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Глава 1

История на теорията на графите

Терминът “graph” се появява за първи път в статия в Nature на известния математик James
Sylvester през 1878 г.:, но началото на теорията на графите е поставено век и половина преди
това от гениалния математик Leonard Euler. През 1735 г. Euler решава една нерешена дотога-
ва задача, известна като задачата за седемте моста на Königsberg. Преди да формулираме
задачата ето малко пояснения. В град Königsberg; в Източна Прусия тече река Pregel. В
града насред реката има два големи застроени острова един до друг – Kneiphof (K) и Lomse
(L). Кварталът на северния бряг е Altstadt (A), а на южния, Vorstadt (V). Kneiphof е свързан
с два моста с Altstadt, с други два моста с Vorstadt и с един мост с Lomse. Lomse освен това
е свързан с един мост с Altstadt и с един мост с Vorstadt. Карта на града с реката и двата
острова е показана на Фигура 1.1. Картата е взета от уикипедия.

Фигура 1.1 : Карта на Königsberg.

:Става дума за “graph” в смисъла на дискретната математика; на английски “graph” означава също и
графика на функция, което е съвършено различно нещо. James Joseph Sylvester е създал или въвел в днешния
смисъл много математически термини, например “matrix” и “discriminant”, които ползваме и днес.

;Град Königsberg вече не съществува. Градът е основан през 1255 г. от тевтонските рицари край брега
на Балтийско море и до края на Втората Световна Война е главният град на германската територия Из-
точна Прусия. През войната градът е почти изцяло разрушен. Победителите във войната отнемат Източна
Прусия от Германия завинаги. Königsberg заедно с територията около него стават съветски, а построеният
наново град е наречен Калининград. След разпадането на Съветския Съюз, въпросната територия заедно с
Калининград се оказва руски анклав между Полша и Литва на брега на Балтийско море.
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Фигура 1.2 показва схема на града с четирите квартала K, L, A и V, реката и седемте моста.

Фигура 1.2 : Карта на Königsberg с означения.

Показани са островите Kneiphof (K) и Lomse (L), кварталите
Altstadt (A) и Vorstadt (V), река Pregel в синьо и седемте моста.

Самата задача е:

Да се намери разходка в града, която започва в някой от четирите квартала K,
L, A или V, минава през всеки от седемте моста точно по веднъж, и завършва
в същия квартал, в който е започнала.

В оригиналната статия на Euler няма изискване разходката да завършва там, където е за-
почнала. Дали жителите на града са искали да разходката да е затворен маршрут, а Euler
е пропуснал това изискване, или не, няма особено значение. В момента можем да решим с
лекота задачата и в двата варианта (вж. Секция 2.10). Тук допускаме, че разходката трябва
да завършва там, където е започнала.

Хората от Königsberg дълго се опитвали да открият такава разходка в града и не успява-
ли. Euler, който по това време е работил в Академията в близкия Санкт Петербург, решил
задачата при посещение в Königsberg, доказвайки, че такава разходка не съществува. Реше-
нието използва математически обект, който днес бихме нарекли неориентиран мултиграф.
Оригиналното решение на Euler [24]: не съдържа термина граф никъде, нито съдържа рисун-
ка на граф. Но по същество неговото решение се основава на това, което днес наричаме граф.
Той използва по една буква за всеки от четирите квартала, по една буква за всеки от седемте
моста, и разглежда възможните решения като стрингове от тези букви – нещо, което днес
бихме нарекли цикъл в граф. Още в самото начало на статията си Euler отбелязва, че тази
геометрична задача е коренно различна от нормалните геометрични задачи, които включват
някакви големини. Euler говори за нов тип геометрия;, въведена от Лайбниц, в която няма
големини и пресмятания на големини и която се занимава само с взаимните позиции; Ойлер
я нарича “геометрия на позициите”.

:Сканирано копие на оригиналната статия на Euler е свободно достъпно онлайн. Оригиналната статия
обаче е на латински, което я прави недостъпна за масовия съвременен читател. Пълен превод на английски
на тази статия има, например, в книгата на Biggs, Lloyd и Wilson [12].

