10. Нека A = {10, 11, . . . , 99}. Докажете, че във всяко десетелементно подмножество
на A съществуват две непразни непресичащи се подмножества с еднаква сума на елементите.

Решение. Нека B е произволно непразно десетелементно подмножество на A. B има точно
210 − 1 = 1023 непразни подмножества.

Да разгледаме произволно непразно подмножество S на B и да намерим точни долна и
горна граница за сумата на елементите на S. Очевидно

10 ≤
∑
x∈S

x ≤ 90+ 91+ · · ·+ 99

и тези граници са точни. Но 90+91+ · · ·+99 = 945, откъдето следва, че
∑

x∈S x може да има
не повече от 945− 10+ 1 = 936 различни стойности. Но тогава броят на възможните суми е
по-малък от броя на подмножествата. Прилагаме принципа на Dirichlet и виждаме, че поне
две непразни подмножества C и D на B имат една и съща сума.
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Ако C ∩D = ∅, готови сме – показахме подмножества на B със желаните свойства. Ако
C∩D 6= ∅, нека C ′ = C\D иD ′ = D\C. На прост български, махаме от C общите елементи сD
и получаваме C ′; аналогично, махаме от D общите елементи с C и получаваме D ′. Очевидно
C ′ и D ′ има еднаква сума на елементите. Освен това както C ′, така и D ′ са непразни; това
е така, понеже C 6= D, така че, ако C ′ = ∅, то C ⊂ D, което е невъзможно – няма как C и D
да са множества от положителни числа, едното да се съдържа строго в другото и да имат
еднава сума от елементите. Щом C ′ и D ′ са непразни, с празно сечение и с еднаква сума и
са подмножества на B, те са подмножествата с желаните свойства. �

Задача 11. Нека A е множество от шест цели положителни числа, най-голямото от които
не е по-голямо от 14. Нека B = {X ⊆ A |X 6= ∅}. Докажете, че

∃Y ∈ B ∃Z ∈ B

(
Y 6= Z и

∑
a∈Y

a =
∑
a∈Z

a

)

Решение. Иска се да се докаже, че има различни непразни подмножества на A с една и
съща сума. Естествено е да опитаме да решим задачата с принципа на чекмеджетата.

Подмножество на A може да има най-много шест елемента, тоест, да е самото A, и сумата
на елементите може му да е най-много

14+ 13+ 12+ 11+ 10+ 9 = 69

понеже елементите са различни цели числа, ненадхвърлящи 14.
Непразно подмножество на A може да има най-малко един елемент, който може да е

най-малко 1. Това дава горна граница от 69 различни възможности за сумата. Това са чек-
меджетата.

Непразните подмножества на A обаче са 26 − 1 = 63. Това са ябълките. Не може да
приложим принципа директно, защото ябълките са прекалено малко.

Ще разгледаме само тези непразни подмножества на A, които имат не повече от 5 елемента.
Сумата от елементите на такова множество е най-много

14+ 13+ 12+ 11+ 10 = 60

Значи, не повече от 60 чекмеджета. Броят на тези подмножества е 26 − 1 − 1 = 62; вадим
1 заради празното множество и още веднъж 1 заради шестелементното подмножество. Сега
ябълките са 62. Съгласно принципа на чекмеджетата, поне едно чекмедже има повече от
една ябълки; тоест, поне две непразни подмножества, нито едно от които не е A, имат една
и съща сума на елементите. �

Задача 12. Нека n ∈ N+. Докажете, че както и да изберем n+1 на брой, две по две различни
числа от {1, 2, . . . , 2n}, непременно две от избраните числа са такива, че едното дели другото.

Решение. Ключовото наблюдение е, че всяко цяло положително число k е произведение
на нечетно число и степен на двойката. Тоест, k = q · 2j, където q е нечетно число, а j е
естествено число.

Нека S = {1, 2, . . . , 2n}. Нечетните числа от S са точно n на брой – това са числата 1, 3, . . . ,
2n−1. За всяко едно от тях конструираме множеството, състоящо се от него самото и неговите
произведения със степени на двойката, които произведения са елементи на S. Тези множества
са n на брой, по едно за всяко нечетно от S, и множеството от тях е разбиване на S. За целите
на задачата, тези множества са чекмеджетата. А ябълките са произволно избраните n + 1
числа от условието. Съгласно принципа на чекмеджетата, поне две ябълки попадат в едно
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чекмедже; с други думи, поне две от избраните (различни!) числа са произведение от едно и
също нечетно и (различни!) степени на двойката. Тогава очевидно по-малкото от тези дели
по-голямото.

Като пример, нека n = 6. Тогава

S = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}

Множеството от нечетните числа от S е

S ′ = {1, 2, 5, 7, 9, 11}

Всяко число от S е произведение на едно число от S ′ и степен на двойката, като има един
единствен начин за това. Примерно, 1 = 1 · 20, 2 = 1 · 21, 3 = 3 · 20, 4 = 1 · 22, и така нататък.
Тогава чекмеджетата са

{1, 2, 4, 8}

{3, 6, 12}

{5, 10}

{7}

{9}

{11}

Вижда се, че както и да избираме 7 числа от S, поне две от тях ще се елементи на едно
от тези множества. Нещо повече, двете въпросни различни числа не може да са елементи
на едноелементните множества {7} или {9} или {11}, а трябва да са елементи на някое от
другите. Е, очевидно, че ако вземем две различни числа от {1, 2, 4, 8} или {3, 6, 12} или {5, 10},
по-малкото дели по-голямото. �

Задача 13. Нека A = {100, 101, . . . , 199}. Нека B е произволно подмножество на A, такова
че |B| = 52. Докажете, че B съдържа две числа, чиято сума е 300.

Решение. Следните двуелементни подмножества на A са точно тези, за които сумата на
елементите е 300:

{101, 199}, {102, 198}, . . . , {149, 151} (1)

Техният брой е 49. Две числа от A остават извън тях: 100 и 150. Нека четиридесет и деветте
двуелементни подмножества и двете числа са “чекмеджетата”. А именно, чекмеджетата са

{100}, {150}, {101, 199}, {102, 198}, . . . , {149, 151}

Очевидно чекмеджетата са 51 на брой, като 49 от тях имат капацитет две, а другите две има
капацитет едно. “Ябълките” са елементите на B. Тъй като |B| = 52, по принципа на Дирихле
има поне едно чекмедже с поне две ябълки. Но това чекмедже трябва да е измежду тези с
капацитет две. Което е същото като да са избрани (поне) две числа, чиято сума е 300.

Ако това е неясно, може да се изразим и по-просто. Може да подберем най-много 51
числа от A по такъв начин, че нито две избрани числа да не се сумират до 300; а именно,
вземаме 100, 150 и още 49 числа, по едно от всяка от множествата от (1). Ако изберем още
едно число, непременно ще има двуелементно множество от тези в (1), на което сме избрали
и двата елемента. �
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Задача 14. Професор Х. твърди, че е създал толкова добра компресираща програма, че с
нея може да “свие” произволен файл поне с единица. Възможно ли е това?

Решение. Професорът лъже, ако става дума за компресия без загуба на информация. Под
“компресираща програма” се разбира такава програма, който може да възстанови първона-
чалния файл с точност до един бит. Всяка компресираща програма е частична функция от
дадено множество символни последователности (стрингове) в друго множество стрингове.
Щом професорът твърди, че неговата програма работи върху всички файлове, значи за да-
дена дължина n на файла (който ще бъде “свиван”), компресиращата програма реализира
тотална функция f с домейн с мощност qn и кодомейн с мощност qm за m ≤ n− 1. Тук q е
броят на символи във файловете; q е две, ако разглеждаме файловете като булеви вектори,
но ако разглеждаме файловете като последователности от байтове, q е 28 = 256. Компреси-
ращите програми трябва да реализират инекции, ако става дума за компресия без загуба на
информация. Не е задължително да са биекции, тоест може да не са сюрекции, тоест може да
има стрингове, които не са образи на никои стрингове, но инективност е задължителна. Ако
компресиращата програма реализира не-инекция, възстановяването на оригиналния файл в
някои случаи ще е невъзможно.

Степенният показател в израза за мощността на кодомейна е по-малък от n заради твър-
дението на професора, че програмата му свива всеки файл – в частност, тя прави от всеки
файл с големина n друг файл с големина < n. Тогава кодомейнът има мощност, по-малка
от тази на домейна.

Съгласно принципа на Dirichlet, не съществува тотална инективна функция, чийто до-
мейн има по-голяма мощност от кодомейна. �

Задача 15. В продължение на една година от 365 дена Иван се упражнява по комбина-
торика, решавайки задачи. Всеки ден от тази година той решава поне една задача, но не
решава повече от 500 задачи общо за годината. Докажете, че през тази година има интервал
от последователни дни, през които Иван решава точно 229 задачи.

Решение. Нека xi да е броят задачи, решени от Иван на ден i или преди него, за 1 ≤ i ≤ 365.
Очевидно x365 е броят на всички задачи, решени от Иван през годината. Освен това, редицата

A = (x1, x2, . . . , x365)

е строго нарастваща, от което следва, че в нея няма еднакви числа. Дадено е, че x365 ≤ 500,
от което следва, че ∀i, 1 ≤ i ≤ 365 : 1 ≤ xi ≤ 500. Да разгледаме друга редица:

B = (x1 + 229, x2 + 229, . . . , x365 + 229)

Тя също е строго нарастваща и в нея също няма еднакви числа. Освен това 230 ≤ xi+ 229 ≤
729. Сега да разгледаме редицата

C = (x1, x2, . . . , x365︸ ︷︷ ︸
A

, x1 + 229, x2 + 229, . . . , x365 + 229︸ ︷︷ ︸
B

),

която се получава от “слепването” на A и B. Очевидно елементите на C са точно 730 цели
положителни числа, понеже C се състои от копие на A, слепено с копие на B. Но за всеки
елемент на C има не повече от 729 възможни стойности. Съгласно комбинаторния принцип
на Dirichlet, има поне два елемента на C с една и съща стойност. Както вече установихме,
елементите на A са два по два различни и елементите на B са два по два различни. Следова-
телно, всяка двойка елементи на C с еднаква стойност се състои от един елемент от копието
на A и от един елемент от копието на B. С други думи, съществуват индекси j и k, такива
че 1 ≤ j < k ≤ 365 и xk = xj + 229 ↔ xk − xj = 229. Това означава, че Иван е решил точно
229 задачи от ден j+ 1 включително до ден k включително. �
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Задача 16. Боксьор се боксира в продължение на 75 дена. Известно е, че всеки ден той има
поне един боксов мач, но общият брой на мачовете за целия 75-дневен период не надхвърля
125. Докажете, че съществува редица от последователни дни, в които боксьорът има точно
24 мача.

Решение. Нека mi е броят на боксовите мачове от самото начало до края на i-ия ден, за
1 ≤ i ≤ 75. По условие

1 ≤ m1 < m2 < m3 < · · · < m75 ≤ 125

Да добавим 24 към всяко от тези числа. Неравенствата се запазват. Имаме

25 ≤ m1 + 24 < m2 + 24 < m3 + 24 < · · · < m75 + 24 ≤ 149

Да разгледаме мултимножеството

{m1,m2, . . . ,m75,m1 + 24,m2 + 24, . . . ,m75 + 24}M

То има точно 75+ 75 = 150 елемента. Но възможните стойности на тези елементи са целите
числа от 1 до 149. С други думи, 150-те елемента вземат стойности измежду най-много 149
числа. Съгласно принципа на Дирихле, има поне два елемента на мултимножеството с една
и съща стойност.

Ще покажем, че единият от тези елементи е измежду m1, . . . , m75, а другият е измежду
m1 + 24, . . . , m75 + 24. Допускането на обратното веднага води до противоречие, понеже по
условие m1 < m2 < m3 < · · · < m75, откъдето m1 + 24 < m2 + 24 < m3 + 24 < · · · < m75 + 24.

И така, показахме, че някое mi има същата стойност като някое mj + 24. Тогава mi =
mj+ 24, като i > j. С други думи, от ден j+ 1 включително до ден i включително боксьорът
е участвал в точно 24 мача. �

Задача 17. Нека (a1, a2, . . . , a100) е редица от сто числа. Известно е, че ∀i ∈ {1, . . . , 100} : ai ∈
{1, 2}. Известно е освен това, че ∀i ∈ {1, . . . , 91} :

∑9
j=0 ai+j ≤ 16. Докажете, че съществуват p

и q, такива че 1 ≤ p < q ≤ 100 и
∑q

i=p ai = 39.

Решение. Тази задача доста прилича на Задача 15 и решението и́ е доста подобно. Тук
обаче редицата е от единици и двойки, каквото изискване в Задача 15 няма. В Задача 15
има ограничение за сумата от всички елементи на редицата, докато тук има ограничение,
казващо, че всеки десет последователни елементи имат сума, ненадхвърляща шестнадесет.
Това, което трябва да се докаже, е аналогично на Задача 15: съществува подредица със сума
39 (в Задача 15 е 229).

Разглеждаме сумите Si, за 1 ≤ i ≤ 100, като Si е сумата от първите i числа. Очевидно
S1 = a1, а S100 = a1 + · · ·+ a100. Забелязваме, че

S1 < S2 < S3 < · · · < S99 < S100

понеже елементите са положителни, така че Si < Si+1 за 1 ≤ i ≤ 99. Ключово наблюдение е,
че S100 ≤ 160, понеже

S100 = a1 + · · ·+ a10︸ ︷︷ ︸
≤16

+a11 + · · ·+ a20︸ ︷︷ ︸
≤16

+ · · ·+ a99 + · · ·+ a100︸ ︷︷ ︸
≤16

≤ 160

В условието се говори за 39: иска се да се покаже, че има подредица със сума 39. Ако добавим
39 към всяко от числата S1, . . . , S100, максималното получено число ще е S100 + 39 и то не
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може да е по-голямо от 199, щом S100 ≤ 160. И така, всяко от числата S1, . . . , S100, S1 + 39,
. . . , S100 + 39 е цяло, положително и не по-голямо от 199. Но тези числа са 200 на брой. По
принципа на Дирихле, поне две от тях са равни.

Но числата S1, . . . , S100 са две по две различни, както вече отбелязахме. Веднага следва,
че S1 + 39, . . . , S100 + 39 са две по две различни. Щом има две еднакви числа измежду S1,
. . . , S100, S1 + 39, . . . , S100 + 39, трябва едно от тях да е някое Sq за някое q ∈ {1, . . . , 100}, а
другото да е някое Sp + 39 за някое p ∈ {1, . . . , 100}. И така, има такива p и q, че

Sq = Sp + 39 ↔ Sq − Sp = 39

Очевидно q > p, защото сумите Si нарастват строго с нарастването на i. Тогава

Sq = a1 + · · ·+ ap−1 + ap + ap+1 + · · ·+ aq
Sp = a1 + · · ·+ ap−1 + ap

Изваждаме второто от първото и получаваме

Sq − Sp = ap+1 + · · ·+ aq

Но вече знаем, че Sq − Sp = 39. Заключаваме, че в редицата (a1, . . . , a100) има подредица, а
именно (ap+1, . . . , aq), със сума точно 39. Което трябваше да докажем. �

Задача 18. Представете си 101 цели положителни числа, наредени в кръг. Известно е, че
сумата на всички тях е 300. Докажете, че съществува непрекъсната поредица от тях по
отношение на кръговата наредба, такава че числата от тази непрекъсната поредица имат
сума 200.

Решение. Нека числата са a1, . . . , a101. БОО, нека са наредени по този начин в кръговата
наредба. Нека Sj = a1+ · · ·+ aj, за j ∈ {1, 2, . . . , 101}. Забелязваме, че ако 1 ≤ i < k ≤ 101, то
Si < Sk, понеже числата са положителни. И така, нито две суми Si и Sk не са равни. Тогава
{Sj | 1 ≤ j ≤ 101} е множество със сто и един елемента.

Да си представим числата S1, . . . , S101, написани в десетична позиционна бройна система.
Нека yj е числото, състоящо се от последните две цифри на Sj; иначе казано, yj е Sj по модул
100. За всяко j ∈ {1, 2, . . . , 101} е вярно, че yj ∈ {0, 1, . . . , 99}. Съгласно принципа на Дирихле
съществуват yi и yk, такива че 1 ≤ i < k ≤ 101 и yi = yk.

Разлеждаме разликата Sk − Si. Последните две цифри на тази разлика са нули. Но 0 <
Sk − Si и Sk − Si < 300; последното е вярно, понеже и Sk, и Si не надхвърлят 300 и са
положителни. Тогава или Sk − Si = 100, или Sk − Si = 200. Ако Sk − Si = 200, то числата
ai+1, ai+2, . . . , ak имат сума 200; забележете, че тези числа са непрекъсната поредица по
отношение на кръговата наредба. Ако Sk − Si = 100, то останалите числа—които също са
непрекъсната поредица по отношение на кръговата наредба—имат сума 200. �

Задача 19. Нека n ∈ N+ и f : {1, . . . , n}→ {1, . . . , n} е биекция. Нека n е нечетно. Докажете,
че произведението

n∏
k=1

|k− f(k)|

е четно. Условието n да е нечетно дали е съществено за тази задача?
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Решение. Да допуснем противното: съществува нечетно естествено n, за което произведе-
нието

∏n
k=1 |k − f(k)| е нечетно. Но тогава всички множители в произведението са нечетни

– очевидно е, че ако един множител е четен, цялото произведение е четно. И така, всяко
k− f(k) е нечетно. Тогава във всяка двойка (k, f(k)), или k е четно и f(k) е нечетно, или k е
нечетно и f(k) е четно. Но по условие n е нечетно число, а k взема стойностите 1, 2, . . . , n.
Заключаваме, че броят на нечетните стойности, които k взема, са с единица повече от чет-
ните стойности, които k взема. Тогава k взема n+1

2
нечетни стойности и n−1

2
четни стойности;

забележете, че n−1
2
+1 = n+1

2
. За всяка нечетна стойност на k трябва f(k) да е четно. Но, както

видяхме, четните стойности в {1, . . . , n} са по-малко от нечетните. Прилагаме принципа на
Dirichlet и заключаваме, че за две различни k1, k2 ∈ {1, . . . , n} е вярно, че f(k1) = f(k2). Това
противоречи на факта, че f е биекция. 3

Дали непременно получаваме същия резултат, ако n е четно? Отговорът е “не”. Нека n е
четно и по-голямо от 2. Да разгледаме биекцията

f(k) =

{
k+ 1 , ако k е нечетно
k− 1 , ако k е четно

Примерно, ако k = 2, това дава f(1) = 2 и f(2) = 1. Ако k = 4, имаме f(1) = 2, f(2) = 1,
f(3) = 4 и f(4) = 3. И така нататък. Закономерността е ясна и би трябвало да е очевидно,
че функцията наистина е биекция. Но сега |k − f(k)| = 1 за всяко k, а произведението на
единици е единица, което е нечетно. �

Задача 20. Докажете, че от всеки четири естествени числа можем да изберем две числа,
такива че разликата им се дели на 3.

Решение. Добре известно е, че остатъците при деление на 3 са 0, 1 и 2. Но това са само
три възможни остатъка, а дадените числа са четири. Тогава, съгласно принципа на Dirichlet,
поне две от тях, да ги наречем a и b, имат един и същи остатък r при деление на 3, където
r ∈ {0, 1, 2}.

Щом a и b имат един и същи остатък r при деление на 3, имаме право да ги запишем
като a = 3k + r и b = 3` + r, където k и ` са някакви естествени числа. Но тогава a − b =
3k+ r− (3`+ r) = 3k+ r− 3`− r = 3k− 3` = 3(k− `). Очевидно 3(k− `) се дели на 3, което
и трябваше да покажем. �

Задача 21. Нека n ∈ N+. Докажете, че както и да изберем n + 2 числа от множеството
{1, 2, . . . , 2n+ 1}, задължително сме избрали поне две числа, чиято сума е 2n+ 2.

Решение. Ще приложим принципа на чекмеджетата. Чекмеджетата са двуелементните
множества {1, 2n+ 1}, {2, 2n}, . . . , {n− 1, n+ 3}, {n,n+ 2}. Те са точно n на брой и сумата на
елементите на всяко от тях е 2n + 2. Те обаче не образуват покриване на {1, 2, . . . , 2n + 1},
защото n+ 1 не е елемент на никое от тях.

По условие, избираме n + 2 числа. Ябълките са тези от тях, които не са n + 1; с други
думи, ябълките са избраните числа, които са от {1, 2, . . . , n, n + 2, . . . , 2n + 1}. Ябълките са
поне n + 1 по очевидни причини. Съгласно принципа на чекмеджетата, поне две ябълки са
в едно чекмедже. Иначе казано, поне две числа от избраните имат сума 2n+ 2. �

Задача 22. Нека A е множеството {1, 2, . . . , 9} и k е цяло положително число. Нека

Yk = {X ∈ 2A : |X| = k}

Кое е най-малкото число k ∈ N+, такова че

∀B ∈ Yk ∃C ⊆ B

(
|C| = 2∧

∑
x∈C

x = 10

)
?

11
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Решение. Търсеното число е 6. Трябва да докажем две твърдения:

∀B ∈ Y6 ∃C ⊆ B

(
|C| = 2∧

∑
x∈C

x = 10

)
(2)

¬

(
∀B ∈ Y5 ∃C ⊆ B

(
|C| = 2∧

∑
x∈C

x = 10

))↔ (3)

∃B ∈ Y5 ∀C ⊆ B

(
|C| 6= 2∨

∑
x∈C

x 6= 10

)↔
∃B ∈ Y5 ∀C ⊆ B

(
|C| = 2→∑

x∈C

x 6= 10

)

(2) казва, че всяко шест елементно подмножество на A има два (различни) елемента, чиято
сума е 10. Но това е тривиално следствие от Задача 21 след полагане n = 4.

(3) казва, че има пет елементно подмножество на A, такова че във всяко негово двуелемен-
тно подмножество елементите имат сума, различна от 10. Пример за такова пет елементно
подмножество на A е {1, 2, 3, 4, 5}. �

Задача 23. Нека a1, . . . , an са произволни реални числа, такива че 0 ≤ ai ≤ 1 за 1 ≤ i ≤ n.
За всяко непразно множество X ⊆ {1, 2, . . . , n}, нека SX означава сумата

∑
i∈X ai. Докажете, че

съществуват различни непразни множества X, Y ⊆ {1, 2, . . . , n}, такива че |SX − SY | ≤
n

2n − 2
.

Решение. Един помощен факт. Разглеждаме произволен интервал с дължина ` и избираме

произволни m ≥ 2 точки от него. Твърдим, че поне две от тях са на разстояние ≤ `

m− 1
помежду си. Наистина, да си представим интервала “нарязан” на m− 1 подинтервали, всеки

с дължина
`

m− 1
. Прилагаме принципа на Дирихле, като точките са ябълките, а подинтер-

валите са чекмеджетата и заключаваме, че поне две точки попадат в един подинтервал. Това

влече, че както и да изберем точките, винаги има две на разстояние ≤ `

m− 1
помежду си.

Връщаме се на задачата. Първо съобразяваме, че за произволно X ⊆ {1, 2, . . . , n}, 0 ≤ SX ≤ n
и тези граници са точни. После съобразяваме, че |SX − SY | е разстоянието между SX и SY,
понеже SX и SY са числа. Нещо повече, както вече забелязахме, и SX, и SY са от интервала
[0, n], който е с дължина n.

Знаем, че подмножествата на {1, 2, . . . , n} са 2n на брой, така че непразните подмножества
на {1, 2, . . . , n} са 2n − 1 на брой.

Накрая прилагаме помощния факт с ` = n и m = 2n − 1. Точките са 2n − 1 на брой, защото
отговарят на непразните подмножества на {1, 2, . . . , n}. Желаният резултат следва веднага. �

2 Свойства и приложения на биномния и мултиномния
коефициент

Задача 24. Разглеждаме множеството от българските малки букви а, б, в, . . . , ю, я. Те са 30
на брой и са наредени в този ред: а предхожда б, б предхожда в, и така нататък, ю предхожда
я. По колко начина можем да съставим от тези букви две пароли p1 и p2, всяка от които:

12
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• се състои от точно 10 букви,

• буквите в нея са в наредени в нарастващ ред,

• няма повтарящи се букви,

• няма общи букви с другата парола

и освен това всяка буква на p1 предхожда всяка буква на p2?

Решение. Лесно се вижда, че p1 и p2 имат общо 20 букви, щом нямат повторения на букви,
нямат общи букви и всяка има десет букви. Нещо повече: всеки избор на 20 напълно определя
и двете пароли, защото p1 се състои от първите 10 букви, наредени като нарастващ ред, а
p2 се състои от останалите 10 букви, наредени в нарастващ ред. С други думи, търсеният
брой начини е

(
30
20

)
= 30 045 015. �

Задача 25. Докажете, че за всяко n ∈ N+:
n∑
k=0

(−1)k
(
n

k

)
= 0

Решение.
n∑
k=0

(−1)k
(
n

k

)
= ∑

k∈{0,1,...,n}

k четно

(−1)k
(
n

k

)+

 ∑
k∈{0,1,...,n}

k нечетно

(−1)k
(
n

k

) =

 ∑
k∈{0,1,...,n}

k четно

(
n

k

)−

 ∑
k∈{0,1,...,n}

k нечетно

(
n

k

) (4)

Известно е, че
(
n
k

)
е броят на подмножествата, имащи k елемента, на кое да е n-елементно

множество A. Тогава, очевидно,∑
k∈{0,1,...,n}

k четно

(
n

k

)
е броят на подмножествата на A с четен брой елементи

∑
k∈{0,1,...,n}

k нечетно

(
n

k

)
е броят на подмножествата на A с нечетен брой елементи

Доказали сме по индукция, че тези две суми са еднакви. Следва, че изразът (4) е нула. �

Задача 26. Колко са булевите вектори с n единици и m нули?

Решение. Да разгледаме тези вектори като характеристични вектори върху множество
с n + m елемента. Съществува очевидна биекция между тези вектори, от една страна, и
подмножествата с мощност n, от друга. Известно е, че броят на тези подмножества е

(
n+m
n

)
,

което е същото като
(
n+m
m

)
. Съгласно принципа на биекцията, отговорът е

(
n+m
n

)
. �

Задачи 27 и 28 може да бъдат решени и по друг, по-прост начин – като слагания на топки в
кутии. Вижте Задачи 114 и 115.
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Задача 27. В колко булеви вектора с n единици и m нули, след всяка единица следва поне
една нула?

Решение. Удобно е да третираме всеки подвектор единица-нула като едно неделимо блокче
10 . Например, ако векторът е 10001010010, да си го представим не като последователност от
единадесет елемента, а като последователност от седем елемента: четири блока единица-нула
и още три нули между тях:

10 00 10 10 0 10

Задачата се свежда до задачата, колко вектори от n елемента от един вид (блокчета единица-
нула) и m − n елемента от друг вид (“свободни” нули) има. С цел по-ясно представяне на
решението, нека сменим символите и кажем, че новата задача е: колко вектори от p елемента
от един вид и q елемента от друг вид има. Но ние знаем отговора – съгласно Задача 26, той
е
(
p+q
p

)
. Заместваме p с n и q с m−n и получаваме

(
n+m−n

n

)
=
(
m
n

)
. Забележете, че отговорът

е правилен дори когато n > m: тогава биномният коефициент
(
m
n

)
е нула, което е точният

отговор. �

Задача 28. Колко булеви вектора с n единици и m нули нямат съседни единици?

Решение. Задачата прилича на Задача 27, но не е същата. В тази задача отговорът “брои”
и вектори, завършващи на единица, например 10101, които не биват “броени” от Задача 27.
Нека S е множеството от векторите, за които става дума в тази задача. S се разбива на
S ′ и S ′′, където S ′ са векторите, завършващи на нула, а S ′′ са векторите, завършващи на
единица. Съгласно принципа на разбиването, |S| = |S ′| + |S ′′|. Но ние знаем колко е |S ′|,
защото векторите от S ′ са точно тези, за които става дума в Задача 27: |S ′| =

(
m
n

)
.

Да разгледаме S ′′. Всеки вектор от S ′′ завършва на единица, като вляво от нея има
задължително нула (иначе би имало две съседни единици). Тогава съществува очевидна
биекция между векторите от S ′′ и булевите вектори n − 1 единици и m нули, в които след
всяка единица следва поне една нула. Съгласно Задача 27, последните са

(
m
n−1

)
. От принципа

на биекцията следва, че |S ′′| =
(
m
n−1

)
.

Отговорът е |S| =
(
m
n

)
+
(
m
n−1

)
, което съгласно добре известно свойство на биномните

коефициенти е
(
m+1
n

)
. �

Задача 29. n на брой хора стоят в редица. По колко начина можем да изберем k от тях,
k ≤ n, така че да не изберем нито двама души, които са един до друг в редицата?

Решение. Всеки избор на k човека от общо n, които са подредени линейно с фиксирана
подредба, отговаря биективно на характеристичен вектор с k единици и n−k нули. Допълни-
телното условие да не бъдат подбрани съседи се “превежда” така: характеристичният вектор
да няма съседни единици. Съгласно Задача 28, отговорът е

(
n−k+1
k

)
. �

Задача 30. Нека k ∈ N+, n ∈ N+ и k ≤ n. За всяка f : {1, 2, . . . , k} → {1, 2, . . . , n} казваме,
че f е строго растяща, ако ∀i, j ∈ {1, 2, . . . , k} : i < j→ f(i) < f(j). За всяка f : {1, 2, . . . , k}→
{1, 2, . . . , n} казваме, че f е ненамаляваща, ако ∀i, j ∈ {1, 2, . . . , k} : i < j→ f(i) ≤ f(j).

• Колко строго растящи функции с домейн {1, 2, . . . , k} и кодомейн {1, 2, . . . , n} има?

• Колко ненамаляващи функции с домейн {1, 2, . . . , k} и кодомейн {1, 2, . . . , n} има?
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Решение. Броят на строго растящите се определя така. Всяка строго растяща функция от
този вид се определя еднозначно от това, кои елементи от кодомейна са образи на елементи
от домейна; не може един елемент от кодомейна да е образ на повече от един елемент от
домейна, така че всяка такава функция е инекция. Но тези функции далеч не са всички
инекции, а са само малка част от тях (от инекциите), защото образите са подредени в същия
ред, в който са първообразите. И така, всяка такава функция се определя еднозначно от
това, кои k елемента от общо n са образи. Има

(
n
k

)
начина да изберем k елемента от n и това

е отговорът на първата подзадача.
Броят на ненамаляващите се определя по подобен начин. Сега не е необходимо функциите

да са инекции. Всяка от тези функции се определя еднозначно от мултимножество с мощност
k, чийто елементи са от кодомейна, който е с мощност n. Знаем, че има

(
n+k−1
k

)
такива

мултимножества. Това е отговорът на втората подзадача. �

Задача 31. Колко булеви вектори с дължина n не съдържат нито 11, нито 00 като подвек-
тори?

Решение. Ако n = 0 има точно един такъв вектор: празният. В противен случай са точно
два:

10101010 . . . 0 и 01010101 . . . 1 при четно n
10101010 . . . 1 и 01010101 . . . 0 при нечетно n

�

Задача 32. Колко булеви вектори с дължина n не съдържат 11 като подвектор?

Решение. Очевидно е, че ако единиците са прекалено много спрямо n, то подвектори 11
са неизбежни. Максималният брой единици, при който може да няма подвектор 11, е

⌈
n
2

⌉
,

например:

10101010 : когато n = 8, най-много 4 =
⌈
8
2

⌉
единици

101010101 : когато n = 9, най-много 5 =
⌈
9
2

⌉
единици

Нека p е броят на единиците, а q е броят на нулите. От условието имаме p+q = n. Току-що
установихме, че p ∈ {0, 1, . . . , dn/2e}. За всеки конкретни p и q, броят на търсените вектори
е
(
q+1
p

)
съгласно Задача 28, тоест

(
n−p+1
p

)
. Съгласно принципа на разбиването, отговорът е:

dn/2e∑
p=0

(
n− p+ 1

p

)
(5)

Да разгледаме биномния коефициент
(
n−p+1
p

)
от израза (5) в крайния случай, в който p =

dn/2e. Тоест, да разгледаме
(
n−dn/2e+1
dn/2e

)
.

• Ако n е четно, тоест n = 2k за някое k, то dn/2e = d2k/2e = dke = k и тогава(
n−dn/2e+1
dn/2e

)
=
(
2k−k+1

k

)
=
(
k+1
k

)
= k+1. И наистина има точно k+1 вектори в този случай.

За илюстрация, нека n = 6 и тогава векторите са точно 101010, 101001, 100101 и 010101.

• Ако n е нечетно, тоест n = 2k+ 1 за някое k, то dn/2e = d(2k+ 1)/2e =
⌈
k+ 1

2

⌉
= k+ 1

и тогава
(
n−dn/2e+1
dn/2e

)
=
(
2k+1−(k+1)+1

k+1

)
=
(
k+1
k+1

)
= 1. И наистина има точно 1 вектори в този

случай. За илюстрация, нека n = 7 и тогава векторите са точно 1010101.
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Забележете, че не е грешка да запишем (5) и като

n∑
p=0

(
n− p+ 1

p

)
(6)

по простата причина, че ако p ∈
{
dn/2e + 1, dn/2e + 2, . . . , n

}
, то биномният коефициент(

n−p+1
p

)
е нула. �

Определение 1. Кръгов вектор ще наричаме вектор, на който първата и последната
позиция (също) се считат за съседни. Ако кръговият вектор е a1, a2, . . . , an, в него съседс-
твата са a1 с a2, a2 с a3, . . . , an−1 с an, an с a1. Кръговите вектори не са еквивалентни
спрямо ротация, тъй като имат номерирани позиции; 0001 и 0010 са различни кръгови
вектори. �

Задача 33. Колко кръгови булеви вектори с n единици и m нули нямат съседни единици?

Решение. Да разгледаме множеството S от линейните (тоест, “обикновените”) вектори с
n единици и m нули без съседни единици. От Задача 28 знаем, че |S| =

(
m+1
n

)
. Нека S̃ е

подможеството на S от тези вектори, които започват и завършват с единица. Търсеният в
тази задача отговор е |S| − |S̃|, тъй като кръговите вектори без съседни единици отговарят
биективно на точно тези линейни вектори без съседни единици, които освен това нямат
единица нито в най-лявата, нито в най-дясната позиция.

Да разгледаме S̃. Да дефинираме, че p = n +m. Очевидно, p ≥ 3. Ако p = 3, то S̃ се
състои само от един вектор: 101. Ако p ≥ 4, то всеки вектор от S̃ е от вида:

1 0 . . . . . . . . . . . . . . . . . .︸ ︷︷ ︸
дължина p−4

0 1

︸ ︷︷ ︸
дължина p

Посоченият подвектор с дължина p − 4 има n − 2 единици, m − 2 нули и единственото
ограничение е, че няма съседни единици. Следователно, ако p ≥ 4, то има очевидна биекция
между S̃ и множеството на линейните вектори с n − 2 единици, m − 2 нули и без съседни
единици. Съгласно Задача 28, последните имат брой

(
m−2+1
n−2

)
=
(
m−1
n−2

)
. Този резултат е в сила

дори когато p = 3: тогава n = 2, m = 1 и
(
m−1
n−2

)
=
(
0
0

)
= 1.
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И така, отговорът на задачата е

|S|− |S̃| =

(
m+ 1

n

)
−

(
m− 1

n− 2

)
=

(m+ 1)!

(m− n+ 1)!n!
−

(m− 1)!

(m− 1− (n− 2))! (n− 2)!

=
(m+ 1)!

(m− n+ 1)!n!
−

(m− 1)!n(n− 1)

(m− n+ 1)!n!

=
(m− 1)!

(m− n+ 1)!n!
((m+ 1)m− n(n− 1))

=
(m− 1)!

(m− n+ 1)!n!

(
m2 +m− n2 + n

)
=

(m− 1)!

(m− n+ 1)!n!
((m− n)(m+ n) + (m+ n))

=
(m− 1)!(m+ n)

(m− n+ 1)!n!
(m− n+ 1)

=
(m− 1)!(m+ n)

(m− n)!n!

=
m+ n

m
× m!

(m− n)!n!

=
m+ n

m

(
m

n

)
�

Задача 34. Рицарите на кръглата маса са 12. Те винаги сядат около масата по един и
същи начин. Освен това, между рицарите има вражди: всеки рицар е във вражда с точно
тези двама рицари, които са негови съседи около масата. По колко начина може да бъдат
подбрани 5 рицари от 12-те за мисия, ако искаме в избраната група да няма вражди?

Решение. Всяко избиране на 5 от 12 рицари може да се представи чрез характеристичен
вектор от 5 единици и 7 нули. Векторът обаче не е линеен, а кръгов, и не трябва да съдър-
жа съседни единици – това следва от “кръговото враждуване” на рицарите около масата и
изискването да не бъдат избрани враждуващи рицари.

Задачата е същата като задачата, колко кръгови вектора с 5 единици и 7 нули не съдър-
жат съседни единици. Съгласно Задача 33, отговорът е 7+5

7

(
7
5

)
= 36. �

Задача 35. Нека n е нечетно, тоест n = 2k + 1 за някое k ∈ N. Разгледайте биномния
коефициент

(
n
k

)
.

1. Докажете, че
(
n
k

)
=
(
n
k+1

)
.

2. Докажете, че
(
n
k ′

)
<
(
n
k

)
за всяко k ′ < k и

(
n
k ′′

)
<
(
n
k+1

)
за всяко k ′′ > k+ 1.

3. Докажете, че
(
n
k

)
е нечетно число тогава и само тогава, когато n = 2m − 1 за някое

m ∈ N+.

Решение.

1.
(
n
k

)
=
(
2k+1
k

)
= (2k+1)!

k!(k+1)!
=
(
2k+1
k+1

)
=
(
n
k+1

)
.
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2. (
n

k ′

)
<

(
n

k

) ↔ n(n− 1) · · · (n− k ′ + 1)

k ′!
<
n(n− 1) · · · (n− k+ 1)

k!
↔

n(n− 1) · · · (n− k ′ + 1)

k ′!
<
n(n− 1) · · · (n− k ′ + 1) (n− k ′) · · · (n− k+ 1)

k(k− 1) · · · (k ′ + 1)k ′!
↔

1 <
(n− k ′) · · · (n− k+ 1)

k(k− 1) · · · (k ′ + 1)
↔ 1 <

∏k−1
i=k ′ n− i∏k−k ′−1
i=0 k− i

↔ 1 <

∏k−k ′−1
i=0 n− k ′ − i∏k−k ′−1

i=0 k− i

1 <

k−k ′−1∏
i=0

n− k ′ − i

k− i
(7)

Но n−k ′−i
k−i

> 1, понеже k > k ′ и n > 2k:

n− k ′ − i

k− i
> 1 ↔ n− k ′ − i > k− i ↔ n− k ′ > k ↔ n > k+ k ′

Щом общият множител на произведението в дясната страна на неравенство (7) е по-
голям от едно, то цялото произведение е по-голямо от едно и неравенството е вярно.

Фактът, че
(
n
k ′′

)
<
(
n
k+1

)
, се доказва аналогично.

3. Разглеждаме
(
n
k

)
, което е

(
2k+1
k

)
:(

2k+ 1

k

)
=

(2k+ 1)(2k)(2k− 1) · · · (k+ 3)(k+ 2)
k(k− 1)(k− 2) · · · 3 · 2 · 1

Очевидно множителите в знаменателя в нарастващ ред, последвани от множителите в
числителя в нарастващ ред, образуват нарастваща непрекъсната последователност от
1 до 2k+ 1 = n с едно изключение: липсва k+ 1.
Сега да разгледаме естествените положителни числа в нарастващ ред и под всяко от
тях, броят на неговите множители-двойки в червено:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 · · ·
0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 4 0 1 0 2 0 1 0 3 0 1 0 · · ·

Червената редица от броевете на множителите-двойки не е периодична, но лесно се
забелязва следната закономерност. Да наречем червената редица, a0, a1, a2, · · ·. Тя е без-
крайна, но всяка нейна крайна подредица Sp от p на брой последователни стойности,
започваща от a0:

Sp = a0, a1, a2, · · · , ap−1

където p е число от вида 2m − 1 за някое m ∈ N+, се получава от “слепването” на
подредицата Sp−1, числото p, и отново подредицата Sp−1:

Sp = Sp−1, p,Sp−1

Ако кажем освен това, че S0 е 0, имаме индуктивна дефиниция за крайните редици S1,
S2, S3 и така нататък:

S0 = 0
Sp = Sp−1, p,Sp−1 за p > 0
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Например,

S0 = 0
S1 = 0, 1, 0
S2 = 0, 1, 0, 2, 0, 1, 0
S3 = 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0
S4 = 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0

Да се върнем на биномния коефициент(
2k+ 1

k

)
=

(2k+ 1)(2k)(2k− 1) · · · (k+ 3)(k+ 2)
k(k− 1)(k− 2) · · · 3 · 2 · 1

Ключовото наблюдение е, че ако си представим редицата 1, 2, · · · , k, k + 1, k + 2, k +
3, · · · , 2k+1 без липсващо число, нейната съответна редица от бройките на множителите-
двойки е част от някоя Sp, която се простира от левия край на Sp донякъде.

Първо да допуснем, че n = 2k + 1 е число от вида 2m − 1 за някое m ∈ N+. Тогава
липсващото число k + 1 е 2m−1. Твърдим, че в този случай бройките на множителите-
двойки в числителя и в знаменателя са равни, от което веднага следва, че дробта е
нечетно число. Да видим защо тези бройки са равни. Да съпоставим елемент по елемент
редиците 1, 2, . . . , 2k, 2k+ 1 (без липсващо число) и Sm−1:

1 2 3 · · · k k+ 1 k+ 2 k+ 3 · · · 2k 2k+ 1
Sm−1 = 0 1 0 · · · 0 m− 1 0 1 · · · 1 0

Както вече видяхме, Sm−1 се състои от едно копие на Sm−2, следвано от m− 1, след-
вано от друго копие на Sm−2. Но числото k + 1, на което съответства m− 1, липсва в
биномния коефициент (такъв множител няма нито в числителя, нито в знаменателя),
следователно няма множител нито в числителя, нито в знаменателя, който да имаm−1
множителя-двойки. А за всеки от множителите в числителя има съответен множител
в знаменателя, който има точно същия брой множители-двойки, което следва веднага
от наличието на две копия на Sm−2 в Sm−1. Доказахме, че когато n = 2k+ 1 е число от
вида 2m − 1 за някое m ∈ N+, биномният коефициент е нечетно число.

Да разгледаме алтернативата: n = 2k+ 1 не е число от вида 2m − 1 за някое m ∈ N+.
Отново редицата от множителите-двойки за знаменателя и числителя е част от ня-
кое Sm−1, но този път липсващото число k + 1 съответства не на m − 1, а на някой
друг от “червените” елементи. Веднага се вижда, че бройките на множителите-двойки
в числителя и в знаменателя не са равни, така че биномният коефициент е четен (зна-
ем, че биномният коефициент е цяло число, така че няма как множителите-двойки в
знаменателя да са повече; повечето множители-двойки са в числителя). �

Задача 36. Докажете тъждеството(
n− 1

m

)
=

m∑
k=0

(−1)m−k

(
n

k

)
, n > 0, k > 0, n ≥ k

За простота разгледайте само случая, в койтоm е нечетно (което значи, че сумата има четен
брой членове).
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Решение. Нека m е нечетно. Представете си цялата сума със следните групирания на
събираемите по двойки:

m∑
k=0

(−1)m−k

(
n

k

)
=(

n

m

)
−

(
n

m− 1

)
︸ ︷︷ ︸

група 1

+

(
n

m− 2

)
−

(
n

m− 3

)
︸ ︷︷ ︸

група 2

+

(
n

m− 4

)
−

(
n

m− 5

)
︸ ︷︷ ︸

група 3

+ . . .+

(
n

1

)
−

(
n

0

)
︸ ︷︷ ︸

група m+1
2

(8)

Известно е, че(
n

m

)
=

(
n− 1

m

)
+

(
n− 1

m− 1

)
(9)

Аналогично,(
n

m− 1

)
=

(
n− 1

m− 1

)
+

(
n− 1

m− 2

)
(10)

Разликата между (9) и (10) е(
n

m

)
−

(
n

m− 1

)
=

(
n− 1

m

)
−

(
n− 1

m− 2

)
Но
(
n
m

)
−
(
n
m−1

)
е група 1 в израз (8). За група 2 имаме аналогично(

n

m− 2

)
−

(
n

m− 3

)
=

(
n− 1

m− 2

)
−

(
n− 1

m− 4

)
За група 3:(

n

m− 4

)
−

(
n

m− 5

)
=

(
n− 1

m− 4

)
−

(
n− 1

m− 6

)
И така нататък. За предпоследната група имаме(

n

3

)
−

(
n

2

)
=

(
n− 1

3

)
−

(
n− 1

1

)
За последната група (с номер (m+ 1)/2) имаме(

n

1

)
−

(
n

0

)
= n− 1 =

(
n− 1

1

)
Ако заместим получената стойност за всяка група в израз (8), получаваме

(
n − 1

m

)
−

(
n − 1

m − 2

)
+

(
n − 1

m − 2

)
−

(
n − 1

m − 4

)
+

(
n − 1

m − 4

)
−

(
n − 1

m − 6

)
+ . . . +

(
n − 1

3

)
−

(
n − 1

1

)
+

(
n − 1

1

)
=

(
n − 1

m

)

тъй като всички събираеми без
(
n−1
m

)
се съкращават. Получихме

m∑
k=0

(−1)m−k

(
n

k

)
=

(
n− 1

m

)
�
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Задача 37. Какъв е коефициентът пред x100y200z300w400 в (x+ y+ z+w)1000?

Решение. Съгласно изучаваното на лекции, това е мултиномният коефициент

1000!

100! 200! 300! 400!

Численият отговор, който не се иска, е

2789553569688506880030579073303120282697168772515581973003

4473176719539138461670593606267761166196211313077563933389

6262910100829701980404963243674083044425575703958938826933

4490097435409584671334057641072954542225252253440236197087

0232694311009529842397167270289565507633940189485867495414

1909680992772682552036991519556342078467633203266874040142

7401648890849187026613578779892383758111931416039028750943

2958594782425233263666186239174044248574428586461255933857

9692473155793871161751918162353815047891464463681508943732

692680357344625429924378288000 ≈ 10552 �

Задача 38. Какъв е коефициентът пред ab3c3d2e7 в (a+ b+ c+ d+ e)16?

Решение. Съгласно изучаваното на лекции, за реални променливи x1, x2, x3, x4 и x5 е
вярно, че

(x1 + x2 + x3 + x4 + x5)
n =

∑
k1+k2+k3+k4+k5=n

(
n

k1, k2, k3, k4, k5

)
xk11 x

k2
2 x

k3
3 x

k4
4 x

k5
5

където
(

n
k1,k2,k3,k4,k5

)
е мултиномен коефициент, като

(
n

k1,k2,k3,k4,k5

)
= n!

k1!k2!k3!k4!k5!
. Тогава търсе-

ният коефициент е

16!

1!3!3!2!7!
= 57 657 600 �

Задача 39. Какъв е коефициентът пред a6b8c6d6 в (4a3 − 5b+ 9c2 + 7d)19?

Решение. Съгласно изучаваното на лекции, за реални променливи x1, x2, x3 и x4 е вярно,
че

(x1 + x2 + x3 + x4)
n =

∑
k1+k2+k3+k4=n

(
n

k1, k2, k3, k4

)
xk11 x

k2
2 x

k3
3 x

k4
4

където
(

n
k1,k2,k3,k4

)
е мултиномен коефициент, като

(
n

k1,k2,k3,k4

)
= n!

k1!k2!k3!k4!
. В частност, за x1 =

4a3, x2 = (−5b), x3 = 9c2 и x4 = 7d и n = 19 е изпълнено

(4a3 + (−5b) + 9c2 + 7d)19 =
∑

k1+k2+k3+k4=19

(
19

k1, k2, k3, k4

)
(4a3)k1(−5b)k2(9c2)k3(7d)k4 (11)

което е същото като

(4a3+(−5b)+9c2+7d)19 =
∑

k1+k2+k3+k4=19

(
19

k1, k2, k3, k4

)
(4)k1(a3)k1(−5)k2(b)k2(9)k3(c2)k3(7)k4(d)k4
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(12)

Търсим коефициентът пред a6b8c6d6. Да препишем този израз така: (a3)2b8(c2)3d6. Това
прави по-лесни следващите разсъждения, понеже в сумата вдясно в (12), a участва с третата
си степен, а c участва с втората си степен.

Наистина, в (a3)2b8(c2)3d6, сумата от степенните показатели е 2+ 8+ 3+ 6 = 19, така че
при отварянето на скобите на (4a3 − 5b+ 9c2 + 7d)19 ще се получат такива събираеми. След
опростяването на сбора, коефициентът пред (a3)2b8(c2)3d6 се оказва(

19

k1, k2, k3, k4

)
(4)k1(−5)k2(9)k3(7)k4

където k1 = 2, k2 = 8, k3 = 3 и k4 = 6. Отговорът е(
19

2, 8, 3, 6

)
(4)2(−5)8(9)3(7)6 =

19!(4)2(−5)8(9)3(7)6

2!8!3!6!

Численият отговор, който не се иска, е 187 178 576 895 560 250 000 000. �

Задача 40. Магазин за сандвичи предлага петнадесет различни вида сандвичи. Петима
приятели купуват общо по един сандвич от всеки вид. По колко начина може да бъдат
раздадени сандвичите на хората, така че всеки да получи един и същи брой саднвичи?

Решение. Всеки човек получава 15
5
= 3 сандвича. Нека хората са А, Б, В, Г и Д. Да си

представим раздаването на сандвичите като процес, в който първо А взема своите сандвичи,
после Б и така нататък. Щом сандвичите са два по два различни, има

(
15
3

)
начина А да

вземе три сандвича. Остават 12 сандвича. За всеки от начините А да си вземе сандвичите,
има

(
12
3

)
начина Б да вземе своите. И така, за А и Б има

(
15
3

)(
12
3

)
начина. Ако продължим

да разсъждаваме по същия начин, за А, Б и В има
(
15
3

)(
12
3

)(
9
3

)
начина, за А, Б, В и Г има(

15
3

)(
12
3

)(
9
3

)(
6
3

)
начина, и отговорът е(

15

3

)(
12

3

)(
9

3

)(
6

3

)(
3

3

)
Отговорът прилича мултиномен коефициент, но записан като произведение на биномни

коефициенти. Това не е случайно. Задачата има същият отговор като задачата, по колко
начина може да наредим в линейна наредба 15 обекта, като 3 от тях са от един вид А, 3 са
от втори вид Б, 3 са от трети вид В, 3 са от четвърти вид Г и останалите 3 са от пети вид Д;
обектите от всеки вид са неразличими помежду си. От лекции знаем, че отговорът на тази
задача е 15!

(3!)5
. Численият отговор, който не се иска, е 168 168 000. �

3 Принципи на комбинаториката (без вкл-изкл)
Задача 41. Дадени са 62 квадратчета, всяко с размери 1 × 1, долепени едно до друго по
следния начин:
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Докажете, че тази фигура не може да бъде покрита от правоъгълници с размери 2 × 1 по
такъв начин, че тези правоъгълници да не се застъпват, да не излизат извън фигурата и да
не оставят непокрита част от фигурата. Иначе казано, докажете, че фигурата не може да
бъде “нарязана” на правоъгълници с размери 2× 1.

Решение. Забелязваме, че фигурата, която трябва да бъде покрита, е стандартна шахматна
дъска 8 × 8, но с две липсващи квадратчета, като липсващите квадратчета са диаметрално
противоположни. Да си представим цялата дъска без липсващите квадратчета, и то оцветена
като истинска шахматна дъска.

Да изрежем въпросните две квадратчета. Получаваме дъската от условието, но с оцветяване
на квадратчетата, наследено от шахматната дъска.

Сега би трябвало да е очевидно защо тази фигура не може да “нарязана” на правоъгълници
2× 1: в нея сивите квадратчета са с две повече от белите. А всеки правоъгълник с размери
2× 1, който се разполага върху точно 2 квадратчета на фигурата, се разполага върху едно
сиво и едно бяло квадратче. Това е задължително вярно, независимо дали правоъгълникът
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е ориентиран хоризонтално или вертикално. При положение, че сивите квадратчета са с
две повече от белите, както и да слагаме правоъгълниците върху фигурата, поне две сиви
квадратчета ще са непокрити.

Забележете, че стандартната шахматна дъска може да бъде покрита по желания начин
– примерно, с по 4 хоризонтални правовоъгълници във всеки ред. Но в нея броят на сивите
е равен на броя на белите (32 сиви и 32 бели).

Има очевидно обобщение на тази задача: фигура, състояща се от долепени конгруентни
квадратчета, всяко от които има поне една обща страна с друго квадратче, може да бъде
“нарязана” на правоъгълници 2 × 1 само ако при аналогично оцветяване на квадратчетата
(всеки две съседни в различни цветове) в два цвята, броя на квадратчетата от единия цвят
е равен на броя на квадратчетата от другия цвят.

Това може да се преведе на езика на графите така: необходимо, но не достатъчно, условие
в двуделен (свързан) граф има перфектно съчетание е двата дяла да са равномощни. �

Задача 42. Разгледайте множеството от първите 2n цели положителни числа. По колко
начина може да бъдат наредени в редица, така че за всяка двойка съседни числа в редицата,
сумата на тези числа не е четно число?

Решение. Сумата на две числа е четно число тогава и само тогава, когато или и двете
числа са четни, или и двете числа са нечетни. Следователно, във въпросните наредби няма
две съседни четни числа и няма две съседни нечетни числа. С други думи, всяка от тези
редици е алтернираща редица от вида

четно нечетно четно нечетно . . . . . . четно нечетно

или

нечетно четно нечетно четно . . . . . . нечетно четно

Редиците от първия вид са n!×n!, редиците от втория вид са също толкова, така че отговорът
е 2 (n!)2. �

Задача 43. Да допуснем, че във всеки курс на ФМИ (първи, втори, трети и четвърти) има
един и същи брой n студенти. По колко начина можем да разбием множеството от студентите
на ФМИ на четворки, като във всяка четворка има по точно един студент от всеки курс?
Четворките нямат наредба, нито има наредба между четворките.

Решение. Да си представим версия на задачата, в която четворките имат наредба. Гене-
рираме четворките последователно. За първата четворка имаме избор от n първокурсника,
n второкурсника, n третокурсника и n четвъртокурсника. Има n4 начина да изберем по
един студент от всеки курс, което прави общо n4 начина за първата четворка. За втората
четворка начините са (n−1)4, за третата са (n−2)4, и така нататък, за последната четворка
има 14 = 1 начина. Умножавайки тези количества, получаваме

n4 × (n− 1)4 × (n− 2)4 × · · · × 24 × 14 = (n!)4

За да получим верния отговор, делим това на n!, понеже по условие четворките не са наре-
дени, а представляват множество. И така, коректният отговор е (n!)3. �

Машината, за която става дума в Задача 44, е истинска. Това е германската криптираща машина
Енигма, конструирана около 1920 г. и използвана широко по времето на Втората световна война.
Енигма стана особено популярна след филма The Imitation Game, базиран (донякъде) върху
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истинската история за работата на британските криптоаналитици в Блечли парк по време на
войната, между които е и човекът, който в най-голяма степен може да се нарече “баща на
компютъра” – гениалният математик и анализатор Alan Turing. Конструкцията на истинските
Енигми е много по-сложна от това, което е описано в Задача 44. Преди всичко, има много
видове машини Енигма, като не всички имат щекерпанел (steckerbrett на немски); повечето имат
щекерпанел, но той е само част от криптиращата система. Повече информация за машините
Енигма има на сайта Crypto Museum.

Задача 44. Дадена е електрическа машина с 26 входа и 26 изхода. На всеки вход отговаря
точно една буква от латинската азбука A, B, . . . , Z , като това съответствие е фиксирано и
не може да бъде променяно. Казваме, че във вход 1 “влиза” A, във вход 2 “влиза” B, и така
нататък, във вход 26 “влиза” Z. Изходите са номерирани и на всеки изход “излиза” точно една
от латинските букви, но съответствието между изходи и букви не е фиксирано, а може да
бъде променяно от оператора на машината по следния начин. Машината има щекерпанел:
панел върху лицевата страна на машината, върху който има 26 малки кръгли отвора с
еднакъв диаметър. Всеки отвор на панела е маркиран с точно една от латинските букви.
Операторът разполага с 13 еднакви кабелчета, всяко с два накрайника. Дадено кабелче се
използва, като накрайниците му се пъхат в два от отворите. В един отвор не може да бъдат
пъхнати два накрайника. Операторът може да използва между 0 и 13 кабелчета. Кабелчетата
са достатъчно дълги, за да свържат и най-отдалечените отвори. Ефектът от използването
на кабелчетата е следният:

• Ако не бъде използвано нито едно кабелче, на изход 1 излиза A, на изход 2 излиза B,
и така нататък, на изход 26 излиза Z.

• Ако бъде използвано точно едно кабелче, ефектът е това и единствено това, че буквите,
които то свързва на щекерпанела, биват разменени. Например, ако на щекерпанела
кабелчето свързва C с T , то на изход 3 излиза T , на изход 20 излиза C, а на всеки друг
изход излиза същата буква, която би излизала, ако на щекерпанела нямаше кабелчета.

• Ако бъдат използвани точно две кабелчета на щекерпанела, техните съответни букви
биват разменени, останалите букви излизат все едно няма кабелчета. Например, ако на
щекерпанела едното кабелче свързва C с T , а другото свързва A сM, на изход 1 излиза
M, на изход 3 излиза T , на изход 13 излиза A, на изход 20 излиза C, а на всеки друг
изход излиза същата буква, която би излизала, ако на щекерпанела нямаше кабелчета.

• . . .

• Ако бъдат използвани всички 13 кабелчета на щекерпанела, всички двойки букви биват
разменени по двойки съгласно това, коя с коя буква е свързана на щекерпанела.

Очевидно, тази машина реализира разместване на буквите между входа и изхода. Колко
различни размествания на буквите може да бъдат реализирани при използване на 10 кабел-
чета? А при използване на 13 кабелчета? Сравнете тези числа с всички теоретично възможни
размествания на 26-те букви – става дума не за размените, които тази машина реализира,
а максималният брой размествания, които са теоретично възможни. На какво се дължи
голямата разлика между първите две числа и третото?

Решение. Ако се ползват 10 кабелчета, то точно 20 букви участват в размествания по двой-
ки, а 6 букви не участват. Има точно

(
26
20

)
=
(
26
6

)
възможности за избор на букви-участници.
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За всеки от тези избори, начините да бъдат свързани буквите-участници по двойки са

19× 17× 15× · · · × 3× 1 =
10∏
i=1

(2i− 1) = 654 729 075

Разсъждението е следното: първата буква може да бъде свързана с двойка с коя да е от оста-
налите 19, след това остават 18 букви, за първата има 17 букви-кандидати, и така нататък.
Отговорът за 10 кабелчета е(

26

6

)
×

10∏
i=1

(2i− 1) = 150 738 274 937 250 ≈ 1014.2

Аналогично, отговорът за 13 кабелчета е

13∏
i=1

(2i− 1) = 7 905 853 580 625 ≈ 1012.9

От друга страна, всички пермутации на 26 букви са

26! = 403 291 461 126 605 635 584 000 000 ≈ 1026.6

Прави впечатление, че това число е много по-голямо от броя на пермутациите, които ре-
ализира въпросната машина. Очевидно машината реализира само нищожно малка част от
всички възможни пермутации. Машината реализира пермутации чрез разменяне на местата
на двойки елементи. Не всяка пермутация може да бъде получена по този начин. Например,
пермутацията, при която A отива на мястото на B, B отива на мястото на C, . . . , Y отива
на мястото на Z и Z отива на мястото на A не може да бъде получена чрез (еднократна)
размяна на двойки съседни елементи. Получените числени данни навеждат на мисълта, че
пермутациите, които се получават чрез разменяне на двойки са нищожно малка част от
всички пермутации, при голям брой на участващите елементи. �

Задача 45. Книжарницата продава четири вида учебници: Дискретни Структури, Анализ,
Алгебра и Геометрия. От всеки вид има по 10 екземпляра (очевидно неразличими помежду
си). По колко начина може да бъдат подредени всички 40 учебника на един хоризонтален
рафт, ако:

а) няма ограничения;

б) учебниците по Алгебра трябва да са един до друг и няма други ограничения;

в) учебниците от всеки вид трябва да са един до друг и няма други ограничения;

г) никой учебник по Дискретни Структури и никой учебник по Алгебра не може да бъде
вдясно от позиция номер 20 и няма други ограничения;

д) учебниците по Алгебра трябва да са вляво от учебниците по Геометрия и няма други
ограничения.

Решение.

а) Става дума за пермутации с повторение. Отговорът е мултиномният коефициент

40!

10!× 10!× 10!× 10!
= 4 705 360 871 073 570 227 520
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б) Учебниците по Алгебра могат да бъдат подредени един до друг само по един начин. След
това гледаме на десетте учебници по алгебра като на един неделим елемент. Този елемент
трябва да разположим заедно с 30 други елемента в редица, като тези други са в три групи
по десет, във всяка група неразличими един от друг. Отново имаме пермутации с повторение,
този път на 31 неща, от които десет са неразличими помежду си и още десет са неразличими
помежду си и още десет са неразличими помежду си и има още едно нещо (блокът от десетте
учебника по Алгебра). Отговорът е:

31!

10!× 10!× 10!
= 172 080 900 531 540

в) Учебниците от кой да е вид може да се сложат един до друг по един начин. След това
може да гледаме на поредицата от дессете учебника от кой да е вид като на неделим елемент.
Има 4! начина да сложим тези 4 елемента в редица. Отговорът е

4! = 24

г) Учебниците по Алгебра и Дискретни структури заемат точно най-левите 20 позиции, така
че множеството, чиято мощност търсим, е декартовото произведение от разполаганията на
най-левите 20 позиции на учебниците по Алгебра и Дискретни структури и на най-десните 20
позиции на останалите два вида. Всяко от тези множества има мощност 20!

10!×10! . Решението е:

20!

10!× 10!
× 20!

10!× 10!
= 34 134 779 536

д) В тази подзадача всъщност имаме само три различни вида учебници, които трябва да
разглеждаме: Дискретни Структури, Анализ и третият вид, който е обединението от Алгебра
и Геометрия. Причината да не разграничаваме в решението си учебниците по Алгебрата от
тези по Геометрията е, че щом алгебрите са вляво от геометриите, ако знаем 20-те позиции
на обединението им, ние знаем и точно кои от тях (а именно, най-левите 10) се заемат от
алгебрите и кои, от геометриите (очевидно, останалите 10). Решението е:

40!

20!× 10!× 10!
= 25 467 973 278 667 920

�

Задача 46 използва неявно понятията “правоъгълна мрежа” и “придвижване в правоъгълна
мрежа”. Не особено формално, правоъгълна мрежа с размери m×n се състои от m+1 хори-
зонтални отсечки, всяка с дължина n единици, разположени една над друга на разстояния
единици, и още n + 1 вертикални отсечки, всяка с дължина m единици, разположени една
до друга на разстояния единици, така че от пресичането на хоризонталните с вертикалните
отсечки се получаватm×n квадрата със страна единица. Ето пример за правоъгълна мрежа
2× 4:

Мислим за правоъгълната мрежа като за улична мрежа от m + 1 улици в направление
изток-запад и още n+1 улици в направление север-юг, като тези две групи улици се пресичат,
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както е показано. Представете си човек, който се намира в югозападния ъгъл (жълтото
кръгче). Той или тя трябва да се придвижи до североизточния ъгъл (зеленото кръгче), като
на всяко кръстовище може да поеме или на север, или на изток, но никога на юг и никога
на запад. Това се нарича придвижване в правоъгълната мрежа.

Задача 46. Дадени са три улични мрежи (улици под прав ъгъл) A, B и C, показани долу.
Във всяка от тях стартирате в долния ляв ъгъл (с жълто кръгче около него) и трябва
да пристигнете в горния десен ъгъл (със зелено кръгче около него), като е допустимо да
се придвижвате само надясно или нагоре. A е просто правоъгълна мрежа. B има по-сложна
форма—можем да си я представим като правоъгълна мрежа с липсващи части—но правилата
за придвижване са същите, само нагоре или надясно. C има правоъгълна форма, но има едно
забранено кръстовище – това с червения кръг около него. За всяка от мрежите определете по
колко различни начина можете да се придвижите в мрежата от жълтото до зеленото кръгче,
като в C не минавате през забраненото кръстовище.

CA B

Решение. За обикновена правоъгълна мрежа m × n отговорът е
(
m+n
n

)
, защото всяко

придвижване се определя напълно от m на брой хода нагоре и n на брой хода надясно, като
тези два вида ходове са смесени в една линейна наредба с големина m + n. С други думи,
задачата е същата като задачата, по колко начина може да наредим m нули и n единици в
линейна наредба (вижте Задача 26). Следователно, за A решението е

(
6+5
5

)
= 462.

Да разгледаме B. Лесно се вижда, че за да стигнем от жълтата до зелената точка, трябва
да минем през поне една от трите сини точки:

Нещо повече: не е възможно да се мине през повече от една от сините точки, следователно
се минава през точно една от тях. Иначе казано, множеството от придвижванията между
жълтата и зелената точка се разбива на три подмножества съгласно това, през коя синя
точка се минава. По принципа на разбиването, отговорът е сумата от мощностите на тези
три множества. Да разгледаме произволна синя точка, например тази:
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Множеството от придвижванията, минаващи през нея, е декартовото произведение от
придвижванията в червената подмрежа между жълтата и синята точка, и в кафявата подм-
режа между синята и зелената точка:

В червената подмрежа те са
(
4+5
4

)
= 126, а в кафявата,

(
6+3
3

)
= 84. За тази синя точка

имаме 126×84 = 10 584 придвижвания. За другите две сини точки напълно аналогично имаме(
5+4
4

)
×
(
5+4
4

)
= 15 876 и

(
6+3
3

)
×
(
4+5
4

)
= 10 584. Отговорът за мрежа B е 10 584+15 876+10 584 =

37 044.

Да разгледаме C. Множеството от придвижванията, неминаващи през червената точка, е
разликата между всички придвижвания между жълтата и зелената точки без ограничения
(които са, както видяхме, 462) и тези, които минават през червената точка. По начин, напъл-
но аналогичен на извеждането на отговора за B, показваме, че придвижванията, минаващи
през червената точка, са

(
3+4
3

)
×
(
3+1
1

)
= 140. Отговорът за C е 462− 140 = 322. �

Решението на Задача 47 използва означението Jkn за някакви фиксирани стойности на k и n.
Да си припомним, че Jn = {0, 1, . . . , n− 1}. Тогава

Jkn = Jn × Jn × · · · × Jn︸ ︷︷ ︸
k множителя

Задача 47 може да се реши и чрез рекурентни уравнения: виж Задача 124.

Задача 47. Измежду числата 1, 2, . . . , 1010, кои са повече: тези, чиито запис (в десетична
позиционна бройна система) съдържа цифрата 9, или другите, чиито запис не съдържа 9?

Решение. Съществува естествена биекция между тези числа и векторите от J1010: всяко число
с изключение на 1010 съответства на този вектор, който се получава от записа на числото в
десетична позиционна бройна система с добавяне—ако е необходимо—на водещи нули, така
че дължината на записа да стане точно 10; а 1010 съответства на 0000000000. Аналогично,
съществува естествена биекция между числата измежду 1, 2, . . . , 1010, които нямат нито
една девятка в десетичния си запис, и векторите от J109 . Общо числата 1, 2, . . . , 1010 са 1010
на брой. Векторите от J109 са 910 на брой, следователно числата, които нямат нито една
девятка в записа си са 910 = 3 486 784 401, следователно числата, които имат поне една
девятка, са 1010 − 910 = 10 000 000 000 − 3 486 784 401 = 6 513 215 599. Виждаме, че числата,
имащи поне една девятка, са значително повече. �
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Задача 48. Нека n ∈ N+. Нека A = {1, 2, . . . , n}. Разглеждаме крайните непразни редици,
чиито елементи са от A. Всяка такава редица с дължина k ще наричаме накратко k-редица.
За всяка k-редица x = x1, x2, . . . , xk ще казваме, че x е особена, ако xi 6= xi+1 за 1 ≤ i < k и
че е интересна, ако е особена и освен това x1 6= xk.

• Намерете броя на особените k-редици.

• Докажете, че броят на интересните k-редици е

(n− 1)k + (−1)k(n− 1)

Решение. Броят на особените k-редици намираме по начин, аналогичен на начина, по който
намерихме на лекции броя на комбинаторните конфигурации с наредба и без повтаряне:
строим особена k-редица x = x1, x2, . . . , xk отляво надясно и съобразяваме колко възможности
има за всяка позиция. За x1 има n възможности, защото това може да е всеки елемент на
A. За x2 има само n− 1 възможности, защото трябва да се различава от x1. За x3 има само
n − 1 възможности, защото трябва да се различава от x2. И така нататък. За xk има само
n− 1 възможности, защото трябва да се различава от xk−1. Тогава търсеният брой е

n(n− 1)k−1

като множителят (n− 1)k−1 е броят на възможностите за подредицата от x2 до xk.

Ще докажем по индукция по k, че броят на интересните k-редици е (n− 1)k + (−1)k(n− 1).
Забележете, че индукцията е по k, а n е фиксирано.

Базата е k = 1, понеже редиците са непразни по условие. От една страна, интересни
1-редици няма, защото условието x1 6= xk става x1 6= x1 при k = 1. С други думи, броят на
интересните 1-редици е 0. От друга страна,

(n− 1)1 + (−1)1(n− 1) = n− 1− (n− 1) = 0

Твърдението е вярно в базовия случай.
Да допуснем, че за произволно цяло положително k е вярно, че броят на интересните

k-редици е (n− 1)k + (−1)k(n− 1). Ще докажем, че броят на интересните (k+ 1)-редици е

(n− 1)k+1 + (−1)k+1(n− 1) (13)

Да дефинираме, че редица е безинтересна, ако е особена и не е интересна; тоест, е особена, но
първият и последният елемент съвпадат. Очевидно е, че броят на интересните (k+1)-редици
е равен на броя на особените (k + 1)-редици минус броя на безинтересните (k + 1)-редици.
Но ние знаем от предната подзадача, че броят на особените (k+ 1)-редици е

n(n− 1)k

Търсим броя на безинтересните (k+1)-редици. Разгледаме произволна безинтересна (k+1)-
редица x, написана с ограниченията-неравенства

x1 6= x2 6= x3 6= · · · 6= xk 6= xk+1 = x1

Ясно е, че подредицата от първите k елемента определя x напълно, понеже xk+1 повтаря x1.
Подредицата от първите k елемента обаче е интересна k-редица, защото нейният последен
елемент xk е различен от нейния първи елемент x1:

x1 6= x2 6= x3 6= · · · 6= xk︸ ︷︷ ︸
интересна k-редица

6= xk+1 = x1
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Заключаваме, че броят на безинтересните (k + 1)-редици е равен на броя на интересните
k-редици, който, съгласно индуктивното предположение, е (n− 1)k + (−1)k(n− 1).

Следователно, броят на интересните (k+ 1)-редици е

n(n− 1)k − ((n− 1)k + (−1)k(n− 1)) = n(n− 1)k − (n− 1)k + (−1)k+1(n− 1) =

(n− 1)k(n− 1) + (−1)k+1(n− 1) = (n− 1)k+1 + (−1)k+1(n− 1)

Но това е точно (13). С което доказахме желаното твърдение. �

4 Принцип на включването и изключването
Задача 49. Измежду 100 студенти:

• 72 посещават практикум по C,

• 60 посещават практикум по Java.

Докажете, че поне 32 от тези студенти посещават и двата практикума.

Решение. Нека C и J са множествата от студентите, посещаващи съответно практикумите
по C и Java. Нека U е множеството от всички студенти. Дадено е, че |U| = 100, |C| = 72 и
|J| = 60. Съгласно принципа на включването и изключването, в сила е∣∣C ∪ J∣∣ = |U|− (|C|+ |J|) + |C ∩ J| ↔∣∣C ∪ J∣∣ = 100− (72+ 60) + |C ∩ J| ↔

|C ∩ J| = 32+
∣∣C ∪ J∣∣

Но C ∪ J е множеството от студентите, които не ходят на нито един от тези практикуми. От
условието не знаем дали това множество е празното множество или не, но във всеки случай
е вярно, че

∣∣C ∪ J∣∣ ≥ 0. Заключаваме, че |C ∩ J| ≥ 32. �

Задача 50. На контролно по Дискретна математика са били дадени три задачи. Известно
е, че 80% от студентите са решили първата задача, 75% са решили втората задача и 70%
са решили третата задача. Докажете формално и прецизно, че поне 25% са решили и трите
задачи.

Решение. Нека A е множеството от студентите, които не са решили първата задача. Нека
B е множеството от студентите, които не са решили втората задача. Нека C е множеството
от студентите, които не са решили третата задача. Нека n е броят на всички студенти, които
са се явили на контролното. По условие,

|A| = 0.2n

|B| = 0.25n

|C| = 0.3n

Очевидно, |A|+ |B|+ |C| = 0.75n.

Ще покажем, че

|A ∪ B ∪ C| ≤ |A|+ |B|+ |C| (14)
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Наистина, от комбинаторния принцип на включването и изключването знаем, че

|A ∪ B ∪ C| ≤ |A|+ |B|+ |C|−
(
(|A ∩ B|+ |A ∩ C|+ |B ∩ C|) − |A ∩ B ∩ C|

)
(15)

Но очевидно

A ∩ B ⊇ A ∩ B ∩ C
A ∩ C ⊇ A ∩ B ∩ C
B ∩ C ⊇ A ∩ B ∩ C

откъдето веднага следва, че

|A ∩ B| ≥ |A ∩ B ∩ C|
|A ∩ C| ≥ |A ∩ B ∩ C|
|B ∩ C| ≥ |A ∩ B ∩ C|

Тогава

|A ∩ B|+ |A ∩ C|+ |B ∩ C| ≥ 3|A ∩ B ∩ C|

откъдето

|A ∩ B|+ |A ∩ C|+ |B ∩ C| ≥ |A ∩ B ∩ C|

така че

|A ∩ B|+ |A ∩ C|+ |B ∩ C|− |A ∩ B ∩ C| ≥ 0

От този резултат и (15) заключаваме, че (14) е в сила. От (14) и това, че |A|+ |B|+ |C| = 0.75n
заключаваме, че

|A ∪ B ∪ C| ≤ 0.75n (16)

УниверсумътU в тази задача е множеството от студентите, които са се явили на контролното.
Спрямо този универсум:

• множеството от студентите, които са решили първата задача, е A,

• множеството от студентите, които са решили втората задача, е B,

• множеството от студентите, които са решили третата задача, е C,

• множеството от студентите, които са решили и трите задачи, е A ∩ B ∩ C.
От обобщения закон на De Morgan знаем, че A ∩ B ∩ C = A ∪ B ∪ C. Но по определение е
вярно, че

A ∪ B ∪ C = U \ (A ∪ B ∪ C) (17)

Съгласно комбинаторния принцип на изваждането

|A ∪ B ∪ C| = |U|− |A ∪ B ∪ C| (18)

От (18), (16) и от факта, че |U| = n, заключаваме, че

|A ∪ B ∪ C| ≥ 0.25n

което е същото като

|A ∩ B ∩ C| ≥ 0.25n

С други думи, студентите, които са решили и трите задачи, са поне 25%. �
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Задача 51. В група от студенти всеки владее поне един език от анлийски, френски и немски.
Нека AE е подмножеството на студентите, владеещи английски, AF е подмножеството на сту-
дентите, владеещи френски , а AG е подмножеството на студентите, владеещи немски. Нека
AEF е подмножеството на студентите, владеещи английски и френски, AEG е подмножеството
на студентите, владеещи английски и немски, а AFG е подмножеството на студентите, вла-
деещи френски и немски. Нека AEFG е подмножеството на студентите, владеещи английски,
френски и немски. Дадено е, че

|AE| = 19

|AF| = 25

|AG| = 21

|AEF| = 13

|AEG| = 7

|AFG| = 9

|AEFG| = 3

От колко студента се състои групата?

Решение. Нека A е множеството от всички студенти в тази група. Тъй като A = AE∪AF∪
AG, може да смятаме, че A е универсумът и AE

A∩AF
A∩AG

A
= ∅. От принципа на включване

и изключване знаем, че∣∣∣AEA ∩AFA ∩AGA∣∣∣ = |A|− (|AE|+ |AF|+ |AG|) + (|AEF|+ |AEG|+ |AFG|) − |AEFG|

тоест

0 = |A|− (19+ 25+ 21) + (13+ 7+ 9) − 3

откъдето

|A| = 39 �

Задача 52. При условията на Задача 51,

• колко студента знаят точно два езика?

• колко студента знаят английски, но не знаят нито френски, нито немски?

Решение. Отговорът на първия въпрос е

|AEF|+ |AEG|+ |AFG|− 3|AEFG| = 13+ 7+ 9− 3× 3 = 20

Отговорът на втория въпрос е

|AE|− (|AEF|+ |AEG|) + |AEFG| = 19− (13+ 7) + 3 = 2 �

Задача 53. Дадена е група от 100 студента. Известно е, че 37 студента учат английски, 35
студента учат френски, 33 студента учат немски, 38 студента учат испански, 16 студента
учат английски и френски, 8 учат английски и немски, 18 учат английски и испански, 13
учат френски и немски, 9 учат френски и испански, 13 учат немски и испански, 5 студента
учат английски, френски и немски, 6 студента учат английски, немски и испански, 5 студента
учат френски, немски и испански, а 3 студента учат английски, немски, френски и испански.
Колко студента учат английски, френски и испански, ако 14 студента не изучават никакви
езици?
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Решение. Нека търсеният брой е x. По принципа на включването и изключването имаме:

14 = 100

− (37+ 35+ 33+ 38)

+ (16+ 8+ 18+ 13+ 9+ 13)

− (5+ 6+ 5+ x)

+ 3

тоест

14 = 21− x ↔ x = 7 �

Задача 54. За университета XYZ се твърди, че:

• Има общо има 6525 студента.

• От тях 5025 не са първокурсници.

• 3222 студента са взели курса по Анализ.

• 1332 студента са взели курса по Дискретни Структури (ДС).

• 1821 студента не са първокурсници и са взели Анализ.

• 1050 студента са взели Анализ и ДС.

• 603 студента не са първокурсници и са взели ДС.

• 429 студента не са първокурсници и са взели Анализ и ДС.

Възможно ли е тези данни да са верни?

Решение. Щом студентите са общо 6525 и от тях 5025 не са първокурсници, то

броят на първокурсниците е 6525− 5025 = 1500 (19)

Нека множеството от студентите, които не са първи курс и са взели Анализ, е X, а мно-
жеството на студентите, които не са първи курс и са взели ДС, е Y. Студентите, които
не са първи курс, представляват универсум U ′, съдържащ както X, така и Y. По условие
|U ′| = 5025, |X| = 1821, |Y| = 603 и |X ∩ Y| = 429. По принципа на включването и изключва-
нето по отношение на този универсум е изпълнено

|X ∩ Y| = 5025− (1821+ 603) + 429 = 3030

И така, 3030 студенти не са първи курс и не са взели Анализ и не са взели ДС.
Тогава 6525 − 3030 = 3495 студенти са поне едно от трите: първокурсници или взели

Анализ или взели ДС. Нека A е множеството от студентите от първи курс, B са тези, които
са взели Анализ, а C са тези, взели ДС. Току-що показахме, че |A∪B∪C| = 3495. По условие
|B| = 3222 и |C| = 1332, а от (19) знаем, че |A| = 1500.

Щом 3222 студента са взели Анализ и 1821 не-първокурсници са взели Анализ, то 1401
първокурсници са взели Анализ. Щом 1332 студента са взели ДС и 603 не-първокурсници
са взели Анализ, то 729 първокурсници са взели ДС. Тогава |A ∩ B| = 1401 и |A ∩ C| = 729.
По условие, |B ∩ C| = 1050.
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Съгласно принципа на включването и изключването,

|A ∪ B ∪ C| = |A|+ |B|+ |C|− (|A ∩ B|+ |A ∩ C|+ |B ∩ C|) + |A ∩ B ∩ C|↔
3495 = 1500+ 3222+ 1332− (1401+ 729+ 1050) + |A ∩ B ∩ C|↔

|A ∩ B ∩ C| = 621

Отново прилагаме принципа на включването и изключването, за да пресметнем |(A ∩ B) ∪
(A ∩ C)|:

|(A ∩ B) ∪ (A ∩ C)| = |(A ∩ B)|+ |(A ∩ C)|− |A ∩ B ∩ C|↔
|(A ∩ B) ∪ (A ∩ C)| = 1401+ 729− 621 = 1509 (20)

И сега забелязваме противоречие между (19) и (20): първото казва, всички първокурсници
са 1500, второто казва, че първокурсниците, взели поне един от Анализ и ДС, са 1509.
Следователно, данните са неверни. �

Задача 55. Да се реши, използвайки принципа на включването и изключването,
колко са нечетните числа от интервала [1000, 10 000], които нямат повтарящи се цифри в
десетична позиционна бройна система.

Решение. Задачата има изключително просто решение 8 × 8 × 7 × 5 = 2240, което се
получава, ако съобразим, че става дума за числата с точно четири цифри (очевидно без
водеща нула; първата цифра е от 1 до 9), две по две различни, които завършват на 1 или 3
или 5 или 7 или 9. Прилагаме комбинаторния принцип на умножението по подходящ начин:
има точно 5 избора за последната цифра, за всеки от тях точно 8 избора за първата, при
избрани последна и първа цифра има точно 8 избора за втора цифра (тя вече може да е 0),
за всеки от тези три избора, има точно 7 избора за третата цифра.

Но в тази задача се иска решение с принципа на включването и изключването! Да означим
с U множеството от нечетните числа от интервала [1000, 10 000]. Да означим с S множеството
от нечетните числа от интервала [1000, 10 000], които нямат повтарящи се цифри. За всяко
x ∈ U, очевидно x се представя в десетична бройна система като

x = a1 a2 a3 a4

където a1 ∈ {1, 2, . . . , 9}, a2, a3 ∈ {0, 1, . . . , 9}, a4 ∈ {1, 3, 5, 7, 9}.

Нека:

• B1 е множеството от числата от U, за които a1 = a2,

• B2 е множеството от числата от U, за които a1 = a3,

• B3 е множеството от числата от U, за които a1 = a4,

• B4 е множеството от числата от U, за които a2 = a3,

• B5 е множеството от числата от U, за които a2 = a4,

• B6 е множеството от числата от U, за които a3 = a4.
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Очевидно:

S = U \
(
B1 ∪ B2 ∪ B3 ∪ B4 ∪ B5 ∪ B6

)
= B1 ∪ B2 ∪ B3 ∪ B4 ∪ B5 ∪ B6

Прилагаме обощения закон на Де Морган и получаваме:

S = B1 ∩ B2 ∩ B3 ∩ B4 ∩ B5 ∩ B6

По принципа на включването и изключването:

|S| = |U| (21)
− (|B1|+ |B2|+ |B3|+ |B4|+ |B5|+ |B6|)

+
(
|B1 ∩ B2|+ |B1 ∩ B3|+ |B1 ∩ B4|+
|B1 ∩ B5|+ |B1 ∩ B6|+ |B2 ∩ B3|+
|B2 ∩ B4|+ |B2 ∩ B5|+ |B2 ∩ B6|+
|B3 ∩ B4|+ |B3 ∩ B5|+ |B3 ∩ B6|+
|B4 ∩ B5|+ |B4 ∩ B6|+ |B5 ∩ B6|

)
−
(
|B1 ∩ B2 ∩ B3|+ |B1 ∩ B2 ∩ B4|+ |B1 ∩ B2 ∩ B5|+
|B1 ∩ B2 ∩ B6|+ |B1 ∩ B3 ∩ B4|+ |B1 ∩ B3 ∩ B5|+
|B1 ∩ B3 ∩ B6|+ |B1 ∩ B4 ∩ B5|+ |B1 ∩ B4 ∩ B6|+
|B1 ∩ B5 ∩ B6|+ |B2 ∩ B3 ∩ B4|+ |B2 ∩ B3 ∩ B5|+
|B2 ∩ B3 ∩ B6|+ |B2 ∩ B4 ∩ B5|+ |B2 ∩ B4 ∩ B6|+
|B2 ∩ B5 ∩ B6|+ |B3 ∩ B4 ∩ B5|+ |B3 ∩ B4 ∩ B6|+
|B3 ∩ B5 ∩ B6|+ |B4 ∩ B5 ∩ B6|

)
+
(
|B1 ∩ B2 ∩ B3 ∩ B4|+ |B1 ∩ B2 ∩ B3 ∩ B5|+ |B1 ∩ B2 ∩ B3 ∩ B6|+
|B1 ∩ B2 ∩ B4 ∩ B5|+ |B1 ∩ B2 ∩ B4 ∩ B6|+ |B1 ∩ B2 ∩ B5 ∩ B6|+
|B1 ∩ B3 ∩ B4 ∩ B5|+ |B1 ∩ B3 ∩ B4 ∩ B6|+ |B1 ∩ B3 ∩ B5 ∩ B6|+
|B1 ∩ B4 ∩ B5 ∩ B6|+ |B2 ∩ B3 ∩ B4 ∩ B5|+ |B2 ∩ B3 ∩ B4 ∩ B6|+
|B2 ∩ B3 ∩ B5 ∩ B6|+ |B2 ∩ B4 ∩ B5 ∩ B6|+ |B3 ∩ B4 ∩ B5 ∩ B6|

)
−
(
|B1 ∩ B2 ∩ B3 ∩ B4 ∩ B5|+ |B1 ∩ B2 ∩ B3 ∩ B4 ∩ B6|+
|B1 ∩ B2 ∩ B3 ∩ B5 ∩ B6|+ |B1 ∩ B3 ∩ B4 ∩ B5 ∩ B6|+
|B2 ∩ B3 ∩ B4 ∩ B5 ∩ B6|

)
+ |B1 ∩ B2 ∩ B3 ∩ B4 ∩ B5 ∩ B6|

Нека дефинираме, че:

• A1,2 е множеството от числата от U, за които a1 = a2,

• A1,3 е множеството от числата от U, за които a1 = a3,

• A1,4 е множеството от числата от U, за които a1 = a4,

• A2,3 е множеството от числата от U, за които a2 = a3,

• A2,4 е множеството от числата от U, за които a2 = a4,

• A3,4 е множеството от числата от U, за които a3 = a4,
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• A1,2,3 е множеството от числата от U, за които a1 = a2 = a3,

• A1,2,4 е множеството от числата от U, за които a1 = a2 = a4,

• A1,3,4, е множеството от числата от U, за които a1 = a3 = a4,

• A2,3,4 е множеството от числата от U, за които a2 = a3 = a4,

• A1,2,3,4 е множеството от числата от U, за които a1 = a2 = a3 = a4.

Очевидно:

|A1,2| = 9︸︷︷︸
9 възможности за a1=a2

× 10︸︷︷︸
10 възможности за a3

× 5︸︷︷︸
5 възможности за a4

= 450

|A1,3| = 9︸︷︷︸
9 възможности за a1=a3

× 10︸︷︷︸
10 възможности за a2

× 5︸︷︷︸
5 възможности за a4

= 450

|A1,4| = 5︸︷︷︸
5 възможности за a1=a4

× 10︸︷︷︸
10 възможности за a2

× 10︸︷︷︸
10 възможности за a3

= 500

|A2,3| = 9︸︷︷︸
9 възможности за a1

× 10︸︷︷︸
10 възможности за a2=a3

× 5︸︷︷︸
5 възможности за a4

= 450

|A2,4| = 9︸︷︷︸
9 възможности за a1

× 10︸︷︷︸
10 възможности за a3

× 5︸︷︷︸
5 възможности за a2=a4

= 450

|A3,4| = 9︸︷︷︸
9 възможности за a1

× 10︸︷︷︸
10 възможности за a2

× 5︸︷︷︸
5 възможности за a3=a4

= 450

|A1,2,3 | = 9︸︷︷︸
9 възможности за a1=a2=a3

× 5︸︷︷︸
5 възможности за a4

= 45

|A1,2,4 | = 5︸︷︷︸
5 възможности за a1=a2=a4

× 10︸︷︷︸
10 възможности за a3

= 50

|A1,3,4 | = 5︸︷︷︸
5 възможности за a1=a3=a4

× 10︸︷︷︸
10 възможности за a2

= 50

|A2,3,4 | = 9︸︷︷︸
9 възможности за a1

× 5︸︷︷︸
5 възможности за a2=a3=a4

= 45

|A1,2,3,4 | = 5 тъй като A1,2,3,4 = {1111, 3333, 5555, 7777, 9999}

Очевидно:

|U| = 4500 (22)

За сумата от големините на множествата имаме:∑
|Bi| = 5× 450+ 500 = 2750 (23)
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Сега търсим сумата от големините на сеченията две по две. Лесно е да се съобрази, че:

B1 ∩ B2 = A1,2,3
B1 ∩ B3 = A1,2,4
B1 ∩ B4 = A1,2,4
B1 ∩ B5 = A1,2,4
B2 ∩ B3 = A1,3,4
B2 ∩ B4 = A1,2,3
B2 ∩ B6 = A1,3,4
B3 ∩ B5 = A1,2,4
B3 ∩ B6 = A1,3,4
B4 ∩ B5 = A2,3,4
B4 ∩ B6 = A2,3,4
B5 ∩ B6 = A2,3,4

Веднага следва, че:

|B1 ∩ B2| = 45
|B1 ∩ B3| = 50
|B1 ∩ B4| = 45
|B1 ∩ B5| = 50
|B2 ∩ B3| = 50
|B2 ∩ B4| = 45
|B2 ∩ B6| = 50
|B3 ∩ B5| = 50
|B3 ∩ B6| = 50
|B4 ∩ B5| = 45
|B4 ∩ B6| = 45
|B5 ∩ B6| = 45

Остава да определим |B1∩B6|, |B2∩B5| и |B3∩B4| при сеченията две по две. B1∩B6 е множеството
от числата с a1 = a2 и a3 = a4 – то не е едно от Ai,j или Ai,j,k . |B1∩B6| = 9×5 = 45 заради 9-те
възможности за a1 = a2 и независимите 5 възможности за a3 = a4. |B2∩B5| = 9×5 = 45 заради
9-те възможности за a1 = a3 и независимите 5 възможности за a2 = a4. |B3∩B4| = 10×5 = 50
заради 10-те възможности за a2 = a3 и независимите 5 възможности за a1 = a4. Общо за
сумата от големините на сеченията две по две имаме:∑

|Bi ∩ Bj| = 8× 45+ 7× 50 = 710 (24)
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Сега търсим сумата от големините на сеченията по тройки. Лесно е да се съобрази, че:

B1 ∩ B2 ∩ B3 = A1,2,3,4
B1 ∩ B2 ∩ B4 = A1,2,3
B1 ∩ B2 ∩ B5 = A1,2,3,4
B1 ∩ B2 ∩ B6 = A1,2,3,4
B1 ∩ B3 ∩ B4 = A1,2,3,4
B1 ∩ B3 ∩ B5 = A1,2,4
B1 ∩ B3 ∩ B6 = A1,2,3,4
B1 ∩ B4 ∩ B5 = A1,2,3,4
B1 ∩ B4 ∩ B6 = A1,2,3,4
B1 ∩ B5 ∩ B6 = A1,2,3,4
B2 ∩ B3 ∩ B4 = A1,2,3,4
B2 ∩ B3 ∩ B5 = A1,2,3,4
B2 ∩ B3 ∩ B6 = A1,3,4
B2 ∩ B4 ∩ B5 = A1,2,3,4
B2 ∩ B4 ∩ B6 = A1,2,3,4
B2 ∩ B5 ∩ B6 = A1,2,3,4
B3 ∩ B4 ∩ B5 = A1,2,3,4
B3 ∩ B4 ∩ B6 = A1,2,3,4
B3 ∩ B5 ∩ B6 = A1,2,3,4
B4 ∩ B5 ∩ B6 = A2,3,4

Общо за сумата от големините на сеченията по тройки имаме:∑
|Bi ∩ Bj ∩ Bk| = 16× 5+ 2× 45+ 2× 50 = 270 (25)

Сега търсим сумата от големините на сеченията по четворки. Всички сечения по четворки
са равни на A1,2,3,4 , тоест:

Bi ∩ Bj ∩ Bk ∩ Bl = A1,2,3,4

Общо за сумата от големините на сеченията по четворки имаме:∑
|Bi ∩ Bj ∩ Bk ∩ Bl| = 15× 5 = 75 (26)

Сега търсим сумата от големините на сеченията по петорки. Всички сечения по петорки
също са равни на A1,2,3,4 , тоест:

Bi ∩ Bj ∩ Bk ∩ Bl ∩ Bm = A1,2,3,4

Общо за сумата от големините на сеченията по петорки имаме:∑
|Bi ∩ Bj ∩ Bk ∩ Bl ∩ Bm| = 6× 5 = 30 (27)
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Сечението на всичките шест множества B1, . . . , B6 е:

B1 ∩ B2 ∩ B3 ∩ B4 ∩ B5 ∩ B6 = A1,2,3,4

Големината му е:

|B1 ∩ B2 ∩ B3 ∩ B4 ∩ B5 ∩ B6| = 5 (28)

Заместваме (22), (23), (24), (25), (26), (27), (28) в (21) и получаваме

|S| = 4500− 2750+ 710− 270+ 75− 30+ 5 = 2240 �

Задача 56 и Задача 57 не ползват принципа на включването и изключването в решението си,
но са сложени тук, защото решението на Задача 56 се ползва в решението на Задача 58, къде-
то принципът на включването и изключването е решаващ; Задача 57 се оказва изключително
близка до Задача 56 и затова има смисъл да се покажат заедно.