;Която днес бихме нарекли топология.
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Следното популярно решение на задачата е основано на решението на Euler. Ключовото
наблюдение е, че за целите на тази задача, фо́рмата и размерите на частите от реката, ост-
ровите, кварталите и мостовете нямат никакво значение. Единственото, което има значение,
е измежду четирите обекта K, L, A и V, кой с кой е свързан, и при това с колко моста.
Напълно достатъчно е да се мисли за абстракция на града, в която всеки от K, L, A и V е
просто една точка, като някои двойки точки са свързани с някакви връзки, а други, не. Тези
връзки, естествено, отговарят на мостовете. Може да се мисли за схема, в която:

• четирите точки K, L, A и V са нарисувани в някакво подходящо разположение в равни-
ната, което може да няма нищо общо с това, как са разположени съответните квартали
в реалния град, и

• на всеки от седемте моста отговаря една връзка между съответните точки, чиито пър-
вообрази свързва въпросният мост, и

• всяка връзка между две точки е отбелязана с линия между тях, като геометрията на
тези линии може да няма нищо общо с геометрията на реалните мостове.

Пример за такава схема има на Фигура 1.3. Забелязваме, че взаимното разположение на
точките на Фигура 1.3 няма нищо общо с разположението на съответните квартали в града.
Важното е, че точка K е свързана с точка A посредством две различни връзки-линии, които
отговарят на двата моста между Kneiphof и Altstadt, и така нататък.

Фигура 1.3 : Абстракция на Königsberg.

K

A V

L

За да решим задачата, достатъчно е да разгледаме този обект.

Всяка разходка в града, която минава през седемте моста точно веднъж и завършва в
квартала, в който е започнала, може да се представи като разходка в обекта, нарисуван на
Фигура 1.3, която минава през всяка линия точно веднъж и завършва в тази точка, в която
е започнала. Euler забелязал, че такава разходка има само ако:

• за всяка точка има четен брой линии, които излизат от нея. Защо? – защото при такава
разходка, на всяко “излизане” от точката трябва да съответства точно едно “влизане”
след това, и

• има възможност да идем от всяка точка до всяка друга точка.
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В съвременната терминология казваме, че всеки връх на графа трябва да има четна степен
и графът трябва да е свързан, за да има Ойлеров цикъл (вж. Секция 2.10). Задачата за мос-
товете на Königsberg няма решение, защото има върхове от нечетна степен. Прочее, всички
върхове са от нечетна степен, но е достатъчно да има поне един връх от нечетна степен:, за
да няма решение.

Повече информация за историята на Königsberg и мостовете на Pregel има в [30].

:Както става ясно от Следствие 1, броят на върховете от нечетна степен трябва да е четно число, така
че не може да има точно един връх от нечетна степен.
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Глава 2

Неориентирани графи и неориентирани
мултиграфи
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2.1 Обикновени графи.

2.1.1 Определение

Определенията в тази секция са близки до определенията в [27]. Подчертаваме, че всички
множества, които разглеждаме, са крайни.

Съвременното понятие “граф” e чисто теоретико-множествено. Определение 1 няма нищо
геометрично или топологично в себе си. За да разберем какво е “граф”, достатъчно е да
знаем какво е “множество”, “подмножество”, “наредена двойка” и “мощност на множество”.

Определение 1: Граф, върхове и ребра

Граф е наредена двойка G “ pV,Eq, където V е непразно множество, чиито елементи
се наричат върхове, E е множество, чиито елементи се наричат ребра, като

E Ď tX Ď V : |X| “ 2u

Обикновено върховете се записват с малки латински букви като u, v и т. н. Имената на ребра-
та обикновено се записват като e1, e2 и т. н. Тъй като всяко ребро е двуелементно множество
от върхове, естествено е да определяме ребрата като двуелементни множества, записвайки
например “e1 “ tu, vu”. Такъв запис обаче не се използва, а се използва “e1 “ pu, vq”. Това
противоречи на нашата конвенция, че фигурните скоби се използват при липса на наред-
ба, а кръглите, при наличие на наредба. Но ние сме длъжни да се съобразим със световно
приетата конвенция за запис на ребра на граф. А тя е, ребрата да се записват с кръгли
скоби, независимо от това, дали върховете са наредени или не: ;. И така, записвайки дадено
ребро като pu, vq, ние нямаме предвид наредена двойка, а имаме предвид множеството с
елементи u и v.

Конвенция 1

Когато става дума за графи, буквата n означава броя на върховете, освен ако не е
дефинирана иначе, и буквата m означава броя на ребрата, освен ако не е дефинирана
иначе. Типичeн запис е V “ tv1, v2, . . . , vnu и E “ te1, e2, . . . , emu.

Конвенция 2

Друга полезна конвенция е, ако е дадено името на графа, да кажем G, но имената на
множеството от върховете и на множеството от ребрата са неизвестни, да ги означаваме
съответно с “VpGq” и “EpGq”.

Фигура 2.1 показва примерен граф G1 “ ptu, v,w, x,y, zu, te1, e2, e3, e4, e5, e6, e7, e8uq, където
e1 “ pu, vq, e2 “ pu, xq, e3 “ pu,wq, e4 “ px,wq, e5 “ pv,wq, e6 “ px,yq, e7 “ pv,yq, e8 “ pw,yq.
Както се вижда, възможно е графът да има върхове, които не са в нито едно ребро, като
връх z в случая. Такива върхове се наричат изолирани.

:Както ще видим в Глава 3, при ориентираните графи, при които има наредба между върховете, ребрата
също се записват с кръгли скоби.

;Има още една конвенция: ребрата да се записват само чрез имената на върховете, долепени едно до
друго, без никакви скоби, например “e1 “ uv”. Такава конвенция се ползва например в книгата на Diestel
[18]. В тези лекционни записки няма да ползваме тази конвенция.
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Фигура 2.1 : Рисунка на графа G1.

e1

e2 e7

e6

e3 e5

e4 e8

u

w

x

z

v

y

Възможно е ребрата да не бъдат именувани явно и тогава пишем G1 “ ptu, v,w, x,y, zu, tpu, vq,
pu, xq, pu,wq, px,wq, pv,wq, px,yq, pv,yq, pw,yquq.

Наблюдение 1

В Определение 1 настояваме, че V ­“ H, а допускаме възможността E “ H.
Няма съществена пречка множеството от върховете да е празно, но е по-удобно да
допуснем, че V винаги е непразно. От друга страна, в много ситуации е важно да може
да няма нито едно ребро, така че трябва да разрешим E да е празно.

Определение 2: Празен и тривиален граф.

Нека G “ pV,Eq е граф. Ако E “ H, казваме, че G е празен граф. Ако E ­“ H, G е
непразен. Ако |V| “ 1, казваме, че G е тривиален граф.

Забележете, че |V| “ 1 влече |E| “ 0, така че тривиален граф е частен случай на празен граф.

Много важно е да се разбере, че рисунка на даден граф е принципно различно нещо
от графа. Аналогично, снимка на човек е нещо различно от човека, който е сниман. Графът
е теоретико-множествен обект: наредена двойка от някакви множества. Дадена рисунка на
този граф е само средство той да бъда визуализиран така, че да бъде удобно на читателя да си
го представи. Един граф може да бъде нарисуван по безброй начини, но всички тези рисунки
си остават рисунки на един и същи граф. Дори да формализираме понятието “рисунка” и да
говорим за геометричен обект, състоящ се от точки и криви в равнината, този геометричен
обект би бил принципно различно нещо от съответния граф – геометричният обект е по-
сложен, неговите точки имат някакви координати и неговите криви имат някакви уравнения,
докато при графа за координати на точките и за уравнения на кривите не става дума. Можем
да кажем, че на един граф съответстват безброй много геометрични обекти в равнината,
които са изоморфни: помежду си, а графът се явява тяхна абстракция. Например, друга

:Вижте Секция 2.8 за определение на “изоморфизъм на графи”. Можем да дефинираме и изоморфизъм
между геометрични графи.
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възможна рисунка на графа от Фигура 2.1 е показана на Фигура 2.2:. Имената на ребрата
са изпуснати на фигурата.

Фигура 2.2 : Друга рисунка на графа G1 от Фигура 2.1.

u x w z v y

2.1.2 Съседство и инцидентност.

Определение 3

Нека G “ pV,Eq е граф. За всеки два върха u и v, такива че pu, vq P E казваме, че u
и v са съседи. За всеки две ребра e1 и e2, такива че e1 X e2 ­“ H казваме, че e1 и e2 са
инцидентни. За всеки връх u и всяко ребро e, такова че u P e казваме, че реброто e e
инцидентно с връх u. Ако e P E и e “ pu, vq, то казваме, че u и v са краищата на e.

Като пример да разгледаме графа G1 на Фигура 2.1. Върховете u и v са съседи, u и y
не са съседи, z не е съсед на никой връх, u и e1 са инцидентни, u и e7 не са инцидентни,
краищата на e7 са v и y, и така нататък.