Задача 56. Колко са тоталните функции f : X → Y, където X и Y са крайни множества и
X = m и Y = n?

Решение. Съгласно принципа на умножението, отговорът е nm. �

Задача 57. Колко са частичните функции f : X → Y, където X и Y са крайни множества и
X = m и Y = n?

Решение. Нека множеството от тези функции е F . Нека z е елемент, който не се съдържа
в Y. Нека Z = Y ∪ {z}. Нека FZ е множеството от тоталните функции f : X → Z. Тривиално
е да се покаже, че съществува биекция между F и FZ – за всяка функция от f ∈ F , която е
тотална, съществува точно една функция от g ∈ FZ, такава че:

∀a ∈ X, g(a) = f(a)

а за всяка функция f ∈ F , която е не е тотална, съществува точно една функция g ∈ FZ,
такава че:

∀a ∈ X, g(a) =

{
f(a), ако f(a) е дефинирано
z, в противен случай

Съгласно предната задача, |FZ| = (n + 1)m. Съгласно принципа на биекцията, отговорът е
|FZ| = (n+ 1)m. �

В следващите задачи, под “функция” разбираме “тотална функция”.

Задача 58. Колко са сюрекциите f : X→ Y, където X и Y са крайни множества и |X| = m и
|Y| = n?

Решение. Да въведем следните означения. Нека N е броят на всички функции. От Зада-
ча 56 знаем, че N = nm. Ако от този брой извадим броя на не-сюрективните функции, ще
получим броя на сюрекциите. Това ще направим поетапно, съгласно принципа на включване
и изключване. За всеки елемент a ∈ Y, нека Na е броят на функциите, които “не покриват”

40



Задачи с решения по комбинаторика, ФМИ-СУ, 2016-2025 г. c© Минко Марков

a, тоест тези, при които a не е образ на нито един елемент от X. Това не значи, че всички
останали елементи от Y са покрити, а че със сигурност a не е покрит – за останалите еле-
менти от Y не се казва нищо. Очевидно Na = (n− 1)m, защото това е броят на функциите с
домейн X и кодомейн Y \ {a}, за всяко a ∈ Y. Тъй като a взема n стойности, имаме сумата
от всички Na е n.(n− 1)m . Но разликата

nm − n(n− 1)m (29)

не е правилният отговор (освен ако m не е 1), тъй Na1 и Na2 за различни a1 ∈ Y, a2 ∈ Y не
броят функции, които са непременно различни – всяка функция, която не покрива нито a1,
нито a2, ще бъде преброена като единица веднъж от Na1 и веднъж от Na2 . Иначе казано,
(29) е по-малко от верния отговор – извадили сме прекалено много.

Нека Na,b е броят на функциите, които не покриват произволни a, b ∈ Y, a 6= b. Както
и преди, може да има и други непокрити елементи от Y; със сигурност поне a и b не са
покрити. Na,b = (n − 2)m, тъй като това е броят на функциите от X в Y \ {a, b}. Сумата от
всички такива Na,b, по всички двуелементни подмножества {a, b} ⊆ Y, е

(
n
2

)
(n− 2)m. Но

nm−n(n−1)m+

(
n

2

)
(n−2)m = (−1)0

(
n

0

)
(n−0)m+(−1)1

(
n

1

)
(n−1)m+(−1)2

(
n

2

)
(n−2)m (30)

все още не е верният отговор (освен ако m не е 2), макар че е по-близо от (29). (30) е повече
от верния отговор, тъй като с +

(
n
2

)
(n−2)m сме добавили повече, отколкото трябва, към (29).

Аналогично, Na,b,c е броят на функциите, които не покриват произволни a, b, c ∈ Y,
a 6= b 6= c 6= a. Na,b,c = (n − 3)m и сумата от всички такива Na,b,c, по всички триелементни
подмножества {a, b, c} ⊆ Y, е

(
n
3

)
(n− 3)m. Ако m е достатъчно голямо, то

(−1)0
(
n

0

)
(n− 0)m + (−1)1

(
n

1

)
(n− 1)m + (−1)2

(
n

2

)
(n− 2)m + (−1)3

(
n

3

)
(n− 3)m (31)

все още не е верният отговор, макар че е още по-близо.
Съгласно принципа на включването и изключването, верният отговор е

(−1)0
(
n

0

)
(n− 0)m + (−1)1

(
n

1

)
(n− 1)m + (−1)2

(
n

2

)
(n− 2)m + . . .+ (32)

(−1)n−1
(

n

n− 1

)
(n− (n− 1))m + (−1)n

(
n

n

)
(n− n)m

Последното събираемо е нула, което съответства на факта, че има нула функции, които не
покриват нито един елемент. Може да препишем (32) накратко така:

n∑
k=0

(−1)k
(
n

k

)
(n− k)m � (33)

Задача 59. Колко стринга с дължина n има над латинската азбука {a, b, . . . , z}, такива че
всеки символ се среща поне веднъж?

Решение. Да си представим съставянето на такъв стринг. Има n позиции, на всяка от които
трябва да се сложи точно една буква от Σ. Тогава всеки стринг с дължина n над азбука Σ
е функция с домейн множеството от позициите и кодомейн Σ†. Ограничението всяка буква

†Забележете, че е грешка да вземем като домейн Σ! В общия случай, една буква от Σ се намира на няколко
позиции в стринга, така че това изображение не би било функция.
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да се среща поне веднъж в стринга се “превежда” в терминологията на функциите така:
въпросната функция трябва да е сюрекция.

И така, решението е елементарно прилагане на формулата за броя на сюрекциите (33),
като m от (33) сега е n (мощността на домейна), а n от (33) сега е 26 (броят на буквите в
латинската азбука). Отговорът е

n∑
k=0

(−1)k
(
26

k

)
(26− k)n �

Задача 60. Нека X и Y са крайни множества и |X| = m и |Y| = n. Нека Z ⊆ Y и |Z| = p.
Колко са функциите f : X→ Y, където ∀b ∈ Z ∃a ∈ X : f(a) = b?

Решение. Тези функции са, в някакъв смисъл, “непълни сюрекции”, защото тук не се
иска целият кодомейн Y да бъде “покрит”, а само някакво негово подмножество Z. Затова и
отговорът много прилича на отговора за броя на сюрекциите.

Всички функции с домейн X и кодомейн Y са nm на брой. Да разгледаме произволен
a ∈ Z. Колко функции не го покриват? Очевидно, (n − 1)m. По колко начина можем да
изберем непокрит елемент от Z? По p =

(
p
1

)
. И така, формулата започва с

nm −

(
p

1

)
(n− 1)m

Броят на функциите, които не покриват два фиксирани елемента, да ги наречем a и b, от
Z, е (n− 2)m, а броят на начините да изберем a и b е

(
p
2

)
, така че първите три събираеми са

nm −

(
p

1

)
(n− 1)m +

(
p

2

)
(n− 2)m

Целият отговор е

nm −

(
p

1

)
(n− 1)m +

(
p

2

)
(n− 2)m − . . .+ (−1)p

(
p

p

)
(n− p)m

Накратко,
p∑
k=0

(−1)k
(
p

k

)
(n− k)m

�

Задача 61. Колко стринга с дължина n над азбуката {a, b, c, d} съдържат поне една буква
a, поне една буква b и поне една буква c?

Решение. Нека U е универсалното множество в тази задача: множеството от всички стрин-
гове с дължина n над азбуката {a, b, c, d}. Нека Sa е множеството от стринговете без буква a,
Sb е множеството от стринговете без буква b и Sc е множеството от стринговете без буква c.
Тогава Sa е множеството от стринговете с поне една буква a, Sb е множеството от стринговете
с поне една буква b и Sc е множеството от стринговете с поне една буква c. Търсим

|Sa ∩ Sb ∩ Sc|

Съгласно комбинаторния принцип на включването и изключването,

|Sa ∩ Sb ∩ Sc| = |U|− (|Sa|+ |Sb|+ |Sc|) + (|Sa ∩ Sb|+ |Sa ∩ Sc|+ |Sb ∩ Sc|) − |Sa ∩ Sb ∩ Sc|
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Очевидно |U| = 4n. Да намерим |Sa|. Но Sa е множеството от стрингове с дължина n над
азбуката {b, c, d}, така че |Sa| = 3

n. Аналогично, |Sb| = 3n и |Sc| = 3
n.

Да намерим |Sa ∩ Sb|. Но Sa ∩ Sb е множеството от стрингове с дължина n над азбуката
{c, d}, така че |Sa ∩ Sb| = 2n. Аналогично, |Sa ∩ Sc| = 2n и |Sb ∩ Sc| = 2n.

Да намерим |Sa ∩ Sb ∩ Sc|. Но Sa ∩ Sb ∩ Sc е множеството от стринговете с дължина
n над азбуката {d}. Има точно един такъв стринг, а именно dd . . . d с дължина n. Тогава
|Sa ∩ Sb ∩ Sc| = 1.

Отговорът е

|Sa ∩ Sb ∩ Sc| = 4n − 3 · 3n + 3 · 2n − 1 = 4n − 3n+1 + 3 · 2n − 1 �

Задача 62. Нека Σ е стандартната латинска азбука {a, b, . . . , z}. Знаем, че |Σ| = 26. Нека Σ6
е множеството от стринговете над Σ с дължина точно 6. Нека S е следното множество

S =
{
x ∈ Σ6 |∀α ∈ Σ(не е вярно, че x съдържа точно две появи на α)

}
Намерете

∣∣S∣∣.
Решение. Очевидно |Σ6| = 266. Но Σ6 съдържа стрингове-нарушители: а именно тези, в
които поне една буква се среща точно два пъти. Трябва да “махнем” стринговете-нарушители
от Σ6, за да останат точно стринговете от S. Това “махане” ще направим съгласно принципа
на включването и изключването.

За всяка буква α ∈ Σ, с Aα ще означаваме множеството от стринговете от Σ6, които имат
точно две появи на буквата α. Очевидно∣∣S∣∣ = ∣∣{Aa ∩ Ab ∩ · · · ∩ Az}

∣∣
Съгласно принципа на включването и изключването,∣∣{Aa ∩ Ab ∩ · · · ∩ Az}

∣∣ = |Σ6|−
∑
α∈Σ

|Aα|+
∑

α,β∈Σ,α<β

|Aα ∩ Aβ|

−
∑

α,β,γ∈Σ,α<β<γ

|Aα ∩ Aβ ∩ Aγ|

Няма смисъл да разглеждаме повече събираеми във формулата за включването и изключ-
ването, понеже не може да има повече от три букви-нарушители в стринг с дължина 6.

Както видяхме, |Σ6| = 266. За да намерим |Aα| за фиксирана буква α, да съобразим, че този
брой е произведението от възможните две позиции за буквата-нарушител α и 254, защото на
останалите четири позиции α не може да се среща. Възможните две позиции са

(
6
2

)
на брой,

откъдето |Aα| =
(
6
2

)
254 за фиксирана α. Има точно 26 възможности за α, откъдето имаме∑

α∈Σ |Aα| = 26
(
6
2

)
254.

Аналогично, |Aα ∩Aβ| за фиксирани (различни) букви α и β е
(
6
2

)(
4
2

)
244, откъдето имаме∑

α,β∈Σ,α<β |Aα ∩ Aβ| =
(
26
2

)(
6
2

)(
4
2

)
242.

И накрая,
∑

α,β,γ∈Σ,α<β<γ |Aα ∩ Aβ ∩ Aγ| =
(
26
3

)(
6
2

)(
4
2

)(
2
2

)
220.

В крайна сметка,

∣∣S∣∣ = 266 − 26(6
2

)
254 +

(
26

2

)(
6

2

)(
4

2

)
242 −

(
26

3

)(
6

2

)(
4

2

)(
2

2

)
220 = 173 186 026 �
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Задача 63. Азбуката е множеството {А,Б, . . . ,Я} от 30 букви. Колко стринга с дължина 60
има над азбуката, в които всяка буква се появява точно два пъти? Колко стринга с дължина
60 има над азбуката, в които всяка буква се появява точно два пъти и няма две съседни
еднакви букви?

Решение. Отговорът на първия въпрос е лесен, понеже става дума за пермутации с пов-
торения:

60!

230
= 77495231411805284621904987685599963932802645548817198280704×1014 ≈ 1072 (34)

Да помислим върху втория въпрос. От (34) трябва да извадим броя на стринговете, в които
има съседни еднакви букви. Това ще направим съгласно принципа на вкючването и изключ-
ването. За всяка буква Z ∈ {А,Б, . . . ,Я}, нека AZ е множеството от стринговете с дължина
60 и точно две букви от всеки вид, в които буквата Z е “нарушител”, тоест двете букви от
този вид са една до друга. Нека Z1, . . . , Zk са k различни букви от азбуката за някое k ∈ {1

, . . . , 30}. Твърдим, че

|AZ1
∩AZ2

∩ · · · ∩AZk
| =

(
60− k

k

)
k!
(60− 2k)!

230−k
(35)

Да досажем това. Тези k букви-нарушители се явяват по двойки една до друга и можем да
мислим за тях като за k блокчета, всяко с големина 2. Да си представим, че първо ще сложим
блокчетата, а после ще запълним по всевъзможните начини останалите свободни позиции с
останалите букви.

Да обосновем множителя
(
60−k
k

)
. Ако k е 1, то има 59 =

(
60−1
1

)
позиции за блокчето. Ако

k е 2, то възможните места за слагане на двете блокчета, така че да не се “настъпват”, са(
60−2
2

)
=
(
58
2

)
на брой. И изобщо,

(
60−k
k

)
е броят на местата, k на брой, на които може да бъдат

сложени k блокчета, които не се настъпват.
Множителят k! отразява различните начини да сложим блокчетата на заделените вече

места.
Щом сложим k блокчета, ние сме сложили 2k букви и остават още 60 − 2k букви за

слагане на свободните места. Тези останали 60− 2k букви също са две по две еднакви, така
че броят начини да бъдат сложени е (60−2k)!

230−k : използаме същото основание, като в (34).
След като сме се убедили, че (35) е вярно, да приложим принципа на включването и

изключването. Търсеният отговор е:

60!

230
−

30∑
k=1

(−1)k
(
30

k

)(
60− k

k

)
k!
(60− 2k)!

230−k
=

30∑
k=0

(−1)k
(
30

k

)(
60− k

k

)
k!
(60− 2k)!

230−k
=

282683580066349753950579469325679829880666076183039068896488849408× 107 ≈ 1072

Има и по-просто решение. Пак е с принципа на включването и изключването, но се раз-
съждава така. За k = 0 . . . 30, разглеждаме възможността k букви да са нарушители, тоест
сдвоени в блокчета. Множителят (−1)k е ясен. Множителят

(
30
k

)
, също. Щом изберем кои

букви са в блокчета, все едно имаме 60 − k елемента да разположим в редица: k блокчета
и още 60 − 2k букви. Всяко блокче е уникално, всяка от останалите букви си има двойник;
тези двойки трябва да се отчитат. 30−k е броят на видовете букви извън блокчетата. Оттам
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и знаменателят 230−k. Общо имаме (60−k)!
230−k начина да сложим блокчетата и останалите букви

в редица. Решението е

30∑
k=0

(−1)k
(
30

k

)
(60− k)!

230−k

Тривиално е да се покаже, че

(−1)k
(
30

k

)(
60− k

k

)
k!
(60− 2k)!

230−k
= (−1)k

(
30

k

)
(60− k)!

230−k
�

Задача 64. Колко пермутации на числата от {1, 2, . . . , n} има, в които нито един елемент
не си е на мястото? Числото i си е на мястото, ако се намира на i-та позиция, например в
пермутацията 2 1 3 5 6 4, числото 3 си е на мястото и никое друго число не си е на мястото.
Намерете решение чрез принципа на включването и изключването и изследвайте границата
на отношението между това решение и n! (броят на всички пермутации), когато n нараства
неограничено. Какъв извод следва за броя на пермутациите на {1, 2, . . . , n}, в които нито един
елемент не си е на мястото?

Решение. Броят на пермутациите без ограничения е n!. Ще извадим от n! броя на пер-
мутациите, в които поне един елемент си е на мястото. Това ще правим поетапно, съгласно
принципа на включване и изключване.

Пермутациите, в които даден елемент е на мястото си и няма други ограничения, са
(n − 1)! на брой. За всеки друг фиксиран елемент, аналогично, има (n − 1)! пермутации, в
които той си е на мястото и няма други ограничения. Тъй като има n елемента, от които
да фиксираме елемент на позиция, и за всеки елемент имаме (n − 1)! пермутации, сумата
от последните е n.(n − 1)!. Естествено, n(n − 1)! = n! не е правилният отговор за броя на
пермутациите, в които поне един елемент си е на мястото, тъй като брои някои пермутации
повече от един път. С други думи, разликата

n! − n(n− 1)!

е по-малка от верния отговор (освен ако n не е 1: наистина, при n = 1 отговорът е 0).
Съгласно принципа на включване и изключване добавяме броя на пермутациите, в които
два елемента са си на местата и няма други ограничения. Тези два елемента можем да
изберем по

(
n
2

)
начина, за всеки избор имаме (n− 2)! пермутации. Но сумата

n! − n(n− 1)! +

(
n

2

)
(n− 2)!

е по-голяма от верния отговор (освен ако n не е 2), така че продължаваме аналогично, по
принципа на включването и изключването:

n! − n(n− 1)! +

(
n

2

)
(n− 2)! + . . .+ (−1)n−1n(n− (n− 1))! + (−1)n(n− n)! =

(−1)0
(
n

0

)
(n− 0)! + (−1)1

(
n

1

)
(n− 1)! + (−1)2

(
n

2

)
(n− 2)! + . . .

. . .+ (−1)n−1
(

n

n− 1

)
(n− (n− 1))! + (−1)n

(
n

n

)
(n− n)! =

n∑
k=0

(−1)k
(
n

k

)
(n− k)!
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Това е отговорът.

Сега да изследваме границата на отношението между тази функция на n и n!, когато n
нараства неограничено:

lim
n→∞

∑n
k=0(−1)

k
(
n
k

)
(n− k)!

n!
= lim

n→∞
∑n

k=0(−1)
k n!
k!(n−k)!

(n− k)!

n!
=

lim
n→∞

n! ·
∑n

k=0(−1)
k 1
k!(n−k)!

(n− k)!

n!
= lim

n→∞
n∑
k=0

(−1)k

k!
(36)

Добре известно е, че този степенен ред

∞∑
k=0

xk

k!

е сходим за всяко реално x и сумата му е ex. Тогава

lim
n→∞

n∑
k=0

(−1)k

k!
=
1

e
≈ 0.37

Изводът е, че за всички достатъчно големи n, броят на пермутациите на {1, 2, . . . , n}, в които
нито едно число не си е на мястото, е повече от 1

3
от всички пермутации. �

Задача 65. За колко пермутации на числата 1, 2, . . . , 100 е вярно, че нито едно четно число
k не е на k-та позиция?

Решение. Ще решим задачата с метода на включването и изключването. Универсумът U
е множеството от всички пермутации на числата 1, 2, . . . , 100. Очевидно |U| = 100!.

Нека E е множеството от четните естествени положителни числа, не по-големи от 100. С
други думи, E = {2, 4, 6, . . . , 98, 100}. За всяко Y ⊆ E , дефинираме XY като множеството от
тези пермутации, в които всяко k ∈ Y е фиксирано на позиция k. Примерно,

• X∅ = U, понеже нищо не е фиксирано,

• X{2,10} са пермутациите, в които 2 е на втора позиция и 10 е на десета позиция,

• и така нататък.

Ние търсим∣∣∣∣∣⋂
k∈E

X{k}

∣∣∣∣∣
От принципа на включването и изключването, записан много компактно и униформно, има-
ме: ∣∣∣∣∣⋂

k∈E

X{k}

∣∣∣∣∣ =∑
Y⊆E

(−1)|Y||XY |
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Ключовото наблюдение е, че |XY | = (100 − |Y|)!, понеже фиксираме |Y| на брой елементи
по местата им, а останалите разполагаме по всички възможни начини на незаетите места.
Тогава∣∣∣∣∣⋂

k∈E

X{k}

∣∣∣∣∣ =∑
Y⊆E

(−1)|Y|(100− |Y|)!

Дясната страна е сума с 250 събираеми, защото е по всички подмножества на петдесете-
лементното множество E . Тези събираеми можем да групираме в 51 групи по |Y|, където
|Y| ∈ {0, 1, 2, . . . , 49, 50}. Във всяка такава група, всички събираеми имат една и съща стой-
ност, а на брой те (събираемите от една група) са

(
50
|Y|

)
. И така,∣∣∣∣∣⋂

k∈E

X{k}

∣∣∣∣∣ = ∑
0≤j≤50

(−1)j
(
50

j

)
(100− j)!

Това е и отговорът. Численият отговор, който не се иска, е

5653378582651796809160416679142784032669107826587248581076395765

6914211681291077403950004365134195570851173310787907740475875411

902952497701978112000000000000 ≈ 10158 �

Задача 66. Колко пермутации на числата от {1, 2, . . . , n} има, в които точно m числа са си
на мястото, ако:

• тези m числа са фиксирани,

• тези m числа не са фиксирани.

Приемете, че 0 ≤ m ≤ n.

Решение. Ако тези m числа са фиксирани предварително и са си по местата, то трябва
нито едно от останалите n − m числа да не си е на мястото. Следователно, задачата се
свежда до това, колко са пермутациите на числата от {1, 2, . . . , n} има, в които измежду
n−m предварително определени числа, нито едно не си е на мястото. Съгласно решението
на Задача 64 (заместваме n с n−m), броят на тези пермутации е:

n−m∑
k=0

(−1)k
(
n−m

k

)
(n−m− k)! (37)

Ако обаче тези m числа не са фиксирани предварително, ние можем да ги изберем от
всичките n числа по

(
n
m

)
начина. Но множеството от всички пермутации, в които точно

m числа са си на мястото, като тези m числа не са предварително фиксирани, се разби-
ва на

(
n
m

)
подмножества съгласно това, кое е подмножеството от числата, които са си на

мястото. За всяко избиране на числата, които са си на мястото, въпросните пермутации са∑n−m
k=0 (−1)

k
(
n−m
k

)
(n−m− k)! съгласно (37). Освен това, за всеки две избирания на m числа,

които са си на мястото, броят на въпросните пермутации е един и същи. Тогава отговорът е:(
n

m

) n−m∑
k=0

(−1)k
(
n−m

k

)
(n−m− k)! �
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Задача 67. Дадени са n човека h1, . . . , hn. В някакъв начален момент те са подредени
в редица един след друг по номерата, а именно редицата започва с h1, следва h2, следва
h3, и така нататък, в края е hn. По колко начина можем да пренаредим тези хора при
ограничението никой човек да не се намира непосредствено преди човека, преди когото е
бил в началния момент?

Примерно, ако n = 3, то първоначалната редица е h1 h2 h3. Ако пренаредим хората
така h2 h1 h3, то сме спазили ограничението. От друга страна, ако пренаредим хората така
h2 h3 h1, то не сме спазили ограничението, понеже сега h2 е непосредствено преди h3 също
като в началото.

Решение. Иска се да намерим формула за броя на пермутациите на {1, 2, . . . , n}, в които
не се среща нито една от двойките 12, 23, . . . , (n− 1)n като съседни числа. Да кажем,
че това са “забранените двойки”. Те са n− 1 на брой.

Нека U е множеството от всички пермутации на {1, 2, . . . , n}. Това е универсумът в тази
задача. Знаем, че |U| = n!.

За 1 ≤ i ≤ n − 1. нека Si са тези елементи на U, в които се среща двойката i(i + 1)
като съседни числа. Търсим |S1 ∩ S2 ∩ · · · ∩ Sn−1|. Съгласно принципа на включването и
изключването,

|S1 ∩ S2 ∩ · · · ∩ Sn−1| = |U|−
∑

1≤i≤n−1

|Si|+
∑

1≤i<j≤n−1

|Si ∩ Sj|− · · ·+ (−1)n−1|S1 ∩ · · · ∩ Sn−1|

Лесно се вижда, че |Si| = (n− 1)! за 1 ≤ i ≤ n− 1, понеже гледаме на 12 като на “блокче”
и броим пермутациите на n − 1 елемента, а именно блокчето и още n − 2 числа. Тогава∑

1≤i≤n−1 |Si| = (n− 1)(n− 1)!, което може да запишем като
∑

1≤i≤n−1 |Si| =
(
n−1
1

)
(n− 1)!.

Твърдим, че |Si ∩ Sj| = (n − 2)! за 1 ≤ i < j ≤ n. Наистина, ако i = j − 1, то имаме едно
блокче от три последователни числа, примерно 123, и останалите n− 3 числа, така че броим
пермутациите на 1+n−3 = n−2 елемента. А ако i < j−1, имаме едно блокче, примерно 12,
друго блокче, което няма общи числа с първото, примерно 34, и още n−4 числа, така че пак
броим пермутациите на 1+ 1+n− 4 = n− 2 числа. Тогава

∑
1≤i<j≤n−1 |Si∩Sj| =

(
n−1
2

)
(n− 2)!,

понеже забранените конфигурации са n− 1 и избираме две от тях.
Можем да обобщим така. За k ∈ {1, . . . , n− 1}, в сила е

|Si1 ∩ Si2 ∩ · · · ∩ Sik | = (n− k)!

независимо от това кои k на брой забранени конфигурации са избрани. Тогава∑
1≤i1<i2<···<ik≤n−1

|Si1 ∩ Si2 ∩ · · · ∩ Sik | =
(
n− 1

k

)
(n− k)!

Решението е

|S1 ∩ S2 ∩ · · · ∩ Sn−1| =
n−1∑
k=0

(−1)k
(
n− 1

k

)
(n− k)! �

Условието на Задача 68 на пръв поглед говори за правоъгълна мрежа – понятие, дефинирано
преди Задача 46. Ако си нарисуваме малък пример за правоъгълна мрежа като в Задача 46
и малък пример на покрития с квадрати правоъгълник от Задача 68, те ще изглеждат ана-
логични. Обаче в правоъгълната мрежа от Задача 46 важни са отсечките между квадратите,
защото придвижването става по тях. Докато тук са важни самите квадрати.
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Задача 68. Правоъгълник с размери m × n е покрит с квадрати 1 × 1, така че всеки два
различни квадрата или имат празно сечение, или обща страна, но никога обща вътрешна
точка. Тези квадрати образуват m реда и n колони. По колко начина може да се оцветят
квадратите в k цвята

a) без ограничения;

б) с единственото ограничение, че във всеки ред няма съседни квадратчета с еднакъв
цвят;

в) с единственото ограничение, че във всеки ред е използван всеки от цветовете.

Решение.

а) Всяко оцветяване е функция от множеството на квадратчетата в множеството от цве-
товете. Има общо mn квадратчета и k цвята. Прилагаме формулата за броя на функциите
без ограничения (Задача 56) и получаваме kmn.

б) Оцветяването на произволен ред е независимо от оцветяванията на другите редове.
Следователно, ако N е броят на начините да бъде оцветен произволен ред, отговорът Nm по
принципа на умножението.

Да разгледаме оцветяването на ред i, където i е някое число, такова че 1 ≤ i ≤ m. Да
разгледаме кое да е квадратче в ред i, например квадратче (i, 1). За него имаме k възмож-
ности за оцветяване заради наличието на k възможни цвята. За съседното му квадратче
(i, 2) имаме k− 1 възможности поради ограничението да не се използват еднакви цветове на
съседни квадратчета. Аналогично, за квадратчета (i, 3), (i, 4), . . . , (i, n) имаме k−1 възмож-
ности. Като цяло, за ред i възможните различни оцветявания са k(k− 1)n−1. Следователно,
N = k(k− 1)n−1 и отговорът е km(k− 1)m(n−1).

в) Оцветяването на произволен ред е независимо от оцветяванията на другите редове.
Следователно, ако N(k, n) е броят на начините да бъде оцветен произволен ред, отговорът
(N(k, n))m по принципа на умножението. N(k, n) може да се получи веднага от формулата
за броя на сюрекциите, но тук ще го изведем от основните принципи.

Да разгледаме оцветяването на ред 1. Нека U е множеството на всички възможни оцветява-
ния на ред 1 с k цвята без ограничения. Очевидно |U| = kn.

Нека Sj е множеството от възможните оцветяванията на ред 1, в които цвят j не се използва,
за всички j, такива че 1 ≤ j ≤ k. Може да има и други цветове, които не се използват, но
цвят j не се използва със сигурност.

Нека Sj1,j2 е множеството от възможните оцветяванията на ред 1, в които цветове j1 и j2 не се
използват, за всички j1 и j2, такива че 1 ≤ j1 < j2 ≤ k. Може да има и други цветове, които
не се използват, но цветове j1 и j2 не се използват със сигурност.

Да направим следната дефиниция, която се явява обобщение на предните две за произволен
брой цветове.

Определение 1. За всички цели положителни числа j1, j2, . . . , jt, такива че 1 ≤ j1 <

j2 < . . . < jt ≤ k, дефинираме, че Sj1,j2,...,jt е множеството от възможните оцветявания на
ред 1, в които цветове j1, j2, . . . , jt не се използват. Може да има и други цветове, които
не се използват, но цветове j1, j2, . . . , jt не се използва със сигурност.
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По принципа на включването и изключването,

N(k, n) = |U|

−
∑
1≤j1≤k

|Sj1 |︸ ︷︷ ︸
поне един цвят не се използва

+
∑

1≤j1<j2≤k

|Sj1 ∩ Sj2 |︸ ︷︷ ︸
поне два цвята не се използват

−
∑

1≤j1<j2<j3≤k

|Sj1 ∩ Sj2 ∩ Sj3 |︸ ︷︷ ︸
поне три цвята не се използват

. . .

+ (−1)t
∑

1≤j1<j2<...<jt≤k

|Sj1 ∩ Sj2 ∩ . . . ∩ Sjt |︸ ︷︷ ︸
поне t цвята не се използват

. . .

+ (−1)k−1
∑

1≤j1<j2<...<jk−1≤k

|Sj1 ∩ Sj2 ∩ . . . ∩ Sjk−1
|︸ ︷︷ ︸

поне k−1 цвята не се използват, тоест използва се само 1 цвят

+ (−1)k |Sj1 ∩ Sj2 ∩ . . . ∩ Sjk |︸ ︷︷ ︸
k цвята не се използват, тоест няма оцветяване изобщо; това трябва да е 0.

Твърдим, че за всяко t, такова че 1 ≤ t ≤ k,

|Sj1 ∩ Sj2 ∩ . . . ∩ Sjt | =
(
k

t

)
(k− t)n (38)

Това е така, защото за да определим начините да се оцвети ред i, така че t цвята да не се
ползват, е достатъчно да намерим броя на начините да се подберат t цвята от k—този брой
е
(
k
t

)
—и броят начини да се оцвети реда с останалите k− t цвята—този брой е (k− t)n. Израз

(38) следва веднага по принципа на умножението.

Тогава

N(k, n) = kn −

k∑
t=1

(−1)t
(
k

t

)
(k− t)n =

k∑
t=0

(−1)t
(
k

t

)
(k− t)n

Можем да го запишем и като

k−1∑
t=0

(−1)t
(
k

t

)
(k− t)n

тъй като (−1)k
(
k
k

)
(k− k)n = 0. �

Задача 69 използва означенията Jn и In. Да си припомним, че Jn = {0, 1, . . . , n−1} и In = {1, 2
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, . . . , n}. Тогава

Jkn = Jn × Jn × · · · × Jn︸ ︷︷ ︸
k множителя

Ikn = In × In × · · · × In︸ ︷︷ ︸
k множителя

Задача 69. Колко двадесетцифрени десетични числа можем да запишем

а) без ограничения;

б) с деветте цифри 1, 2, 3, 4, 5, 6, 7, 8, 9, така че всяка да се среща поне един път;

в) с деветте цифри 0, 2, 3, 4, 5, 6, 7, 8, 9, така че всяка да се среща поне един път;

г) с десетте цифри, така че всяка цифра да се среща точно два пъти.

В запис на число не се допускат водещи нули, освен ако то не е нула.

Решение.

а) Числото трябва да има точно двадесет цифри. Отговорът е, по принципа на декартовото
произведение, 9× 1019, тъй като множеството от записите на числата е I9 × J1910.

б) Тъй като нулата не участва, задачата е същата като задачата, колко са сюрекциите с 20
елементен домейн и 9 елементен кодомейн. Отговорът е (вижте Задача 58):

9∑
k=0

(−1)k
(
9

k

)
(9− k)20 = 4 358 654 246 117 808 000

по принципа на включването и изключването.

в) Можем да решим това подусловие с директно заместване в решението на Задача 60, но
нека да решим подусловието от първи принципи. Има 8 възможности за водещата цифра,
понеже нулата не може да е водеща. След като веднъж изберем водещата цифра, вече не
е задължително, въпреки че остава възможно, тя да се появи на останалите 19 позиции.
Следователно, търсим броя на функциите с 19 елементен домейн от позициите, да го наречем
X и 9 елементен кодомейн от цифрите, да го наречем Y, такива че 8 дадени елемента от
домейна да бъдат задължително изображения. Разсъжденията са пак с метода на включване
и изключване. Универсумът има мощност 919 – толкова са всички тотални функции f : X→ Y.
За всеки от задължителните 8 елемента, функциите, които не го “покриват”, са (9 − 1)19.
Разликата

919 − 8 · (9− 1)19

обаче е по-малка от верния отговор, защото вади някои функции по повече от един път.
Продължаваме с разсъжденията съгласно принципа на включването и изключването: за
всяка двойка от задължителните 8 елемента, а има

(
8
2

)
такива двойки, функциите, които не

покриват тези елементи, са (9− 2)19, и така нататък. Получаваме

919 − 8 · (9− 1)19 +
(
8

2

)
(9− 2)19 −

(
8

3

)
(9− 3)19 + . . .−

(
8

7

)
(9− 7)19 +

(
8

8

)
(9− 8)19
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или накратко

8∑
k=0

(−1)k
(
8

k

)
(9− k)19

което е 484 294 916 235 312 000. Съобразяваме, че това е само за една от осемте възможни воде-
щи цифри, и получаваме крайния отговор 8×484 294 916 235 312 000 = 3 874 359 329 882 496 000.

г) Водещата цифра е коя да е, различна от нулата. За всяка от тези 9 възможности имаме 19
позиции, на които поставяме една цифра от вида, който сложихме в началото, и още девет
двойки цифри. Отговорът се получава като произведение от 9 и мултиномен коефициент:

9× 19!

1!× 2!× 2!× · · · × 2!︸ ︷︷ ︸
9 пъти

= 2 138 292 780 624 000 �

Задача 70. По колко начина могат да седнат около кръгла маса с номерирани столове хората
от n на брой съпружески двойки (очевидно става дума за 2n души), така че съпрузите от
нито една двойка да не седят на съседни столове?

Решение. Нека двойките са c1, c2, . . . , cn. Нека U е универсумът в тази задача, а именно,
множеството от всички възможни сядания на тези 2n души около масата без ограничения.
За 1 ≤ i ≤ n, нека Si означава множеството от всички възможни сядания, в които съпрузите
от ci седят непозволено, тоест един до друг. Търсеният отговор е |S1 ∩ S2 ∩ . . . ∩ Sn|. По
принципа на включването и изключването,

|S1 ∩ S2 ∩ . . . ∩ Sn| = |U|

−
∑
1≤i≤n

|Si|

+
∑

1≤i<j≤n

|Si ∩ Sj|

− . . .

+ (−1)n|S1 ∩ S2 ∩ . . . ∩ Sn|

Лесно се вижда, че |U| = (2n)!, тъй като толкова са начините, 2n човека да седнат на 2n
различими (номерирани) места без никакви ограничения.

Ще докажем, че ∀k ∈ {1, . . . , n},∑
1≤i1<i2<···<ik≤n

|Si1 ∩ Si2 ∩ . . . ∩ Sik | =
(
n

k

)
× 2n× (2n− k− 1)!× 2k (39)

Доказателството на (39) не е сложно, но с цел по-добра интуиция нека първо видим пример.

Нека n = 4. Говорим за осем човека в четири съпружески двойки c1 = (w1,m1),
c2 = (w2,m2), c3 = (w3,m3) и c4 = (w4,m4). Начините тези осем човека да седнат
без ограничения върху осем номерирани столове, наредени в кръг, е 8! = 40 320.
Както виждате, кръговата наредба тук е без значение: ако столовете бяха наре-
дени линейно, пак броят щеше да е 40 320 при липса на ограничения.

Сега разглеждаме забранени сядания. В колко различни сядания w1 и m1 седят
един до друг? Може да мислим за тях двамата като за едно блокче w1m1 . Има
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два начина за разполагането им в блокчето, но да оставим това съображение за
по-късно. В момента разсъждаваме за това, че има 7 елемента за разполагане:
блокчето и шестте останали хора. Блокчето може да се сложи по 8 различни
начина (номерата са номерираните столове):

1

6

7

8

1

6

7

8

1

6

7

8

1

6

7

8

1

6

7

8

1

6

7

8

1

6

7

8

1

6

7

8

2

3

5

5

2

3

4

5

2

3

4

5

2

3

4

5

2

3

4

5

2

3

4

5

2

3

4

5

2

3

4

5

За всяко слагане на блокчето, шестте останали човека може да седнат на шестте
останали стола по 6! = 720 начина. Съгласно принципа на умножението, броят на
сяданията, в които w1 и m1 са върху съседни столове, е 8× 720 = 5 760.

Една странична забележка. Ако наредбата беше линейна, а не кръгова, този брой
щеше да бъде по-малък. А именно, 7! = 5 040. Причината е, че тогава щяхме да
броим линейните наредби на седем обекта (блокчето и шестте останали). Следо-
вателно, когато разсъжденията включват забранени двойки, това, че наредбата е
кръгова, вече има значение. Когато разсъждавахме на ниво индивиди, броят
беше 8! = 40 320 без оглед на това, дали наредбата е кръгова или линейна. Клю-
човото наблюдение е, че в кръговата наредба, блокчето може да обхваща столове
(а именно, 1 и 8), които не може да обхваща в линейната наредба. Може дори да
обобщим, че за блокче с дължина t ≤ n, в линейната наредба има n−t+1 начина
да сложим блокчето, докато в кръговата наредба начините винаги са n. Край на
страничната забележка.

Сега да разсъждаваме за две съпружески двойки, седнали по забранен начин. Да
си представим, че първо сядат w1 и m1 един до друг и правят блокче, а после
w2 и m2 един до друг и правят блокче. За първото блокче възможностите са 8,
както вече видяхме. За второто блокче възможностите са 5, и това е за всяко
разполагане на първото блокче. Защо не са 6? Защото първото блокче “разкъсва”
кръговата наредба; за второто блокче има шест стола, но те са линейно, а не
кръгово, разположени, поради което начините да бъде сложено са 5. Ето:
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Дотук имаме 8×5 = 40 възможности. За останалите четири човека възможностите
са 4! = 24, независимо от това как са седнали двете двойки преди това. Като цяло,
забранените сядания на две двойки са 8× 5× 4! = 960.

Сега да разсъждаваме за три съпружески двойки, седнали по забранен начин. Да
си представим, че първо сядат w1 и m1 като блокче. Да кажем, че това е първото
блокче. Видяхме, че има 8 начина за разполагане на първото блокче. После w2
и m2 сядат като блокче. Да кажем, че това е второто блокче. Видяхме, че има 5
начина за разполагане на второто блокче по отношение на кое да е разполагане на
първото блокче. Разсъждаваме за w3 и m3. Сядайки един до друг, те формират
третото блокче. Интересно наблюдение е, че броят на начините за разполагане на
третото блокче зависи от това, как са разположени първите две блокчета. Ето:
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За всяко разполагане на третото блокче, броят на сяданията на останалите хора
(те са само двама) е 2!. Следователно, по отношение на едно фиксирано разпо-
лагане на първото блокче (най-горе на фигурата), начините за разполагане на
второто и третото блокче се броят от сумата

3× 2! // случай ¬

+ 2× 2! // случай ­

+ 2× 2! // случай ®

+ 2× 2! // случай ¯

+ 3× 2! // случай °

Ако отчитаме и всички възможни разполагания на първото блокче, броят за трите
блокчета е

8× (3+ 2+ 2+ 2+ 3)× 2! = 8× 12× 2 = 192 (40)

На пръв поглед решението става много сложно: при три блокчета броят на разпо-
лаганията (на блокчетата) не се получава с принципа на умножението, а с прин-
ципа на събирането, и оттук за четири, пет и така нататък блокчета решението
става “разклонено” и ужасно сложно.

Но това е само ако разсъждаваме за последователно разполагане на блокчетата:
първото, после второто, после третото и така нататък. Може да мислим иначе.
Първо слагаме първото блокче и за това имаме 8 възможности. След това забе-
лязваме, че първото блокче, където и да се намира, “срязва” кръговата наредба,
така че останалите 6 стола са наредени линейно. Върху тези линейно наредени
столове слагаме обекти от два вида: блокчета и индивиди. Броят на разполага-
нията е x!, където x е общият брой на обектите, като това е по отношение на
едно фиксирано разполагане на първото блокче. Ако отчитаме всички възможни
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разполагания на първото блокче, броят става 8 × x!. Примерно, ако блокчетата
са общо три, за всяко слагане на първото блокче имаме да сложим 2 блокчета
и още 2 индивида в линейна наредба; очевидно x = 4, така че общият брой на
разполаганията е

8× 4! = 192 (41)

И така, двете разсъждения водят до еднакъв резултат; (40) и (41) дават 192 като
числен отговор.

Да разгледаме общия случай, в който има n съпружески двойки за достатъчно
големи n и да видим по колко начина може да сложим три забранени двойки;
тоест, три блокчета. Очевидно индивидите извън блокчетата са 2n− 6 на брой.

• Ако разсъждаваме с последователно слагане, за първото блокче имаме 2n
начина и после имаме следното.
– Ако второто е долепено до първото отдясно, то за третото има 2n − 5

начина, оттук (2n− 5)× (2n− 6)! начина общо.
– Ако второто е долепено до първото отляво, то за третото има 2n − 5

начина, оттук (2n− 5)× (2n− 6)! начина общо.
– Ако второто е през едно от първото отдясно, то за третото има 2n − 6

начина, оттук (2n− 6)× (2n− 6)! начина общо.
– Ако второто е през едно от първото отляво, то за третото има 2n − 6

начина, оттук (2n− 6)× (2n− 6)! начина общо.
– Да разгледаме оставащия случай: второто блокче е на поне два стола

от първото блокче от всяка страна. Има точно 2n − 7 възможности за
слагането на второто блокче по този начин. За всяка позиция на второто
блокче, между него и първото блокче от едната страна има k стола, а
от другата страна има 2n − k − 4 стола, където k ≥ 2 и 2n − k − 4 ≥ 2,
тоест, 2 ≤ k ≤ 2n − 6. Тогава третото блокче може да се сложи или на
k− 1 позиции от едната страна на второто, или на 2n− k− 5 позиции от
другата страна на второто, което прави общо 2n− 6 позиции за третото
блокче. Оттук има (2n−6)×(2n−6)! начина общо по отношение на едно
фиксирано разполагане на второто блокче. Оттук има (2n − 7) × (2n −
6)× (2n− 6)! начина за второто и третото блокче.

Сумираме по всички тези възможности и получаваме

2n
(
2(2n− 5)(2n− 6)! + 2(2n− 6)(2n− 6)! + (2n− 7)(2n− 6)(2n− 6)!

)
=

2n
((
2(2n− 5) + 2(2n− 6) + (2n− 7)(2n− 6)

)
(2n− 6)!

)
=

2n
((
4n− 10+ 4n− 12+ 4n2 − 26n+ 42

)
(2n− 6)!

)
=

2n
(
(4n2 − 18n+ 20)(2n− 6)!

)
=

2n
(
(2n− 4)(2n− 5)(2n− 6)!

)
=

2n(2n− 4)! (42)

• Ако разсъждаваме по другия начин, за първото блокче има 2n начина, а
след това разполагаме в линейна наредба 2 обекта-блокчета и още 2n − 6
обекта-индивиди, тоест, общо 2n− 4 обекта. Броят на начините очевидно е

2n(2n− 4)! (43)
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Еднаквият резултат в (42) и (43) е напълно очакван, защото броят на разпола-
ганията не зависи от разсъжденията, с които достигаме до него, стига те да са
коректни; разлика в резултатите би означавала грешка от наша страна. Но ре-
зултатът в (42) бе изведен с принципа на разбиването, със значителни усилия,
а и не е очевидно как се обобщава този резултат за k блокчета. Докато резул-
татът в (43) бе изведен на един ред с принципа на умножението и обобщението
му за k ≥ 2 блокчета е елементарно: 2n начина за първото блокче и след то-
ва имаме да наредим линейно k − 1 обекта от един вид (останалите блокчета) и
2n − 2 − 2(k − 1) = 2n − 2k обекта от друг вид; това са общо 2n − k − 1 обекта;
броят на разполаганията е 2n(2n− k− 1)!. Забележете, че при n = 4 и k = 3 това
става 8× 4!, точно колкото е (41).

В заключение да отбележим, че не всички коректни изводи са еднакви. При ня-
кои разсъждения желаният извод се достига много трудно и с голяма вероятност
за грешка в процеса на извеждането, при други разсъждения желаният извод се
достига веднага с практическа невъзможност за допускане на грешка. В текуща-
та задача, правилният начин да се разсъждава е първо да бъде настанена една
двойка по забранен начин, което разкъсва кръговата наредба, и после да се мис-
ли колко забранени двойки и индивиди остават и по колко начина можем да се
сложат в линейна наредба. А грешният начин е да слагаме двойките една след
друга и да се чудим колко възможности има за всяка следваща.

Сумата
∑

1≤i1<i2<···<ik≤n |Si1∩Si2∩. . .∩Sik | е равна на броя на начините k двойки да са седнали
непозволено, по всички възможни начини да бъдат подбрани k двойки от {c1, c2, . . . , cn}.
Имаме следните четири независими съображения.

• По
(
n

k

)
начина можем да подберем k двойки от общо n.

• По 2n начина можем да изберем два стола за първата двойка от тези k двойки.

• По (2n − k − 1)! начина можем да разположим останалите хора. Останалите хора сe
разбиват на тези в оставащите k− 1 двойки, седнали непозволено, и индивидите извън
двойките. Гледаме на тези k − 1 двойки като на блокчета, а всеки човек, който не е в
някое блокче, е самостоятелен обект. Общо обектите са на брой

2n− 2︸ ︷︷ ︸
толкова са хората за настаняване след сядането на първата двойка

− 2(k− 1)︸ ︷︷ ︸
от техния брой вадим броя на хората в k−1 двойки

+ k− 1︸ ︷︷ ︸
толкова са блокчетата

= 2n− k− 1

Броят на разполаганията на останалите хора е равен на броя на разполаганията на
2n− k− 1 обекта в линейна наредба. Очевидно това е (2n− k− 1)!.