Съседството определя релация RG Ď VˆV, такава че @u P V : uRGvØ u и v са съседи.Ще
наричаме тази релация, релацията на съседство върху G; . Очевидно, RG е антирефлексивна§
(защото никой връх не е съсед на себе си), симетрична и не е транзитивна. Аналогично,
инцидентността между ребрата определя релация със същите свойства.

2.1.3 Степени на върхове.

Определение 4: Множества Npuq, Nrus и Ipuq.

Нека G “ pV,Eq е граф. За всеки връх u P V, Npuq def
“ tv P V |u и v са съседиu, Nrus def

“

Npuq Y tuu и Ipuq
def
“ te P E |u P eu.

Тези определения естествено се пренасят и за множества от върхове: ако U Ď V, то
NpUq “ p

Ť

xPUNpxqq zU, NrUs “
Ť

xPUNrxs и IpUq “
Ť

xPU Ipxq.

:На Фигура 2.2 някои криви, които представляват ребра, се пресичат. Това не означава, че в точките
на пресичане има върхове. Както ще видим в Секция 2.13, не винаги е възможно да нарисуваме граф в
равнината по такъв начин, че кривите, които отговарят на ребрата, да не се пресичат във вътрешни точки.

;В някакъв смисъл, RG и G са едно и също нещо, защото ребрата на графа задават еднозначно въпросната
релация и обратното. Незначителен технически детайл е това, че релацията се състои от наредени двойки, а
ребрата са ненаредени; освен това, ако има изолирани върхове, те не участват в нито една наредена двойка
на релацията и, от нейна гледна точка, тях просто ги няма, докато в графа ги има.

§Както ще видим в Секция 2.2, ако позволим в графа да има така наречените примки, които са ребра,
всяко от които има за два края един и същи връх, релацията не е непременно антирефлексивна, защото
тогава може връх да е съсед на себе си.
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Като пример да разгледаме графа G1 на Фигура 2.1. Npuq “ tv,w, xu, Npwq “ tu, v, x,yu,
Npzq “ H, Nrws “ tu, v,w, x,yu, Nrzs “ tzu, Nptw,yuq “ tu, v, xu, Nrtw,yus “ tu, v,w, x,yu,
Ipyq “ te6, e7, e8u, Ipzq “ H, и така нататък.

Определение 5: Степен на връх.

Нека G “ pV,Eq е граф. За всеки връх u P V, степента на u е |Ipuq|.

Нотация 1: dpuq, ∆pGq и δpGq.

Нека G “ pV,Eq е граф. С dpuq бележим степента на u, за всеки връх u P V. Освен
това, ∆pGq “ max tdpuq |u P Vu и δpGq “ min tdpuq |u P Vu.

Като пример да разгледаме графа G1 на Фигура 2.1. По отношение на него, dpuq “ dpvq “

dpxq “ dpyq “ 3, dpwq “ 4 и dpzq “ 0. Освен това, ∆pG1q “ 4 и δpG1q “ 0.

Допълнение 1: Друго възможно дефиниране на “степен на връх”

На пръв поглед, възможно е да дефинираме “степен на връх” и така: степента на u е
броят на съседите на u, тоест dpuq “ |Npuq|. Ако става дума за обикновени графи,
каквито разглеждаме в момента, това определение е еквивалентно на Определение 5.
Но, както ще видим в Глава 2.2, Определение 5 се пренася директно върху неориен-
тирани мултиграфи, стига те да нямат примки. Да разгледаме пак мултиграфа на
Фигура 1.3, който се появи в историческата справка. Ако приложим Определение 5
директно, ще получим, че връх K има степен 5, защото има 5 ребра, инцидентни с
него. От друга страна, ако дефинираме степента на връх като броят на съседите му, би
трябвало K да има степен 3. От изложението в Секция 2.2 става ясно, че има смисъл
степента на K да е 5, а не 3.

Очевидно е, че изолираните върхове са точно върховете от степен нула. За върховете
от степен едно също има термин – те се наричат висящи върхове, на английски pendant
vertices . Графът на Фигура 2.1 няма висящи върхове. Пример за граф, който има висящ
връх, е показан на Фигура 2.14 – там w е висящ връх.

Наблюдение 2: Максимална степен на връх.

За всеки граф G, ∆pGq ď n ´ 1, защото връх може да е съсед най-много на всички
останали върхове.

Лема 1

За всеки граф G “ pV,Eq е изпълнено:
ÿ

uPV

dpuq “ 2m

Доказателство: Сумата в лявата страна на равенството брои всяко ребро точно два пъти.
2
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Следствие 1

За всеки граф G “ pV,Eq, броят на върховете от нечетна степен е четно число.

Доказателство: Припомняме си, че
ř

uPV dpuq “ 2m. Очевидно V се разбива: на Ve, вър-
ховете от четна степен, и Vo, върховете от нечетна степен. Тогава

ř

uPV dpuq “
ř

uPVe
dpuq `

ř

uPVo
dpuq. Очевидно

ř

uPVe
dpuq `

ř

uPVo
dpuq “ 2m. Тъй като

ř

uPVe
dpuq винаги е четно

число, то
ř

uPVo
dpuq също така винаги е четно число, понеже

ř

uPVe
dpuq и

ř

uPVo
dpuq се

сумират до четно число, а именно 2m.
Щом

ř

uPVo
dpuq е четно число, задължително е вярно, че |Vo| е четно число. 2

Определение 6: Редица от степените.

Нека G “ pV,Eq е граф. Редицата от степените на G е редицата от числата-степени
на върхове в G, подредени в ненамаляващ ред.

Например, редицата от степените на графа G1 от Фигура 2.1 е 0, 3, 3, 3, 3, 4.

Следната лема е известна като “the hand-shaking lemma”. Неформално, тя казва, че в произ-
волна група хора, които са се здрависали по произволен начин помежду си, има поне двама
души, които са се здрависали един и същи брой пъти.

Лема 2: The hand-shaking lemma.

Нека G “ pV,Eq е граф с поне два върха. Съществуват поне два различни върха u, v P V,
такива че dpuq “ dpvq.

Доказателство: Твърдението е еквивалентно на твърдението, че в редицата от степените
има поне едно повтаряне на елементи. От Наблюдение 2 заключаваме, че за всеки връх u,
dpuq P t0, 1, . . . ,n´ 1u. Това са n различни стойности. Със следните съображения огранича-
ваме възможните стойности до само n´ 1.

Да допуснем, че графът има поне един изолиран връх. Това означава, че редицата от
степените започва с 0. Лесно се вижда, че тогава няма връх от степен n´1: ако има връх от
степен n´ 1, той трябва да е съсед на всички останали върхове, включително и на върха от
степен 0, което противоречи на факта, че връх от степен 0 няма съседи. Показахме, че няма
връх от степен n´ 1. Тогава, за всеки връх u, dpuq P t0, 1, . . . ,n´ 2u. Но това са само n´ 1
различни стойности. А върховете са n. Съгласно принципа на Дирихле, трябва да има поне
два върха u и v, такива че dpuq “ dpvq.

Сега да допуснем, че няма изолирани върхове. Тогава за всеки връх u, dpuq P t1, 2, . . . ,
n´ 1u. Но това са само n´ 1 различни стойности. А върховете са n. Съгласно принципа на
Дирихле, трябва да има поне два върха u и v, такива че dpuq “ dpvq. 2

:Незначителна подробност е, че това “разбиване” може да не е разбиване съгласно формалната дефини-
ция, защото всяко от Ve и Vo може да е празно. Това е без значение за валидността на доказателството.
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Допълнение 2: Задачата със здрависванията

Задача 1

Семейство Стефанови е поканило четири семейства на гости. След пристигането
си, някои от гостите се здрависват с други гости, някои, не. Никой не се здрависва
със своя съпруг или съпруга, не се здрависва повече от веднъж с един и същи
човек, и естествено не се здрависва със себе си. Когато всички гости са дошли
и са настанени, г-н Стефанов пита всеки от останалите хора (това включва и
неговата съпруга), с колко души се е здрависала или здрависал. Той получава
само различни отговори. В колко здрависвания е участвал самият г-н Стефанов?

Тази задача е от книгата на Michalewicz и Fogel [43, стр. 26], като е предложена на
авторите от Peter Ross от университета на Edinburgh.