• За всеки избор на места за сядане на k двойки по непозволен начин, за всяка двойка
можем да разположим хората от нея по 2 начина на двата избрани стола. Общо това
са 2k възможни начина.
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Установихме, че∑
1≤i1<i2<...<ik≤n

|Si1 ∩ Si2 ∩ · · · ∩ Sik | =
(
n

k

)
2n(2n− k− 1)! 2k

Тогава отговорът е

|S1 ∩ S2 ∩ . . . ∩ Sn| = (2n)! +

n∑
k=1

(−1)k
(
n

k

)
2n(2n− k− 1)! 2k

=

n∑
k=0

(−1)k
(
n

k

)
2n(2n− k− 1)! 2k

= 2n

(
n∑
k=0

(−1)k
(
n

k

)
(2n− k− 1)! 2k

)
(44)

За n = 0 формулата (44) не работи, понеже се получава множител (−1)!. За n = 1 формулата
(44) дава −2, но за n = 1 задачата е безсмислена така или иначе. За n = 2, 3, 4, 5 формулата
(44) дава съответно 8, 192, 11 904 и 1 125 120. �

Задача 71 е почти същата като Задача 70. Единствената разлика е наредбата на хората: в
Задача 70 те са наредени кръгово, а в Задача 71 те са наредени линейно. Очакваме отгово-
рът на Задача 71 да е нещо близко до отговора на Задача 70, но стойностите в Задача 71
да са малко по-големи заради по-малкото съседства при линейната наредба в сравнение с
кръговата наредба.

Задача 71. Дадено е множество от n семейни двойки. По колко начина могат да застанат
тези хора в редица по такъв начин, че хората от никоя съпружеска двойка да не са съседи
в редицата?

Решение. Нека двойките са c1, c2, . . . , cn. Нека Si означава множеството от всички въз-
можни сядания, в които съпрузите от ci седят непозволено, тоест един до друг, където
i ∈ {1, 2, . . . , n}. Нека U е универсумът в тази задача, а именно, множеството от всички
възможни сядания на тези 2n души в редица. Търсеният отговор е |S1 ∩ S2 ∩ . . . ∩ Sn|. По
принципа на включването и изключването,

|S1 ∩ S2 ∩ . . . ∩ Sn| = |U|

−
∑
1≤i≤n

|Si|

+
∑

1≤i<j≤n

|Si ∩ Sj|

− . . .

+ (−1)n|S1 ∩ S2 ∩ . . . ∩ Sn|

Лесно се вижда, че |U| = (2n)!, тъй като толкова са начините, 2n човека да се наредят в
редица.

Ще покажем, че всяка от сумите∑
1≤i1<i2<...<ik≤n

|Si1 ∩ Si2 ∩ . . . ∩ Sik |
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където k е някое цяло число, такова че 1 ≤ k ≤ n, е равна на(
n

k

)
× (2n− k)!× 2k

Наистина, по
(
n
k

)
начина можем да изберем k двойки от общо n двойки, след което имаме k на

брой обекта-двойки и още 2n−2k обекта-хора извън двойки, тоест общо k+2n−2k = 2n−k
обекта за разполагане в линейна наредба, и освен това имаме точно 2 различни начина
за разполагането на двамата съпрузи от всяка от тези k двойки един до друг, което дава
множител 2k.

Отговорът е

n∑
k=0

(−1)k
(
n

k

)
(2n− k)! 2k (45)

За стойности на аргумента 0, 1, 2, 3, 4, 5, формулата (45) дава съответно 0, 0, 32, 1 440, 110 592
и 12 633 600. �

Задача 72 е известна като Ménage Problem. Тя е значително по-трудна от останалите задачи
в този файл.

Задача 72. По колко начина могат да седнат около кръгла маса с номерирани столове хората
от n на брой съпружески двойки (очевидно става дума за 2n души), така че съпрузите от
нито една двойка да не седят на съседни столове и освен това около масата да се редуват
жени и мъже, така че да няма нито двама мъже един до друг, нито две жени една до друга?

Решение. Нека столовете около масата са номерирани с 1, 2, . . . , 2n. Нека първо седнат
дамите. Очевидно е, че те могат да седнат или само на четните, или само на нечетните
номера. На четните номера те могат да седнат по n! начина. На нечетните, също по n!
начина. Общо има 2× n! начина, по които могат да седнат дамите. Дотук не сме нарушили
с нищо ограниченията на тази задача, следователно всеки от тези 2×n! начина е възможно
начало на процеса на сядане. За всеки от тези 2 × n! начина, мъжете могат да седнат на
свободните столове—спазвайки ограниченията на задачата—по един и същи брой начини. Да
наречем този брой g(n). Отговорът е 2n!× g(n) и сега търсим g(n).

Нека дамите са D1, D2, . . . , Dn, а мъжете са H1, H2, . . . , Hn. Без ограничение на общността,
нека дамите са седнали така (кръговете означават незаетите столове):

Dn−1 D3

Dn D2

D1

Нека преномерираме местата, които са останали свободни с s1, s2, . . . , sn така:
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Dn−1 D3

Dn D2

D1

s1sn

s2sn−1

Нека S означава множеството от всички възможни, n! на брой, начини да седнат мъжете.
Някои от тях са разрешени, други са забранени. Всяко сядане от S може да има или да няма
всяко от следните свойства:

P1: H1 е на s1.

P2: H2 е на s2.

. . .

Pn: Hn е на sn.

Q1: H1 е на sn.

Q2: H2 е на s1.

Q3: H3 е на s2.

. . .

Qn: Hn е на sn−1.

Да означим множеството {P1, P2, . . . , Pn, Q1, Q2, . . . , Qn} с P. Това са “вредните” свойства по
отношение на нашата задача, понеже са свързани със забранените сядания. Нека

Ŝ = {x ∈ S | нито едно свойство от P не е в сила за x}

Очевидно g(n) =
∣∣∣Ŝ∣∣∣.

Ключово наблюдение е, че не всяка комбинация от тези свойства е възможна. Например,
няма как едно сядане да притежава свойствата P1 и Q2, защото P1 ∧Q2 означава, че на s1
седят едновременно двама души (H1 и H2). Също така няма как едно сядане да има P1∧Q1,
защото това би означавало, че H1 седи едновременно на s1 и sn. Свойства, които е възможно
да бъдат едновременно изпълнени, ще наричаме съвместими.

Преди да продължим с решението, едно пояснение. Нашата цел е да намерим бро-
ят на начините k мъже да седнат на забранени за тях места и после да приложим
принципа на включването и изключването. Естестествено, тук се има предвид
поне k мъже да са седнали на забранени за тях места – може да има и други
мъже на забранени места, но със сигурност k са на забранени места. Намерим ли
този брой, довършването на решението е нещо лесно.
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В контекста на решението, което започнахме, забранените конфигурации—а имен-
но, сяданията на k мъже на забранени места—са по-трудни за преброяване в срав-
нение, например, със забранените конфигурации за k числа в Задача 64. В За-
дача 64 беше лесно: за всяко число имаше едно забранено място, така че по

(
n
k

)
начина избирахме k числа, които да сложим на забранени места, останалите числа
слагахме по (n−k)! начина, и събираемото в крайния отговор, което съответства
на k забранени слагания, се оказа (−1)k

(
n
k

)
(n − k)!. Тук обаче за всеки мъж има

две забранени места, откъдето идват усложненията: първо, той не може да ги
ползва едновременно, и второ, за всяко място има двама мъже, а не един мъж,
за които то е забранено. Въвеждането на гореспоменатите 2n свойства ни дава
възможност да броим систематично броя на забранените сядания на k мъже.

Както вече казахме, търсим броя на сяданията на мъжете, които нямат нито едно свойство
от P. Ще го намерим съгласно принципа на включването и изключването, но приложен по
отношение на елементите на P. Нека rk е броят начини да подберем k съвместими свойства
от P. Очевидно rk е броят на начините k мъже да седнат на забранени места. Тогава

g(n) = n! − r1(n− 1)! + r2(n− 2)! − . . .+ (−1)nrn(n− n)!

Решаването на задачата се свежда до намирането на rk като функция на k и n. Очевидно
r1 = 2n, защото когато става дума за едно свойство, несъвместимост няма, така че r1 = |P| =
2n. Колко е r2? Първо да съобразим, че несъвместими двойки свойства от P са Q1 и P1, P1 и
Q2, Q2 и P2, P2 и Q3, . . . , Pn−1 и Qn, Qn и Pn, Pn и Q1. Това са общо 2n (ненаредени) двойки.
Да нарисуваме следната диаграма на елементите на P заедно с несъвместимостите между
тях:

P1

Q1

P2

Q2 Q3 Qi

Pi Pn

Qn

Червените линии отразяват факта, че на един стол не може да седне повече от един мъж.
Зелените линии отразяват факта, че един мъж не може да седне на повече от един стол.
Забележете, че това е кръгов вектор с 2n елемента. Да питаме колко е r2 е същото като да
питаме по колко начина можем да изберем два несъседни елемента от този кръгов вектор.
Отговорът очевидно е 2n(2n − 3), тъй като за първия избран имаме 2n възможности, а за
втория, само 2n− 3.

Да разгледаме rk. Да питаме колко е rk е същото като да питаме по колко начина можем да
изберем k елемента от този кръгов вектор, нито два от които не са съседи†. На свой ред това е
същото като да питаме, колко кръгови булеви вектора с дължина 2n имат k единици и 2n−k
нули и нямат съседни единици. Съгласно Задача 33, отговорът е 2n−k+k

2n−k

(
2n−k
k

)
= 2n

2n−k

(
2n−k
k

)
.

И така,

rk =
2n

2n− k

(
2n− k

k

)
(46)

Проверка: при k = 2 този израз става 2n
2n−2

(
2n−2
2

)
= 2n

2n−2
× (2n−2)(2n−3)

2×1 = 2n(2n− 3),
което съвпада с вече изведеното за r2.

†В термините на теорията на графите, това е въпросът колко k-антиклики има в граф-цикъл с 2n върха.
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Тогава

g(n) = n!−
2n

2n− 1

(
2n− 1

1

)
(n−1)!+

2n

2n− 2

(
2n− 2

2

)
(n−2)!− . . .+(−1)n

2n

2n− n

(
2n− n

n

)
(n−n)!

Накратко,

g(n) =

n∑
k=0

(−1)k
2n

2n− k

(
2n− k

k

)
(n− k)!

Отговорът на задачата е

2× n!

(
n∑
k=0

(−1)k
2n

2n− k

(
2n− k

k

)
(n− k)!

)
(47)

(47) не може да се използва за n = 0 заради делението на нула в знаменателя. За n = 1 (47)
дава −2, но за n = 1 тази задача е безсмислена така или иначе. За n = 2, 3, 4, 5 формулата
дава съответно 0, 12, 96 и 3 120. �

Задача 73. Колко стринга има над азбуката {0, 1, 2}, в които има точно две букви от всеки
вид и няма съседни еднакви символи?

Решение. Без последното ограничение, броят на стринговете съгласно правилото за броя
на пермутации с повторения е

6!

2! 2! 2!
= 90

Нека универсумът U да е това множество – стринговете с точно две a-та, две b-та и две c-та.
Нека дефинираме следните подмножества на U.

• N1 е броят на стринговете с един и същи символ на позиции 1 и 2,

• N2 е броят на стринговете с един и същи символ на позиции 2 и 3,

• N3 е броят на стринговете с един и същи символ на позиции 3 и 4,

• N4 е броят на стринговете с един и същи символ на позиции 4 и 5,

• N5 е броят на стринговете с един и същи символ на позиции 5 и 6,

• N1,3 е броят на стринговете с един и същи символ на позиции 1 и 2 и един и същи
символ на позиции 3 и 4,

• N1,4 е броят на стринговете с един и същи символ на позиции 1 и 2 и един и същи
символ на позиции 4 и 5,

• N1,5 е броят на стринговете с един и същи символ на позиции 1 и 2 и един и същи
символ на позиции 5 и 6,

• N2,4 е броят на стринговете с един и същи символ на позиции 2 и 3 и един и същи
символ на позиции 4 и 5,

• N2,5 е броят на стринговете с един и същи символ на позиции 2 и 3 и един и същи
символ на позиции 5 и 6,
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• N3,5 е броят на стринговете с един и същи символ на позиции 3 и 4 и един и същи
символ на позиции 5 и 6,

• N1,3,5 е броят на стринговете с един и същи символ на позиции 1 и 2 и един и същи
символ на позиции 3 и 4 и един и същи символ на позиции 5 и 6.

Съгласно принципа на включване и изключване, търсеният отговор е

N = |U|− (N1 +N2 + . . .+N5) + (N1,3 +N1,4 + . . .+N3,5) −N1,3,5

Забелязваме, че N1 = 3 ×
(
4
2

)
, тъй като има три възможности за символа на първа и втора

позиция, а на останалите четири позиции слагаме два символа от друг вид и два от трети
вид. Тогава N1 = 18. Забелязваме, че N1 = N2 = . . . = N5.

Освен това, N1,3 = 3 × 2 × 1 = 6, защото имаме три възможности за символа на първа
и втора позиция, оттук две възможности за символа на трета и четвърта позиция, и само
една възможност спрямо досега направените избори за символа на останалите (пета и шеста)
позиции. Също така, N1,3 = N1,4 = . . . = N3,5.

Накрая, N1,3,5 = 6 с аналогични съображения. Имаме

N = 90− (5× 18) + (6× 6) − 6 = 30

�

Задача 74. Разгледайте всички думи с дължина 100 над българската азбука (има 30 букви).
“Дума” в случая е всяка последователност от 100 букви, а не истинска дума от българския
език (най-малкото, на български няма думи с толкова букви). Азбуката има естествена под-
редба на буквите от а към я.

• Колко са различните думи, в които срещащите се букви са във възходящ ред (отляво
надясно)?

• Колко са различните думи, в които всяка буква се среща поне веднъж и буквите са във
възходящ ред (отляво надясно)?

• Колко са различните думи, в които всяка буква се среща поне веднъж?

• Колко са различните думи, в която всяка гласна се среща поне веднъж? Гласните са
а , ъ , о , у , е и и .

Решение.

• Можем да мислим за тези думи като за мултимножества от по 100 елемента над опорно
множество от 30 елемента. Това са конфигурации без наредба, с повтаряне и броят им
е (

100+ 30− 1

30− 1

)
= 60 284 731 216 266 553 294 577 246 880

• Можем да мислим за тези думи като за мултимножества от по 100 елемента над опор-
но множество от 30 елемента, като мултимножествата съдържат задължително поне
по един елемент от опорното множествво. Очевидно тези мултимножества са колкото
мултимножествата със 100 − 30 = 70 елемента над опорно множество от 30 елемента.
Броят е(

70+ 30− 1

30− 1

)
= 8 811 701 946 483 283 447 189 128
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• Всяка от тези думи съответства на точно една сюрекция със 100 елементен домейн и 30
елементен кодомейн. Както видяхме в решението на Задача 58, броят на сюрекциите с
m елементен домейн и n елементен кодомейн е

n∑
k=0

(−1)k
(
n

k

)
(n− k)m

Тогава търсеният отговор е

30∑
k=0

(−1)k
(
30

k

)
(30− k)100

Численият отговор има 148 десетични цифри:

1 725 811 513 043 979 316 767 735 372 054 850 360 566 139

467 808 929 990 837 105 470 974 552 361 365 055 161 249

233 420 623 865 343 547 300 656 708 665 607 104 743 811

933 447 546 470 400 000 000

• Отговорът се получава като в Задача 60, като домейнът X са стоте позиции, кодомейнът
Y са тридесетте букви, а множеството Z са шестте гласни:

6∑
k=0

(−1)k
(
6

k

)
(30− k)100

Като число, отговорът има 148 десетични цифри:

4 186 848 268 232 717 069 508 448 697 546 078 643 779 703

210 653 217 353 880 557 117 558 817 629 650 196 245 532

260 080 014 829 123 140 299 115 253 887 760 051 816 719

640 425 081 283 359 354 880

�

Задача 75. Разгледайте следната правоъгълна мрежа:

Разгледайте всички придвижвания в нея, в които тръгвате от долния ляв ъгъл, маркиран с
жълт кръг, и пристигате в горния десен ъгъл, маркиран със зелен кръг. Разрешени са ходове
само нагоре или надясно по мрежата, също както в Задача 46. Колко от тези придвижвания
минават през поне една от трите пресечки, означени с кафяви кръгове?

Решение. Да номерираме точките p1, p2 и p3:
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p1

p2
p3

Нека Nk е множеството от придвижванията, минаващи през pk, за 1 ≤ k ≤ 3. Търсим
|N1 ∪N2 ∪N3|. Съгласно принципа на включването и изключването,

|N1 ∪N2 ∪N3| = |N1|+ |N2|+ |N3|− (|N1 ∩N2|+ |N2 ∩N3|+ |N1 ∩N3|) + |N1 ∩N2 ∩N3|

Имаме:

|N1| =

(
3+ 2

2

)(
10+ 5

5

)
= 30 030

|N2| =

(
6+ 4

4

)(
7+ 3

3

)
= 25 200

|N3| =

(
10+ 5

5

)(
3+ 2

2

)
= 30 030

|N1 ∩N2| =

(
3+ 2

2

)(
3+ 2

2

)(
7+ 3

3

)
= 12 000

|N2 ∩N3| =

(
6+ 4

4

)(
4+ 1

1

)(
3+ 2

2

)
= 10 500

|N1 ∩N3| =

(
3+ 2

2

)(
7+ 3

3

)(
3+ 2

2

)
= 12 000

|N1 ∩N2 ∩N3| =

(
3+ 2

2

)(
3+ 2

2

)(
4+ 1

1

)(
3+ 2

2

)
= 5 000

Отговорът е 55 760. �

Задача 76. Дадена е тази правоъгълна мрежа:

Y

X

a4a2a1
a3

Намерете броя на разходките, които започват в точка X, завършват в точка Y и не минават
през нито една от отсечките a1, a2, a3, a4 (удебелени на фигурата). Дайте отговор-число.

Решение. Нека P е множеството от всички разходки от X до Y. Нека Pai е множеството
от разходките, които минават през отсечката ai, за 1 ≤ i ≤ 4. Нека Pai е множеството от
разходките, които не минават през отсечката ai, за 1 ≤ i ≤ 4. Търсим |Pa1 ∩Pa2 ∩Pa3 ∩Pa4 |.
Съгласно принципа на включването и изключването,

|Pa1 ∩ Pa2 ∩ Pa3 ∩ Pa4 | = |P| −
∑
1≤i≤4

|Pai |+
∑

1≤i<j≤4

|Pai ∩ Paj |−
∑

1≤i<j<k≤4

|Pai ∩ Paj ∩ Pak | +

|Pa1 ∩ Pa2 ∩ Pa3 ∩ Pa4 |
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Цялата мрежа е 5× 10. Съгласно това, което сме изучавали на лекции,

|P| =

(
5+ 10

5

)
=

(
15

5

)
=
15 · 14 · 13 · 12 · 11
5 · 4 · 3 · 2 · 1

=
14 · 13 · 12 · 11

4 · 2
= 7·13·3·11 = 91·3·11 = 273·11 = 3003

Броят на разходките, които минават през a1, е

|Pa1 | =

(
2+ 2

2

)(
7+ 3

3

)
=

(
4

2

)(
10

3

)
= 6 · 10 · 9 · 8

3 · 2 · 1
= 6 · 40 · 3 = 720

Броят на разходките, които минават през a2, е

|Pa2 | =

(
4+ 2

2

)(
5+ 3

3

)
=

(
6

2

)(
8

3

)
=
6 · 5
2 · 1

· 8 · 7 · 6
3 · 2 · 1

= 15 · 56 = 840

Броят на разходките, които минават през a3, е

|Pa3 | =

(
6+ 2

2

)(
4+ 2

2

)
=

(
8

2

)(
6

2

)
=
8 · 7
2 · 1

· 6 · 5
2 · 1

= 28 · 15 = 420

Броят на разходките, които минават през a4, е

|Pa4 | =

(
7+ 2

2

)(
3+ 2

2

)
=

(
9

2

)(
5

2

)
=
9 · 8
2 · 1

· 5 · 4
2 · 1

= 36 · 10 = 360

Тогава
∑

1≤i≤4 |Pai | = 720+ 840+ 420+ 360 = 2340.

Броят на разходките, които минават през a1 и a2, е

|Pa1 ∩ Pa2 | =
(
2+ 2

2

)(
5+ 3

3

)
= 6 · 56 = 336

Броят на разходките, които минават през a1 и a3, е

|Pa1 ∩ Pa3 | =
(
2+ 2

2

)(
4+ 2

2

)
= 6 · 15 = 90

Броят на разходките, които минават през a1 и a4, е

|Pa1 ∩ Pa4 | =
(
2+ 2

2

)(
3+ 2

2

)
= 6 · 10 = 60

Броят на разходките, които минават през a2 и a3, е

|Pa2 ∩ Pa3 | =
(
4+ 2

2

)(
4+ 2

2

)
= 15 · 15 = 225

Броят на разходките, които минават през a2 и a4, е

|Pa2 ∩ Pa4 | =
(
4+ 2

2

)(
3+ 2

2

)
= 15 · 10 = 150

Тъй като няма разходки, които минават през a3 и a4, |Pa3 ∩ Pa4 | = 0. Тогава∑
1≤i<j≤4

|Pai ∩ Paj | = 336+ 90+ 60+ 225+ 150+ 0 = 861
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Броят на разходките, които минават през a1 и a2 и a3, е

|Pa1 ∩ Pa2 ∩ Pa3 | =
(
2+ 2

2

)(
4+ 2

2

)
= 6 · 15 = 90

Броят на разходките, които минават през a1 и a2 и a4, е

|Pa1 ∩ Pa2 ∩ Pa4 | =
(
2+ 2

2

)(
3+ 2

2

)
= 6 · 10 = 60

Тъй като няма разходки, които минават през a3 и a4, |Pa1∩Pa3∩Pa4 | = 0 и |Pa2∩Pa3∩Pa4 | = 0.
Тогава ∑

1≤i<j<k≤4

|Pai ∩ Paj ∩ Pak | = 90+ 60+ 0+ 0 = 150

И накрая, |Pa1 ∩ Pa2 ∩ Pa3 ∩ Pa4 | = 0.
Отговорът е

|Pa1 ∩ Pa2 ∩ Pa3 ∩ Pa4 | = 3003− 2340+ 861− 150+ 0 = 1374 �

Задача 77. По колко начина може Дядо Коледа да раздаде 19 различни подаръка на 6 деца,
така че всяко дете да получи поне два подаръка?

Решение. Задачата е частен случай на задачата, колко са функциите f : X→ Y, такива че
∀c ∈ Y∃a, b ∈ X : a 6= b ∧ f(a) = f(b) = c, ако |X| = m и |Y| = n. Можем да наречем тези
функции, “двукратни сюрекции”, тъй като всеки елемент от кодомейна трябва да е “покрит”
от поне два различни елемента от домейна.

Решението се получава чрез принципа на включването и изключването, аналогично на
обикновените сюрекции. Сега обаче трябва да съобразим по колко различни начина може
даден елемент от кодомейна да бъде “нарушител”. При обикновените сюрекции даден елемент
може да е “нарушител” по един начин: да не е образ на никой елемент от домейна. При
двукратните сюрекции може да е “нарушител” по два начина: да не е покрит изобщо, или да
е покрит само веднъж. Отговорът-формула е

n∑
k=0

(
(−1)k

(
n

k

) k∑
l=0

((
k

l

)( l−1∏
t=0

(m− t)

)
(n− k)m−l

))
(48)

Сравнете този израз с формулата за броя на сюрекциите:
n∑
k=0

(−1)k
(
n

k

)
(n− k)m (49)

Да аргументираме (48). Частта
∑n

k=0(−1)
k
(
n
k

)
е същата в (48) и (49), защото е свързана с

прилагането на принципа на включването и изключването: нарушителите са от 0 до n, за k на
брой нарушителя събираемото е със знак (−1)k, и има

(
n
k

)
начина да изберем k нарушителя

от общо n елемента. По отношение на (49), разсъждението за множителя (n− k)m е много
просто: това е броят на всички функции, без ограничения, от m-елементен домейн в (n−k)-
елементен кодомейн.

По отношение на (48), разсъждението за множителя
∑k

l=0

((
k
l

) (∏l−1
t=0(m− t)

)
(n− k)m−l

)
е по-сложно. Всеки от тези k нарушителя може да е нарушител по един от двата начина:
може да е не е покрит изобщо, или може да е покрит еднократно. Нека l е броят на тези
нарушители, които са покрити еднократно. Сумираме за l = 0, . . . , k със следните съобра-
жения.
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• При l = 0 всички k нарушители не са покрити изобщо, и събираемото става(
k

0

)( 0−1∏
t=0

(m− t)

)
(n− k)m−0 = 1× 1× (n− k)m = (n− k)m

тоест точно колкото е съответния множител в (49). Тук имаме итерирано произведение∏0−1
t=0(m− t), в което индексната променлива взема стойности от празен интервал; по

дефиниция, такова произведение е 1†.

• При l = 1 имаме точно един нарушител, който е покрит еднократно, а останалите
нарушители не са покрити изобщо. Този нарушител можем да изберем по

(
k
1

)
= k

начина. Тъй като е покрит еднократно, нарушителят е образ на точно един елемент от
домейна, който можем да изберем по

∏1−1
t=0(m− t) = m начина. Множителят (n−k)m−1

идва оттам, че за останалите елементи от кодомейна—тези, които не са нарушители—
разглеждаме всички функции без ограничения от (m−1)-елементен домейн в тях. Защо
(m − 1)-елементен? – защото точно един елемент от домейна бива “използван”, за да
бъде изобразен в единствения нарушител, който е покрит еднократно.

Събираемото става(
k

1

)( 1−1∏
t=0

(m− t)

)
(n− k)m−1 = k×m× (n− k)m−1

• При l = 2, нарушителите, покрити еднократно, са 2. Тях можем да изберем по
(
k
2

)
начина. По m(m − 1) начина можем да изберем два елемента от домейна, които се
изобразяват в тези два нарушителя. Важно е да бъде разбрано, че този брой е именно
m(m−1), а не

(
m
2

)
, защото има значение кой елемент (от двата) от домейна върху кой от

двата нарушителя се изобразява. С други думи, множителят е
∏2−1

t=0(m−t) = m(m−1).
Тъй като вече изпозлвахме два елемента от домейна, оставатm−2 елемента от домейна,
такива че за последния множител разглеждаме всички функциии от тях върху (n−k)-
елементен кодомейн, които са на брой (n− k)m−2. Събираемото става(

k

2

)( 2−1∏
t=0

(m− t)

)
(n− k)m−2 =

(
k

2

)
×m(m− 1)× (n− k)m−2

• При l = 3, нарушителите, покрити еднократно, са 3. Тях можем да изберем по
(
k
3

)
начина. Поm(m−1)(m−2) начина можем да изберем три елемента от домейна, които се
изобразяват в тези три нарушителя; а не по

(
m
3

)
. С други думи, множителят е

∏3−1
t=0(m−

t). Тъй като вече изпозлвахме три елемента от домейна, остават m − 3 елемента от
домейна, такива че за последния множител разглеждаме всички функциии от тях върху
(n− k)-елементен кодомейн, които са на брой (n− k)m−3. Събираемото става(

k

3

)( 3−1∏
t=0

(m− t)

)
(n− k)m−3 =

(
k

3

)
×m(m− 1)(m− 2)× (n− k)m−3

• И така нататък.
†Тъй като 1 е неутралният елемент на операцията умножение. Аналогично, итерирано сумиране, при

което индексната променлива взема стойности от празен интервал, е 0, понеже 0 е неутралният елемент на
събирането.
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С това обосновахме множителя
k∑
l=0

((
k

l

)( l−1∏
t=0

(m− t)

)
(n− k)m−l

)

Да разгледаме малък пример, по-малък от този в задачата. Нека домейнът има 8 елемента и кодомейнът
има 4 елемента. Очевидно, двукратни сюрекции има. Техният брой е

+ 1× (1× 1× 48)
− 4× (1× 1× 38 + 1× 8× 37)
+ 6× (1× 1× 28 + 2× 8× 27 + 1× 8× 7× 26)
− 4× (1× 1× 18 + 3× 8× 17 + 3× 8× 7× 16 + 1× 8× 7× 6× 15)
+ 1× (1× 1× 08 + 4× 8× 05 + 6× 8× 7× 06 + 4× 8× 7× 6× 05 + 1× 8× 7× 6× 5× 04) =
2 520

В три различни цвята са оцветени трите множителя на(
k

l

)( l−1∏
t=0

(m− t)

)
(n− k)m−l

И така, обосновахме формулата (48). Ако заместим m с 19 и n с 6 и извършим изчисле-
нията, получаваме отговор 183 421 913 875 200. Това е броят на начините за раздаване на
подаръците. �

Задача 78. Дадени са множествата A = {a1, a2}, B = {b1, b2}, C = {c1, c2}, D = {d1, d2} и E =
{e1, e2}. Да ги наречем домейните. Колко са релациите от вида R ⊆ A×B×C×D×E? За колко
от тях е изпълнено, че за всеки домейн, всеки негов елемент се среща в поне един елемент
на релацията? И на двата въпроса от Вас се очаква да дадете отговор-формула, който да
бъде добре обоснован, последван от отговор-число. Ако имате правилен отговор-формула,
даването на числен отговор е тривиално. Можете да използвате обикновен калкулатор или
какъвто и да е софтуер, за да получите числата.

Решение. Всички възможни релации са 22
5

, понеже елементите на A × B × C × D ×
E са 25, и всеки от тях може да присъства или да не присъства в релацията независимо
от другите. Друг начин да се изведе резултатът е наблюдението, че съществува очевидна
биекция между булевите функции на пет променливи и въпросните релации. Численият
отговор е 4 294 967 296.

За да получим втория отговор, от този брой ще извадим броя на релациите, за които е
вярно, че не съдържат поне един елемент от поне един от домейните. Това ще сторим съг-
ласно метода на включването и изключването. Има една особеност: универсумът U няма да
е множеството от всички релации, а множеството от всички релации без празната рела-
ция. Следователно, |U| = 22

5

− 1. Нека TA е множеството от тези непразни релации, които
не съдържат поне един символ от A, TB е множеството от тези непразни релации, които не
съдържат поне един символ от B, и така нататък. Ние търсим

∣∣TA∩TB∩TC∩TD∩TE∣∣. Съгласно
принципа на включването и изключването,∣∣TA ∩ TB ∩ TC ∩ TD ∩ TE∣∣ = |U|− (|TA|+ |TB|+ |TC|+ |TD|+ |TE|)

+ (|TA ∩ TB|+ |TA ∩ TC|+ |TA ∩ TD|+ |TA ∩ TE|+ . . .+ |TD ∩ TE|)
− (|TA ∩ TB ∩ TC|+ . . .+ |TC ∩ TD ∩ TE|)
+ (|TA ∩ TB ∩ TC ∩ TD|+ . . .+ |TB ∩ TC ∩ TD ∩ TE|)
− |TA ∩ TB ∩ TC ∩ TD ∩ TE|
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От общи съображения е ясно, че във всяка от сумите в скоби събираемите са равни, така че∣∣TA ∩ TB ∩ TC ∩ TD ∩ TE∣∣ = |U|−

(
5

1

)
|TA|

+

(
5

2

)
|TA ∩ TB|

−

(
5

3

)
|TA ∩ TB ∩ TC|

+

(
5

4

)
|TA ∩ TB ∩ TC ∩ TD|

−

(
5

5

)
|TA ∩ TB ∩ TC ∩ TD ∩ TE|

Да намерим |TA|. Тъй като разглеждаме непразните релации над петте домейна, поне един
елемент от A присъства във всеки елемент от коя да е от разглежданите релации. Следова-
телно търсим броя на релациите, в които присъства точно един от {a1, a2}. Всички непразни
релации, в които като представител на A е само a1 са 22

4

− 1. Аналогично, всички непразни
релации, в които като представител на A е само a2 са 22

4

− 1. Тези множества нямат общи
елементи, следователно по принципа на разбиването, |TA| = 22

4

− 1+ 22
4

− 1 = 21
(
22

4

− 1
)
.

Да намерим |TA∩TB|. С аналогични разсъждения стигаме до извода, че като представител
на A присъства точно един от {a1, a2}, а като представител на B, точно един от {b1, b2}. Това
дава общо четири възможности за това, които представители на A и B се срещат. За всяка
от тях, непразните релации са 22

3

− 1. Следователно, |TA ∩ TB| = 22
(
22

3
− 1
)
.

С аналогични разсъждения, |TA ∩ TB ∩ TC| = 23
(
22

2
− 1
)
, |TA ∩ TB ∩ TC ∩ TD| = 24

(
22

1
− 1
)

и |TA ∩ TB ∩ TC ∩ TD ∩ TE| = 25
(
22

0
− 1
)
. За проверка, последният израз е 25, което е точният

брой на непразните релации, несъдържащи точно един елемент от всеки домейн.
И така, отговорът-формула е

5∑
k=0

(−1)k
(
5

k

)
2k
(
22

5−k

− 1
)

Отговорът-число е 4 294 321 153. Той може да се получи лесно с джобен калкулатор, но може
да се използва и специализиран софтуерен пакет, например Maple с командата

sum((-1)^k*binomial(5, k)*2^k*(2^(2^(5-k))-1), k = 0 .. 5);

�

Задача 79. Нека S = {a, b}. Припомнете си, че “фамилия над S” е всеки елемент на 22
S

.

1. Напишете в явен вид всички фамилии над S.

2. Напишете в явен вид всички покривания на S.

3. Използвайки комбинаторния принцип на включването и изключването, намерете фор-
мула за броя на покриванията на произволно n-елементно множество, където n ∈ N+.

4. Заместете n с 2 в току-що изведената формула и намерете числената стойност. Тя
съвпада ли с броя на покриванията на S?
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Решение. Очевидно

2S =
{
∅, {a}, {b}, {a, b}

}
Ето всички фамилии над {a, b}:

F0 = ∅
F1 =

{
∅
}

F2 =
{
{a}
}

F3 =
{
{b}
}

F4 =
{
{a, b}

}
F5 =

{
∅, {a}

}
F6 =

{
∅, {b}

}
F7 =

{
∅, {a, b}

}
F8 =

{
{a}, {b}

}
F9 =

{
{a}, {a, b}

}
F10 =

{
{b}, {a, b}

}
F11 =

{
∅, {a}, {b}

}
F12 =

{
∅, {a}, {a, b}

}
F13 =

{
∅, {b}, {a, b}

}
F14 =

{
{a}, {b}, {a, b}

}
F15 =

{
∅, {a}, {b}, {a, b}

}
Не всички фамилии измежду F0, . . . , F15 са покривания. Първо, покриванията не може да
съдържат като елемент празното множество. Тогава F1, F5, F6, F7, F11, F12, F13 и F15 не се
покривания. Второ, обединението на елементите на покриване трябва да е {a, b}. Тогава F0,
F2 и F3 също не са покривания. Тогава покриванията са F4, F8, F9, F10 и F14:

F4 =
{
{a, b}

}
F8 =

{
{a}, {b}

}
F9 =

{
{a}, {a, b}

}
F10 =

{
{b}, {a, b}

}
F14 =

{
{a}, {b}, {a, b}

}
Сега да намерим броя на покриванията на n-елементно множество Нека името на множес-
твото е A. Да кажем, че A = {a1, . . . , an}, като n ≥ 1. Знаем, че |2A| = 2n. Тогава броят
на всички фамилии над A е точно 22

n

. Покриванията обаче не може да съдържат празното
множество, а знаем, че ∅ ∈ 2A. Очевидно е, че |2A \ ∅| = 2n − 1.

И така, универсумът за целите на тази задача е U = 2
2A\∅, като |U| = 2

2n−1. Забележе-
те, че универсумът съдържа празната фамилия { }, тоест празното множество; това, което
универсумът не може да съдържа, е, примерно, {{ }} = {∅}.

Естествено, не всеки елемент на U представлява покриване. От мощността на универ-
сума ще извадим броя на фамилиите, които не покриват опорното множество в смисъл, че
обединението им не е A. Ще направим това изваждане съгласно принципа на включването
и изключването.

Нека Xi е множеството от фамилиите от U, които не покриват ai, за произволно i ∈
{1, . . . , n}; с други думи, които не съдържат елемент, съдържащ ai. Тогава Xi е множеството
от фамилиите над A\{ai}, които не съдържат празното множество. Тъй като |A\{ai}| = n−1,

в сила е Xi = 2
2A\{ai}\∅. Тогава

|Xi| = 2
2n−1−1

Този резултат остава в сила дори при n = 1: тогава дясната страна е 1, което е коректно,
понеже фамилията, непокриваща единствения елемент a1, е { }.

Тогава Xi ∩Xj е множеството от фамилиите от U, които не покриват ai и не покриват aj,
за някакви i и j, такива че 1 ≤ i < j ≤ n. В сила е

|Xi ∩ Xj| = 2
2n−2−1

И изобщо, Xi1 ∩ · · · ∩Xik е множеството от фамилиите от U, които не покриват нито един
от елементите ai1 , . . . , aik , за някакви i1, . . . , ik, такива че 1 ≤ i1 < · · · < ik ≤ n, където
1 ≤ k ≤ n. В сила е

|Xi1 ∩ · · · ∩ Xik | = 2
2n−k−1
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Принципът на включване и изключване казва, че търсеният отговор е∑
0≤k≤n

(−1)k
(
n

k

)
|Xi1 ∩ · · · ∩ Xik | =

∑
0≤k≤n

(−1)k
(
n

k

)
2
2n−k−1 (50)

където при k = 0 събираемото е |U|, а множителят
(
n
k

)
е равен на броя на начините да

изберем i1, . . . , ik от {1, . . . , n}.

И накрая, да изчислим стойността на (50) при n = 2:∑
0≤k≤2

(−1)k
(
2

k

)
2
22−k−1

=

(−1)0
(
2

0

)
2
22−0−1

+ (−1)1
(
2

1

)
2
22−1−1

+ (−1)2
(
2

2

)
2
22−2−1

=

1× 1× 22
2−1

+ (−1)× 2× 22
1−1

+ 1× 1× 22
−0−1

=

24−1 − 2× 22−1 + 21−1 =
8− 4+ 1 =

5

И наистина, ние намерихме точно пет покривания на {a, b}. �

Задача 80. Нека A е затвореният интервал [a, . . . , b], където a, b ∈ N+ и a ≤ b. Нека k ∈ N+

и k ≤ a. Колко числа от A се делят на k?

Решение. Нека nk е търсеното количество. Лесно се вижда, че най-малкото число, по-
голямо или равно на a, делящо се на k, е k ·

⌈
a
k

⌉
, и най-голямото число, по-малко или равно

на b, делящо се на b, е k·
⌊
b
k

⌋
. Тогава nk е точно броят на целите числа в затворения интервал[

k ·
⌈
a
k

⌉
, . . . , k ·

⌊
b
k

⌋]
, което е на свой ред е същото като броят на целите числа, делящи се на

k, в затворения интервал
[⌈
a
k

⌉
, . . . ,

⌊
b
k

⌋]
, тоест

⌊
b
k

⌋
−
⌈
a
k

⌉
+ 1. �

Задача 81. Използвайки резултата от Задача 80, отговорете колко деветцифрени (в десе-
тична позиционна бройна система) числа са взаимно прости със 165? Две цели положителни
числа са взаимно прости т.с.т.к. най-големият им общ делител е единицата. Не е необходимо
да давате числен отговор.

Решение. 165 има следната факторизация на прости множители 165 = 3 × 5 × 11. Пита
се, колко цели числа от интервала [100 000 000, . . . , 999 999 999] не се делят нито на 3, нито
на 5, нито на 11. Нека nk е броят на числата от този интервал, делящи се на k, за някакво
цяло положително k.
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Съгласно резултата от Задача 80:

n1 =

⌊
999 999 999

1

⌋
−

⌈
100 000 000

1

⌉
+ 1 = 900 000 000

n3 =

⌊
999 999 999

3

⌋
−

⌈
100 000 000

3

⌉
+ 1 = 300 000 000

n5 =

⌊
999 999 999

5

⌋
−

⌈
100 000 000

5

⌉
+ 1 = 180 000 000

n11 =

⌊
999 999 999

11

⌋
−

⌈
100 000 000

11

⌉
+ 1 = 81 818 181

n3×5 =

⌊
999 999 999

15

⌋
−

⌈
100 000 000

15

⌉
+ 1 = 60 000 000

n3×11 =

⌊
999 999 999

33

⌋
−

⌈
100 000 000

33

⌉
+ 1 = 27 272 727

n5×11 =

⌊
999 999 999

55

⌋
−

⌈
100 000 000

55

⌉
+ 1 = 16 363 637

n3×5×11 =

⌊
999 999 999

165

⌋
−

⌈
100 000 000

165

⌉
+ 1 = 5 454 546

Съгласно принципа на вкрючване и изключване, отговорът е

n1 − (n3 + n5 + n11) + (n3×5 + n3×11 + n5×11) − n3×5×11 = 436 363 637 �

Задача 82. Нека n е цяло положително число. Казваме, че n е безквадратно, ако единс-
твеният точен квадрат, който дели n, е 1. С други думи, ако n = 1, то n е безквадратно
по определение, а ако n ≥ 2, то n има едно единствено разлагане на прости множители
(съгласно основната теорема на аритметиката) и n е безквадратно тстк всеки прост множи-
тел участва със своята първа степен; ако простите множители на n са p1, p2, . . . , pq, то n
е безквадратно тстк n = p1 · p2 · · · · · pq. Всяко просто число е безквадратно, но не всяко
безквадратно е просто. Примерно, безквадратно е 10, защото 10 = 2 · 5, безквадратно е 11,
защото 11 е просто, но 12 не е безквадратно, защото 12 = 22 · 3.
Намерете броя на безквадратните числа, ненадхвърлящи 200, като използвате принципа на
включването и изключването. Иска се отговор-число.

Решение. За целите на тази задача, универсумът е множеството U = {1, 2, . . . , 200}. Забе-
лязваме, че число n не е безквадратно тстк съществува просто число p, такова че n се дели
на p2. Тъй като 13 е просто и 132 = 169, което е по-малко от 200, а следващото просто е 17
и 172 = 289, което е по-голямо от 200, има смисъл да разглеждаме само прости множители,
ненадхвърлящи 13. За целите на задачата, нека

P = {k ∈ N |k ≤ 13∧ k е просто}

Лесно се вижда, че P = {2, 3, 5, 7, 11, 13}, така че |P| = 6. За всяко k ∈ P, дефинираме
множеството

Ak = {j ∈ U | ∃k ∈ P : k2 дели j}

Множеството от безквадратите числа, ненадхвърлящи 200, е⋂
i∈P

Ai = A2 ∩A3 ∩A5 ∩A7 ∩A11 ∩A13
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Търсим
∣∣⋂

i∈PAi
∣∣. Съгласно принципа на включването и изключването,∣∣∣∣∣⋂

i∈P

Ai

∣∣∣∣∣ = |U|

−
∑
i∈P

|Ai|

+
∑

i,j∈P, i<j

|Ai ∩Aj|

−
∑

i,j,k∈P, i<j<k

|Ai ∩Aj ∩Ak|

+
∑

i,j,k,`∈P, i<j<k<`

|Ai ∩Aj ∩Ak ∩A`|

−
∑

i,j,k,`,m∈P, i<j<k<`<m

|Ai ∩Aj ∩Ak ∩A` ∩Am|

+ |A2 ∩A3 ∩A5 ∩A7 ∩A11 ∩A13| (51)

Ключови наблюдения са следните.

• За всяко i ∈ P, |Ai| =
⌊
200
i2

⌋
.

• За всеки i, j ∈ P, такива че i < j, |Ai ∩Aj| =
⌊
200
i2·j2

⌋
. Обаче единствените такива двойки

(i, j), за които i2 · j2 ≤ 200, са

– (2, 3), понеже 2232 = 36,

– (2, 5), понеже 2252 = 100 и

– (2, 7), понеже 2272 = 196.

Очевидно 22112 = 484, а 3252 = 225. Тогава
∑

i,j∈P, i<j

|Ai∩Aj| =
⌊
200

2232

⌋
+

⌊
200

2252

⌋
+

⌊
200

2272

⌋
,

понеже останалите събираеми са нули.

• За всеки i, j, k ∈ P, такива че i < j < k, |Ai ∩ Aj ∩ Ak| = 0, понеже за всяка такава
тройка (i, j, k) е вярно, че i2 · j2 · k2 > 200. За да се убедим в това, да съобразим, че
223252 = 900, а за останалите тройки произведението е дори по-голямо. Заключаваме,
че

∑
i,j,k∈P, i<j<k

|Ai ∩Aj ∩Ak| = 0.
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Но от това следва, че само първите три реда на (51) имат ненулеви събираеми. А именно,∣∣∣∣∣⋂
i∈P

Ai

∣∣∣∣∣ = 200
−

(⌊
200

22

⌋
+

⌊
200

32

⌋
+

⌊
200

52

⌋
+

⌊
200

72

⌋
+

⌊
200

112

⌋
+

⌊
200

132

⌋)
+

(⌊
200

2232

⌋
+

⌊
200

2252

⌋
+

⌊
200

2272

⌋)
= 200−

(⌊
200

4

⌋
+

⌊
200

9

⌋
+

⌊
200

25

⌋
+

⌊
200

49

⌋
+

⌊
200

121

⌋
+

⌊
200

169

⌋)
+

(⌊
200

36

⌋
+

⌊
200

100

⌋
+

⌊
200

196

⌋)
= 200− (50+ 22+ 8+ 4+ 1+ 1) + (5+ 2+ 1) =

= 200− 86+ 8 =

= 122

И така, отговорът е 122. �

Задача 83. Нека A = {1, 2, . . . , 360}. Колко елемента от A имат поне един общ прост делител
с 360?
Решение. 360 се разлага на прости множители така: 360 = 23 · 32 · 51. Нека
• A2 = {a ∈ A |a е кратно на 2},

• A3 = {a ∈ A |a е кратно на 3},

• A5 = {a ∈ A |a е кратно на 5}.
Търси се |A2 ∪A3 ∪A5|. Съгласно принципа на включването и изключването,

|A2 ∪A3 ∪A5| = |A2|+ |A3|+ |A5|− (|A2 ∩A3|+ |A2 ∩A5|+ |A3 ∩A5|) + |A2 ∩A3 ∩A5|

За всяко k, броят на числата, кратни на m и ненадхвърлящи k, е
⌊
k

m

⌋
. Тогава

⌊
360

2

⌋
=

180,
⌊
360

3

⌋
= 120 и

⌊
360

5

⌋
= 72. Знаем, че сечението е свързано с конюнкцията, така че

A2 ∩ A3 е множеството от елементите на A, които са кратни на 2 и на 3, тоест на 6. Тогава

|A2 ∩ A3| =
⌊
360

6

⌋
= 60. Аналогично, |A2 ∩ A5| =

⌊
360

10

⌋
= 36, |A3 ∩ A5| =

⌊
360

15

⌋
= 24 и

|A2 ∩A3 ∩A5| =
⌊
360

30

⌋
= 12. Тогава отговорът е

|A2 ∪A3 ∪A5| = 180+ 120+ 72− (60+ 36+ 24) + 12 = 264 �

5 Доказателства с комбинаторни разсъждения
Задача 84. Нека

{
n
k

}† означава броя на разбиванията на n-елементно множество на k под-
множества (съгласно дефиницията на “разбиване”, тези k подмножества са непразни). Дока-
жете с комбинаторни разсъждения, че{

n

k

}
= k

{
n− 1

k

}
+

{
n− 1

k− 1

}
за n ≥ 2 и n ≥ k ≥ 2

†Това се нарича число на Стирлинг от втори род и се чете n-подмножество-k.
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Решение. Да разгледаме някое множество A с поне два елемента. Да разгледаме произ-
волно разбиване на A на k подмножества за някое k ≥ 2 и да наречем това разбиване, C.
Да фиксираме произволен a ∈ A. Очевидно има точно един елемент на C, да го наречем
B, който съдържа a. Има две взаимно изключващи се възможности: или B = {a}, или B
съдържа поне още един елемент от A освен a.