Решение: Става дума за пет семейства общо, което означава 10 човека. Ще модели-
раме задачата с граф. Върховете са десетте човека, а ребро между два върха се поставя
тогава и само тогава, когато съответните хора са се здрависали. Казано е, че г-н Стефа-
нов е получил само различни отговори. Не е казано експлицитно, но се подразбира, че
г-н Стефанов е питал (и получил отговори от) 9 човека. Очевидно всеки човек може да
участва в най-малко 0 и най-много 8 ръкостискания, понеже не може да се здрависва
със себе си и със съпругата си или съпруга си. Това са 9 различни стойности. Тъй като
г-н Стефанов е чул 9 различни числа от 9 човека, то той е чул именно числата 0, 1, . . . ,
8. Забележете, че редицата p0, 1, . . . , 8q не е редицата от степените на графа, защото
това са само степените на върховете на другите хора—не знаем самият г-н Стефанов в
колко здрависвания е участвал, затова и степента на неговия връх засега не участва.
Да означим върха, съответстващ на г-н Стефанов, с X, а върховете, съответстващи на
останалите хора, със съответните числа, които те са казали на г-н Стефанов. Да си
представим само върховете на графа без ребрата (вж. Фигура 2.3).

Фигура 2.3 : Графът на хората: само върховете.

0

1

3

4

2 7

6

X

5

8

Да разсъждаваме така. Връх 8 не може да е съсед на връх 0, следователно връх 8
трябва да е съсед на върхове 1, . . . , 7, както и на връх X; ако не е съсед на тези
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върхове, няма как да е от степен осем. Следователно, ребрата, показани на Фигура 2.4,
са в графа. Нещо повече—заключаваме, че хората, съответстващи на върхове 8 и 0,
са съпружеска двойка, понеже няма кой друг да е съпруг или съпруга на 8, освен 0
(помним, че съпружеските двойки не се ръкуват помежду си, а 8 се е ръкувал или
ръкувала с всички останали).

Фигура 2.4 : Тези ребра със сигурност са в графа.
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X

5
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Върхове 0 и 8 отговарят на семейна двойка.

Аналогично, връх 7 не може да е съсед на връх 0, защото връх 0 няма съседи, и не
може да е съсед на връх 1, защото единственият съсед на връх е връх 8. Следователно,
връх 7 трябва да е съсед—освен на 8—на върхове 2, . . . , 6, както и на връх X; ако не е
съсед на тези върхове, няма как да е от степен седем. Следователно, ребрата, показани
на Фигура 2.5, също са в графа. Нещо повече—хората, отговарящи на върхове 1 и 7,
също са семейна двойка, защото няма кой друг да е съпруг или съпруга на 7, освен 1
(вече установихме, че 0 е в съпружеска двойка с 8).
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Фигура 2.5 : Тези ребра също със сигурност са в графа.

0
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X

5

8
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7

Върхове 1 и 7 отговарят на друга семейна двойка.

Ако продължим да разсъждаваме така, ще заключим, че 6 е съсед—освен на 8 и 7—на
върхове 3, . . . , 6, както и на връх X; и че 6 и 2 са съпружеска двойка. Също така,
5 е съсед—освен на 8, 7 и 6—на върхове 4, . . . , 6, както и на връх X; и че 5 и 3 са
съпружеска двойка. От разсъжденията дотук заключаваме, че графът съдържа поне
ребрата, показани на Фигура 2.6.

Фигура 2.6 : Графът на хората. Оказва се, че това са всички ребра.

0

1

3

4

2

X

5

8

6

7

Разсъждавайки за върхове 8, 7, 6 и 5, заключаваме, че изобразените ребра са в
графа. Четирите семейните двойки, които сме установили, са оградени.

Но графът не може да съдържа други ребра—за всеки връх u освен X вече установихме
точно кои са ребрата, инцидентни с u, така че е невъзможно да има други ребра, защото
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освен X те трябва да имат още един край. И така, графът на ръкостисканията е точно
графът, показан на Фигура 2.6. Петата семейна двойка може да бъде единствено X и
връх 4.

И така, г-н Стефанов се е здрависал точно 4 пъти, и неговата съпруга е четворката. 2

2.1.4 Изтриване на върхове и ребра. Добавяне на ребра.

Нека G “ pV,Eq е граф с поне два върха. Нека u е връх в G. Да изтрием u от G означава
да преобразуваме G в G 1, където:

G 1 “ pVztuu,EzIpuqq

Накратко пишем G 1 “ G´u:. Като пример: ако изтрием връх w от графа G1 на Фигура 2.1,
ще получим графа на Фигура 2.7.