Следователно, множеството от всички разбивания на A се разбива на две: тези разбива-
ния, които съдържат елемент {a}, и тези разбивания, които не съдържат {a}.

• Разбиванията, съдържащи {a}, са
{
n−1
k−1

}
на брой, защото останалите n − 1 елемента

(освен a) биват разбивани на k− 1 подмножества по
{
n−1
k−1

}
начина.

• Разбиванията, които не съдържат {a}—с други думи, разбиванията на A, в които a е в
подмножество с поне още един елемент—са k×

{
n−1
k

}
съгласно следните съображения.

Да махнем a от всяко едно от тези разбивания. Тъй като a в нито едно от тези раз-
бивания не е “самотен елемент”, то всяко от тези разбивания си остава с k множества.
И така, получихме точно тези разбивания на A \ {a}, които имат точно k множества.
Техният брой е

{
n−1
k

}
. Сега да върнем a, за да можем отново да говорим за разбиване

на A. Очевидно, за всяко от тези разбивания, елементът a може да бъде сложен в кое
да е от неговите k множества, откъдето е и множителят k.

По принципа на разбиването,
{
n
k

}
= k
{
n−1
k

}
+
{
n−1
k−1

}
. �

Задача 85. Докажете с комбинаторни разсъждения, че

m!

{
n

m

}
=

m∑
k=0

(−1)k
(
m

k

)
(m− k)n

Решение. Съгласно Задача 58, дясната страна брои сюрекциите от n-елементен домейн в
m-елементен кодомейн – просто разменете m и n в Задача 58 и ще получите точно дясната
страна на желаното тъждество. Всяка сюрекция задава по съвсем естествен начин разбиване
на домейна на толкова множества, колкото е мощността на кодомейна; а именно, във всяко
множество-елемент на това разбиване се съдържат точно тези елементи от домейна, които
се изобразяват върху един и същи елемент от кодомейна. Тъй като сюрекциите “покриват”
целия кодомейн, това гарантира, че разбиването (на домейна) няма празни елементи.

Но броят на сюрекциите от n-елементен домейн в m-елементен кодомейн е по-голям от
броя на разбиванията на n-елементно множество на m подмножества. Причината е, че мно-
го сюрекции отговарят на едно и също разбиване. Сюрекциите са повече от разбиванията,
защото елементите на кодомейна са различни, така че всяка сюрекция задава нещо като
“подредено разбиване”, в което елементите му (на разбиването) са индексирани с елементите
на кодомейна. А дефиницията на разбиване е, множество от подмножества, тоест обект,
чиито елементи не са подредени. И така, всички m! сюрекции, при които елементите на до-
мейна са “групирани заедно” по един и същи начин, отговарят биективно на едно разбиване
на кодомейна. �

Задача 86. Некаm,n ∈ N+, като n ≥ m. Както знаем,
{
p
q

}
означава броя на разбиванията на

p-елементно множество на точно q подмножества, а pq означава произведението
∏q−1

i=0 (p−i).
Докажете с комбинаторни съображения, че

nm =

m∑
k=1

{
m

k

}
· nk
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Решение. Лявата страна е броят на функциите f : X→ Y, където |X| = m и |Y| = n.

Да разгледаме дясната страна. Нека Y ′ = {y ∈ Y |∃x ∈ X(f(x) = y)}. Нека |Y ′| = k. Да разбием
множеството от функциите по k. k не може да е нула, защото Y ′ е непразно; точните долна
и горна граница за k са съответно 1 и m. Нека g(k,m,n) означава броя на функциите от
m-елементен домейн в n-елементен кодомейн, такива че точно k елемента от кодомейна са
образи, за 1 ≤ k ≤ m. По принципа на разбиването:

nm =

m∑
k=1

g(k,m,n)

Ще докажем, че

g(k,m,n) =

{
m

k

}
k!

(
n

k

)
Всяка функция от m-елементен домейн X в n-елементен кодомейн Y, такава че точно k
елемента от кодомейна са образи, се определя еднозначно от следните две неща.

• Кои k елемента са образи. Това е биномният коефициент
(
n
k

)
.

• Кои елементи от X се изобразяват върху елемент от Y ′. Това е произведението от:

– начините да бъде разбит X на точно k дяла, тоест
{
m
k

}
,

– и броят на биекциите от това разбиване в Y ′, тоест k!.

По принципа на произведението, броят на функциите отm-елементен домейн X в n-елементен
кодомейн Y, такава че точно k елемента от кодомейна са образи, е

{
m
k

}
k!
(
n
k

)
. И така,

nm =

m∑
k=1

{
m

k

}
k!

(
n

k

)
Имайки предвид, че

(
n
k

)
= nk

k!
, получаваме желаното тъждество

nm =

m∑
k=1

{
m

k

}
nk �

Задача 87. Нека S е крайно множество. Нека |S| = n. С “Bn” означаваме броя на разбивания-
та на S (числата Bn са известни като Bell Numbers). Докажете с комбинаторни разсъждения,
че

B0 = 1

Bn+1 =

n∑
k=0

(
n

k

)
Bk , за n ≥ 0

Решение. Първо разглеждаме B0. Има едно разбиване на празното множество, а именно
празното разбиване (празното разбиване, формално, е празното множество), така че B0 = 1,
в празния смисъл (vacuously на английски).

Нека |S| = n + 1 за някое n ≥ 0. Търсим формула за Bn+1. Фиксираме един елемент
x ∈ S. Разглеждаме всички разбивания на (n + 1)-елементното множество S. Във всяко от
тях, точно един дял съдържа x. Да наречем този дял X. Нека броят на елементите от S в
останалите дялове е k. Твърдим, че 0 ≤ k ≤ n и тези граници са точни:
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• ако разбиването на S е едноелементно, то то е {X}, така че други дялове няма и поради
това броят k на елементите в останалите дялове е 0;

• ако |X| = 1, тоест X = {x}, в останалите дялове има общо точно n елементи от S.

За всяка възможна стойност на k, броят на разбиванията е произведението
(
n
k

)
Bk по следната

причина. Представяме си множестото Yk от всички разбивания на S, такива че след изтри-
ването на дяла X, в останалите дялове има точно k елемента от S. По

(
n
k

)
начина можем да

изберем кои са тези k елемента, понеже имаме |S| = n+ 1, но ние фиксирахме един елемент
x от S и той винаги се намира в дяла, който изтриваме, а |S \ {x}| = n. За всеки такъв избор,
броят на разбиванията на множеството от тези k елемента е Bk по дефиниция.

Тъй като множеството от всички разбивания на S се разбива по броя k на елементите,
несъдържащи се в дяла, който съдържа x, по принципа на разбиването имаме

Bn+1 =

n∑
k=0

(
n

k

)
Bk �

Задача 88. Докажете с комбинаторни разсъждения, че

nm =

n∑
k=1

((
k∑
j=0

(−1)j
(
k

j

)
(k− j)m

)(
n

k

))

Решение. Желаното тъждество следва директно от Задача 85 и Задача 86, но тук ще го
докажем от първи принципи.

Съгласно изучаваното на лекции, лявата страна брои функциите от m-елементен домейн X
в n-елементен кодомейн Y.

Дясната страна брои същите функции, но по-подробно. За всяка f : X → Y дефинираме
множеството f(X) така

f(X) = {b ∈ Y |∃a ∈ X : f(a) = b}

На прост български, f(X) се състои точно от тези елементи на Y, които се явяват образи
по отношение на f. Да дефинираме, че f(X) е образът на X по отношение на f, или просто
образът на X, ако f се подразбира.

Множеството от функциите f от X в Y се разбиват по техните образи f(X). Това е очевидно:
няма как две различни подмножества на Y да са образи на една и съща от тези функции.
Съгласно комбинаторния принцип на разбиването,

nm =
∑

Z⊆Y,Z6=∅

∣∣ {f : X→ Y | f(X) = Z}
∣∣

Сумата е на 2n − 1 събираеми.

Ключовото наблюдение е, че всяка функция f : X → Y задължително е сюрекция от X в
f(X). Оттук следва, че за всяка мощност на образ, съответните събираеми са едни и същи.
И по-точно, за всяка мощност на образ k, броят на функциите от X в Y, имащи мощност на
образа k, е равен на произведението от броя на сюрекциите от m-елементно в k-елементно
множество и броя на начините да бъде избран k-елементно подмножество на Y като образ.
Съгласно изучаваното на лекции, първият множител е

∑k
j=0(−1)

j
(
k
j

)
(k− j)m, а вторият е

(
n
k

)
.

Съобразяваме, че 1 ≤ |f(X)| ≤ n, като тези граници са точни, така че в крайния отговор се
сумира по k от 1 до n. С което обосновахме тъждеството. �
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Задача 89. Докажете с комбинаторни разсъждения, че
n∑
k=0

(
n

k

)2
=

(
2n

n

)
Решение. Нека A е множество с 2n елемента. Нека всеки елемент от A има атрибут-
цвят, като n елемента са бели, а останалите n, черни. По колко начина можем да подберем
различни подмножества на A с по n елемента?

От една страна, това може да стане по(
2n

n

)
(52)

начина, тъй като това са комбинаторни конфигурации без повторение и без наредба – тук
не обръщаме внимание на цветовете на подбраните елементи.

От друга страна, можем да разбием подбиранията по броя на елементите от единия цвят,
да речем белия. Белите елементи, които попадат в дадено подбиране, може да са 0 или 1 или
. . . или n. Следователно, да подберем n елемента от общо 2n в тази задача е същото като
да подберем k елемента измежду всичките n бели и да подберем n − k елемента измежду
всичките n черни. За дадено k, такова че 0 ≤ k ≤ n, броят начини да подберем n елемента
от общо 2n, така че k измежду подбраните да са бели, е, по принципа на произведението:(

n

k

)
︸ ︷︷ ︸

броят начини k елемента от общо n да са бели

×
(

n

n− k

)
︸ ︷︷ ︸

броят начини останалите елементи да са черни

Тъй като k се мени от 0 до n и подбиранията се разбиват по k (при различен брой бели
елементи в две подбирания, те задължително са различни), общият брой подбирания е:

n∑
k=0

(
n

k

)(
n

n− k

)
Но знаем, че

(
n
n−k

)
=
(
n
k

)
, следователно общият брой на подбирания е:

n∑
k=0

(
n

k

)2
(53)

Изразите (52) и (53) броят едно и също множество, следователно равенството е в сила. �

Задача 90. Докажете с комбинаторни разсъждения, че

n! =

n∑
m=0

((
n

m

) n−m∑
k=0

(−1)k
(
n−m

k

)
(n−m− k)!

)
Решение. Лявата страна брои всички пермутации на n елемента, да кажем {1, 2, . . . , n}.
Дясната страна брои същите пермутации, но по-детайлно. А именно, забелязваме, че във
всяка пермутация на {1, 2, . . . , n}, някои числа са си на мястото, а други, не. Разбиваме
множеството от всичките пермутации по това, точно колко елемента си са си на мястото: 0
или 1 или 2 или . . . или n. За всеки брой m на елементи, които са на мястото (m ∈ {0, 1, , . . . ,

n}), броят на пермутациите съгласно решението на Задача 66 е(
n

m

) n−m∑
k=0

(−1)k
(
n−m

k

)
(n−m− k)!

Прилагаме комбинаторния принцип на разбиването и получаваме точно дясната страна на
желаното тъждество. �
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Задача 91. Докажете с комбинаторни разсъждения, че

n! =

n∑
k=0

(−1)k
(
n

k

)
(n− k)n

Решение. От Задача 58 знаем, че броят на сюрекциите от m-елементен домейн в n-
елементен кодомейн е

∑n
k=0(−1)

k
(
n
k

)
(n − k)m. При m = n получаваме израза от дясната

страна. Но ако n = m, то тези сюрекции всъщност са биекциите между двете множества. А
броят на биекциите е n!, което е лявата страна. �

Задача 92. Докажете с комбинаторни разсъждения, че ако m,n ∈ N и m < n, то
n∑
k=0

(−1)k
(
n

k

)
(n− k)m = 0

Решение. От Задача 58 знаем, че лявата страна е равна на броя на сюрекциите от m-
елементен домейн в n-елементен кодомейн. Очевидно е, че щом m < n, такива сюрекции
няма; тоест, броят им е 0. Което е точно дясната страна. �

Задача 93. Докажете с комбинаторни разсъждения, че

n2n−1 =

n∑
k=0

k

(
n

k

)
Решение. 2n е броят на всички булеви вектори с дължина n. Очевидно n2n е общият брой
на елементите във всички булеви вектори с дължина n. От тези n2n елементи, половината са
нули, а другата половина, единици. Този факт се извежда тривиално от най-общи съображе-
ния: ако инвертираме побитово всички вектори, получаваме същото множество, като броят
на единиците в началното е равен на броя на нулите в полученото, но понеже полученото е
същото като началното, броят на единиците е равен на броя на нулите в него.

Щом половината от n2n елемента са единици, то единиците са точно 1
2
n2n = n2n−1.

Това е лявата страна на тъждеството, което доказваме. Дясната страна очевидно също брои
единиците във всички булеви вектори с дължина n, но го прави по-подробно: k

(
n
k

)
е точно

броят на единиците в подмножеството вектори, имащи точно k единици. �

Задача 94. Докажете с комбинаторни разсъждения, че
n∑
k=0

2k
(
n

k

)
= 3n

Решение. Тернарните стрингове са тези над азбуката {0, 1, 2}. Нека S е множеството от
тернарните стрингове с дължина n. Дясната страна на тъждеството е очевидно |S|.

Лявата страна също е мощността на S, но там се брои по-подробно. Разбиваме S на n+ 1
подмножества X0, X1, . . . , Xn, където Xk са тернарните стрингове с дължина n, имащи точно
n − k двойки. Очевидно има

(
n
n−k

)
начина да изберем n − k позиции за двойките от общо

n позиции, при което остават n − (n − k) = k позиции за нули и единици, които k позиции
може да запълним по 2k различни начина (с нули и единици). Тогава |Xk| = 2

k
(
n
n−k

)
. Предвид

факта, че
(
n
n−k

)
=
(
n
k

)
, заключаваме, че |Xk| = 2k

(
n
k

)
. Съгласно комбинаторния принцип на

разбиването,

|S| =
∑
k=0

|Xk| =
∑
k=0

2k
(
n

k

)
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Заключаваме, че

3n =
∑
k=0

2k
(
n

k

)
�

Задача 95. Нека k, m и n са естествени числа, такива че k ≤ m ≤ n. Докажете с комбина-
торни съображения тъждеството(

n− k

m− k

)
=

k∑
i=0

(−1)i
(
k

i

)(
n− i

m

)
Решение. Лявата страна броиm-елементните подмножества на {1, 2, . . . , n}, всяко от които
съдържа всички числа 1, 2, . . . , k; щом съдържа всяко от 1, 2, . . . , k, то всяко такова
m-елементно подмножество се определя напълно от това, кои m − k на брой елемента на
{k + 1, k + 2, . . . , n} съдържа. Но |{k + 1, k + 2, . . . , n}| = n − k. Следователно, броят на m-
елементните подмножества на {1, 2, . . . , n}, всяко от които съдържа числата 1, 2, . . . , k, е(
n−k
m−k

)
.

Дясната страна брои същото множество, но подробно и съгласно принципа на включване-
то и изключването. Универсумът е множеството от всички m-елементни подмножества на
{1, 2, . . . , n} без ограничения. Очевидно мощността на универсума е

(
n
m

)
.

Да разгледамеm-елементните подмножества на {1, 2, . . . , n}, които не съдържат елемента
1. Очевидно те са

(
n−1
m

)
на брой. Всички тези подмножества са “нарушители” по отношение на

изискването да се съдържат числата 1, 2, . . . , k. Нещо повече, несъдържането на кое да е от
1, 2, . . . , k представлява “нарушение”, така че общият брой на подмножествата-нарушители,
несъдържащи поне един елемент от {1, 2, . . . , k}, е k

(
n−1
m

)
.

Но отговорът не може да е
(
n
m

)
− k

(
n−1
m

)
, защото тук сме извадили прекалено много.

Разглеждаме m-елементните подмножества на {1, 2, . . . , n}, всяко от които не съдържа поне
две числа различни измежду 1, 2, . . . , k. Има

(
k
2

)
начина да изберем тези различни числа,

откъдето броят на тези подмножества е
(
k
2

)(
n−2
m

)
. Дотук имаме(

n

m

)
− k

(
n− 1

m

)
+

(
k

2

)(
n− 2

m

)
Продължаваме съгласно принципа на включването и изключването. Следващото съби-

раемо е −
(
k
3

)(
n−3
m

)
, след това е +

(
k
4

)(
n−4
m

)
, и така нататък. Цялата сума с алтерниращи знаци

може да запишем като

(−1)0
(
k

0

)(
n− 0

m

)
+(−1)1

(
k

1

)(
n− 1

m

)
+(−1)2

(
k

2

)(
n− 2

m

)
+(−1)3

(
k

3

)(
n− 3

m

)
+· · ·+(−1)k

(
k

k

)(
n− k

m

)
Накратко,

k∑
i=0

(−1)i
(
k

i

)(
n− i

m

)
�

Задача 96. Докажете с комбинаторни разсъждения, че за всички m,n, r ∈ N+, такива че
r ≤ min {m,n} е вярно, че(

m+ n

r

)
=

r∑
k=0

(
m

k

)(
n

r− k

)
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Решение. Нека S е множество с m + n елемента, m от които са червени, а останалите са
зелени. Нека C е множеството

C = {X ⊂ S : |X| = r}

Съгласно изучаваното на лекции, |C| =
(
m+n
r

)
. За k ∈ {0, . . . , r}, нека Dk е множеството

Dk = {Y ∈ C | Y съдържа точно k червени елементи}

Забелязваме, че |Dk| =
(
m
k

)(
n
r−k

)
, защото можем да подберем по

(
m
k

)
червените в Dk от общо

m червени, зелените в Dk трябва да са r − k и тях можем да подберем по
(
n
r−k

)
от общо

n зелени, и всяка подборка на k червени може да се комбинира с всяка подборка на r − k
зелени.

След това забелязваме, че {D1, D2, . . . , Dk} е разбиване на C, така че

|C| =

r∑
k=0

|Dk|

което можем да запишем като

|C| =

r∑
k=0

(
m

k

)(
n

r− k

)
И тъй като |C| =

(
m+n
r

)
, сила е(

m+ n

r

)
=

r∑
k=0

(
m

k

)(
n

r− k

)
�

Задача 97. Дадени са цели положителни числа n1, . . . , nk и n, такива че
∑k

i=1 ni = n. Освен
това са дадени цели положителни числа m1, . . . , mt, такива че

∑t
i=1mi = nk. Докажете с

комбинаторни разсъждения, че(
n

n1, n2, . . . , nk

)(
nk

m1,m2, . . . ,mt

)
=

(
n

n1, n2, . . . , nk−1,m1,m2, . . . ,mt

)
·

Решение. Да си представим обикновено множество S с мощност n и мултимножество M,
което се получава от S чрез фиксирано разбиване {C1, C2, . . . , Ck} на S, такова че |C1| = n1,
|C2| = n2, . . . , |Ck| = nk, като елементите на всяко Ci стават неразличими. Както знаем от
лекции, броят на пермутациите на M е

(
n

n1,n2,...,nk

)
.

Да си представим друго мултимножество M ′, което се получава от M и фиксирано раз-
биване {D1, D2, . . . , Dt} на Ck, такова че |D1| = m1, |D2| = m2, . . . , |Dt| = mt, като еле-
ментите на всяко Di стават неразличими. Очевидно е, че броят на пермутациите на M ′ е(

n
n1,n2,...,nk−1

)(
nk

m1,m2,...,mt

)
. Но това е точно лявата страна на тъждеството, което доказваме.

Ключовото наблюдение е, че M ′ може да се получи директно от S, без да се минава през M
като междинен етап: разглеждаме фиксирано разбиване {C1, C2, . . . , Ck−1, D1, D2, . . . , Dt} на
S, такова че |C1| = n1, |C2| = n2, . . . , |Ck−1| = nk−1, |D1| = m1, |D2| = m2, . . . , |Dt| = mt, като
елементите на всяко Ci стават неразличими и елементите на всяко Di стават неразличими.
Броят на пермутациите на M ′ е

(
n

n1,n2,...,nk−1,m1,m2,...,mt

)
. Но това е точно дясната страна на

тъждеството, което доказваме.

Доказахме тъждеството, използвайки комбинаторни съображения. �
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Задача 98. Нека n е естествено число. Докажете с комбинаторни разсъждения тъждеството(
n+ 3

5

)
=

n∑
k=2

(
k

2

)(
n− k+ 2

2

)
Решение. Разглеждаме множеството S = {1, 2, . . . , n, n+ 1, n+ 2, n+ 3}. Нека

X = {Y ⊆ S : |Y| = 5}

Лявата страна
(
n+3
5

)
е равна на |X| по определение.

Дясната страна също брои |X|, но по-детайлно. Разбиваме X на множества Z1, Z2, . . . , Zt
така: във всяко Zi, всички елементи на Zi—а те са 5-елементни множества—имат един и
същи трети по големина елемент m. Нека подмножеството на Zi от първия и втория по
големина елемент се нарича Z ′i, а подмножеството на Zi от четвъртия и петия по големина
елемент се нарича Z ′′i . Точните долна и горна граница за m са съответно 3 и n+ 1, откъдето
t = (n+ 1) − 3+ 1 = n− 1.

Очевидно

• Ако m = 3, то Z ′i ⊆ {1, 2}, а Z ′′i ⊆ {4, 5, . . . , n+ 3}.

• Ако m = 4, то Z ′i ⊆ {1, 2, 3}, а Z ′′i ⊆ {5, 6, . . . , n+ 3}.

• Ако m = 5, то Z ′i ⊆ {1, 2, 3, 4}, а Z ′′i ⊆ {6, 7, . . . , n+ 3}.

• И така нататък.

• Ако m = n, то Z ′i ⊆ {1, 2, . . . , n− 1}, а Z ′′i ⊆ {n+ 1, n+ 2, n+ 3}.

• Ако m = n+ 1, то Z ′i ⊆ {1, 2, . . . , n}, а Z ′′i ⊆ {n+ 2, n+ 3}.

Вижда се, че за всяка фиксирана стойност на m, броят на начините да изберем двуеле-
ментното Z ′i са

(
m−1
2

)
, а броят на начините да изберем двуелементното Z ′′i са

(
n+3−m

2

)
, като

произведението
(
m−1
2

)(
n+3−m

2

)
е броят на начините да изберем Z ′i и Z ′′i . Избирайки Z ′i и Z ′′i ,

ние напълно определяме Zi, понеже m е фиксирано.
Нека k означава m− 1. Тогава 2 ≤ k ≤ n, а за всяко k, начините да изберем съответното

Zi са
(
k
2

)(
n+3−m

2

)
=
(
k
2

)(
n+2−m+1

2

)
=
(
k
2

)(
n+2−k
2

)
.

Тъй като X се разбива на Z1, Z2, . . . , Zn−1, съгласно комбинаторния принцип на разбива-
нето, в сила е

|X| =

n∑
k=2

(
k

2

)(
n+ 2− k

2

)
Доказахме, че(

n+ 3

5

)
=

n∑
k=2

(
k

2

)(
n− k+ 2

2

)
�

Задача 99. Нека n, k, q ∈ N и q ≤ k ≤ n. Докажете с комбинаторни съображения, че(
n

k

)(
k

q

)
=

(
n

q

)(
n− q

k− q

)
(54)(

n+ 1

k

)
=
∑
0≤q≤k

(
n− q

k− q

)
(55)
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Използвайки (54) и (55), докажете, че

∑
0≤q≤k

(
k
q

)(
n
q

) =
n+ 1

n+ 1− k
(56)

Решение. Тъждество (54) може да се докаже по следния начин. Лявата страна брои на-
чините да изберем

• в стъпка 1: k елемента от n, и после

• в стъпка 2: от тези k да изберем q.

Забележете, че това не е същото като да изберем само q от n, защото има значение кои k
елемента сме избрали в стъпка 1.
Дясната страна брои начините да изберем

• в стъпка 1: q елемента от n, и после

• в стъпка 2: да изберем още k− q елемента измежду тези n− q, които не са избрани в
стъпка 1.

Тези два броя са равни, защото има очевидна биекция между двете множества от подборки.

Тъждество (55) може да се докаже по следния начин. Дясната страна брои k-елементните
подмножества на {1, 2, . . . , n+ 1}.

Нека X е произволно k-елементно подмножество на {1, 2, . . . , n + 1}. Нека q + 1 е най-
малкото число, което не се среща в X, като точните граници за q + 1 са 1 ≤ q + 1 ≤ k + 1:
очевидно q+ 1 ≥ 1, а q+ 1 не може да е по-голямо от k+ 1, понеже числата “вляво” от q+ 1
може да са най-много k на брой. Тогава 0 ≤ q ≤ k.

Щом q+1 е най-малкото число, което не се среща в X, то числата 1, 2, . . . , q задължително
са в X. Щом 1, 2, . . . , q задължително са в X, а q + 1 не е в X, то това, което определя X
напълно, е кои числа, по-големи от q+ 1, са негови елементи; а тези числа са k− q на брой,
понеже |X| = k. С други думи, ако q+ 1 е най-малкото число, което не се среща в X, то X се
определя напълно от това, кои k− q числа от множеството {q+ 2, q+ 3, . . . , n+ 1} са негови
(на X) елементи.

Ясно е, че |{q + 2, q + 3, . . . , n + 1}| = n + 1 − (q + 2) + 1 = n − q. Ерго, различните
възможности за X са точно

(
n−q
k−q

)
.

Но множеството от k-елементните подмножества на {1, 2, . . . , n+1} се разбива по това, кое
е най-малкото число, което не се среща. Прилагаме комбинаторния принцип на разбиването
и получаваме (55).

Тъждество (56) ще докажем алгебрически. Общото събираемо (kq)
(nq)

от лявата страна предс-

тавяме така съгласно (54):(
k
q

)(
n
q

) =

(
n−q
k−q

)(
n
k

)
Тогава∑

0≤q≤k

(
k
q

)(
n
q

) =
∑
0≤q≤k

(
n−q
k−q

)(
n
k

)
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Но делителят
(
n
k

)
не зависи от индексната променлива q. Следователно, всяко събираемо от

дясната страна има множител 1

(nk)
, който можем да извадим пред скоби. Получаваме дясната

страна във вида

1(
n
k

) ∑
0≤q≤k

(
n− q

k− q

)
Но от (55) знаем, че

∑
0≤q≤k

(
n−q
k−q

)
=
(
n+1
k

)
. И така,(

k
q

)(
n
q

) =

(
n+1
k

)(
n
k

)
Но (

n+1
k

)(
n
k

) =

(n+1)!
k! (n+1−k)!

n!
k! (n−k)!

=
n+ 1

n+ 1− k

С което доказахме (56). �

Следната задача решаваме чрез индукция, а не с комбинаторни разсъждения. Но в задачата
след нея ще ползваме комбинаторни разсъждения.

Задача 100. Безкрайната редица C0, C1, C2, . . . от числа на Catalan се дефинира чрез
рекурентното уравнение:

C0 = 1, Cn =

n−1∑
i=0

Ci · Cn−1−i за n > 0 (57)

Още една дефиниция. Добре скобуван израз ще наричаме всеки стринг x над азбуката Σ =
{(, )}, такъв че

• броят на левите и десните скоби в x е равен и

• ако x = x1x2 · · · xm (което значи, че x има дължина m), за всяко i, такова че 1 ≤ i ≤ m,
броят на левите скоби в x1x2 · · · xi е по-голям или равен от броя на десните скоби в
x1x2 · · · xi .

Докажете, че ∀n ∈ N, броят на добре скобуваните изрази с дължина 2n е точно Cn.

Решение. Ще използваме силна индукция.

База: Нека n = 0. От една страна, множеството от добре скобуваните изрази с дължина 0
има само един елемент – празният стринг. От друга страна, C0 = 1 по дефиниция. 3

Индуктивно предположение: Да допуснем, че за за някое n ≥ 0, за всички стойности на
аргумента между 0 и n− 1 включително, твърдението е вярно.

Индуктивна стъпка: Разглеждаме произволен добре скобуван израз x = x1x2 · · · x2n. Де-
финираме функция f : {1, 2, . . . , 2n} → Z така: f(i) е броят на левите скоби минус броя на
десните скоби в подстринга x1 · · · xi. Забелязваме, че f(i) е неотрицателно за всяко i, и за
поне едно i, а именно i = 2n, f(i) = 0. Нека k = min {i ∈ {1, 2, . . . , 2n} | f(i) = 0}. Но k е четно
число, защото x1 · · · xk съдържа равен брой леви и десни скоби. Нещо повече, x1 · · · xk е добре
скобуван израз, защото броят на левите и десните скоби е един и същи и във всеки префикс
левите са поне колкото десните (ако не беше така, целият x нямаше да е добре скобуван
израз). Нещо повече:
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• x1 = (, защото всеки добре скобуван израз започва с лява скоба, и

• xk =), защото xk е най-лявата позиция, на която е изпълнено f(k) = 0, от което следва,
че f(k− 1) = 1; ако xk е (, то f(k) би било 2.

Щом x1 = ( и xk =), стрингът x2 · · · xk−1 е добре скобуван израз: можем да дефинираме
функция f ′, аналогична на f, за него чрез изваждане на единица от стойностите на f върху
него; тъй като f(i) > 0 ∀i ∈ {2, . . . , k − 1}, то f ′(i) ≥ 0 ∀i ∈ {2, . . . , k − 1}, и освен това
f ′(k− 1) = 0.

След като показахме, че x2 · · · xk−1 е добре скобуван израз, прилагаме индуктивното пред-
положение за него. Дължината на x2 · · · xk−1 е k− 1− 2+ 1 = k− 2: четно число, което може
да е най-малко 0 и най-много 2n−2. Ако означим с i половината от дължината на x2 · · · xk−1,
то i ∈ {0, . . . , n − 1}; очевидно i = k

2
− 1. Съгласно индуктивното предположение, броят на

добре скобуваните изрази с дължина 2i е Ci. И така, има Ci възможности за x2 · · · xk−1.
Сега разглеждаме xk+1 · · · xn. Очевидно това също е добре скобуван израз. Дължината

му е 2n− k, което е четно число. Половината му е n− k
2
= n− (i+ 1) = n− 1− i. Съгласно

индуктивното предположение, броят на добре скобуваните изрази с дължина 2(n − i − 1) е
Cn−i−1. И така, има Cn−i−1 възможности за xk+1 · · · x2n.

Съгласно принципа на умножението, спрямо дадено i, общо има Ci ·Cn−1−i възможности
за Декартовото произведение на добре скобуваните изрази x2 · · · xk−1 с xk+1 · · · x2n. Тъй като
при различните стойности на i получаваме различни добре скобувани изрази x1 · · · x2n, то
можем да приложим принципа на разбиването и общо

Cn =

n−1∑
i=0

Ci · Cn−1−i �

Задача 101. Докажете, че

Cn =
1

n+ 1

(
2n

n

)
Решение. Припомняме си какво е “разходка в правоъгълна мрежа”. Разглеждаме право-
ъгълна мрежа M с размери n × n. Нека долният ляв ъгъл е точка (1, 1), а горният десен,
(n,n). Всяка разходка започва в (1, 1) и завършва в (n,n), правейки само ходове нагоре
и надясно. Колко са всички разходки? Нека дефинираме лошият диагонал като следното
множеството от точки в мрежата: {(1, 2), (2, 3), . . . , (n − 2, n − 1), (n − 1, n)}. Разбийте мно-
жеството от всички разходки на добри и лоши. Лошите разходки са тези, които имат поне
една обща точка с лошия диагонал.

Всички разходки очевидно са
(
2n
n

)
. Добрите разходки са Cn. Това се вижда веднага, ако

заместим ходовете нагоре с леви скоби и ходовете надясно с десни скоби – получаваме добре
скобуваните стрингове с дължина 2n, които Cn на брой съгласно първата задача.

Лошите разходки са
(
n−1+n+1
n−1

)
=
(
2n
n−1

)
. Ето защо. Съществува биекция между лошите

разходки в дадената мрежаM и всички разходки в друга мрежа, която е с размери (n−1)×
(n + 1). Използвайки термините от упътването, на всяка лоша разходка x в M съответства
разходка y в мрежа с размери (n − 1) × (n + 1). Геометрично, y се получава от x чрез
рефлексия (спрямо правата, съдържаща лошия диагонал) на тази част от x, която е след
първата среща с лошия диагонал.

Получаваме(
2n

n

)
= Cn −

(
2n

n− 1

)↔ Cn =

(
2n

n

)
−

(
2n

n− 1

)
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Но(
2n

n

)
−

(
2n

n− 1

)
=

(2n)!

n!n!
−

(2n)!

(n+ 1)!(n− 1)!
=

(2n)!(n+ 1)

(n+ 1)!n!
−

(2n)!n

(n+ 1)!n!
=

(2n)!

(n+ 1)!n!
=

1

n+ 1

(
2n

n

)
�

6 Слагания на топки в кутии
Таблица 1 показва по колко начина може да бъдат сложениm топки в n кутии, при различни
условия. Кутиите може да бъдат различими или неразличими (еднакви), топките, също,
което дава четири варианта на задачата. Всеки от тези четири варианта се разбива на три
подварианта в зависимост от това, дали няма повече ограничения или не може повече от една
топка в кутия или не може да има празна кутия. Вариантът с различни топки и различни
кутии, тоест синята част на Таблица 1, точно отговаря на тоталните функции отm-елементен
домейн (топките) в n-елементен домейн (кутиите), а подвариантите с ≤ 1 топка в кутия и
≥ 1 топка в кутия точно отговарят съответно на инекциите и сюрекциите.

В останалите три варианта, в които поне единият вид обекти са еднакви, тоест кафявата,
червената и зелената част на Таблица 1, съответствието с тоталните функции е доста условно.
В тези варианти, поне едното от домейна или кодомейна е мултимножество, в което един
единствен елемент се повтаря m или n пъти. Нашата формална дефиниция на “функция”
не позволява домейнът или кодомейнът да са мултимножества с повтарящи се елементи. Но
е напълно мислимо да злоупотребим с формалната дефиниция на “функция”, допускайки
мултимножества с повтарящи се елементи като домейн или кодомейн. Тогава можем и в
кафявата, червената и зелената части на таблицата да мислим за разполаганията на топките
в кутиите като за тотални функции или инекции или сюрекции.

Таблица 1 може да бъде разширявана с още подварианти, например кутиите да имат
дадени капацитети (максимален брой топки) или редът на слагане на топките в кутиите да
има значение (при различими топки, естествено).

n кутии
различими неразличими

m
то

пк
и

ра
зл

ич
им

и

без ограничения nm без ограничения
∑n

k=1

{
m
k

}
≤ 1 топка в кутия
(инекции)

nm ≤ 1 топка в кутия
(инекции)

Jm ≤ nK

≥ 1 топка в кутия
(сюрекции)

n∑
k=0

(−1)k
(
n

k

)
(n− k)m ≥ 1 топка в кутия

(сюрекции)

{
m
n

}

не
ра

зл
ич

им
и без ограничения
(
m+n−1
m

)
без ограничения

∑n
k=1 p(m,k)

≤ 1 топка в кутия
(инекции)

(
n
m

) ≤ 1 топка в кутия
(инекции)

Jm ≤ nK

≥ 1 топка в кутия
(сюрекции)

(
m−1
m−n

) ≥ 1 топка в кутия
(сюрекции)

p(m,n)

Таблица 1: Слагания на топки в кутии (the 12-fold way).
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Обяснение на нотациите:

• nm е кратък запис за произведението
∏m−1

k=0 (n− k). С други думи,

nm = n× (n− 1)× (n− 2)× . . .× (n−m+ 1)

Очевидно е, че nm = 0 при m > n. Освен това, има смисъл да се дефинира n0 def
= 1,

тъй като единицата е неутрален елемент на операцията умножение. nm се чете n на
падаща степен m (n to the m falling на английски).

•
{
m
n

}
—чете се “m-подмножество-n”—е число на Стирлинг от втори род.

{
m
n

}
е броят

на начините за разбиване на m-елементно множество на n подмножества. В сила е
рекурентното уравнение{

m

n

}
= n

{
m− 1

n

}
+

{
m− 1

n− 1

}
за m > 0 и m ≥ n (58)

с гранични условия{
k

k

}
= 1, ако k ≥ 0 (59){

k

0

}
= 0, ако k > 0 (60)

За аргументация на (58), вижте Задача 84. Съществува следната връзка между числата
на Стирлинг от втори род и броят на сюрекциите:

n∑
k=0

(−1)k
(
n

k

)
(n− k)m = n!

{
m

n

}
.

За да се убедим, че е така, да разгледаме решението на Задача 85 с разменени m и n.

Заслужава да се отбележи, че{
n

2

}
= 2n−1 − 1 (61)

Доказателството е елементарно. Разглеждаме n-елементно множество A и неговите
разбивания на 2 дяла. Забелязваме, че точно две подмножества на A, а именно ∅ и A,
не може да са дялове на разбиване: ∅ не може да е дял на разбиване по дефиниция,
а A не може да е дял на разбиване, понеже другият дял трябва е ∅. Ерго, има 2n − 2
подмножества на A, които може да са дялове на разбиване. Сега забелязваме, че за
всяко B ∈ 2A\{∅, A}, фамилията {B,A\B} е едно разбиване на A на 2 дяла. Неформално,
подмножествата на A, които може да са дялове на разбиване, се съчетават по двойки
(чието обединение е A) и всяка такава двойка е точно едно от разбиванията на A на
два дяла. Ерго,

{
n
2

}
= 2n−2

2
= 2n−1 − 1.

• p(m,n) е броят на целочислените разбивания на числото m на n части (на английски,
number of integer partitions). Целочислено разбиване на m на n части е всяка сума от
n положителни естествени числа (където 1 ≤ n ≤ m), равна на m, където редът на су-
миране няма значение. Тогава

∑m
k=1 p(m,k) е броят на всички целочислени разбивания

на числото m.

87



Задачи с решения по комбинаторика, ФМИ-СУ, 2016-2025 г. c© Минко Марков

Като малък пример, нека m = 4. Ето всички целочислени разбивания на 4:

4 = 1+ 1+ 1+ 1

4 = 1+ 1+ 2

4 = 2+ 2

4 = 1+ 3

4 = 4

Очевидно p(4, 1) = 1, p(4, 2) = 2, p(4, 3) = 1 и p(4, 4) = 1, така че
∑4

k=1 p(4, k) = 5.

Броят на целочислените разбивания може да се пресмята чрез следното рекурентно
уравнение:

p(n, k) = p(n− k, k) + p(n− 1, k− 1)

с гранични условия p(k, k) = 1 за k ≥ 0 и p(k, 0) = 0 за k ≥ 1 и p(t, k) = 0 за t < k.

• JqK, където q някакъв израз с булева интерпретация, се дефинира така:

JqK =

{
1, ако q е истина
0, в противен случай.

Например, Jm ≤ nK е равно на 1, когато m ≤ n, а във всички останали случаи е 0. Тази
нотация се нарича нотация на Iverson.

Задача 102. Колко различни решения в естествени числа има уравнението

x1 + x2 + x3 + x4 + x5 = 100

Решение. Търси се броят на наредените петорки (x1, x2, x3, x4, x5) от естествени числа,
чиито елементи имат сума сто. В термините на топки в кутии, задачата е, по колко различни
начина можем да сложим 100 неразличими топки (сто единици) в пет различни кутии (петте
променливи). От червената част на Таблица 1 знаем, че m еднакви топки може да бъдат
сложени по

(
m+n−1
n−1

)
начина в n различни кутии. И така, отговорът е:(

100+ 5− 1

5− 1

)
= 4 598 126

�

Задача 103 и Задача 106 се свеждат до разполагания на топки в кутии, като обаче кутиите
имат капацитети.

Задача 103. Колко различни наредени петорки (x1, x2, x3, x4, x5) от естествени числа удов-
летворяват

x1 + x2 + x3 + x4 + x5 = 100

0 ≤ x1 ≤ 30
0 ≤ x2 ≤ 30
0 ≤ x3 ≤ 30
0 ≤ x4 ≤ 30
0 ≤ x5 ≤ 30
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Решение. Задачата е подобна на Задача 102, но сега кутиите имат “капацитети”: най-
много 30 топки в кутия. Нека Bi е множеството от конфигурациите-решения от Задача 102,
в които кутия i е “нарушител”—тоест в нея има поне 31 топки—за 1 ≤ i ≤ 5. Търсим броя на
конфигурациите, в които нарушения няма за нито една кутия. С други думи, търсим

|B1 ∩ B2 ∩ B3 ∩ B4 ∩ B5|

Съгласно принципа на включването и изключването,

|B1 ∩ B2 ∩ B3 ∩ B4 ∩ B5| = |U|−
∑
1≤i≤5

|Bi|+
∑

1≤i<j≤5

|Bi ∩ Bj|−
∑

1≤i<j<k≤5

|Bi ∩ Bj ∩ Bk|+∑
1≤i<j<k<t≤5

|Bi ∩ Bj ∩ Bk ∩ Bt|︸ ︷︷ ︸
това е 0

− |B1 ∩ B2 ∩ B3 ∩ B4 ∩ B5|︸ ︷︷ ︸
това е 0

където U е универсумът от всички слагания на сто еднакви топки в пет различни кутии без
ограничения. Както показахме в Задача 102, |U| = 4 598 126. Ясно е защо последните две
събираеми са нули: няма как при обща сума 100, четири или пет променливи да са поне 31.
Следователно, търсеният отговор е

|B1 ∩B2 ∩B3 ∩B4 ∩B5| = 4 598 126−
∑
1≤i≤5

|Bi|+
∑

1≤i<j≤5

|Bi ∩Bj|−
∑

1≤i<j<k≤5

|Bi ∩Bj ∩Bk| (62)

От общи съображения е ясно, че |B1| = |B2| = |B3| = |B4| = |B5| и |B1 ∩ B2| = . . . = |B4 ∩ B5|︸ ︷︷ ︸
10 такива

и

|B1 ∩ B2 ∩ B3| = . . . = |B3 ∩ B4 ∩ B5|︸ ︷︷ ︸
10 такива

. Търсеният отговор е:

4 598 126− 5× |B1|+ 10× |B1 ∩ B2|− 10× |B1 ∩ B2 ∩ B3| (63)

Колко е |B1|? Щом x1 е сигурен нарушител на капацитета (и няма друг сигурен нарушител),
то е вярно, че

x1 + x2 + x3 + x4 + x5 = 100

31 ≤ x1
0 ≤ x2
0 ≤ x3
0 ≤ x4
0 ≤ x5

Да представим x1 като x1 = x ′1 + 31. Тогава условието 31 ≤ x1 е същото като 0 ≤ x ′1, а
x1+x2+x3+x4+x5 = 100 става x ′1+31+x2+x3+x4+x5 = 100, тоест x ′1+x2+x3+x4+x5 = 69.
Изведохме, че |B1| е мощността на множеството от наредените петорки (x ′1, x2, x3, x4, x5), които
удовлетворяват:

x ′1 + x2 + x3 + x4 + x5 = 69

0 ≤ x ′1
0 ≤ x2
0 ≤ x3
0 ≤ x4
0 ≤ x5
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Но ние знаем колко такива наредени петорки има:
(
69+5−1
5−1

)
= 1 088 430.

Напълно аналогично, |B1 ∩ B2| =
(
38+5−1
5−1

)
= 111 930 и |B1 ∩ B2 ∩ B3| =

(
7+5−1
5−1

)
= 330.

Заместваме в (63) и получаваме крайния отговор

4 598 126− 5× 1 088 430+ 10× 111 930− 10× 330 = 271 976 �

Задача 104. Колко са целочислените решения на уравнението

x1 + x2 + x3 + x4 + x5 = 55

при ограниченията x1 ≥ 2, x2 ≥ −3, x3 ≥ 4, x4 ≥ −5 и x5 ≥ 6?

Решение. Знаем, че целочислените решения на x1 + · · ·+ xk = N при ограничения

x1 ≥ 0
· · ·

xk ≥ 0

са толкова, колкото са начините да бъдат сложени N анонимни топки в k номерирани кутии,
а именно

(
N+k−1
k−1

)
. За да ползваме този резултат обаче, трябва ограниченията да са от вида

xi ≥ 0. Нека

x ′1 = x1 − 2↔ x1 = x
′
1 + 2

x ′2 = x2 + 3↔ x2 = x
′
2 − 3

x ′3 = x3 − 4↔ x3 = x
′
3 + 4

x ′4 = x4 + 5↔ x4 = x
′
4 − 5

x ′5 = x5 − 6↔ x5 = x
′
5 + 6

Тогава

x1 ≥ 2↔ x ′1 ≥ 0
x2 ≥ −3↔ x ′2 ≥ 0
x3 ≥ 4↔ x ′3 ≥ 0

x4 ≥ −5↔ x ′4 ≥ 0
x5 ≥ 6↔ x ′5 ≥ 0

Да минем към “примовите” променливи. Уравнението става

x ′1 + 2+ x
′
2 − 3+ x

′
3 + 4+ x

′
4 − 5+ x

′
5 + 6 = 55↔ x ′1 + x

′
2 + x

′
3 + x

′
4 + x

′
5 = 51

а ограниченията са просто

x ′1 ≥ 0
x ′2 ≥ 0
x ′3 ≥ 0
x ′4 ≥ 0
x ′5 ≥ 0

Броят на целочислените решения на това уравнение е
(
51+5−1
5−1

)
= 341 055. Това е броят на

решенията и на оригиналното уравнение. �
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Задача 105. За колко естествени числа, по-малки от 1 000 000, е вярно, че сумата от цифрите
им е равна на 19? Има се предвид, че числата са написани в десетична позиционна бройна
система.