Фигура 2.7 : Графът G1 ´w, където G1 е графът от Фигура 2.1.

e1
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z
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y

Изтриването на върхове в някакъв смисъл е асоциативно: ако ще трием няколко върха, в
какъвто и ред да го сторим, резултатът ще е един и същи. И така, ако изтриваме върховете
u1, u2, . . . , uk, записваме:

G´ u1 ´ u2 ´ ¨ ¨ ¨ ´ uk

Ако tu1,u2, . . . ,uku “ U, може да запишем накратко

G´U

Нека G “ pV,Eq е граф. Нека e “ px,yq е ребро в него. Да изтрием e от G означава да
преобразуваме G в

G 1 “ pV,Ezteuq

Накратко пишем G 1 “ G ´ e. Забележете, че при изтриване на ребро, неговите краища си
остават в графа. Като пример: ако изтрием реброто e8 от графа G1 на Фигура 2.1, ще получим
графа на Фигура 2.8.

:Подчертаваме, че ако u “изчезне” от графа, то задължително ребрата, индидентни с u, също трябва да
“изчезнат”. Недопустимо е да остане ребро, единият край на който не е “стъпил” върху връх и “виси”.
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Фигура 2.8 : Графът G1 ´ e8, където G1 е графът от Фигура 2.1.
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Изтриването на ребра също е асоциативно в някакъв смисъл: ако ще трием няколко ребра,
в какъвто и ред да го сторим, резултатът ще е един и същи. И така, ако изтриваме ребрата
e1, e2, . . . , ek, записваме:

G´ e1 ´ e2 ´ ¨ ¨ ¨ ´ ek

Ако te1, e2, . . . , eku “ F, може да запишем накратко

G´ F

Нека G “ pV,Eq е граф. Нека x,y P V са такива, че в графа няма ребро с краища x и y. Да
кажем, че e “ px,yq е “виртуално ребро”, което не е елемент на E, но може да стане елемент
на E. Да добавим e към G означава да преобразуваме G в

G 1 “ pV,EY teuq

Накратко пишем G 1 “ G` e. Като пример да разгледаме графа G1 на Фигура 2.1. Той няма
ребро с краища v и z. Нека e9 е “виртуално” ребро с краища v и z. Графът G1` e9 е показан
на Фигура 2.9.

Фигура 2.9 : Графът G1 ` e9, където G1 е графът от Фигура 2.1.
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Забележете, че е не е абсолютно необходимо да настояваме да няма ребро с краища x и
y преди да добавим реброто px,yq: може да възприемем алтернативна дефиниция, в която
нищо не се променя, ако (опитаме да) добавим ребро с краища върхове, които са вече съседи.
Добавянето на ребра е асоциативно в смисъл, че в какъвто и ред да го сторим, резултатът
ще е един и същи.

2.1.5 Обединение и сечение на графи

Нека G1 “ pV1,E1q и G2 “ pV2,E2q са графи. Обединението на G1 и G2 е графът G1 Y G2 “

pV1YV2,E1YE2q. Сечението на G1 и G2 е графът G1XG2 “ pV1XV2,E1XE2q. Има смисъл да
дефинираме сечението само ако V1 X V2 ­“ H. От друга страна, обединението е дефинирано
дори когато V1 X V2 “ H.

Обединение и сечение на графи се обобщават по очевидния начин за повече от два графа,
като нотацията е съответно G “ G1 Y ¨ ¨ ¨ YGk и G “ G1 X ¨ ¨ ¨ XGk.

2.1.6 Регулярни графи. Пълни и празни графи.

Оттук до края на Секция 2.1 правим определенията спрямо някакъв граф G “ pV,Eq.

G е k-регулярен, ако @u P V : dpuq “ k. G е регулярен, ако е k-регулярен за някое k.

Не особено формално казано, G е пълен граф, ако има всички възможни ребра при даденото
множество върхове. Формално, G е пълен, ако EpGq “ tpu, vq |u P V, v P V,u ­“ vu.

Пълен граф на n върха се бележи с Kn. Ако игнорираме идентичностите на върховете,
има само един пълен граф на n върха и има смисъл да говорим за пълния граф на n върха.
На практика обикновено се говори именно за “пълния граф на n върха”, а не за “пълен
граф на n върха” по точно тази причина – игнорирали сме идентичностите на върховете.
Очевидно Kn е pn´ 1q-регулярен. Подробно разискване на игнорирането на идентичностите
на върховете има в Подсекция 2.8.3.