Дайте отговор-число.

Решение. Нека S е множеството {n ∈ N+ |n < 1 000 000}. Пита се колко елемента на S имат
свойството записите им в десетична бройна система да имат сума от цифрите 19. Нека всяко
число от S се записва с точно шест цифри. Това значи, че е възможно да има водещи нули,
примерно 155 се записва като 000 155. Водещите нули не се отразяват на сумата от цифрите.

Щом цифрите са точно шест, можем да ги именуваме с x1 (най-старшата), x2, x3, x4, x5 и
x6 (най-младшата). Тогава всяко u ∈ S, изразено чрез шестте си цифри, е

u = x1 · 105 + x2 · 104 + x3 · 103 + x4 · 102 + x5 · 101 + x6 · 100

Примерно, 155 = 0 · 105 + 0 · 104 + 0 · 103 + 1 · 102 + 5 · 101 + 5 · 100

Търсеният отговор е броят на решенията на уравнението

x1 + x2 + x3 + x4 + x5 + x6 = 19

в естествени числа при следните ограничения:

0 ≤ xi ≤ 9, за 1 ≤ i ≤ 6

Общият брой на решенията на уравнението, без да отчитаме ограниченията, е броят на
разполаганията на 19 неразличими топки в 6 различими кутии. Съгласно изучаваното на
лекции, този брой е

(
19+6−1
6−1

)
=
(
24
5

)
. Стойността на този биномен коефициент е 42 504.

Да съобразим как ограниченията влияят на решението. Нека Ni е броят решенията на
уравнението, в които цифрата xi е “нарушител”, тоест, стойността на xi е поне 10, за 1 ≤ i ≤
6. Нека Ni,j е броят решенията на уравнението, в които цифрите xi и xj са “нарушители”,
тоест, xi, xj ≥ 10 за 1 ≤ i < j ≤ 6. Нека Ni,j,k е броят решенията на уравнението, в които
цифрите xi, xj и xk са “нарушители”, тоест, xi, xj, xk ≥ 10 за 1 ≤ i < j < k ≤ 6. Нека
Ni,j,k,` е броят решенията на уравнението, в които цифрите xi, xj, xk и x` са “нарушители”,
тоест, xi, xj, xk, x` ≥ 10 за 1 ≤ i < j < k < ` ≤ 6. Нека Ni,j,k,`,m е броят решенията на
уравнението, в които цифрите xi, xj, xk, x` и xm са “нарушители”, тоест, xi, xj, xk, x`, xm ≥ 10
за 1 ≤ i < j < k < ` < m ≤ 6. Нека N1,2,3,4,5,6 е броят на решенията на уравнението, в които
всички цифри са нарушители.

Съгласно принципа на включването и изключването, търсеният отговор е(
24

5

)
− (N1 +N2 + · · ·+N6) − (N1,2 +N1,3 + · · ·+N5,6) + (N1,2,3 +N1,2,4 + · · ·+N4,5,6)

− (N1,2,3,4 +N1,2,3,5 + · · ·+N3,4,5,6) + (N1,2,3,4,5 +N1,2,3,4,6 + · · ·+N2,3,4,5,6) −N1,2,3,4,5,6

Ключово наблюдение е, че всяко Ni1,...,it = 0 за t ≥ 2, понеже няма как две или повече
числа числа да бъдат поне 10, при положение, че всичките шест числа имат сума 19. Тогава
търсеният отговор е(

24

5

)
− (N1 +N2 + · · ·+N6) =

(
24

5

)
− 6 ·N1

понеже очевидно N1 = N2 = · · · = N6.
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Остава да намерим N1. Тъй като x1 ≥ 10, заместваме x1 с x ′1 + 10, където x ′1 е естествено
число. N1 е броят на решенията в естествени числа на уравнението

x ′1 + 10+ x2 + x3 + x4 + x5 + x6 = 19

тоест, на

x ′1 + x2 + x3 + x4 + x5 + x6 = 9

Съгласно изучаваното на лекции, броят на решенията е
(
9+6−1
6−1

)
=
(
14
5

)
= 2 002.

Тогава отговорът е(
24

5

)
− 6 ·

(
14

5

)
= 42 504− 6 · 2 002 = 42 504− 12 012 = 30 492 �

Задача 106. Плочкаджия трябва да покрие с плочки стена с размери 2 м. на 4 м. Всяка
плочка е с размери 20 см. на 20 см., а цветът и́ е или зелен, или червен. Общо плочките са 200
на брой: 80 зелени и 120 червени. Плочките се редят плътно една до друга и не е разрешено
да се режат, следователно трябва да бъдат наредени в конфигурация от 10 реда и 20 колони.
Зелените плочки са неразличими помежду си и червените плочки са неразличими помежду
си. По колко начина може да бъде направено покриването, ако:

• Няма ограничения.

• Във всеки ред зелените плочки, ако има такива, са вляво от червените, ако има такива.

Решение. В първото подусловие е достатъчно да съобразим, че двумерната наредба на
плочките няма никакво значение за търсения брой на възможните покривания. Възможните
покривания са точно толкова (по принципа на биекцията), колкото са възможностите да
бъдат наредени в линейна наредба 80 зелени и 120 червени плочки. С други думи, това са
възможностите да изберем 80 плочки от общо 200. Броят е(

200

80

)
= 1 647 278 652 451 762 678 788 128 833 110 870 712 983 038 446 517 480 945 400 ≈ 1057

Второто подусловие се решава точно като Задача 103. Първо съобразяваме следното: както
и в предишното подусловие, разполагането на зелените плочки напълно определя разполага-
нето на червените – червените се слагат на 120-те свободни места. Но в сегашното подусло-
вие, зелените плочки се редят плътно вляво. На някои редове може изобщо да няма зелени
плочки, на други може да са само зелени плочки, а ако има и от двата вида, зелените са
вляво. Ясно е, че за всеки ред, броят на зелените плочки—число между нула и двадесет
включително—определя напълно подреждането в този ред. Тогава цялата наредба (върху
стената) се определя от десет числа, всяко от което е между нула и двадесет включително,
и всички тези числа се сумират до 80.

Внимание – редовете са различими! Например, слагането на 19 зелени плочки на първи
ред, 13 на втори и по 6 на всички останали редове е различно слагане от 13 зелени плочки
на първи ред, 19 на втори и по 6 на всички останали редове. Следователно, става дума не
за множество от числа, а за вектор от числа, които се сумират до 80.

Задачата е същата като задачата, колко решения в естествени числа има уравнението

x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 = 80
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при ограниченията

0 ≤ x1 ≤ 20
0 ≤ x2 ≤ 20
0 ≤ x3 ≤ 20
0 ≤ x4 ≤ 20
0 ≤ x5 ≤ 20
0 ≤ x6 ≤ 20
0 ≤ x7 ≤ 20
0 ≤ x8 ≤ 20
0 ≤ x9 ≤ 20
0 ≤ x10 ≤ 20

Ако ограниченията бяха само 0 ≤ xi, 1 ≤ i ≤ 10, отговорът щеше да е(
80+ 10− 1

10− 1

)
=

(
89

9

)
= 635 627 275 767

тъй като при тези (по-прости) ограничения става дума за комбинаторни конфигурации без
наребда, с повтаряне, с размер 80 над опорно множество с мощност 10: все едно имаме
линейна наредба от 80 единици и се пита, по колко начина може да сложим 9 разделителя
между тях.

При по-сложните ограничения от вида 0 ≤ xi ≤ 20, 1 ≤ i ≤ 10, каквито са нашата задача,
може да мислим за множеството от

(
89
9

)
решения като за универсум U. Нека Bi ⊆ U е

множеството от тези решения, в които xi > 20, за 1 ≤ i ≤ 10. Очевидно ние търсим |B1∩B2∩
B3 ∩ B4 ∩ B5 ∩ B6 ∩ B7 ∩ B8 ∩ B9 ∩ B10|. По принципа на включването и изключването,

|B1 ∩ B2 ∩ . . . ∩ B10| = |U|−
∑
1≤i≤10

|Bi|+
∑

1≤i<j≤10

|Bi ∩ Bj|− . . .+ (−1)10|B1 ∩ B2 ∩ . . . ∩ B10|

Сега да съобразим, че няма как повече от три xi-та да бъдат по-големи от 20: ако четири са
по-големи от 20 всяко, то сумата ще надхвърли 80. С други думи, достатъчно е да разгледаме
тези събираеми в израза на включването и изключването, в които има сечение на най-много
три B-та:

|B1 ∩ B2 ∩ . . . ∩ B10| = |U|−
∑
1≤i≤10

|Bi|+
∑

1≤i<j≤10

|Bi ∩ Bj|−
∑
1≤i<j<
k≤10

|Bi ∩ Bj ∩ Bk|

От общи съображения е ясно, че B-тата имат една и съща мощност и сеченията им по двойки
имат една и съща мощност и сеченията по тройки имат една и съща мощност и сеченията
им по четворки имат една и съща мощност. Следователно,

|B1 ∩ B2 ∩ . . . ∩ B10| = |U|−

(
10

1

)
|B1|+

(
10

2

)
|B1 ∩ B2|−

(
10

3

)
|B1 ∩ B2 ∩ B3|

За да получим |B1| е достатъчно да съобразим, че броят решения на уравнението

x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 = 80
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при ограниченията

21 ≤ x1
0 ≤ x2 ≤ 20
0 ≤ x3 ≤ 20
0 ≤ x4 ≤ 20
0 ≤ x5 ≤ 20
0 ≤ x6 ≤ 20
0 ≤ x7 ≤ 20
0 ≤ x8 ≤ 20
0 ≤ x9 ≤ 20
0 ≤ x10 ≤ 20

е същата като броят на решенията на уравнението

x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 = 59

при ограниченията

0 ≤ x1
0 ≤ x2 ≤ 20
0 ≤ x3 ≤ 20
0 ≤ x4 ≤ 20
0 ≤ x5 ≤ 20
0 ≤ x6 ≤ 20
0 ≤ x7 ≤ 20
0 ≤ x8 ≤ 20
0 ≤ x9 ≤ 20
0 ≤ x10 ≤ 20

Следователно,

|B1| =

(
59+ 9

9

)
=

(
68

9

)
= 49 280 065 120

Аналогично,

|B1 ∩ B2| =
(
38+ 9

9

)
=

(
47

9

)
= 1 362 649 145

|B1 ∩ B2 ∩ B3| =
(
17+ 9

9

)
=

(
26

9

)
= 3 124 550

Крайният отговор е

|B1 ∩ B2 ∩ . . . ∩ B10| =
(
89

9

)
−

(
10

1

)(
68

9

)
+

(
10

2

)(
47

9

)
−

(
10

3

)(
26

9

)
=

203 770 890 092�
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Задача 107. Червената Шапчица трябва да занесе кошница с плодове на баба си. Плодовете
са четири вида: ябълки, круши, портокали и смокини. В кошницата трябва да има точно 40
плодове, като

• поне 3 са ябълки,

• крушите са поне 3, но не повече от 10,

• портокалите са поне 2, но не повече от 6,

• смокините са поне 6, но не повече от 13.

По колко различни начина Червената Шапчица може да сложи плодове в кошницата, та-
ка че да удовлетвори изброените условия? Приемете, че Червената Шапчица разполага с
неограничен брой плодове от всеки вид.

Иска се числен отговор.

Решение. Нека u е броят на ябълките, v е броят на крушите, x е броят на портокалите, а
y е броят на смокините. Пита се колко целочислени решения има уравнението

u+ v+ x+ y = 40 (64)

при следните ограничения отдолу

u ≥ 3
v ≥ 3
x ≥ 2
y ≥ 6

и отгоре

v ≤ 10
x ≤ 6
y ≤ 13

Ограниченията отдолу се моделират лесно. Нека

u ′ = u− 3

v ′ = v− 3

x ′ = x− 2

y ′ = y− 6

Тогава

u = u ′ + 3

v = v ′ + 3

x = x ′ + 2

y = y ′ + 6
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Заместваме в (64) и получаваме

(u ′ + 3) + (v ′ + 3) + (x ′ + 2) + (y ′ + 6) = 40 ↔
u ′ + v ′ + x ′ + y ′ = 26 (65)

Това е уравнението, броят на чиито решения търсим, при ограниченията

v ′ + 3 ≤ 10 ↔ v ′ ≤ 7
x ′ + 2 ≤ 6 ↔ x ′ ≤ 4
y ′ + 6 ≤ 13 ↔ y ′ ≤ 7

Разговорно казано, Червената Шапчица слага в кошницата 3 ябълки, 3 круши, 2 портокала
и 6 смокини, след което трябва да сложи още 26 плодове, като крушите са не повече от 7,
портокалите са не повече от 4, а смокините са не повече от 7.

За простота преставаме да пишем примовете; тоест, връщаме се към началните имена на
променливи. Търсим броя на решенията на

u+ v+ x+ y = 26 (66)

при ограниченията

v ≤ 7
x ≤ 4
y ≤ 7

Прилагаме принципа на включването и изключването. Универсумът U е множеството от
всички решения на (66) в цели положителни числа. Нека Sv е подмножеството на универ-
сума, в което v ≥ 8. Нека Sx е подмножеството на универсума, в което x ≥ 5. Нека Sy е
подмножеството на универсума, в което y ≥ 8. Търсим

|Sv ∩ Sx ∩ Sy|

Съгласно принципа на включването и изключването,

|Sv ∩ Sx ∩ Sy| = |U|−
(
|Sv|+ |Sx|+ |Sy|

)
+
(
|Sv ∩ Sx|+ |Sv ∩ Sy|+ |Sx ∩ Sy|

)
− |Sv ∩ Sx ∩ Sy| (67)

U е съизброимо с множеството от разполагания на 26 анонимни топки (единици) в 4
именувани кутии. Тогава

|U| =

(
26+ 4− 1

4− 1

)
= 3 654

Да пресметнем |Sv|. Нека v = v ′′ + 8. Sv е множеството от решенията на

u+ v ′′ + 8+ x+ y = 26

в цели положителни числа; тоест, на u+ v ′′ + x+ y = 18. Тогава

|Sv| =

(
18+ 4− 1

4− 1

)
= 1 330
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Да пресметнем |Sx|. Нека x = x ′′ + 5. Sx е множеството от решенията на

u+ v+ x ′′ + 5+ y = 26

в цели положителни числа; тоест, на u+ v+ x ′′ + y = 21. Тогава

|Sx| =

(
21+ 4− 1

4− 1

)
= 2 024

Очевидно |Sy| = |Sv|, така че |Sy| = 1 330.
Да пресметнем |Sv ∩ Sx|. Sv ∩ Sx е множеството от решенията на

u+ v ′′ + 8+ x ′′ + 5+ y = 26

в цели положителни числа; тоест, на u+ v ′′ + x ′′ + y = 13. Тогава

|Sv ∩ Sx| =
(
13+ 4− 1

4− 1

)
= 560

Да пресметнем |Sv ∩ Sy|. Sv ∩ Sy е множеството от решенията на

u+ v ′′ + 8+ x+ y+ 8 = 26

в цели положителни числа; тоест, на u+ v ′′ + x+ y ′′ = 10. Тогава

|Sv ∩ Sy| =
(
10+ 4− 1

4− 1

)
= 286

Очевидно |Sx ∩ Sy| = |Sv ∩ Sx|, така че |Sx ∩ Sy| = 560.
И накрая да пресметнем |Sv ∩ Sx ∩ Sy|. Sv ∩ Sx ∩ Sy е множеството от решенията на

u+ v ′′ + 8+ x ′′ + 5+ y ′′ + 8 = 26

в цели положителни числа; тоест, на u+ v ′′ + x ′′ + y ′′ = 5. Тогава

|Sv ∩ Sx ∩ Sy| =
(
5+ 4− 1

4− 1

)
= 56

Заместваме всички получени мощности на множества в дясната страна на (67) и получаваме

|Sv ∩ Sx ∩ Sy| = 3 654−
(
1 330+ 2 024+ 1 330

)
+
(
560+ 286+ 560

)
− 56 = 320 �

Задача 108. В магазина на Христо се продават следните плодове: праскови, кайсии, ябълки,
круши и джанки. Плодовете от всеки вид са неразличими. По колко начина можем да купим
20 плодове привечер, когато Христо е продал голямата част от стоката и са останали 25
праскови и по 5 плодове от всеки от останалите видове? Дайте отговор-число.

Решение. Нека U означава множеството от всички възможни избирания на 20 плодове
без ограничения. Това са мултимножествата с 20 елемента, изградени от опорно множество
с мощност 5. Както знаем от лекции, броят им е

(
20+5−1
5−1

)
= 10 626. И така, |U| = 10 626.

Нека S1 са избиранията на 20 плодове, в които има поне 6 кайсии, S2 са избиранията на
20 плодове, в които има поне 6 ябълки, S3 са избиранията на 20 плодове, в които има поне 6
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круши и S4 са избиранията на 20 плодове, в които има поне 6 джанки. Търсим |S1∩S2∩S3∩S4|.
Съгласно принципа на включването и изключването,

|S1 ∩ S2 ∩ S3 ∩ S4| = |U|−
∑
1≤i≤4

|Si|+
∑

1≤i<j≤4

|Si ∩ Sj|+ · · · + (−1)4|S1 ∩ S2 ∩ S3 ∩ S4|

Очевидно |S1| = |S2| = |S3| = |S4|, |S1 ∩ S2| = · · · = |S3 ∩ S4|, |S1 ∩ S2 ∩ S3| = · · · = |S2 ∩ S3 ∩ S4| и
S1 ∩ S2 ∩ S3 ∩ S4 = ∅, така че

|S1 ∩ S2 ∩ S3 ∩ S4| = |U|−

(
4

1

)
|S1|+

(
4

2

)
|S1 ∩ S2|−

(
4

3

)
|S1 ∩ S2 ∩ S3|+ 0

|S1| =
(
14+5−1
5−1

)
= 3060, тъй като има очевидна биекция между тези избирания (в които има

кайсия-нарушител, това е шестата кайсия) и произволни избирания на 20 − 6 = 14 плода.
Аналогично, |S1 ∩ S2| =

(
8+5−1
5−1

)
= 495 и |S1 ∩ S2 ∩ S3| =

(
2+5−1
5−1

)
= 15. И така:

|S1 ∩ S2 ∩ S3 ∩ S4| = 10 626− 4 · 3 060+ 6 · 495− 4 · 15 = 1296

Има и по-кратко решение на тази задача.

Броят на купените джанки е кое да е цяло число от 0 до 5 вкл. Същото важи за
кайсиите, ябълките и крушите. За прасковите нямаме избор: след като сме купи-
ли джанките, ябълките, крушите и кайсиите, останалите плодове трябва да бъдат
праскови. От 0 до 5 вкл. има шест цели числа, тоест имаме по 6 възможни стой-
ности за броя на джанките, кайсиите, ябълките и крушите. Съгласно принципа
на умножението, общият брой е 6 · 6 · 6 · 6 = 1296. �

Задача 109 се свежда до разполагания на топки в кутии, като обаче редът на слагане на
топките има значение. В Таблица 1 редът на слагане на топките е без значение; там мислим,
че топките се търкалят върху дъната на кутиите и единствено значение има кои/колко
топки са в коя кутия. В Задача 109 мислим, че кутиите са вертикални прозрачни цилиндри
с вътрешен диаметър, който е малко по-голям от диаметъра на топка и по този начин, ако
топките се слагат една след друга, редът, в който се слагат, има значение. Алтернативно,
можем да мислим за кутиите като за пръти, върху които се нанизват дискове (топките).
Естествено, това допълнително условие няма смисъл, ако топките са неразличими.

Задача 109. По колко начина можем да сложим m различими топки в n различими кутии,
ако редът на слагане има значение?

Решение. Мислим за кутиите като за цилиндри, в които пускаме топки отгоре и те застават
една над друга. За първата топка има n възможности: това са празните цилиндри. За втората
топка обаче възможностите са n+ 1, а не n. Тъй като първата топка вече е сложена в някой
цилиндър, ако втората топка се слага в същия цилиндър, тя може да се намира или отгоре
на вече сложената, или отдолу. Това са различни възможности, щом държим сметка за
реда на разполагането. Ако искаме да ползваме аналогия с реалния свят, едната от тези две
възможности се състои в изваждане на първата топка от въпросния цилиндър, слагане на
втората на дъното и после първата върху втората. За третата топка възможностите са n+2.
Независимо от това дали първите две топки са в един и същи цилиндър или не, има n + 2
различни места за слагане на третата топка.
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И изобщо, за k-тата топка има n − (k − 1) възможности. По принципа на умножението,
отговорът е

n× (n+ 1)× (n+ 2)× · · · × (n+m− 1) =

m∏
k=1

(n− k+ 1)

Понякога това се бележи кратко така: nm. �

Задача 110. Дадени са три номерирани пръта.

а) По колко начина можем да нанижем 11 еднакви диска върху тези пръти?

б) По колко начина можем да нанижем 11 еднакви бели диска и 19 еднакви черни диска
върху тези пръти?

Решение. Задачата е същата като задачата за слагания на топки в различими кутии, ако
редът на слагане има значение.

а) Топките са 11 на брой, но са неразличими. Щом са неразличими, редът на слагане
всъщност няма значение, понеже единственото, което различава две слагания, е колко
топки има във всяка кутия. Става дума за слагания на 11 еднакви топки в 3 различ-
ни кутии. Това може да стане по

(
11+3−1
3−1

)
=
(
13
2

)
начина съгласно червената част на

Таблица 1. Численият отговор е 78.

б) Сега слагаме 11 топки от един вид и 19 топки от друг вид, като топките от всеки вид
са неразличими. Таблица 1 не ни дава директен отговор, защото нито топките са две
по две различни, нито всички топки са еднакви. Ще разгледаме две решения: първото
е грубо, трудно за възприемане, трудно за обобщаване за повече пръти и представлява
бавен алгоритъм, а второто е елегантно, лесно за възприемане, лесно за обобщаване за
повече пръти и е бърз алгоритъм.

Първо решение. Първо да видим по колко начина можем да сложим дискове на
първия прът. Да кажем, че броят на белите дискове върху него е n1, където n1 ∈ {0, 1

, . . . , 11}, а броят на черните дискове върху него е m1, където m1 ∈ {0, 1, . . . , 19}. Тези
n1 +m1 диска биват нанизани върху пръта, тоест биват наредени в линейна наредба.
Както знаем от лекции, можем да наредим n1+m1 обекта, от които n1 са неразличими
помежду си и останалите m1 също са неразличими помежду си, в линейна наредба по(
n1+m1

n1

)
начина. Тъй като всеки различен избор на n1 или m1 дава различна наредба,

общият брой на различните нанизвания върху първия прът е:

11∑
n1=0

19∑
m1=0

(
n1 +m1

n1

)
След като сме нанизали дискове върху първия прът, разполагаме с точно 11−n1 бели
диска и 19−m1 черни диска. Да разгледаме втория прът. Да кажем, че броят на белите
дискове върху него е n2, където n2 ∈ {0, 1, . . . , 11 − n1}, а броят на черните дискове
върху него е m2, където m2 ∈ {0, 1, . . . , 19 −m1}. С напълно аналогични разсъждения
установяваме, че начините тези n2 бели диска и m2 черни диска да бъдат нанизани
върху втория прът е:

11−n1∑
n2=0

19−m1∑
m2=0

(
n2 +m2

n2

)
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Броят на начините да нанижем дисковете върху първия и върху втория прът се полу-
чава по принципа на умножението – за всяко нанизване върху първия отчитаме всички
нанизвания върху втория:

11∑
n1=0

19∑
m1=0

((
n1 +m1

n1

) 11−n1∑
n2=0

19−m1∑
m2=0

(
n2 +m2

n2

))
За последния, трети прът броя на белите дискове е определен от n1 и n2, а именно
11 − n1 − n2. Аналогично, броят на черните дискове е 19 − m1 − m2. Тук няма да
сумираме, защото тези останали дискове, ако изобщо има такива, трябва да бъдат
сложени върху третия прът. Това може да стане по точно(

11− n1 − n2 + 19−m1 −m2

11− n1 − n2

)
=

(
30− n1 − n2 −m1 −m2

11− n1 − n2

)
начина. Отговорът е:

11∑
n1=0

19∑
m1=0

((
n1 +m1

n1

) 11−n1∑
n2=0

19−m1∑
m2=0

((
n2 +m2

n2

)(
30− n1 − n2 −m1 −m2

11− n1 − n2

)))
Численият отговор, който не се иска, е трудно да се получи на ръка от тази формула.
Може да го намерим със следната команда на maple (tm):

> add(add(binomial(n1+m1, n1)*add(add(binomial(n2+m2, n2)*\
> binomial(30-n1-n2-m1-m2, 11-n1-n2), m2 = 0 .. 19-m1), n2 = 0 .. 11-n1),\
> m1 = 0 .. 19), n1 = 0 .. 11);

27095140800

Второ решение. Задачата е същата като задачата, по колко начина можем да наре-
дим 11 бели диска, 19 черни диска и 2 червени диска (които играят ролята на раздели-
тели) върху един единствен прът. Тези наредби съответстват биективно на наредбите
от задачата с трите пръта, защото двата червени диска–разделители разделят линей-
ната наредба от останалите дискове на точно три части (някои от които, но не всички,
може да са празни). Тогава отговорът е мултиномният коефициент(

32

11, 19, 2

)
=

32!

11!19!2!
= 27 095 140 800

Както можеше да се очаква, численият отговор е същият, но това решение има очевидни
предимства пред първото. �

Задача 111. В тази задача и в следващата става дума за целочислени разбивания; тоест, за
зелената част на Таблица 1. Припомняме си, че “целочислено разбиване” на цяло положи-
телно число n е мултимножество от цели положителни числа, чиято сума е n. Тези числа са
частите на разбиването. Примерно, числото 6 има целочислено разбиване 1+1+2+2, като
частите са 1, 1, 2 и 2. Редът на сумиране няма значение. За пълнота раглеждаме целочислени
разбивания и когато n е нула.

Често използвана нотация за броя на целочислените разбивания на n на k части е “p(n, k)”.
Докажете с комбинаторни разсъждения, че

p(n, k) =


1, ако k = n

0, ако (k = 0 и n > 0) или n < k
p(n− k, k) + p(n− 1, k− 1), ако 0 < k < n

(68)
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Решение. Началните условия се обосноват така.

• k = n означава, че събираемите са n на брой. Ако n > 0, очевидно има само един такъв
сбор:

1+ 1+ · · ·+ 1︸ ︷︷ ︸
n събираеми

Ако n = 0, пак има само един такъв сбор, но той е празният сбор с нула събираеми. И
така, p(n,n) = 1 за всяко n ∈.

• k = 0, n > 0 означава сбор от нула събираеми на положително число. Това е невъз-
можно, така че p(n, 0) = 0 за n > 0.

n < k означава повече събираеми, отколкото е големината на числото, което също е
невъзможно, така че p(n, k) = 0 за n < k.

Аргументацията за “същинската рекурсия” при 0 < k < n е следната. Разглеждаме сборовете
на n с k събираеми. Разбиваме сборовете на тези, които имат събираемо 1, и тези, чието най-
малко събираемо е по-голямо от 1.

• Броят на тези, които имат поне едно събираемо 1, е p(n− 1, k− 1), понеже съществува
очевидна биекция между тях и всички сборове на n− 1 с точно k− 1 събираеми.

• Броят на тези, чието най-малко събираемо е по-голямо от 1, е p(n − k, k). Причина-
та е, че ако извадим единица от всяка събираемо—това означава да извадим общо k
единици—ще получим k на брой положителни събираеми, така че съществува биекция
между сборовете на n с точно k събираеми, всяка от които е по-голямо от 1, и всички
сборове на n− k с точно k събираеми.

По принципа на разбиването, p(n, k) = p(n− k, k) + p(n− 1, k− 1). �

Задача 112. Нека n ∈ N+. Намери и обосновете явна биекция между целочислените разби-
вания на n на на нечетни части и целочислените разбиванията на n на части, които са две
по две различни.

Решение. Да започнем с малък пример. Всички целочислени разбивяния на 6 са единадесет
на брой, а именно

6 = 1+ 1+ 1+ 1+ 1+ 1

6 = 1+ 1+ 1+ 1+ 2

6 = 1+ 1+ 2+ 2

6 = 2+ 2+ 2

6 = 1+ 1+ 1+ 3

6 = 1+ 2+ 3

6 = 3+ 3

6 = 1+ 1+ 4

6 = 2+ 4

6 = 1+ 5

6 = 6
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Разбиванията на нечетни части са четири на брой:

6 = 1+ 1+ 1+ 1+ 1+ 1

6 = 1+ 1+ 1+ 3

6 = 3+ 3

6 = 1+ 5

Разбиванията на части, които са две по две различни, също са четири на брой:

6 = 1+ 2+ 3

6 = 2+ 4

6 = 1+ 5

6 = 6

Да разгледаме общия случай, в който n е произволно. Нека X е множеството от целочисле-
ните разбивания на n на нечетни части. Нека Y е множеството от целочислените разбивания
на n на части, които са две по две различни. Ще покажем и обосновем биекция f : X→ Y.

Разглеждаме произволно целочислено разбиване x ∈ X. Нека уникалните елементи на X са
b1, . . . , bk, като това са някакви нечетни числа с възможни повторения. Нека кратността на
bi е mi, за 1 ≤ i ≤ k†. Добре известен факт е, че всяко цяло положително число се представя
по един единствен начин като сума от степените на двойката (това е същото като да се каже,
че има уникално представяне в двоична позиционна бройна система). Представяме всяко mi

като сума от степените на двойката. Извършваме умноженията mi × bi, като mi е сума от
степените на двойката, за 1 ≤ i ≤ k. Полученото целочислено разбиване е y = f(x).

Да видим пример. Тъй като 6 е прекалено малко число за смислен пример, нека n = 55.
Нека x е това разбиване на 55 на нечетни части:

55 = 3+ 3+ 3+ 3+ 3+ 3+ 11+ 11+ 15

Тогава k = 3, b1 = 3, b2 = 11 и b3 = 15, а m1 = 6, m2 = 2 и m3 = 1. Очевидно

3+ 3+ 3+ 3+ 3+ 3+ 11+ 11+ 15 = 6× 3+ 2× 11+ 1× 15

Представянията на mi като суми от степени на двойката са тези:

m1 = 6 = 2
1 + 22

m2 = 2 = 2
1

m3 = 1 = 2
0

Тогава разбиването x се трансформира в това:

(21 + 22)× 3+ 21 × 11+ 20 × 15

Когато отворим скобите, получаваме разбиването y = f(x):

6+ 12+ 22+ 15

Наистина, частите на y са две по две различни.

†Очевидно е изпълнено k ∈ {1, . . . , n}, mi ≥ 1 за 1 ≤ i ≤ k и
∑k

i=1 bi ×mi = n.
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Описаното изображение f е добре дефинирана функция, защото всяко x ∈ X има точно един
образ f(x) по отношение на f. Ще докажем, че f е инекция. За целта разглеждаме произволно
разбиване y ∈ Y и доказваме, че ако y се явява образ на поне едно x ∈ X, то съществува
единствено x ∈ X, такова че f(x) = y.

Доказателството се основава на елементарния факт, че всяко цяло положително число
се представя по уникален начин като произведение от нечетно число (може да е единица)
и степен на двойката (която може да е единица). Тогава частите на y, които са две по две
различни по конструкция, имат уникални представяния като произведения от степен на
двойката и нечетно число. Различни части на y може да имат едно и също нечетно число
като множител. Ключовото действие е групирането на събираемите с един и същи нечетен
множител, който се изважда пред скоби; в скобите се получава сума от степени на двойката,
две по две различни. Формално, трансформираме y в y ′:

y ′ = (2a1,1 + · · ·+ 2a1,t1 )p1 + · · ·+ (2ak,1 + · · ·+ 2ak,tk )pk

където p1, . . . , pk са различните нечетни множители в частите на y. Числото ti е броят на
частите на първоначалното y, които имат нечетен множител pi, за 1 ≤ i ≤ k. Числата 2ai,1 ,
. . . , 2ai,ti са различните степени на двойката, които, умножени с pi, участват като части
на първоначалното y, за 1 ≤ i ≤ k. Знаейки дефиницията на f, виждаме, че това, което f
изобразява в y, е целочисленото разбиване x, чиито уникални елементи са p1, . . . , pk, където
кратността на pi е 2ai,1 + · · · + 2ai,ti , за 1 ≤ i ≤ k. Очевидно частите на x са нечетни и се
сумират до n, така че x ∈ X. Щом образът y определя напълно първообраза x, функцията f
е инекция.

Сега ще докажем, че f е сюрекция: разглеждаме произволно целочислено разбиване y ∈ Y
и доказваме, че съществува x ∈ X, такова че f(x) = y. Доказателството използва на практика
същите съображения като вече направеното доказателство, че f е инекция. Мултимножест-
вото y в него беше произволно и ние намерихме неговия първообраз по отношение на f. Ерго,
всяко целочислено разбиване от Y се явява образ по отношение на f. Ерго, f е сюрекция. �

Задача 113. Тук става дума за стандартни кубични зарове, всяка страна на които е мар-
кирана с точно едно от , , , , , . Тези символи наричаме лицата. Когато казваме “n
различни зара” за някакво n, имаме предвид, че няма еднакви зарове – например всеки зар
е оцветен в цвят, различен от цветовете на другите зарове. Когато говорим за зарове от един
и същи цвят имаме предвид, че тези зарове са неразличими.

а) По колко различни начина можем да хвърлим шест различни зара?

б) По колко различни начина можем да хвърлим шест еднакви зара?

в) По колко различни начина можем да хвърлим шест зара, три от които са бели, един е
червен, един е зелен и един е син?

г) По колко различни начина можем да хвърлим три различни зара, така че сумата от
числата е 9 във всяко хвърляне?

д) По колко различни начина можем да хвърлим три еднакви зара, такива че сумата от
числата е 9 във всяко хвърляне?

е) По колко различни начина можем да хвърлим три бели и три черни зара, такива че всяко
от лицата се появява поне веднъж?

Решение.
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а) Задачата се решава тривиално като задача за слагане на топки в кутии, ако съобразим, че
кутиите са лицата , , , , , , а топките са шестте зара. Очевидно и кутиите, и топките
са различими, така че сме в синята част на Таблица 1. Отговорът е 66 = 46 656.

б) Отново можем да сведем задачата до слагане на топки в кутии. Отново, кутиите са лицата
, , , , , , а топките са шестте зара. Сега кутиите са пак различими, но топките са

еднакви, така че сме в червената част на Таблица 1. Отговорът е
(
6+6−1
6−1

)
= 462.

в) Да си представим, че хвърляме независимо първо белите зарове, което можем да напра-
вим по

(
3+6−1
6−1

)
начина и после цветните зарове, за което възможностите са 63. Отговорът се

получава по принципа на умножението
(
3+6−1
6−1

)
× 63 = 12 096.

г) Отговорът може да се получи като в задачата “Колко целочислени решения има уравне-
нието x1 + x2 + x3 = 9, ако 1 ≤ xi ≤ 6?”, която на свой ред има същия отговор като задачата
“Колко целочислени решения има уравнението x1 + x2 + x3 = 6, ако 0 ≤ xi ≤ 5?” (сравнете
със Задача 103). Отговорът 25 може да се получи като

(
6+3−1
3−1

)
− 3 × 1 = 25 чрез прилагане

на принципа на включване и изключване.

Тъй като множеството от решенията не е голямо, можем и да конструираме явно, без да
ползваме принципа на включване и изключване. Нека зарчетата са бяло, червено и черно.

д) Има шест такива хвърляния, които можем да опишем явно:

е) При шест зарове и шест лица, всяко лице да се появява поне веднъж е същото като
всяко лице да се появява точно веднъж. Задачата е същата като задачата, по колко начина
можем да оцветим шест различни обекта така, че три да получат бял цвят и три, черен
цвят. Достатътчно е да определим кои са, например, белите обекти, останалите трябва да са
черните. Можем да подберем 3 обекта от общо 6 по

(
6
3

)
= 20 начина, което е и отговорът.

�

Задачи 114 и 115 са същите като задачи 27 и 28. Тук предлагаме решения, които се получават
като слагания на топки в кутии.

Задача 114. В колко булеви вектора с n единици и m нули, след всяка единица следва поне
една нула?
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Решение. Представяме си n на брой блокчета 10 , около които трябва да “насипем” още
m−n нули, за да получим общо m нули. Нулите са неразличими топки, местата за слагане—
общо n+ 1 на брой—са различими кутии. Отговорът е

(
(m−n)+(n+1)−1

(n+1)−1

)
=
(
m
n

)
. �

Задача 115. Колко булеви вектора с n единици и m нули нямат съседни единици?

Решение. Представяме си n − 1 на брой блокчета 10 и още едно блокче 1 накрая.
Общо блокчетата са n на броя. Около тях трябва да “насипем” m − n + 1 нули. Нулите са
неразличими топки, различимите кутии са колкото в Задача 114 – пак n + 1. Отговорът е(
(m−n+1)+(n+1)−1

(n+1)−1

)
=
(
m+1
n

)
. �

Задача 116. Дефинираме “композиция на цяло положително число” по следния начин. За
всяко цяло положително n, композиция на n е всеки вектор от цели положителни числа,
чиято сума е n. Примерно, (1, 2, 1, 3) е композиция на 7, а (1, 1, 3, 2) е друга композиция на
7. Забележете, че редът на елементите има значение, защото композицията е вектор, а не
мултимножество. След това дефинираме, че k-композиция на n е всяка композиция на n с
точно k елемента. Примерно, (1, 2, 1, 3) е 4-композиция на 7, а (1, 1, 3, 2) е друга 4-композиция
на 7. (1, 1, 1, 1, 1, 1, 1) е единствената 7-композиция на 7, а (7) е единствената 1-композиция
на 7.

Колко k-композиции на n има? Колко композиции на n има?

Страни́чна забележка: въпросните композиции са различни от целочислените раз-
бивания, които въведохме в зелената част на Таблица 1. При целочислените раз-
бивания редът на събираемите няма значение, поради което кутиите са неразли-
чини. При композициите обаче редът на събираемите има значение, поради което
кутиите са различими и сме в червената част на Таблица 1. Отговорът обаче не
се получава директно с

(
m+n−1
m

)
, понеже има съществени ограничения.

Решение. Нека C(k, n) е множеството от k-композициите на n. Нека V(k, n) множеството
от векторите, състоящи се от k−1 елемента от един вид, да ги бележим с “ |”, и n елемента от
друг вид, да ги бележим с “∗”, които вектори не може да започват с “ |”, не може да завършват
с “ |” и не може да има съседни елементи “ |”. Съществува очевидна биекция от C(k, n) във
V(k, n). Примерно,

• на композицията (1, 2, 1, 3) от C(4, 7) съответства векторът ∗| ∗ ∗| ∗ | ∗ ∗ ∗ от V(4, 7),

• на композицията (1, 1, 3, 2) от C(4, 7) съответства векторът ∗| ∗ | ∗ ∗ ∗ | ∗ ∗ от V(4, 7),

• на композицията (1, 1, 1, 1, 1, 1, 1) от C(4, 7) съответства векторът ∗| ∗ | ∗ | ∗ | ∗ | ∗ |∗ от
V(4, 7),

• на композицията (7) от C(4, 7) съответства векторът ∗ ∗ ∗ ∗ ∗ ∗ ∗ от V(4, 7).

Елементите ∗ отговарят на единиците-елементарни събираеми, от които се състои n, а вер-
тикалните разделители показват как са групирани тези единици в k ненулеви събираеми.
Редът на събираемите има значение и наредбата на групите ∗ · · · ∗ във векторите на V(k, n)
съответства точно на реда на събираемите във векторите на C(k, n). Ясно е защо не мо-
же да има “ |” в началото или в края: това би съответствало на събираемо нула, което не е
разрешено. Съседни елементи “ |” не са разрешени по същата причина.

Търсим |V(k, n)|. Съобразяваме, че вертикалните разделители са k − 1 на брой и има
n − 1 позиции, на които можем да ги слагаме. Всеки избор на k − 1 от общо n − 1 позиции
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определя еднозначно едно от слаганията на вертикалните разделители. Заключаваме, че
|V(k, n)| =

(
n−1
k−1

)
. Но тогава |C(k, n)| =

(
n−1
k−1

)
по принципа на биекцията.

Броят на всички композиции на n се получава със сумиране по броя на k-композициите на
n, по всички k от 1 до n. А именно,

n∑
k=1

|C(k, n)| =

(
n− 1

0

)
+

(
n− 1

1

)
+

(
n− 1

2

)
+ · · ·+

(
n− 1

n− 1

)
Съгласно изучаваното на лекции, тази сума е 2n−1. Заключаваме, че

∑n
k=1 |C(k, n)| = 2

n−1. �

Задача 117. Дадени са n човека. По колко начина може да изберем от тях две групи,
непразни и непресичащи се?

Решение. Нека множеството от n човека е S. В условието не е казано, че двете групи са
непременно разбиване на S, така че трябва да допуснем, че може да са, но може и да не са.

Случай А) Двете групи са разбиване на S. От кафявата част на Таблица 1 знаем, че n-
елементно множество може да се разбие на 2 дяла по

{
n
2

}
начина.

От (61) знаем, че
{
n
2

}
= 2n−1 − 1. Задача 85 ни дава друг начин за изчисляване на

{
n
2

}
(чрез

броя на сюрекциите). Но спокойно можем да оставим
{
n
2

}
като решението в Случай А).

Случай Б) Двете групи не са разбиване на S. Тогава разглеждаме разбиванията на S на 3
дяла и за всяко такова разбиване, има 3 начина да изберем два от дяловете за нашите групи.
Тогава броят на начините в този случай е 3

{
n
3

}
. А
{
n
3

}
може да се изчисли чрез тъждеството

от Задача 85 или чрез рекурентното уравнение (58) с начални условия (59) и (60).

По принципа на разбиването, отговорът е
{
n
2

}
+ 3
{
n
3

}
. �

7 Sampling with/without replacement, with/without order
Задача 118. Дадено е множествоA от n обекта. Извършваме последователно теглене (sampling)
на m обекта измежду тях. Тегленето може да има следните характеристики

• Редът на изтегляне може да има значение, при което казваме, че тегленето е нареде-
но (with order), или редът на теглене може да няма значение, при което казваме, че
тегленето е ненаредено (without order).

• Веднъж изтеглен обект може веднага (преди следващото теглене на обект) да бъде
връщан в A, което означава, че на следващото теглене можем пак да изтеглим него – в
този случай казваме, че тегленето е с връщане (with replacement); алтернативно, може
веднъж изтеглен обект да не бъде връщан, което прави невъзможно да бъде изтеглен
отново – в този случай казваме, че тегленето е без връщане (without replacement).

Всяка от първите две възможности може да бъде съчетана в всяка от вторите две, така че
общо са четири възможности. Да се определи за всяка от четирите възможности, по колко
начина може да бъде извършено тегленето.

Решение. Да разгледаме всяка от четирите възможности и да я сведем до някакво слагане
на топки в кутии. Във всяка от тези четири възможности, кутиите са обектите от A, следо-
вателно са n на брой, а топките съответстват на отделните изтегляния, следователно са m
на брой. Тъй като обектите от A очевидно са различими, разглеждаме слагания на топки в
различими кутии (лявата част на Таблица 1).
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• Наредени тегления с връщане. Те съответстват на слагания на m различни топки в n
различни кутии, което може да се направи по nm начина. Топките са различни, защо-
то редът на теглене има значение, което означава, че отделните тегления (топки) са
различими.

• Наредени тегления без връщане. Те съответстват на слагания на m различни топки в
n различни кутии при условие, че има не повече от една топка в кутия. Това условие
точно съответства на факта, че всеки обект може да бъде изтеглен най-много веднъж.
Можем да изтеглим така по nm начина.

• Ненаредени тегления без връщане. Такива са, например, тегленията в Тото 2 (6 от 49).
Те съответстват на слагания наm неразличими топки в n различни кутии при условие,
че има не повече от една топка в кутия. Това условие точно съответства на факта, че
всеки обект може да бъде изтеглен най-много веднъж. Можем да изтеглим така по

(
n
m

)
начина.

• Ненаредени тегления с връщане. Те съответстват на слагания наm неразличими топки
в n различни кутии без ограничения. Можем да изтеглим така по

(
m+n−1
m

)
начина. �

Задача 119. В магазин за газирани напитки се продават следните напитки: кока-кола, тоник
и спрайт. Има точно пет бутилки кока-кола, седем бутилки тоник и десет бутилки спрайт.
Искаме да купим четири бутилки. По колко начина можем да сторим това, ако:

1. Всички бутилки са различими (например, имат някакви уникални номера) и редът на
купуване има значение†.

2. Всички бутилки са различими, но редът на купуване няма значение.

3. Бутилките от даден вид са неразличими помежду си, но редът на купуване има значе-
ние.

4. Бутилките от даден вид са неразличими помежду си и редът на купуване няма значе-
ние.

Решение.

1. Общо бутилките са 5 + 7 + 10 = 22 и в това подусловие са различими. Тук става
дума за наредени тегления без връщане на 4 неща от общо 22. Отговорът е 224 =
22× 21× 20× 19 = 175 560.

2. Отново разглеждаме 22 различими бутилки, но сега тегленията са ненаредени и без
връщане. Отговорът е

(
22
4

)
= 7 315.

3. И тази подзадача можем да сведем до слагания на топки в кутии, но сега кутиите
не са 22-те бутилки, а 3-те вида напитки. Все едно се пита, по колко начина можем да
сложим 4 различими топки в 3 различими кутии. Тъй като от всеки вид напитки имаме
достатъчно бройки, за да осъществим купуване на 4 бутилки от дадения вид, няма
значение точно колко броя има от всеки вид – важното е, че има достатъчно.
Отговорът е 34 = 81.

Забележете, че ако искаме да сведем тази подзадача до тегления на обекти (sampling),
става дума за ненаредени тегления без връщане.

†Звучи странно, но е възможно. Например, влизаме четири пъти последователно в магазина и при всяко
влизане купуваме точно една бутилка.
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4. Все едно се пита, по колко начина можем да сложим 4 неразличими топки в 3 различни
кутии. Кутиите и топките имат същият смисъл като в миналата задача, но сега топките
са неразличими, понеже редът на купуване няма значение. Отговорът е

(
4+3−1
3−1

)
= 15.

Този отговор е достатъчно малко число, така че бихте могли да напишете в явен вид
цялото множество от тегления.

Забележете, че ако искаме да сведем тази подзадача до тегления на обекти (sampling),
става дума за ненаредени тегления с връщане. �

8 Линейни рекурентни уравнения с константни коефици-
енти

Задача 120. Двоичен брояч с n позиции е вектор от n двоични числа (0 или 1), който
се интерпретира като число, записано в двоична позиционна бройна система. Броячът бива
увеличаван с 1 в дискретни моменти във времето. В началния момент t0 броячът съдържа
само нули, тоест представлява числото 0 в двоична система, към него се добавя 1 и в мо-
мент t1 той представлява числото 1 в двоична система, към него се добавя 1 и в момент
t2 той представлява числото 2 в двоична система, към него се добавя 1 и в момент t3 той
представлява числото 3 в двоична система, и така нататък:

t0 : 0 0 · · · 0 0 0

t1 : 0 0 · · · 0 0 1

t2 : 0 0 · · · 0 1 0

t3 : 0 0 · · · 0 1 1

t4 : 0 0 · · · 1 0 0

· · ·

Изобщо, в момент tk броячът съдържа двоичния запис на числото k. Увеличаването на
брояча с 1 продължава, докато той съдържа поне една нула. Когато броячът съдържа само
единици:

1 1 · · · 1 1 1︸ ︷︷ ︸
n на брой

увеличаването спира и броячът остава в това състояние. Отговорете на следните въпроси:

1. Кое е числото (в двоична позиционна бройна система), което остава записано в брояча
след спирането му?

2. Битово обръщане наричаме всяко преминаване от 0 в 1 или от 1 в 0 от даден ti към
следващия ti+1. Например, при преминаването от t0 в t1 има точно едно битово обръ-
щане, а именно в най-дясната позиция; при преминаването от t1 в t2 има точно две
битови обръщания, а именно в двете най-десни позиции ; при преминаването от t2 в t3
има точно едно битово обръщане; при преминаването от t3 в t4 има точно три битови
обръщания; и така нататък. Нека Tn е броят на всички битови обръщания за двоичен
брояч с n позиции – от момента t0 до последния момент, в който увеличаването спира.
Напишете рекурентно уравнине за Tn и дайте кратка аргументация за него.

3. Решете рекурентното уравнение чрез метода с характеристичното уравнение.
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Решение.

1. Числото е 2n − 1.

2. Ако n = 1, битовото обръщане е само едно. За по-големи стойности на n забелязваме,
че докато старшият бит (най-вляво) е 0 се извършват всички битови обръщания на
подброяча с дължина n − 1, после се извършват n битови обръщания и от 0 1 1 . . . 1 1
броячът става 1 0 0 . . . 0 0 и после, докато старшият бит е 1, се извършват всички битови
обръщания на подброяча с дължина n− 1. И така:

T1 = 1

Tn = 2Tn−1 + n за n > 1

Алтернативно, началното условие може да е T0 = 0, ако допускаме празен брояч.

3. Решението е T(n) = 2n+1 − n− 2. �

Задача 121. За целите на тази задача дефинираме тритове и тритови регистри. “Трит”
означава троична цифра, като нейната стойност е или 0, или 1, или 2. “Тритов регистър” е ре-
дица от тритове. Ще разглеждаме добавяне на единица към трит. Правилата са очевидните:
0+ 1 = 1, 1+ 1 = 2, а 2+ 1 = 0 и има пренос 1.

Добавяне на единица към тритов регистър е добавяне на единица към последния трит.
Ако при това се получи пренос, той се добавя към предпоследния трит, и така нататък.
Примерно, добавяне на единица към 0 0 0 дава 0 0 1, добавяне на единица към 0 1 2 дава 0 2 0,
а добавяне на единица към 1 2 2 дава 2 0 0.

Разгледайте тритов регистър X с n трита. Колко различни състояния има X? “Състояние на
регистър” е наредената n-орка от стойностите на неговите тритове.

Нека началното състояние на X е само от нули:

Xначално = 0 0 0 · · · 0 0 0

Чрез последователни добавяния на единици достигаме крайно състояние на X само от двойки:

Xкрайно = 2 2 2 · · · 2 2 2

Колко промени на тритове са се случили при всички преходи от началното до крайното
състояние?

Решение. Различните състояния са точно 3n. Можем да изведем това, съобразявайки, че
състоянията на регистъра са точно комбинаторните конфигурации с повторения и наредба
с големина n над опорно множество с мощност 3.

Нека Tn е броят на промените на тритове при преминаването от Xначално до Xкрайно чрез серия
от добавяния на единица. Ще съставим рекурентно уравнение за Tn и ще го решим.

Празен регистър няма да разглеждаме, така че минималната стойност на n е n = 1. При
преминаването от 0 през 1 до 2 се случват точно две промени на тритове. Следователно,
T1 = 2.

Да си представим тритов регистър с повече от една позиции. Ако си представим всички
състояния от Xначално до Xкрайно, написани едно под друго в реда на появяването им, виждаме
таблица с 3n реда и n колони. Тя може да се разбие на три подтаблици, всяка с по 3n−1 реда,
една над друга, като най-горната има само 0 в най-лявата позиция, средната има само 1
в най-лявата позиция, а най-долната има само 2 в най-лявата позиция. Тези подтаблици
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са напълно еднакви, ако не гледаме най-левите им позиции. Ерго, в рамките на всяка от
тях се случват точно Tn−1 промени на тритове. Дотук имаме 3Tn−1 промени на тритове.
При преминаването от най-горната към средната таблица се случват n тритови промени,
също така и при преминаването от средната към най-долната таблица се случват n тритови
промени. Общо, броят на тритовите промени е 3Tn−1 + 2n. Рекурентното уравнение е

Tn =

{
2, ако n = 1

3Tn−1 + 2n, ако n > 1

Характеристичното уравнение е

x− 3 = 0

с мултимножество от корените {3}M. Заради нехомогенната част добавяме {1, 1}M и получа-
ваме мултимножеството {1, 1, 3}M. Общото решение е

Tn = A1n + Bn1n + C3n

Неизвестните константи A, B и C намираме от началните условия. Разполагаме само с едно
начално условие T1 = 2. Нужни са ни още две. Тях ги пресмятаме от даденото начално
условие и рекурсията: T2 = 10 и T3 = 36. Тогава

2 = A+ B+ 3C

10 = A+ 2B+ 9C

36 = A+ 3B+ 27C

Решението на системата е A = −3
2
, B = −1, C = 3

2
. Решението на рекурентното уравнение е

Tn = −
3

2
− n+

3n+1

2
�

Задача 122. В някаква до този момент стерилна хранителна среда попада бактерия в 8 часа
сутринта. Бактериите се размножават чрез делене: на всеки половин час всяка бактерия се
дели на две. Приемете, че бактерии не умират.

1. Напишете рекурентно уравнение за S(n), където S(n) е броят на бактериите в момент
n× 30 минути след 8 сутринта, а n ∈ N.

2. Решете полученото рекурентно уравнение чрез метода с характеристичното уравнение.
Решения чрез други методи не се допускат.

3. Колко бактерии ще има в 8 часа вечерта на същия ден?

Решение. Рекурентното уравнение е

S(0) = 1

S(n) = 2S(n− 1) за n ≥ 1

Характеристичното уравнение е

x− 2 = 0
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с единствен корен 2. Общото решение на рекурентното уравнение е

S(n) = A2n

за някаква константа A. Тъй като S(0) = 1 по условие, имаме

1 = A20

Следователно, A = 1 и S(n) = 2n. В 8 вечерта бактериите ще са 22(20−8) = 16 777 216. �

Задача 123. Тази задача е усложнение на Задача 122. Сега допускаме, че бактериите уми-
рат, като продължителността на живота на всяка бактерия е точно един час. Допускаме
освен това, че при делене на бактерия не се създават две нови (с възраст нула) бактерии, а
от старата бактерия се отделя една нова (с възраст нула), като старата бактерия или про-
дължава да живее, ако възрастта и́ е по-малка от един час (тоест, половин час), или умира,
ако е “навършила” един час. (Очевидно всяка бактерия отделя нова бактерия точно два пъти
и веднага след това умира). Деленето на бактерии е мигновено. Първата бактерия е (тази в
8 сутринта) е била на възраст нула, попадайки в средата.

1. Напишете рекурентно уравнение за T(n), където T(n) е броят на оставащите да живеят
бактерии в момент n× 30 минути след 8 сутринта, а n ∈ N.

2. Решете полученото рекурентно уравнение.

3. Колко бактерии ще има в 8 часа и 1 минута вечерта на същия ден? Не е задължително
отговорът Ви да е получен чрез заместване в решението на рекурентното уравнение;
може да изведете броя, използвайки самото рекурентно уравнение, а не решението му.

Решение. Рекурентното уравнение не е уникално. Една възможност е:

T(0) = 1

T(1) = 2

T(2) = 3

T(n) = 2T(n− 1) − T(n− 3) за n ≥ 3 (69)

Разсъждението е следното. Нека дефинираме, че момент за целите на това решение е кръгъл
час или кръгъл час и 30 мин. и нищо друго, започвайки от 8 ч. сутринта. Тоест, моментите
са t0 = 08:00, t1 = 08:30, t2 = 09:00, и така нататък. В t0 часа има точно една бактерия,
първоначално попадналата, на възраст нула. В t1 тя отделя нова бактерия. В t2 от първона-
чалната се отделя второ нейно копие и тя веднага умира и втората също отделя свое копие.
И така нататък. Следната фигура илюстрира това.
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t0 t1 t2 t3 t4 t5
бактерия 1

бактерия 2

бактерия 3

бактерия 4

бактерия 6

бактерия 5

бактерия 7

1 2 3 5 8

Във всеки следващ момент tn броят на бактериите е два пъти пъти по-голям от броя им
в tn−1, но не всички от тях остават живи. Тези, които умират, са точно бактериите, родени в
tn−2 (родените преди час); техният брой е равен на броя на всички бактерии в момент tn−3.

Забележете, че бактериите, които умират, не са всички бактерии от tn−2, а само родените
в tn−2. В tn−2 освен тях има и други бактерии, които междувременно са умрели (а именно, в
tn−1). Следователно, рекурентното уравнение е T(n) = 2T(n− 1) − T(n− 2) не е решение на
тази задача.

Характеристичното уравнение е

x3 − 2x2 + 1 = 0

Чрез метода на Хорнер факторизираме лявата страна до (x−1)(x2−x−1) и след решаването
на квадратното уравнение x2−x−1 = 0 с корени 1

2
(1+
√
5) и 1

2
(1−
√
5) получаваме следното

мултимножество от корените на характеристичното уравнение:{
1,
1

2
(1+

√
5),
1

2
(1−

√
5)

}
M

Тогава общото решение на рекурентното уравнение е

T(n) = A× 1n + B×
(
1

2
(1+

√
5)

)n
+ C×

(
1

2
(1−

√
5)

)n
където A, B и C са някакви константи. Тях определяме, използвайки началните условия

1 = A+ B+ C

2 = A+
B

2

(
1+
√
5
)
+
C

2

(
1−
√
5
)

3 = A+
B

4

(
1+
√
5
)2

+
C

4

(
1−
√
5
)2
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с решения A = 0, B = 1
2
+ 3

10

√
5, C = 1

2
− 3

10

√
5. И така, решението на рекурентното уравнение

е

T(n) =

(
1

2
+
3

10

√
5

)(
1

2
(1+

√
5)

)n
+

(
1

2
−
3

10

√
5

)(
1

2
(1−

√
5)

)n
(70)

В 8 часа и една минута вечерта на същия ден броят на бактериите ще е T(24) =
(
1
2
+ 3

10

√
5
)

(
1
2
(1+

√
5)
)24

+
(
1
2
− 3

10

√
5
)(

1
2
(1−

√
5)
)24

. Можем да опростим този израз до 121 393, но
това опростяване би било трудно и досадно, ако се прави на ръка. По-лесно е да се развие
рекурентното уравнение (69), докато стигнем до n = 24:

n T(n)

0 1
1 2
2 3
3 5
4 8
5 13
6 21
7 34
8 55
9 89
10 144
11 233
12 377
13 610
14 987
15 1597
16 2584
17 4181
18 6765
19 10946
20 17711
21 28657
22 46368
23 75025
24 121393

В 8 ч. и една минута ще има 121 393 бактерии.
Интересно наблюдение е, че таблицата съдържа числа на Fibonacci, а именно F2, . . . , F26,

където числата на Fibonacci се дефинират чрез рекурентното уравнение F0 = 0, F1 = 1, Fn =
Fn−1 + Fn−2 за n ≥ 2. С други думи, таблицата ни навежда на мисълта, че T(n) = F(n + 2).
Това не е случайно съвпадение: тривиално се доказва по индукция, че числата на Fibonacci
удовлетворяват рекурентното уравнение Fn = 2Fn−1 − Fn−3 за n ≥ 3. Виждаме, че една и
съща редица от числа може да бъде определена от различни рекурентни уравнения. �

Задача 124 е същата като Задача 47. Тук предлагаме друго решение.

Задача 124. Измежду числата 1, 2, . . . , 1010, кои са повече: тези, чиито запис (в десетична
позиционна бройна система) съдържа цифрата 9, или другите, чиито запис не съдържа 9?
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Решение. Твърдим, че рекурентното уравнение

Tn =

{
1, ако n = 1

9Tn−1 + 10
n−1, ако n > 1

дава броя на числата с не повече от n цифри в десетична бройна система, чиито запис има
поне една девятка. Аргументацията е, че множеството от тези числа се разбива на три
подмножества:

• Тези с не повече от n− 1 цифри. Те са Tn−1 на брой.

• Тези с точно n цифри, чиято водеща цифра не е девет. Те са 8Tn−1на брой, защото се
получават от числата от Tn−1 чрез поставяне вляво като водеща цифра на някоя от
цифрите {1, 2, 3, 4, 5, 6, 7, 8} и вдясно от нея, записа на числото от Tn−1; при това, ако
този запис има по-малко от n − 1 цифри, попълва се с необходимия брой нули между
водещата цифра и него, така че общата дължина да стане точно n.

• Тези с точно n цифри, чиято водеща цифра е девет. Това множество има мощност 10n−1
по очевидни причини.

Решението на това рекурентно уравнение е Tn = 10n − 9n.

За n = 10 това става 1010 − 910 = 6 513 215 599. Толкова са числата с поне една цифра девет.
Тогава тези без нито една цифра девет са 3 486 784 401, което е значително по-малко. �

Задача 125. Нека n ∈ N. Пресметнете сумата

1

2
+
2

4
+
3

8
+ · · ·+ n

2n

Решение. Задача се решава елементарно с рекурентното уравнение

an =

{
0, ако n = 0,

an−1 + n
(
1
2

)n
, в противен случай

Това е нехомогенно уравнение, което може да се реши чрез метода с характеристичното
уравнение. Хомогенното уравнение е

x− 1 = 0

с мултимножество от корените {1}M. От нехомогенната част имаме мултимножество
{
1
2
, 1
2

}
M
.

Като цяло, мултимножеството е
{
1, 1

2
, 1
2

}
M
. Общото решение е

an = A · 1n + B ·
(
1

2

)n
+ C · n ·

(
1

2

)n
за някакви константи A, B и C. За да ги намерим, добавяме още две начални условия

a1 =
1

2
a2 = 1
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Тогава

0 = A · 10 + B ·
(
1

2

)0
+ C · 0 ·

(
1

2

)0
1

2
= A · 11 + B ·

(
1

2

)1
+ C · 1 ·

(
1

2

)1
1 = A · 12 + B ·

(
1

2

)2
+ C · 2 ·

(
1

2

)2
тоест,

0 = A+ B

1

2
= A+

B

2
+
C

2

1 = A+
B

4
+
C

2

Решението на системата е A = 2, B = −2, C = −1, откъдето решението на рекурентното
уравнение е

an = 2− (n+ 2)2−n �

Задача 126. Даден е сандък с форма на правоъгълен паралелепипед и с вътрешни размери
20 см на 20 см на 10n сантиметра, където n е цяло положително число. Дадени са и неог-
раничено много тухли, всяка с размери 20 см на 20 см на 10 см. Тухлите са неразличими.
По колко различни начина, като функция на n, може да бъде напълнен сандъкът плътно с
тухли? Иска се да няма никакви празнини между тухлите или около тухлите в сандъка. Не
е разрешено да се чупят тухли!

Решение. Ще съставим рекурентно уравнение и ще го решим. Нека Sn е броят на начините
да напълним плътно сандъка с тухли. Ако n = 1, има място за точно една тухла, така че
S1 = 1. Ако n = 2, има място за точно две тухли, които са с долепени големи страни и
заедно представляват кубче с размери 20×20×20. Това кубче може да бъде сложено по три
различни начина, така че S2 = 3. Ако n ≥ 3, нека си представим запълването на сандъка
като процес, който запълва сандъка надлъжно, започвайки от единия край.

• Можем да сложим една тухла така, че голямата и́ страна да е плътно опряна до единия
край на сандъка. Това означава, че остава за запълване сандък с дължина 10(n − 1)
см.

• Можем да сложим една тухла легнала, като една от малките и́ страни е плътно опряна
до единия край на сандъка. Тогава сме длъжни да сложим друга тухла точно върху
нея, инак би се получила кухина, която няма как да запълним, без да чупим тухли.
След слагането на втората тухла, остава за запълване сандък с дължина 10(n− 2) см.

• Можем да сложим една тухла изправена, като една от малките и́ страни е плътно
опряна до единия край на сандъка, а една от големите и́ страни е плътно опряна до
гърба на сандъка. Тогава сме длъжни да сложим друга тухла точно до нея, инак би се
получила кухина, която няма как да запълним, без да чупим тухли. След слагането на
втората тухла, остава за запълване сандък с дължина 10(n− 2) см.
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Друг начин да започнем няма, а изброените начини са два по два несъвместими. Съгласно
принципа на разбиването, Sn = Sn−1 + 2Sn−2 при n ≥ 3.

В обобщение,

Sn =


1, ако n = 1

3, ако n = 2

Sn−1 + 2Sn−2, ако n ≥ 3

Това рекурентно уравнение подлежи на решаване с метода с характеристичното уравнение.
Решението е

Sn =
2n+1

3
+

(−1)n

3
�

Задача 127. Нека S = {0, 1, 2, 3, 4, 5, 6}. За всяко n ∈ N, нека an е броят на редиците с дъл-
жина n, чиито елементи са от S и които нямат съседни четни числа. Съставете рекурентно
уравнение за an и го решете.

Решение. Очевидно a0 = 1 и a1 = 7. Разсъждаваме за an, ако n ≥ 2. S съдържа три
нечетни и четири четни числа. Ако редица с дължина n започва с нечетно число, това
не налага никакви допълнителни ограничения за подредицата от втория елемент нататък
(освен да няма съседни четни). Ако обаче започва с четно число, следващото задължително
е нечетно, а за подредицата от третия елемент нататък няма допълнителни ограничения
(освен да няма съседни четни). Поради това можем да мислим, че има 3× 4 = 12 възможни
начала с дължина две на редица, започваща с четно число. Да обобщим

an =


1, ако n = 0

7, ако n = 1

3an−1 + 12an−2, ако n ≥ 2

Да решим уравнението. Характеристичното уравнение е x2−3x−12 = 0. Мултимножеството
от корените е

{
3+
√
57

2
, 3−
√
57

2

}
M
. Общото решение е

an = A

(
3+
√
57

2

)n
+ B

(
3−
√
57

2

)n
за някакви константи A и B, които ще намерим от началните условия.

1 = a0 = A+ B

7 = a1 = A

(
3+
√
57

2

)
+ B

(
3−
√
57

2

)

И така,

1 = A+ B

7 = A

(
3+
√
57

2

)
+ B

(
3−
√
57

2

)
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Решението е

A =

√
57+ 11

2
√
57

B =

√
57− 11

2
√
57

И така,

an =

(√
57+ 11

2
√
57

)(
3+
√
57

2

)n
+

(√
57− 11

2
√
57

)(
3−
√
57

2

)n
�

Задача 128. Докажете, че
⌊
(2+

√
2)n
⌋
е нечетно число за всяко n ∈ N. За целта първо

решете следното рекурентно уравнение:

a(n) =


2, ако n = 0

4, ако n = 1

4a(n− 1) − 2a(n− 2), ако n > 1

Решение. Ако n = 0, изразът става
⌊
(2+

√
2)0
⌋
, което е 1. Следователно, твърдението е

истина за n = 0. Да разгледаме положителните n.

Решението на рекурентното уравнение е

a(n) =
(
2+
√
2
)n

+
(
2−
√
2
)n

(71)

Да разгледаме тези три факта.

Факт 1: ∀n ∈ N+ : 0 <
(
2−
√
2
)n
< 1, понеже 0 < 2−

√
2 < 1.

Факт 2: ∀n ∈ N+ : an ∈ Z. Можем да докажем това с лекота по индукция по n, понеже
началните условия са целочислени и коефициентите в рекурсията са цели числа.

Факт 3: ∀n ∈ N+ :
(
2+
√
2
)n
> 0. Това е очевидно.

От (71) и трите факта следва, че

∀n ∈ N+ :
⌊
(2+

√
2)n
⌋
= a(n) − 1

Но a(0) и a(1) са четни по условие. Освен това a(n) = 2(2a(n − 1) + a(n − 2)) за n > 1.
Елементарно е да се докаже по индукция по n, че a(n) е четно за n ∈ N+. Следователно,⌊
(2+

√
2)n
⌋
е нечетно за n ∈ N+.

В заключение,
⌊
(2+

√
2)n
⌋
е нечетно за n ∈ N.

Задача 129. Дадени са плочки с размери 1× 1 в четири цвята, в неограничено количество
от всеки цвят. Дадени са и плочки с размери 1 × 2 в пет цвята, в неограничено количество
от всеки цвят. Ако n е цяло положително число, по колко различни начина може да бъде
покрит напълно, без припокриване, правоъгълник с размери 1× n с такива плочки?
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Решение. Нека Sn е броят на начините да покрием правоъгълник 1×n по описания начин.
Ако n = 1, има точно 4 начина за покриване: може да се ползва само плочка 1×1 в точно

един от четирите цвята. Заключаваме, че S1 = 4.
Ако n = 2, има точно 21 начина:

• ако се ползва плочка 1 × 1, налага се да се ползва още една плочка 1 × 1, като има
4 · 4 = 16 начина за слагане на двете в линейна наредба;

• ако се ползва плочка 1 × 2, друга плочка не се ползва, а тази 1 × 2 плочка е в точно
един от пет цвята.

Заключаваме, че S2 = 16+ 5 = 21.
Ако n > 2:

• може да започнем с плочка 1× 1, като има точно четири начина да изберем цвета и́, и
след това покриваме правоъгълник с размери 1× (n− 1);

• може да започнем с плочка 1×2, като има точно пет начина да изберем цвета и́, и след
това покриваме правоъгълник с размери 1× (n− 2).

Тези начала са несъвместими, така че, съгласно комбинаторния принцип на събирането,
Sn = 4Sn−1 + 5Sn−2.

Изведохме следното рекурентно уравнение:

Sn =


4, ако n = 1

21, ако n = 2

4Sn−1 + 5Sn−2, ако n > 2

Да решим уравнението. Характеристичното уравнение е

x2 − 4x− 5 = 0

с корени 5 и −1. Общото решение е

Sn = A5n + B(−1)n

за някакви константи A и B, които ще намерим от началните условия.

A51 + B(−1)1 = 4

A52 + B(−1)2 = 21

Тоест,

5A− B = 4

25A+ B = 21

Оттук 30A = 25, тоест A = 5
6
. Тогава B = 1

6
. Решението е

Sn =
1

6

(
5n+1 + (−1)n

)
�

Задача 130. Нека A = {0, 1, 2, 3, 4, 5} и n ∈ N.
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• Колко са векторите с дължина n, чиито елементи са от A?

• Колко са векторите с дължина n, чиито елементи са от A и в които няма съседни
числа, които не се делят на 3?

– Съставете подходящо рекурентно уравнение.

– Решете уравнението.

Решение. Тъй като |A| = 6, векторите с дължина n над A са 6n.

Да видим колко от тях нямат съседни числа, които не се делят на 3. От елементите на A, на
3 се делят 0 и 3, а 1, 2, 4 и 5 не се делят на 3. Иска се да бъдат преброени векторите, които
нямат съседни елементи от {1, 2, 4, 5}.

Нека Sn е търсеният брой. Иска се да съставим рекурентно уравнение за Sn. Очевидно
S0 = 1 и S1 = 6, защото при дължини 0 и 1 няма “нарушители”. За n ≥ 2 разсъждаваме така.

• Ако първото число е 0 или 3, останалата част от вектора не трябва да съдържа съ-
седни елементи от {1, 2, 4, 5}. Но останалата част е с дължина n − 1. Заключаваме, че
рекурентното уравнение има събираемо 2Sn−1 вдясно.

• Ако първото число е от {1, 2, 4, 5}, то второто задължително трябва да е 0 или 3, а
останалата част от вектора не трябва да съдържа съседни елементи от {1, 2, 4, 5}. Но
останалата част е с дължина n − 2. Заключаваме, че рекурентното уравнение има
събираемо 8Sn−2 вдясно. Коефициентът 8 е заради това, че всяко начало от {1, 2, 4, 5}

може да се комбинира с втори елемент от {0, 3}.

• Други събираеми вдясно няма, защото горните два случая са изчерпателни.

И така, рекурентното уравнение, заедно с началните условия, е

Sn =


1, ако n = 0

6, ако n = 1

2Sn−1 + 8Sn−2, ако n ≥ 2

Това е линейно хомогенно рекурентно уравнение с константни коефициенти и крайна исто-
рия. Характеристичното уравнение е x2−2x−8 = 0. Корените му са 4 и −2, откъдето общото
решение е

Sn = A4n + B(−2)n

за някакви константи A и B. От началните условия имаме

1 = A+ B // за n = 0

6 = 4A− 2B // за n = 1

Намираме A = 4
3
и B = −1

3
. Оттук

Sn =
4

3
4n −

1

3
(−2)n =

1

3

(
4n+1 − (−2)n

)
�

Задача 131. Разглеждаме азбуката Σ = {x, y, z}. Колко стринга с дължина n над Σ не
съдържат подстринга xx? Първо съставете подходящо рекурентно уравнение и после решете
уравнението.

119



Задачи с решения по комбинаторика, ФМИ-СУ, 2016-2025 г. c© Минко Марков

Решение. Нека T(n) е броят на стринговете, които не съдържат xx и имат дължина n.
Ако дължината е едно, тези стрингове са три на брой, а именно x, y и z, така че T(1) = 3.
Ако дължината е две, те са осем, защото елиминираме xx и остават xy, xz, yx, yy, yz, zx,
zy и zz, така че T(2) = 8. Ако n > 2, разсъждаваме така: стринг с дължина n се състои
от една първа буква, следвана от стринг с дължина n− 1, но сега не може да комбинираме
всяка начална буква с всеки стринг с дължина n− 1, защото може да получим “забранения”
подстринг xx.

• Ако първата буква е y или z, можем спокойно да я комбинираме с всеки стринг с
дължина n − 1; ако той не съдържа xx, няма да се получи xx от това, че слагаме y
или z в началото. Множеството от стринговете с дължина n, започващи с y или z и
несъдържащи xx, има мощност 2T(n− 1).

• Ако първата буква е x, втората не може да е x, инак би се появил xx като подстринг.
Втората може да е y или z. Оттам до края следва стринг с дължина n − 2, несъдър-
жащ xx. Множеството от стринговете с дължина n, започващи с x, следван y или z,
несъдържащи xx, има мощност 2T(n− 2).

Съгласно принципа на разбиването, T(n) = 2T(n− 1) + 2T(n− 2). И така:

T(n) =


3, ако n = 1,

8, ако n = 2,

2T(n− 1) + 2T(n− 2), ако n > 2

Решението е

T(n) = 1/6
(
−2
√
3+ 3

)(
−
√
3+ 1

)n
+ 1/6

(
1+
√
3
)n (

2
√
3+ 3

)
�

Задача 132. Колко стринга с дължина n над азбуката {a, b, c, d} не съдържат нито един от
подстринговете aa, ab, ba, bb? Съставете рекурентно уравнение и го решете.

Решение. Нека An е множеството от стрингове с дължина n над азбуката {a, b, c, d}, които
не съдържат нито един от подстринговете aa, ab, ba, bb. Нека Tn = |An|. Да видим как Tn
зависи от по-малки стойности на аргумента. За целта да разгледаме структурата на An. Нека
α е произволен стринг от An, за някое n ≥ 1.

• Ако α започва със c или d, това, което следва, е стринг от An−1 без ограничения.
Това съображение ни дава събираемо +2Tn−1 в израза за Tn.

• Ако α започва с a или b, това, което следва, трябва да е c или d, и после има стринг от
An−2, ако n ≥ 2. Това съображение ни дава събираемо+4Tn−2 в израза за Tn. Четворката
е произведението от две възможности за първата буква по две възможности за втората
буква.

И така,

Tn =


1, ако n = 0,

4, ако n = 1,

2Tn−1 + 4Tn−2, ако n ≥ 2

В началните условия допускаме празния стринг с дължина нула. Той е точно един. Ако не
искаме да допускаме празния стринг, началните условия трябва да са T1 и T2, като T2 = 12

го смятаме на ръка.
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Решението е

Tn = 1/10
(
−3
√
5+ 5

)(
−
√
5+ 1

)n
+ 1/10

(√
5+ 1

)n (
3
√
5+ 5

)
�

Задача 133. Разгледайте азбуката Σ = {a, b, c}. Нека Sn е множеството от стринговете над
Σ с дължина n, които не съдържат ac като подстринг и не съдържат cab като подстринг.

• Намерете S0, S1, S2 и S3.

• Намерете рекурентно уравнение за |Sn|. Не е необходимо да го решавате.

Решение. S0 = {ε}, където ε означава празния стринг. S1 = {a, b, c}.
S2 = {aa, ab, ba, bb, bc, ca, cb, cc}.
S3 = {aaa, aab, aba, abb, abc, baa, bab, bba, bbb, bbc, bca, bcb, bcc, caa, cba, cbb, cbc, cca, ccb, ccc}.

Една възможност да намерим |Sn| е тази. Нека ac и cab се наричат забранените подстрин-
гове. За n > 0, Sn се разбива на Sn,a, Sn,b и Sn,c, където Sn,i = {x ∈ Sn | x завършва на i}, за
i ∈ {a, b, c}. По принципа на разбиването, |Sn| = |Sn,a|+ |Sn,b|+ |Sn,c|.

Да намерим |Sn,a|. Лесно се вижда, че |Sn,a| = |Sn−1|, защото нито един от забранените
подстрингове не завършва на a, така че, конкатенирайки кой да е стринг от Sn−1 с “a”,
получаваме стринг от Sn.

Да намерим |Sn,b|. Не е вярно, че |Sn,b| = |Sn−1|, понеже един от забранените стрингове е
cab, така че, конкатенирайки стринг от Sn−1, който завършва на ca, с b, ще получим забране-
ния cab накрая. Ерго, трябва да вземем само тези стрингове от Sn−1, които не завършват на
ca. И така, за да намерим |Sn,b|, трябва да намерим броя на стринговете от Sn−1, завършващи
на ca, за да го извадим от |Sn−1|. Всеки стринг от Sn−1, завършващ на ca, се състои от стринг
с дължина n− 3, незавършващ на a, конкатениран с ca. Сега въпросът е, колко са стринго-
вете с дължина n − 3, незавършващи на a? Множеството от стринговете с дължина n − 3,
завършващи на a, е Sn−3,a. По начин, напълно аналогичен на начина от предния параграф,
извеждаме, че |Sn−3,a| = |Sn−4|. Тогава броят на стринговете с дължина n− 3, незавършващи
на a, е |Sn−3|− |Sn−4|. Следователно, |Sn,b| = |Sn−1|− (|Sn−3|− |Sn−4|) = |Sn−1|− |Sn−3|+ |Sn−4|.

Да намерим |Sn,c|. Аналогично на горния параграф, не е вярно, че |Sn,c| = |Sn−1| защото,
конкатенирайки стринг от Sn−1, завършващ на a, с c, получаваме забранената конфигурация
ac. Налага се да намерим броя на стринговете от Sn−1, незавършващи на a. С аргументация,
аналогична на аргументациите в предните два параграфа, намираме, че този брой е |Sn−1|−
|Sn−2|. Тогава |Sn,c| = |Sn−1|− |Sn−2|.

В крайна сметка,

|Sn| = |Sn−1|+ |Sn−1|− |Sn−3|+ |Sn−4|+ |Sn−1|− |Sn−2| = 3|Sn−1|− |Sn−2|− |Sn−3|+ |Sn−4|

Началните условия са |S0| = 1, |S1| = 3, |S2| = 8 и |S3| = 20. �

Задача 134. Нека n ∈ N+. Нека S(n) = {−n,−n+ 1, . . . ,−2,−1, 1, 2, . . . , n− 1, n}. Нека P(X)
и Q(X) са предикати с домейн 2S(n), дефинирани така:

• P(X) е “X не съдържа последователни положителни числа”, а

• Q(X) е “X не съдържа двойка числа със сума 0”.

Нека

T(n) = {X ⊆ S(n) |P(X)∧Q(X)}

Намерете |T(n)| като първо съставите подходящо рекурентно уравнение и после решите това
рекурентно уравнение.
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Решение. Да видим как изглежда T(n) за малки n.

• S(1) = {−1, 1}. 2S(1) =
{
∅, {−1}, {1}, {−1, 1}

}
. T(1) =

{
∅, {−1}, {1}

}
, понеже ¬Q({−1, 1}).

• S(2) = {−2,−1, 1, 2}.

2S(2) =
{
∅, {−2}, {−1}, {1}, {2}, {−2,−1}, {−2, 1}, {−2, 2}, {−1, 1}, {−1, 2}, {1, 2},
{−2,−1, 1}, {−2,−1, 2}, {−2, 1, 2}, {−2,−1, 1}, {−2,−1,−1, 2}

}
Тогава T(2) =

{
∅, {−2}, {−1}, {1}, {2}, {−2,−1}, {−2, 1}, {−1, 2}

}
.

• S(3) = {−3,−2,−1, 1, 2, 3}. Тъй като
∣∣2S(3)∣∣ = 64 е прекалено голямо за работа на ръка,

ще генерираме T(3) директно, а не чрез генериране на 2S(3) и елиминиране на елементи.
Празното множество и шестте едноелементни подмножества са в T(3):

∅, {−3}, {−2}, {−1}, {1}, {2}, {3} ∈ T(3)

Всички двуелементни подмножества с отрицателни елементи са в T(3):

{−3,−2}, {−3,−1}, {−2,−1} ∈ T(3)

От двуелементните с един отрицателен и един положителен елемент, в T(3) са тези:

{−3, 1}, {−3, 2}, {−2, 1}, {−2, 3}, {−1, 2}, {−1, 3} ∈ T(3)

От двуелементните с положителни елементи, само {1, 3} е в T(3):

{1, 3} ∈ T(3)

Разглеждаме триелементните. Очевидно

{−3,−2,−1} ∈ T(3)

От триелементните с два отрицателни елемента, в T(3) са тези:

{−3,−2, 1}, {−3,−1, 2}, {−2,−1, 3} ∈ T(3)

От триелементните с един отрицателен елемент, само {−2, 1, 3} е в T(3):

{−2, 1, 3} ∈ T(3)

Триелементни без отрицателни елементи в T(3) няма. Четириелементни в T(3) също
няма, което влече, че няма и петелементни, и шестелементи. Тогава

T(3) =
{
∅, {−3}, {−2}, {−1}, {1}, {2}, {3}, {−3,−2}, {−3,−1}, {−2,−1}, {−3, 1}, {−3, 2},
{−2, 1}, {−2, 3}, {−1, 2}, {−1, 3}, {1, 3}, {−3,−2,−1}, {−3,−2, 1}, {−3,−1, 2},

{−2,−1, 3}, {−2, 1, 3}
}

И така, |T(1)| = 3, |T(2)| = 8 и |T(3)| = 22.

Да видим как T(n+ 1) се получава от T(n). Нека

A(n+ 1) = {X ∈ T(n+ 1) : −n− 1 6∈ X∧ n+ 1 6∈ X}
B(n+ 1) = {X ∈ T(n+ 1) : −n− 1 ∈ X∧ n+ 1 6∈ X}
C(n+ 1) = {X ∈ T(n+ 1) : −n− 1 6∈ X∧ n+ 1 ∈ X}
D(n+ 1) = {X ∈ T(n+ 1) : −n− 1 ∈ X∧ n+ 1 ∈ X}
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Очевидно
{
A(n+1), B(n+1), C(n+1), D(n+1)

}
е разбиване на T(n+1). Съгласно принципа

на разбиването,

|T(n+ 1)| = |A(n+ 1)|+ |B(n+ 1)|+ |C(n+ 1)|+ |D(n+ 1)|

Обаче D(n + 1) = ∅, защото по условие не е разрешено да се съдържа елемент и неговото
отрицание. Тогава

|T(n+ 1)| = |A(n+ 1)|+ |B(n+ 1)|+ |C(n+ 1)|

• Очевидно |A(n+ 1)| = |T(n)|, понеже A(n+ 1) = T(n).

• ∀X ∈ T(n) : X∪{{−n−1}} ∈ B(n+1) и ∀X ∈ B(n+1) : X\{{−n−1}} ∈ T(n). Заключаваме,
че има биекция между T(n) и B(n+ 1). Тогава |B(n+ 1)| = |T(n)|.

• Да намерим |C(n+ 1)|. Всяко множество в C(n+ 1) не съдържа n заради изискването
да няма съседни положителни елементи. Всяко множество в C(n+1) не съдържа −n−1
по конструкция. Числото −n обаче може да се съдържа в елементите на C(n+1). Нека

C−(n+ 1) = {X ∈ C(n+ 1) : −n ∈ X}
C+(n+ 1) = {X ∈ C(n+ 1) : −n 6∈ X}

Очевидно {C−(n+ 1), C+(n+ 1)} е разбиване на C(n+ 1).

– Всеки елемент на C−(n+ 1) съдържа −n, но не съдържа n. Очевидно съществува
биекция между C−(n+ 1) и T(n− 1).

– Всеки елемент на C+(n + 1) не съдържа нито −n, нито n. Очевидно съществува
биекция между C+(n+ 1) и T(n− 1).

Както видяхме в примера горе, C(2+1) =
{
{3}, {−2, 3}, {−1, 3}, {1, 3}, {−2,−1, 3}, {−2, 1, 3}

}
,

а C−(2+ 1) =
{
{−2, 3}, {−2,−1, 3}, {−2, 1, 3}

}
и C+(2+ 1) =

{
{3}, {−1, 3}, {1, 3}

}
. Наистина

има по една биекция между всяко от тях и T(1) =
{
∅, {−1}, {1}

}
.

Заключаваме, че |C(n+ 1)| = 2|T(n− 1)| за n ≥ 3.

Тогава

|T(n)| =


3, ако n = 1,

8, ако n = 2,

2|T(n− 1)|+ 2|T(n− 2)|, ако n ≥ 3

Решението е

|T(n)| =
(
(−1/3)

√
3+ 1/2

)(
−
√
3+ 1

)n
+
(
(1/3)

√
3+ 1/2

)(
1+
√
3
)n

Бърза проверка с тази формула показва, че наистина |T(1)| = 3, |T(2)| = 8 и |T(3)| = 22. �

Задача 135. Нека Σ = {0, 1, 2, 3} е азбука и n ∈ N+. Със Σn означаваме множеството от
стринговете (думите) с дължина n над азбуката Σ. Нека T(n) е множеството от всички
появи на подстринга 00 в елементите на Σn.

• За m = 1, 2, 3, напишете T(m) в явен вид. Не е необходимо да пишете всички елементи
на Σm. Достатъчно е да напишете само елементите на Σm, които съдържат подстринга
00, и да означите ясно различните появи на 00.
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• Съставете рекурентно уравнение за |T(n)|.

• Решете уравнението.

Решение. T(1) = ∅: очевидно стринговете с дължина 1 не съдържат двубуквения 00 като
подстринг. T(2) = 00: единственият стринг с дължина 2, който съдържа 00 като подстринг,
е самият 00, така че има точно една поява на 00. T(3) има осем елемента:

• 000 съдържа две появи на 00, а именно 000 и 000 .

• Всеки от 001, 002, 003, 100, 200 и 300 съдържа точно една поява на 00.

Да помислим за рекурентно уравнение за |T(n)|. Нека n ≥ 2. Стринговете на Σn се разбиват
по първата буква. Нека x ∈ Σn.

• Ако x е от вида 1y или 2y или 3y, където y ∈ Σn−1, то броят на появите на 00 в x е
равен на броя на появите на 00 в y. От това съображение по принципа на разбиването
имаме събираемо +3|T(n− 1)| в рекурентното уравнение.

• Нека x е от вида 0y, където y ∈ Σn−1. Появите на 00 в x се разбиват на

1. тези, които са изцяло в y, и

2. тези, чиято първа нула е първата буква-нула на x.

Броят на първия вид е |T(n − 1)| по очевидни причини. Да помислим за появите от
втория вид. Те се състоят от първата буква-нула на x и първата буква-нула на y.
Ерго, в такъв случай x е от вида 00z, където z ∈ Σn−2. Нашата цел е да преброим само
възможностите за поява на 00 в началото на x, без да броим тези вътре в z. Поради това,
възможностите за поява на 00 в началото на x са точно колкото са всички стрингове
над Σ с дължина n− 2, а те са 4n−2.

От тези съображения по принципа на разбиването имаме събираемо +|T(n− 1)|+ 4n−2

в рекурентното уравнение.

В крайна сметка |T(n)| = 4|T(n− 1)|+ 4n−2. Заедно с началното условие |T(1)| = 0, рекурен-
тното уравнение е

|T(n)| =

{
0, ако n = 1,

4|T(n− 1)|+ ( 1
16
1n) · 4n, ако n > 1

(72)

Характеристичното уравнение е x − 4 = 0 с корен 4. В нехомогенната част полиномът е от
нулева степен, а основата на експонентата е 4, така че оттам “идва” една четворка. Мултим-
ножеството от корените е {4, 4}M, откъдето общото решение е

|T(n)| = A4n + Bn4n

за някакви константи A и B.
Да намерим A и B. Знаем, че |T(1)| = 0, така че |T(2)| = 4|T(1)| + 42−2 = 4 · 0 + 40 = 1.

Тогава

0 = A · 41 + B · 1 · 41

1 = A · 42 + B · 2 · 42
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Тогава

0 = 4A+ 4B

1 = 16A+ 32B

Тогава A = − 1
16

и B = 1
16
. Тогава

|T(n)| = −
1

16
4n +

1

16
n4n =

1

16
(n4n − 4n) =

(n− 1)4n

16
= (n− 1)4n−2

Проверка с тази формула с n = 1, 2, 3 дава съответно |T(1)| = 0, |T(2)| = 1, |T(3)| = 8, което
съвпада с това, което изчислихме в началото. �

Тази задача има още едно решение: друго рекурентно уравнение, различно от (72), но екви-
валентно на (72) в смисъл, че дефинира същата числова редица. Разсъждаваме така: ако са
дадени всички появи на 00 с дължина n, какво получаваме, ако конкатенираме всяка буква
от Σ и вляво, и вдясно? Тук “поява на 00 с дължина n” означава “наредена двойка от стринг
с дължина n и мястото на 00”.

Примерно, множеството от всички появи на 00 с дължина 2 е {00}. Конкатенираме и вляво,
и вдясно всички букви от Σ и получаваме това (новодобавените букви са в червено):

000 100 200 300 000 001 002 003

Това са осемте появи с дължина 3.
Към всяка от осемте появи с дължина 3, конкатенираме и вляво, и вдясно всички букви

от Σ и получаваме това (новодобавените букви са в червено):

0000 1000 2000 3000 0100 1100 2100 3100

0200 1200 2200 3200 0300 1300 2300 3300

0000 1000 2000 3000 0001 1001 2001 3001

0002 1002 2002 3002 0003 1003 2003 3003

0000 0001 0002 0003 1000 1001 1002 1003

2000 2001 2002 2003 3000 3001 3002 3003

0000 0001 0002 0003 0010 0011 0012 0013

0020 0021 0022 0023 0030 0031 0032 0033

Получаваме 64 комбинации от стринг и място на 00, но има повторения. Да елиминираме
повторенията.

0000 1000 2000 3000 0100 1100 2100 3100

0200 1200 2200 3200 0300 1300 2300 3300

0000 = A 1000 = B 2000 = C 3000 = D 0001 = E 1001 = F 2001 = G 3001 = H

0002 = I 1002 = J 2002 = K 3002 = L 0003 =M 1003 = N 2003 = O 3003 = P

0000 = A 0001 = E 0002 = I 0003 =M 1000 = B 1001 = F 1002 = J 1003 = N

2000 = C 2001 = G 2002 = K 2003 = O 3000 = D 3001 = H 3002 = L 3003 = P

0000 0001 0002 0003 0010 0011 0012 0013

0020 0021 0022 0023 0030 0031 0032 0033
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Остават 48 комбинации от стринг и появи на 00.

0000 1000 2000 3000 0100 1100 2100 3100

0200 1200 2200 3200 0300 1300 2300 3300

0000 1000 2000 3000 0001 1001 2001 3001

0002 1002 2002 3002 0003 1003 2003 3003

0000 0001 0002 0003 0010 0011 0012 0013

0020 0021 0022 0023 0030 0031 0032 0033

Наистина, |T(4)| = 48 съгласно (72).

Този малък пример трябва да ни подскаже друго уравнение за |T(n)|: конкатенирайки чети-
рите букви вляво и четирите букви вдясно, получаваме събираемо 4|T(n − 1)| + 4|T(n − 1)|,
което е 8|T(n− 1)|. Това обаче е повече, отколкото трябва, понеже има повторения. Повторе-
нията се получават от появи на 00 с дължина n−2, а броят на повторенията е 4×4×|T(n−2)|,
понеже всяка комбинация на конкатенирана буква вляво и конкатенирана буква вдясно да-
ва точно едно повторение. И така, повторенията са 16|T(n − 2)|, откъдето получаваме това
рекурентно уравнение:

|T(n)| =


0, ако n = 1,

1, ако n = 2,

8|T(n− 1)|− 16|T(n− 2)|, ако n > 2
(73)

То е еквивалентно на (72) в смисъл, че решението му също е |T(n)| = (n− 1)4n−2.

Задача 136. Нека S(n) е множеството от стринговете с дължина n над азбуката {А,Б,В},
които съдържат нечетен брой букви В.

а) Намерете рекурентно уравнение за |S(n)|.

б) Решете това уравнение.

Решение. За краткост и прегледност, нека yn означава |S(n)|. Изразено чрез тази нотация,
търсим рекурентно уравнение за yn. Очевидно S(1) = {В}, така че y1 = 1. За по-големи
стойности на аргумента разсъждаваме така.

• Ако дума от S(n) започва с А или Б, то поддумата от останали букви е елемент на
S(n − 1), защото съдържа нечетен брой букви В. Нещо повече, съществува очевидна
биекция между множеството от думите от S(n), започващи с А, и S(n−1). Аналогично,
съществува очевидна биекция между множеството от думите от S(n), започващи с Б,
и S(n− 1). Следователно, точно yn−1 думи от S(n) започват с А и точно yn−1 думи от
S(n) започват с с Б. Тъй като дума не може да започва хем с А, хем с Б, съгласно
принципа на разбиването, броят на думите от S(n), започващи с А или Б, е 2yn−1.

• Ако дума от S(n) започва с В, то поддумата от останалите букви съдържа четен брой
букви В. Нека T(k) е множеството от думите с дължина k над {А,Б,В}, съдържащи
четен брой букви В, където k ∈ N+. Съществува очевидна биекция между S(n) и
T(n− 1).

Очевидно {А,Б,В}k се разбива на S(k) и T(k). Тогава |T(k)| = |{А,Б,В}k| − |S(k)|, по
принципа на изваждането. Предвид факта, че |{А,Б,В}k| = 3k, в сила е |T(n − 1)| =
3n−1 − yn−1. Заключаваме, че броят на думите от S(n), започващи с В, е 3n−1 − yn−1.
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По принципа на разбиването, за n > 1 е в сила

yn = 2yn−1 + 3
n−1 − yn−1 = yn−1 + 3

n−1

Търсеното рекурентно уравнение е

yn =

{
1, ако n = 1,

yn−1 +
n0

3
3n, ако n > 1

(74)

Да решим (23). Характеристичното уравнение е x−1 с мултимножество от корените {1}M. От
нехомогенната част “идват” 0 + 1 = 1 корена 3, така че в крайна сметка мултимножеството
е {1, 3}M. Тогава общото решение е

yn = C1n +D3n = C+D3n

за някакви константи C и D. Тези константи ще намерим с помощта на началните условия.
Трябва ни още едно начално условие за n = 2. y2 = y1 + 3 = 1+ 3 = 4. Тогава

1 = C+ 3D

4 = C+ 9D

Решението на системата е C = −1
2
, D = 1

2
. Тогава решението на (74) е

yn =
1

2
(3n − 1) �

9 Линейни рекурентни уравнения с не-константни коефи-
циенти

Задача 137. Разгледайте рекурентното уравнение

an =

{
3, ако n = 0

nan−1 − (n− 1), ако n > 0

Първо, обяснете защо това уравнение не може да се реши чрез изучавания на лекции метод
с характеристичното уравнение. Второ, открийте закономерност при стойностите на an; с
други думи, отгатнете решение на рекурентното уравнение. Трето, докажете по индукция,
че отгатнатото решение на рекурентното уравнение наистина е решение.

Решение. Уравнението не може да се реши с метода, изучаван на лекции, понеже не е с
константни коефициенти. Коефициентът n вдясно не е константа.

Стойностите на факториела за аргумент 0, . . . , 8 са

0! = 1

1! = 1

2! = 2

3! = 6

4! = 24

5! = 120

6! = 720

7! = 5040

8! = 40320
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Тогава стойностите на an за аргумент 0, . . . , 8 са

a0 = 3

a1 = 3

a2 = 5

a3 = 13

a4 = 49

a5 = 241

a6 = 1441

a7 = 10081

a8 = 80641

Веднага се вижда, че

an = 2(n!) + 1 (75)

е в сила за n ∈ {0, 1, . . . , 8}. Правим предположението, че (75) е в сила за всяко естествено n.
Сега ще докажем строго формално по индукция, че това предположение е вярно.

База: n = 0. (75) става a0 = 2(0!) + 1, тоест, a0 = 3. Но това наистина е така по условие. 3

Индуктивно предположение: Допускаме, че за някое n ∈ N+ е вярно, че an = 2(n!) + 1.
Ще докажем, че an+1 = 2((n + 1)!) + 1. От рекурентното уравнение знаем, че an+1 = (n +
1)an − n. Съгласно индуктивното предположение, заместваме an с 2(n!) + 1 и получаваме
an+1 = (n+ 1)(2(n!) + 1) − n. Но дясната страна е

(n+ 1)(2(n!) + 1) − n =

2(n+ 1)(n!) + n+ 1− n =

2(n+ 1)! + 1

Доказахме, че (75) е в сила за всяко естествено n. �

Задача 138. Нека Dn е броят на пермутациите на елементите на {1, 2, . . . , n}, в които нито
един елемент не си е на мястото. Забележете, че D0 = 1, защото за празната пермутация е
вярно, че нито един елемент не си е на мястото. От друга страна, D1 = 0, защото има една
единствена пермутация на елементите на {1} и в нея има елемент—а именно, единствената
единица—който си е на мястото.

• Докажете с комбинаторни разсъждения, че

∀n ≥ 2 : Dn = (n− 1)(Dn−1 +Dn−2) (76)

• Докажете, че същата рекурентна зависимост е в сила и за факториела. Но очевидно
Dn < n! за всички достатъчно големи стойности на n, понеже n! брои пермутациите
без ограничения, които са повече от тези, в които нито един елемент не си е на мястото.
Как обяснявате това, че хем Dn < n!, хем и двете удовлетворяват същата рекурентна
зависимост?
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Решение. На лекции нарекохме тези пермутации “деранжименти”. В Задача 64 намерихме
решение за броя на деранжиментите чрез принципа на включването и изключването

n∑
k=0

(−1)k
(
n

k

)
(n− k)!

и открихме, че за всички достатъчно големи n, над 1
3
от пермутациите са деранжименти.

Тук ще обосновем друго решение за броя на деранжиментите, ползващо рекурсия.

Да разгледаме кой да е деранжимент с дължина n, където n ≥ 2. Да разгледаме първата
позиция. На нея може да е всяко от числата 2, 3, . . . , n. Има точни n − 1 възможности за
първото число. Да кажем, че на първа позиция числото е k; както видяхме, k ∈ {2, . . . , n}.

Сега гледаме позиция k. Има две възможности, изчерпателни и взаимно изключващи се.

• На позиция k стои числото 1. Имаме число k на първа позиция, число 1 на k-та позиция,
а на останалите позиции нито едно от числата от {1, . . . , n} \ {1, k} не си е на мястото.
Броят на начините да бъдат сложени числата от {1, . . . , n}\{1, k} на позиции без първата
и k-тата по такъв начин, че нито едно число да не си е на мястото, е Dn−2.

• На позиция k стои число, което не е 1. Имаме число k на първа позиция, а на останалите
позиции нито едно от числата от {1, . . . , n} \ {k} не си е на мястото. Броят на начините
да бъдат сложени числата от {1, . . . , n} \ {k} на позиции без първата по такъв начин, че
нито едно число да не си е на мястото, е Dn−1.

Очевидно деранжиментите с число k на първа позиция се разбиват на тези, които имат 1 на
позиция k, и тези, които имат нещо друго на позиция k. По принципа на разбиването, броят
на възможностите е Dn−1+Dn−2. Това е за фиксирано k на първа позиция. Ако сумираме по
всички n− 1 възможни първи елементи, получаваме (n− 1)(Dn−1 +Dn−2). Доказахме (76).

Що се отнася до второто подусловие, първо ще покажем, че

n! = (n− 1)((n− 1)! + (n− 2)!)

за n ≥ 2. Но това е тривиално предвид факта, че n! = n(n−1)(n−2)! и (n−1)! = (n−1)(n−2)!.
Равенството, което трябва да докажем, е

n(n− 1)(n− 2)! = (n− 1)(n− 1)(n− 2)! + (n− 1)(n− 2)!

Предвид факта, че (n− 2)! ≥ 1, това е същото като

n(n− 1) = (n− 1)2 + (n− 1) ↔ n2 − n = n2 − 2n+ 1+ n− 1

което е очевидно вярно. И така, броят на деранжиментите и факториелът удовлетворяват
една и съща рекурентна зависимост при n ≥ 2.

Причината Dn да расте по-бавно е само една: началните условия са различни. D0 = 1 и
D1 = 0, докато 0! = 1 и 1! = 1. Разликата между D1 и 1! е причината за разликата между
D2 = 1 и 2! = 2, която на свой ред води разликата между D3 = 2 и 3! = 6, която на свой ред
води до разликата между D4 = 9 и 4! = 24, и така нататък. Както видяхме в Задача 64, Dn

е, грубо казано, e пъти по-малко от n! при големите стойности на n. Сега виждаме, че това
се дължи на нищожната разлика между D1 и 1!. �
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Задача 139. Нека A е крайно множество и |A| = n. Инволюция над A е всяка функця
f : A→ A, такава че ∀x ∈ A : f(f(x)) = x. Нека Tn е броят на инволюциите над A. Докажете,
че следното рекурентно уравнение е в сила за Tn:

Tn =


1, ако n = 0

1, ако n = 1

Tn−1 + (n− 1)Tn−2, ако n ≥ 2

Неподвижна точка, или още се казва фиксирана точка, на пермутация f е такъв елемент
x от домейна, че f(x) = x. Инволюцията е частен случай на пермутация, така че може да
говорим за фиксирани точки на инволюции. Намерете формула без рекурсия за броя на
инволюциите над A, които нямат фиксирани точки. Какво число трябва да е n, за да има
такива инволюции?

Решение. Нека n = 0. Очевидно T0 = 1, защото, ако A = ∅, има точно една пермутация, а
именно празната, за която е вярно, че ∀x ∈ A : f(f(x)) = x.

Нека n = 1. Да кажем, че A = {a1}. Има точно една пермутация, а именно f(a1) = a1, за
която е вярно, че ∀x ∈ A : f(f(x)) = x. Следователно, T1 = 1.

Нека сега n ≥ 2. Да кажем, че A = {a1, a2, . . . , an}. Инволюциите над A се разбиват на
тези, които изобразяват an в an (an е фиксирана точка) и тези, които не изобразяват an в
an (an не е фиксирана точка).

• Има точно Tn−1 инволюции, в които an е фиксирана точка, защото техният брой е равен
на броя на инволюциите над A \ {an}.

• Има точно (n − 1)Tn−2 инволюции, в които an не е фиксирана точка, защото тогава е
вярно, че f(an) = ak за някое k 6= n, като също така е вярно, че f(ak) = an, за да бъде
изпълнено f(f(an)) = an, тоест, f да е инволюция. Очевидно има n− 1 възможности за
k, и за всяка от тях, броят на инволюциите над A е същият като броят на инволюциите
над A \ {an, ak}.

Съгласно комбинаторния принцип на събирането, Tn = Tn−1 + (n − 1)Tn−2 в случая n ≥ 2.
Доказахме валидността на рекурентното уравнение за броя на инволюциите.

Сега да видим колко са инволюциите без фиксирани точки. Нека A = {a1, a2, . . . , an}. Нека
Sn е броят на инволюциите над A без фиксирани точки. Една инволюция f : A→ A да няма
фиксирани точки е същото като A да бъде разбито на двуелементни дялове и за всеки дял
{ai, aj} (очевидно i 6= j) да е вярно, че f(ai) = aj и f(aj) = ai. Sn е равен на броя на тези
разбивания.

Ако n е нечетно, такова разбиване няма, така че Sn = 0, ако n е нечетно.
Нека n е четно. S0 = 1, защото за празната пермутация е вярно, че тя няма фиксирани

точки. Нека n ≥ 2. Неформално казано, става дума за броя на начини елементите на A да
бъдат групирани по двойки. Фиксираме кой да е елемент, да кажем an. Има n− 1 възмож-
ности за избор на друг елемент ak, с който an да бъде групиран в смисъл, че f(an) = ak
и f(ak) = an. Тогава броят на инволюциите над A е поризведението на (n − 1) и броя на
инволюциите над A \ {an, ak}.

Следователно,

Sn =


1, ако n = 0

0, ако n е нечетно
(n− 1)Sn−2, ако n ≥ 2 и n е четно
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Това рекурентно уравнение не може да бъде решено с метода с характеристичното уравнение,
но можем да го решим с развиване така. Да кажем, че n е четно и е достатъчно голямо.

Sn = (n− 1)Sn−2 =

= (n− 1)(n− 3)Sn−4

= (n− 1)(n− 3)(n− 5)Sn−6

= · · ·
= (n− 1)(n− 3)(n− 5) · · · 5 · 3 · 1

Това е произведението от нечетните положителни числа, по-малки от n. Ако n = 2m, можем
да запишем така

Sn =

m∏
i=1

(2i− 1)

Може и така

Sn = (2m− 1)(2m− 3)(2m− 5) · · · 5 · 3 · 1 =

=
(2m)(2m− 1)(2m− 2)(2m− 3)(2m− 4)(2m− 5) · · · 5 · 4 · 3 · 2 · 1

2m · (2m− 2) · (2m− 4) · · · 4 · 2
=

(2m)!

2 · 2 · · · 2︸ ︷︷ ︸
m множители

·m!

n!

2mm!

Този резултат има интерпретация в теорията на графите. Съчетание в граф е подмножество
от ребра, които две по две нямат общи върхове. Перфектно съчетание е съчетание, в което
всеки връх е край на някое от неговите ребра. Очевидно броят на перфектните съчетания
е нула, ако броят на върховете е нечетен. Броят на перфектните съчетания в пълен имену-
ван граф с четен брой върхове е равен на броя на инволюциите без фиксирани точки над
множеството от върховете. �

Задача 140. Нека m,n ∈ N. Нека S(m,n) е броят на сюрекциите от m-елементен домейн в
n-елементен кодомейн. Докажете, че ако m,n > 0, то

S(m,n) = n(S(m− 1, n− 1) + S(m− 1, n))

Не е необходимо да правите строго формално доказателство по индукция!

Решение. Иска се да докажем, че

S(m,n) = nS(m− 1, n− 1) + nS(m− 1, n) (77)

От лекции знаем, че

S(m,n) =nm −

(
n

1

)
(n− 1)m +

(
n

2

)
(n− 2)m −

(
n

3

)
(n− 3)m + · · ·+

(−1)n−2
(

n

n− 2

)
(n− (n− 2))m + (−1)n−1

(
n

n− 1

)
(n− (n− 1))m + (−1)n

(
n

n

)
(n− n)m︸ ︷︷ ︸
0

(78)
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Тогава

nS(m− 1, n− 1) =n(n− 1)m−1−n

(
n− 1

1

)
(n− 2)m−1+n

(
n− 1

2

)
(n− 3)m−1 − · · ·

+n(−1)n−3
(
n− 1

n− 3

)
(n− 1− (n− 3))m−1−

+n(−1)n−2
(
n− 1

n− 2

)
(n− 1− (n− 2))m−1 + n(−1)n−1

(
n− 1

n− 1

)
(n− 1− (n− 1))m−1︸ ︷︷ ︸
0

(79)

nS(m− 1, n) =n · nm−1−n

(
n

1

)
(n− 1)m−1+n

(
n

2

)
(n− 2)m−1−n

(
n

3

)
(n− 3)m−1 − · · ·

+n(−1)n−2
(

n

n− 2

)
(n− (n− 2))m−1

+n(−1)n−1
(

n

n− 1

)
(n− (n− 1))m−1 + n(−1)n

(
n

n

)
(n− n)m−1︸ ︷︷ ︸
0

(80)

Ще съберем (79) и (80). Дясната страна на (79) има n събираеми, а дясната страна на (80)
има n + 1 събираеми. Ще групираме събираемите така: събираемото n · nm−1 = nm от (80)
не се групира с нищо, а останалите събираеми се групират по двойки съгласно еднаквите
множители (n−k)m−1, където k ∈ {1, . . . , n}, както е показано с цветове. Игнорирайки нулите
накрая (при k = n), получаваме

nS(m− 1, n− 1) + nS(m− 1, n) = nm

+ (−1)1
(
−n

(
n

0

)
(n− 1)m−1 + n

(
n

1

)
(n− 1)m−1

)
+ (−1)2

(
−n

(
n− 1

1

)
(n− 2)m−1 + n

(
n

2

)
(n− 2)m−1

)
+ (−1)3

(
−n

(
n− 1

2

)
(n− 3)m−1 + n

(
n

3

)
(n− 3)m−1

)
+ · · ·

+ (−1)n−2
(
−n

(
n− 1

n− 3

)
(n− 1− (n− 3))m−1 + n

(
n

n− 2

)
(n− (n− 2))m−1

)
+ (−1)n−1

(
−n

(
n− 1

n− 2

)
(n− 1− (n− 2))m−1 + n

(
n

n− 1

)
(n− (n− 1))m−1

)
Накратко,

nS(m− 1, n− 1) + nS(m− 1, n) = nm +

n−1∑
k=1

(−1)k
(
−n

(
n− 1

k− 1

)
(n− k)m−1 + n

(
n

k

)
(n− k)m−1

)

= nm +

n−1∑
k=1

(−1)kn(n− k)m−1

(
−

(
n− 1

k− 1

)
+

(
n

k

))
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Но
(
n
k

)
=
(
n−1
k

)
+
(
n−1
k−1

)
, откъдето −

(
n−1
k−1

)
+
(
n
k

)
=
(
n−1
k

)
. Тогава

n(S(m− 1, n− 1) + S(m− 1, n)) = nm +

n−1∑
k=1

(−1)kn(n− k)m−1

(
n− 1

k

)

= nm +

n−1∑
k=1

(−1)kn
(n− 1)(n− 2) · · · (n− 1− k+ 1)

k!
(n− k)m−1

= nm +

n−1∑
k=1

(−1)k
n(n− 1)(n− 2) · · · (n− k)

k!
(n− k)m−1

= nm +

n−1∑
k=1

(−1)k
n(n− 1)(n− 2) · · · (n− k+ 1)

k!
(n− k)m

= nm +

n−1∑
k=1

(−1)k
(
n

k

)
(n− k)m

= nm +

n∑
k=1

(−1)k
(
n

k

)
(n− k)m (81)

Но дясната страна на (81) е точно равна на дясната страна на (78). Заключаваме, че наистина

n(S(m− 1, n− 1) + S(m− 1, n)) = S(m,n)

Което и трябваше да покажем.

Тъждеството (77) може да се докаже по-кратко и с комбинаторни разсъждения, но това
доказателство не е очевидно, за разлика от гореизложеното, което се прави автоматично,
ако човек знае формулата за броя на сюрекциите.

Ето как може да се докаже с комбинаторни разсъждения. Разглеждаме множества X и Y,
такива че |X| = m и |Y| = n. Нека C е множеството от сюрекциите от X в Y. Фиксираме
произволен x ∈ X. C се разбива на следните две множества по отношение на x.

• C1: множеството от сюрекциите, в които x е единственият елемент на X, чийто образ е
f(x).

• C2: множеството от сюрекциите, в които съществува поне още един елемент на X освен
x, чийто образ е f(x).

Първо забелязваме, че |C1| = nS(m − 1, n − 1). Ето защо. Нека X ′ = X \ {x} и Y ′ = Y \

{f(x)}. Но Y ′—за разлика от X ′—зависи от f: за всяка възможна стойност y ∈ Y на f(x),
съществува очевидна биекция между подмножеството на C1, в което y = f(x), и множеството
от сюрекциите от X ′ в Y ′. Последното има мощност S(m− 1, n− 1). Има n различни начина
за избор на y, понеже |Y| = n. Тогава |C1| = nS(m− 1, n− 1).

След това забелязваме, че |C2| = nS(m − 1, n). Ето защо. За всяка възможна стойност
y на f(x), съществува очевидна биекция между подмножеството на C2, в което y = f(x), и
множеството от сюрекциите от X ′ в Y. Последното има мощност S(m−1, n). Има n различни
начина за избор на y, понеже |Y| = n. Тогава |C2| = nS(m− 1, n).

Тъй като C се разбива на C1 и C2, в сила е |C| = nS(m − 1, n − 1) + nS(m − 1, n). Но
|C| = S(m,n) по дефиниция. Тогава S(m,n) = nS(m− 1, n− 1) + nS(m− 1, n).
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10 Числа на Fibonacci
Числата на Fibonacci се дефинират чрез следното рекурентно уравнение:

F0 = 0

F1 = 1

Fn = Fn−1 + Fn−2 за n > 1

Задача 141. Представете си стълба с n стъпала. Представете си човек, който изкачва стъл-
бата. Той или тя или взема стъпалата едно по едно, или по две стъпала на веднъж, но не
повече. Открийте връзка между броя на различните начини този човек да изкачи стълбата
и числата на Fibonacci и докажете тази връзка.

Решение. Нека броят начини да изкачи стълба с n стъпала е Sn. Ще докажем по индукция,
че Sn = Fn+1 за n ≥ 1.

Ако стъпалото е само едно, има един начин да качи стълбата. Ако стъпалата са две, има
два начина: или с две малки стъпки (от по едно стъпало), или с една голяма крачка (две
стъпала наведнъж). Така че S1 = 1 и S2 = 2. Но F2 = 1 и F3 = 2, така че S1 = F2 и S2 = F3.
Това е базата на доказателството.

Допускаме, че за някое n ≥ 2 е вярно, че Sn−1 = Fn и Sn−2 = Fn−1. Ще докажем, че
Sn = Fn+1. При повече от едно стъпало, може да започне или с една малка крачка, при което
ще остават n − 1 стъпала, които може да се изкачат по Sn−1 начина, или с една голяма
крачка от две стъпала, при което ще остават n − 2 стъпала, които може да се изкачат по
Sn−2 начина. Очевидно множеството от изкачванията се разбива на две подмножества: тези,
които започват с малка стъпка, и тези, които започват с голяма крачка. По принципа на
разбиването, Sn = Sn−1 + Sn−2. Тъй като допуснахме, че Sn−1 = Fn и Sn−2 = Fn−1, то следва,
че Sn = Fn + Fn−1. Но Fn + Fn−1 е равно на Fn+1. Тогава Sn = Fn+1 за n ≥ 1. �

Задача 142. Докажете с комбинаторни разсъждения, че

∀n ≥ 1 : F2n+1 = F2n + F2n+1

където Fi означава i-тото число на Fibonacci.

Решение. Тъждеството е практически същото като (108), но тук се иска доказателство с
комбинаторни разсъждения. F2n+1 е броят на начините да се качи стълба с 2n стъпала, ако
на всяка крачка качваме едно или две стъпала. Тези качвания се разбиват на тези качвания,
при които се стъпва на n-тото стъпало, и на тези, при които не се стъпва на n-тото стъпало.

Множеството от качванията, при които се стъпва на n-тото стъпало, е произведението от
качванията от ниво 0 (преди първото стъпало) до n-тото стъпало и качванията от n-тото
стъпало до 2n-тото (най-горното) стъпало. При качването от ниво 0 до n-тото стъпало има
точно n стъпала, така че тези качвания може да се извършат по Fn+1 начина. При качването
от стъпало n до най-горното стъпало отново има точно n стъпала, така че и тези качвания
може да се извършат по Fn+1 начина. Съгласно комбинаторния принцип на умножението,
броят на начините за качване от ниво 0 до най-горното стъпало (2n), при които се стъпва
на стъпало n, е Fn+1 · Fn+1 = F2n+1.
Множеството от качванията, при които не се стъпва на n-тото стъпало, е произведението
от качванията от ниво 0 до (n − 1)-вото стъпало, качването от (n − 1)-вото до (n + 1)-вото
стъпало (ако искаме да не стъпваме на n-тото стъпало и не можем да прескачаме повече от
едно стъпало, налага се да стъпим на (n− 1)-вото и оттам на (n+ 1)-вото) и качванията от
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(n+ 1)-вото стъпало до 2n-тото стъпало. При качванията от ниво 0 до (n− 1)-вото стъпало
има точно n − 1 стъпала, така че тези качвания може да се направят по Fn начина. При
качването—то е едно единствено—от (n − 1)-вото до (n + 1)-вото стъпало има точно две
стъпала. При качванията от (n + 1)-вото стъпало до стъпало 2n има точно n − 1 стъпала,
така че и тези качвания може да се направят по Fn начина. Съгласно комбинаторния принцип
на умножението, броят на начините за качване от ниво 0 до най-горното стъпало (2n), при
които не се стъпва на стъпало n, е Fn · 1 · Fn = F2n.

Съгласно комбинаторния принцип на събирането, броят на всички начини за качване на
стълбата е F2n+1 + F2n. �

Задача 143. Представете си правоъгълник 2×n сантиметра и n на брой малки правоъгъл-
ничета 1 × 2 сантиметра. Покриване на големия правоъгълник с малките правоъгълничета
е всяко тяхно слагане върху големия правоъгълник, такова че нито те се припокриват, нито
остава непокрита част от големия правоъгълник. Очевидно броя на малките правоъгълни-
чета е достатъчна, за да покрием големия. Нещо повече, начините за покриване на големия
са много, ако n е голямо число. Каква е връзката между начините да бъде покрит големия
правоъгълник и числата на Fibonacci?

Решение. Нека броят на тези покривания е Cn. Да си представим големия правогълник
нарисуван хоризонтално и покрит с квадратчета 1× 1:

Всяко от покриващите правоъгълничета трябва да покрие точно две съседни (с обща страна)
квадратчета. Да си представим, че покриването започва отляво. Квадратчето в горния лав
ъгъл трябва да бъде покрито. Има точно два начина да стане това. При първия начин:

трябва задължително да продължим така:

и свеждаме задачата до задача за покриване на правоъгълник 2×(n−2). При втория начин:

свеждаме задачата до задача за покриване на правоъгълник 2 × (n − 1). Доказахме, че за
всички достатъчно големи стойности на n, Cn = Cn−1 + Cn−2. Очевидно C1 = 1 и C2 = 2.

Виждаме, че Cn = Fn+1 за n ≥ 1. �

Задача 144. Докажете, че

∀n ≥ 1 :
n∑
i=1

Fi = Fn+2 − 1
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Решение. Ще докажем твърдението с индукция по n. Базата е за n = 1. Тогава твърде-
нието е

1∑
i=1

Fi = F1+2 − 1

което е същото като

F1 = F3 − 1

което очевидно е вярно. 3

Да допуснем, че твърдението е вярно за някоя стойност на аргумента n, такава че n ≥ 1.
Тоест, допускаме, че

n∑
i=1

Fi = Fn+2 − 1 (82)

Разглеждаме твърдението за стойност на аргумента n+ 1. Тоест, разглеждаме

n+1∑
i=1

Fi = Fn+1+2 − 1 (83)

Извършваме следните еквивалентни преобразувания над (83):

n+1∑
i=1

Fi = Fn+1+2 − 1 ↔ // свойство на нотацията за сумиране Σ(
n∑
i=1

Fi

)
+ Fn+1 = Fn+1+2 − 1 ↔ // 1+ 2 = 3(

n∑
i=1

Fi

)
+ Fn+1 = Fn+3 − 1 ↔ // съгласно индукционното предположение (24)

Fn+2 − 1+ Fn+1 = Fn+3 − 1 ↔ // комутативност и асоциативност на събирането
(Fn+2 + Fn+1) − 1 = Fn+3 − 1 ↔ // дефиниция на числа на Фибоначи

Fn+3 − 1 = Fn+3 − 1

Последното очевидно е вярно. Тогава и (83) е вярно. �

Задача 145. Докажете, че

Fn+1 =

(
n

0

)
+

(
n− 1

1

)
+

(
n− 2

2

)
+ · · ·+

(
0

n

)
Решение. Ще докажем тъждеството с комбинаторни разсъждения. Нека Tn е броят на
всички булеви вектори с дължина n, в които няма съседни единици. Ще покажем, че Tn =
Fn+2 за всяко n ≥ 1. Очевидно T1 = 2, а T2 = 3, защото от четирите булеви вектора с дължина
2, точно 11 не отговаря на условието.

За n > 2, съобразяваме, че всеки такъв вектор може да започва с единица, но тогава
вторият му елемент задължително е нула и следва булев вектор с дължина n−2 без съседни
единици, или да започва с нула, като след нея има булев вектор с дължина n−1 без съседни
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единици. По принципа на разбиването, Tn = Tn−1 + Tn−2. Доказахме, че Tn = Fn+2 за всяко
n ≥ 1.

Тогава Fn+1 е Tn−1, така че лявата страна на тъждеството брои булевите вектори с дъл-
жина n − 1 без съседни единици. Ще покажем, че дясната страна брои същото множество,
но по-подробно. Но Задача 32 ни казва колко булеви вектори с дължина n нямат съседни
единици. Ако заместим n с n − 1 в (6), ще получим точно дясната страна на тъждеството,
което доказваме. �

Задача 146. Нека

H0 = 1

Hn =

n−1∑
k=0

(n− k)Hk

Докажете, че ∀n ≥ 1 : Hn = F2n.

Решение. Щом за n ≥ 1 е в сила

Hn = Hn−1 + 2Hn−2 + 3Hn−3 + · · ·+ nH0

то за n ≥ 2 е в сила

Hn−1 = Hn−2 + 2Hn−3 + 3Hn−4 + · · ·+ (n− 1)H0

Написани заедно, тези уравнения изглеждат така (това е за n ≥ 2):

Hn = Hn−1 + 2Hn−2 + 3Hn−3 + · · ·+ (n− 1)H1 + nH0

Hn−1 = Hn−2 + 2Hn−3 + · · ·+ (n− 2)H1 + (n− 1)H0

Изваждайки второто от първото, получаваме

Hn −Hn−1 = Hn−1 +Hn−2 +Hn−3 + · · ·+H1 +H0

Тоест, за n ≥ 2 е в сила

Hn = 2Hn−1 +Hn−2 +Hn−3 + · · ·+H1 +H0

Тогава за n ≥ 3 е в сила

Hn−1 = 2Hn−2 +Hn−3 +Hn−4 + · · ·+H1 +H0

Отново изваждаме уравнението с лява страна Hn−1 от това с лява страна Hn и получаваме

Hn −Hn−1 = 2Hn−1 −Hn−2 ↔
Hn = 3Hn−1 −Hn−2 (84)

Това е в сила за n ≥ 3. Началните стойности са H2 = 3 и H1 = 1, които можем да получим
от дефиницията на Hn от условието, и H0 = 1, което е част от условието.

Да разгледаме F2n. Ако n ≥ 1, от дефиницията на редицата на Fibonacci имаме

F2n = F2n−1 + F2n−2
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Ако n ≥ 2, в сила е

F2n−1 = F2n−2 + F2n−3 (85)
F2n−2 = F2n−3 + F2n−4 ↔ F2n−3 = F2n−2 − F2n−4 (86)

Тогава, за n ≥ 2, използвайки (85) и (86), получаваме

F2n = F2n−1 + F2n−2

= F2n−2 + F2n−3 + F2n−2

= 2F2n−2 + F2n−3

= 2F2n−2 + F2n−2 − F2n−4

= 3F2(n−1) − F2(n−2) (87)

Ще докажем, че Hn = F2n за n ≥ 1 със силна индукция по n. Базата е за n ∈ {1, 2}.

• За n = 1, от една страна H1 = 1, а от друга страна F2 = 1. 3

• За n = 2, от една страна H2 = 3, а от друга страна F4 = 3. 3

Индуктивното предположение е, че Hk = F2k за всяко k ∈ {1, . . . , n− 1}. От (84) знаем, че

Hn = 3Hn−1 −Hn−2

От индуктивното предположение знаем, че Hn−1 = F2(n−1) и Hn−2 = F2(n−2). Тогава

Hn = 3F2(n−1) − F2(n−2)

Прилагаме (87) и получаваме, че

Hn = F2n �

Задача 147. Разполагате с неограничено количество от еднакви монети с радиус 1. Дадено е
n ∈ N+. От Вас се иска да конструирате разполагане на монетите съгласно следните правила.

• Започвате с точно n монети, разположени така, че центровете им са (1, 1), (3, 1), (5, 1),
. . . , (2n− 1, 1). Примерно, при n = 6:

Става дума за плътна линейна наредба, при която всеки две съседни монети се допират
и центровете на монетите са върху една права. Тази наредба е първият ред.

• Върху първия ред може да сложите линейно между 0 и n − 1 монети, пак наредени
плътно, като всяка от тях се допира в точно две монети от първия ред. Тези монети
образуват втория ред. Колко монети ще сложите във втория ред е Ваше решение; може
да не сложите нито една и тогава конструкцията приключва. Да кажем, че решите да
сложите три монети във втория ред. Очевидно има три начина втория ред от три
монети да бъде сложен върху първия. Примерно, така:
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• Да кажем, че втория ред има k монети. Ако k > 1, продължавате аналогично, избирай-
ки число между 0 и k− 1. Ако избраното число е 0, конструкцията спира. В противен
случай конструирате третия ред. В започнатия пример, нека третият ред е от само
една монета, сложена така:

• И така нататък. Принципът, по който се строи всеки следващ ред, е ясен. Съществено
е, че във всеки ред монетите са наредени плътно. Тъй като всеки следващ ред има
по-малко монети от реда под него, рано или късно конструкцията ще приключи.

Докажете, че за всяко n ≥ 1, броят на начините, по които може да се извърши конструкцията,
е F2n−1.

Решение. Да означим търсеното количество с Tn. Бърз експеримент показва, че T1 = 1,
T2 = 2, T3 = 5 и T4 = 13. Изглежда, че наистина Tn = F2n−1. Сега ще докажем това формално.

Разсъждаваме за Tn при n > 1. Ключовото наблюдение е, че слагайки k монети във втория
ред, ние по същество правим конструкция, чийто най-долен ред има k монети – най-долният
ред (който е от n монети) не се отразява никак на броя начини да бъде довършена конс-
трукцията. И така, ако във втория ред има k монети, има Tk начина за довършването, за
всяко възможно разполагане на тези k монети във втория ред. Има точно n − k възможни
разполагания на втория ред върху първия (бърза проверка: ако k = 1, наистина има n − 1
места, на които може да бъде сложена единствената монета във втория ред, а ако k = n− 1,
наистина има само един начин да бъдат сложени n − 1 монети във втория ред). Изглежда,
че ако n > 1, то Tn =

∑n−1
k=1(n − k)Tk. Но това уравнение пропуска една възможност: да не

се сложи нищо във втория ред. Истинското уравнение е

T1 = 1

Tn =

(
n−1∑
k=1

(n− k)Tk

)
+ 1, ако n > 1 (88)

Страни́чна забележка: бихме могли да дефинираме T0 = 1 и тогава уравнението
би просто

Tn =

n−1∑
k=0

(n− k)Tk

Но тук има T0. Ако Tn = F2n−1, то T0 би било F−1. Възможно е да дефинираме
числа на Fibonacci и за отрицателни индекси; ако го направим, наистина F−1 = 1,
защото тогава бихме искали F1 = F0 + F−1 и при положение, че F1 = 1 и F0 =
0, единствената смислена стойност за F−1 е 1. Но в решението на тази задача
не искаме да въвеждаме числа на Fibonacci с отрицателни индекси. По-добре е
индексната променлива k да започва от 1 и да има събираемо +1 извън сумата.
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Преобразуванията, които ще извършим върху (88), са много подобни на тези от Зада-
ча 146. Имаме

Tn = (n− 1)T1 + (n− 2)T2 + (n− 3)T3 + · · ·+ 3Tn−3 + 2Tn−2 + 1Tn−1 + 1

Ако n > 2, то

Tn−1 = (n− 2)T1 + (n− 3)T2 + · · ·+ 3Tn−4 + 2Tn−3 + 1Tn−2 + 1

Изваждаме второто от първото и получаваме

Tn − Tn−1 = T1 + T2 + T3 + · · ·+ Tn−3 + Tn−2 + Tn−1

Тоест,

Tn = 2Tn−1 + Tn−2 + Tn−3 + · · ·+ T3 + T2 + T1

Но тогава

Tn−1 = 2Tn−2 + Tn−3 + Tn−4 + · · ·+ T3 + T2 + T1

Пак изваждаме второто от първото. Получаваме

Tn − Tn−1 = 2Tn−1 − Tn−2

Тоест,

Tn = 3Tn−1 − Tn−2 (89)

Рекурентното уравнение (89) е еквивалентно на (88), ако добавим второ начално условие, а
именно T2 = 2.

Страни́чна забележка: забележете приликата между (89) и (84). По същество,
рекурентното уравнение за Tn в тази задача е същото като това заHn в Задача 146.
Разликата е само в началните условия. В Задача 146 те бяха H1 = 1 и H2 = 3,
докато в тази задача са T1 = 1 и T2 = 2. Това, че Hn от Задача 146 е F2n, а Tn в
тази задача е F2n−1, се дължи само на разликата в стойностите на H2 и T2.

Рекурентното уравнение (89) е решимо чрез метода с характеристичното уравнение, като
решението с Maple(tm) е:

Tn =
(
1/2+ 1/10

√
5
)(
3/2− 1/2

√
5
)n

+
(
1/2− 1/10

√
5
)(
3/2+ 1/2

√
5
)n

(90)

за n ≥ 1.
Тук обаче искаме да покажем, че Tn = F2n−1. За да е така, би трябвало да е вярно, че

F2n−1 = 3F2n−3 − F2n−5 (91)

Дали (91) е в сила? Наистина, по определение имаме

F2n−1 = F2n−2 + F2n−3 (92)
F2n−2 = F2n−3 + F2n−4 (93)
F2n−3 = F2n−4 + F2n−5 (94)
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От (92) и (93) имаме

F2n−1 = F2n−3 + F2n−4 + F2n−3 ↔ F2n−1 = 2F2n−3 + F2n−4 (95)

(94) е еквивалентно на

F2n−4 = F2n−3 − F2n−5 (96)

От (95) и (96) имаме

F2n−1 = 2F2n−3 + F2n−3 − F2n−5 ↔ F2n−1 = 3F2n−3 − F2n−5

Изведохме (91). Ползвайки (91) и (89), тривиално е да покажем по индукция, че Tn = F2n−1,
напълно аналогично на доказателството в Задача 146, че Hn = F2n. �

Задача 148. Докажете, че за всяко n ∈ N е в сила

n∑
k=0

(
n

k

)
Fk = F2n (97)

Решение. По определение, за всяко достатъчно голямо n е вярно, че

F2n = F2n−1 + F2n−2 (98)

Използвайки (98) и това, че

F2n−1 = F2n−2 + F2n−3

F2n−2 = F2n−3 + F2n−4

извеждаме

F2n = F2n−2 + 2F2n−3 + F2n−4 (99)

Използвайки (99) и това, че

F2n−2 = F2n−3 + F2n−4

F2n−3 = F2n−4 + F2n−5

F2n−4 = F2n−5 + F2n−6

извеждаме

F2n = F2n−3 + 3F2n−4 + 3F2n−5 + F2n−6 (100)

Да препишем (98), (99) и (100) така:

F2n =

(
1

0

)
F2n−1 +

(
1

1

)
F2n−2

F2n =

(
2

0

)
F2n−2 +

(
2

1

)
F2n−3 +

(
2

2

)
F2n−4

F2n =

(
3

0

)
F2n−3 +

(
3

1

)
F2n−4 +

(
3

2

)
F2n−5 +

(
3

3

)
F2n−6
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Виждаме ясна закономерност: за всяко m ∈ {1, 2, . . . , n} е вярно, че

F2n =

(
m

0

)
F2n−m−0+

(
m

1

)
F2n−m−1+

(
m

2

)
F2n−m−2+ · · ·+

(
m

m− 1

)
F2n−m−(m−1)+

(
m

m

)
F2n−m−m

(101)

За напълно прецизен и формален отговор трябва да докажем (101) по индукция. Ето такова
доказателство. Индукцията е по m, по отношение на някакво фиксирано n, като m взема
стойности от крайното множество {1, 2, . . . , n}. Базата е m = 1. Тогава (101) става (98). 3

Индуктивното предположение е (101) за някакво m ∈ {1, . . . , n− 1}. Използвайки факта, че

F2n−m = F2n−m−1 + F2n−m−2 = F2n−(m+1) + F2n−(m+1)−1

F2n−m−1 = F2n−m−2 + F2n−m−3 = F2n−(m+1)−1 + F2n−(m+1)−2

F2n−m−2 = F2n−m−3 + F2n−m−4 = F2n−(m+1)−2 + F2n−(m+1)−3

· · ·
F2n−2m+1 = F2n−2m + F2n−2m−1 = F2n−(m+1)−(m−1) + F2n−(m+1)−m

F2n−2m = F2n−2m−1 + F2n−2m−2 = F2n−(m+1)−m + F2n−(m+1)−(m+1)

преписваме (101) така:

F2n =

(
m

0

)(
F2n−(m+1) + F2n−(m+1)−1

)
+(

m

1

)(
F2n−(m+1)−1 + F2n−(m+1)−2

)
+(

m

2

)(
F2n−(m+1)−2 + F2n−(m+1)−3

)
+

· · · +(
m

m− 1

)(
F2n−(m+1)−(m−1) + F2n−(m+1)−m

)
+(

m

m

)(
F2n−(m+1)−m + F2n−(m+1)−(m+1)

)
(102)

Дясната страна е сума от m + 1 събираеми, всяко от които е произведение от биномен кое-
фициент и сума от две числа на Fibonacci. Нещо повече, дясното число на Fibonacci (в реда,
в който са написани тук) от първото събираемо е равно на лявото число на Fibonacci от вто-
рото събираемо, дясното число на Fibonacci от второто събираемо е равно на лявото число
на Fibonacci от третото събираемо, и така нататък, дясното число на Fibonacci от m-тото
събираемо е равно на лявото число на Fibonacci от (m+1)-вото събираемо. Преписваме (102),
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групирайки по едни и същи числа на Fibonacci, и получаваме сума от m+ 2 събираеми:

F2n =

(
m

0

)
F2n−(m+1) +((
m

0

)
+

(
m

1

))
F2n−(m+1)−1 +((

m

1

)
+

(
m

2

))
F2n−(m+1)−2 +

· · · +((
m

m− 1

)
+

(
m

m

))
F2n−(m+1)−m +(

m

m

)
F2n−(m+1)−(m+1) (103)

Но от лекции знаем, че
(
p−1
q−1

)
+
(
p−1
q

)
=
(
p
q

)
, така че(

m

0

)
+

(
m

1

)
=

(
m+ 1

1

)
(
m

1

)
+

(
m

2

)
=

(
m+ 1

2

)
· · ·(

m

m− 1

)
+

(
m

m

)
=

(
m+ 1

m

)
Затова преписваме (103) така:

F2n =

(
m

0

)
F2n−(m+1) +(

m+ 1

1

)
F2n−(m+1)−1 +(

m+ 1

2

)
F2n−(m+1)−2 +

· · · +(
m+ 1

m

)
F2n−(m+1)−m +(

m

m

)
F2n−(m+1)−(m+1) (104)

Забелязваме, че
(
m
0

)
=
(
m+1
0

)
и
(
m
m

)
=
(
m+1
m+1

)
и преписваме (104) така:

F2n =
(m + 1

0

)
F2n−(m+1) +

(m + 1

1

)
F2n−(m+1)−1 +

(m + 1

2

)
F2n−(m+1)−2 + · · · +

(m + 1

m

)
+ F2n−(m+1)−m +

(m + 1

m + 1

)
F2n−(m+1)−(m+1)

(105)

Но това е точно (101) след заместване на m с m+ 1. Доказахме (101). 3

Уравнение (101), написано кратко, е

F2n =

m∑
k=0

(
m

k

)
F2n−m−k (106)
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Да заместим m с n в (106). Получаваме

F2n =

n∑
k=0

(
n

k

)
Fn−k

Знаем, че
(
n
k

)
=
(
n
n−k

)
. Получаваме

F2n =
∑
0≤k≤n

(
n

n− k

)
Fn−k

Щом 0 ≤ k ≤ n, в сила е 0 ≥ −k ≥ −n, което е същото като n ≥ n − k ≥ 0, което е същото
като 0 ≤ n− k ≤ n. Тогава

F2n =
∑

0≤n−k≤n

(
n

n− k

)
Fn−k

Минаваме към нова индексна променлива, замествайки n− k с k. Получаваме

F2n =
∑
0≤k≤n

(
n

k

)
Fk (107)

(107) е очевидно същото като (97). �

Задача 149. Докажете, че за всяко k ∈ N+ е изпълнено
[
0 1

1 1

]k
=

[
Fk−1 Fk
Fk Fk+1

]
.

Решение. Ще докажем твърдението по индукция по k. Базата е k = 1. Очевидно[
0 1

1 1

]1
=

[
F0 F1
F1 F2

]
3

Индуктивното допускане е, че
[
0 1

1 1

]k−1
=

[
Fk−2 Fk−1
Fk−1 Fk

]
за някое k ≥ 2.

Разглеждаме
[
0 1

1 1

]k
. В сила е

[
0 1

1 1

]k
=

[
0 1

1 1

]k−1
·
[
0 1

1 1

]
=

[
Fk−2 Fk−1
Fk−1 Fk

]
·
[
0 1

1 1

]
=[

0 · Fk−2 + 1 · Fk−1 1 · Fk−2 + 1 · Fk−1
0 · Fk−1 + 1 · Fk 1 · Fk−1 + 1 · Fk

]
=

[
Fk−1 Fk
Fk Fk+1

]
�

Задача 150. Докажете, че ∀n ∈ N+ и ∀m ∈ N е в сила

Fn+m = FmFn−1 + FnFm+1

Решение. Нека m,n ∈ N+. Съгласно Задача 149, в сила е[
0 1

1 1

]m
=

[
Fm−1 Fm
Fm Fm+1

]
[
0 1

1 1

]n
=

[
Fn−1 Fn
Fn Fn+1

]
[
0 1

1 1

]n+m
=

[
Fn+m−1 Fn+m
Fn+m Fn+m+1

]
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Но умножението на матрици е асоциативно, така че[
0 1

1 1

]n+m
=

[
0 1

1 1

]m
·
[
0 1

1 1

]n
Тогава[

Fn+m−1 Fn+m
Fn+m Fn+m+1

]
=

[
Fn−1 Fn
Fn Fn+1

]
·
[
Fm−1 Fm
Fm Fm+1

]
Извършваме умножението вдясно и получаваме[

Fn+m−1 Fn+m
Fn+m Fn+m+1

]
=

[
Fn−1Fm−1 + FnFm Fn−1Fm + FnFm+1

FnFm−1 + Fn+1Fm FnFm + Fn+1Fm+1

]
Но тогава Fn+m = Fn−1Fm + FnFm+1 за всички цели положителни m и n. Забелязваме, че при
m = 0 този израз става

Fn = Fn−1F0 + FnF1 = Fn−1 · 0+ Fn · 1 = Fn

Ерго, тъждеството остава в сила и при m = 0. Тогава n ∈ N+ и m ∈ N, в сила е

Fn+m = FmFn−1 + FnFm+1 �

Задача 151. Докажете, че ∀n ∈ N+,

F2n−1 = F
2
n−1 + F

2
n (108)

F2n = Fn(2Fn−1 + Fn) (109)

Решение. От Задача 150 знаем, че Fn+m = FmFn−1+FnFm+1 за n ∈ N+ иm ∈ N. Разглеждаме
частния случай, в който m = n− 1. Тъждеството става

Fn+n−1 = Fn−1Fn−1 + FnFn−1+1

което е същото като

F2n−1 = F
2
n−1 + F

2
n

Сега разглеждаме частния случай, в който m = n. Тъждеството става

Fn+n = FnFn−1 + FnFn+1

Но Fn+1 = Fn + Fn−1, така че

Fn+n = FnFn−1 + Fn(Fn + Fn−1)

което е същото като

F2n = Fn(2Fn−1 + Fn) �
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