Наблюдение 3

Kn има точно pn2q ребра.

Да си припомним Определение 2 на стр. 7. Всеки празен граф очевидно е 0-регулярен и всеки
тривиален граф също е 0-регулярен.

2.1.7 Подграфи. Индуцирани подграфи. Покриващи подграфи.

Определение 7: Подграф

Нека G “ pV,Eq е граф. Подграф на G е всеки граф G 1 “ pV 1,E 1q, такъв че V 1 Ď V и
E 1 Ď E.

Подчертаваме, че за да бъде G 1 подграф на G, не е достатъчно да бъде изпълнено V 1 Ď V
и E 1 Ď E. Всяко ребро в E 1 трябва да има за краища върхове, които са във V 1. Това прави
G 1 граф.

Като пример, да разгледаме графа G1 на Фигура 2.1. Нека H 1 “ ptu, v,w,y, zu, tpe1, e5quq.
Тогава H 1 е подграф на G1—вижте Фигура 2.10.
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Фигура 2.10 : H 1 “ ptu, v,w,y, zu, te1, e5uq (в синьо) е подграф на G1 от Фиг. 2.1.
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Нека сега H2 “ ptu, v,w,y, zu, te6uq. Забелязваме, че H2 не е подграф на G1 от Фигура 2.1,
понеже единият край на реброто e6, а именно връх x, не е в множеството tu, v,w,y, zu;
с други думи, H2 изобщо не е граф. Да подчертаем отново: в граф не може да има
“хвърчащи” ребра, които не са “стъпили” с двата си края върху върхове от този
граф. Фигура 2.11 илюстрира не-графа H2.

Фигура 2.11 : H2 “ ptu, v,w,y, zu, te6uq (в зелено) не е подграф на G1 от
Фиг. 2.1. H2 щеше да е подграф, ако и x беше негов връх.
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Определение 8: Индуциран от подмножество върхове подграф

Нека G “ pV,Eq е граф, U Ď V и U ­“ H. Подграфът на G, индуциран от U, е графът
G 1 “ pU,E 1q, където E 1 “ tpu, vq P E |u P U^ v P Uu.

С други думи, при дадено подмножество от върхове U, индуцираният подграф е графът,
чието множество върхове е U и чието множество ребра са точно тези ребра на G, на които
и двата края са в U. “Индуциран” означава “доведен”: и, наистина, индуцираният подграф

:На латински “duco” означава “водя”.
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е “доведен” от избора на U, в смисъл че ребрата на индуцирания подграф са еднозначно
определени от върховете на U.

Ето пример за индуциран подграф. Да разгледаме пак графа G1 от Фигура 2.1. Нека изберем
едно подмножество от върхове, да кажем tu,w,yu. Подграфът на G1, индуциран от tu,w,yu,
е ptu,w,yu, te3, e8uq. Фигура 2.12 илюстрира този индуциран подграф.

Фигура 2.12 : Графът G1 от Фигура 2.1 и неговият подграф, индуци-
ран от tu,w,yu, оцветен в оранжево.
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Можем да дефинираме и подграф, индуциран от подмножество на ребрата.
Определение 9: Индуциран от подмножество ребра подграф

Нека G “ pV,Eq е граф и E 1 Ď E. Подграфът на G, индуциран от E 1, е графът G 1 “
pU,E 1q, където U “ tu P V | De P E 1 Dx P V : e “ pu, xqu.

Фигура 2.12 може да послужи за илюстрация и на подграф, индуциран от ребра. Множест-
вото от ребра te3, e8u индуцират подграфа в оранжево.

Определение 10: Покриващ подграф

Нека G “ pV,Eq е граф. Покриващ подграф на G е всеки подграф G 1 “ pV 1,E 1q на G,
такъв че V 1 “ V.

На английски терминът е spanning subgraph.

В примерите за подграфи, които видяхме дотук, няма покриващ подграф. Покриващ под-
граф е показан на Фигура 2.13. Подграфът J “ ptu, v,w, x,y, zu, te1, e5, e6uq, нарисуван в
червено, е покриващ за графа от Фигура 2.1.
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Фигура 2.13 : Покриващ подграф (в червено) на графа от Фиг. 2.1.
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Очевидно празният граф pV,Hq е покриващ граф за G “ pV,Eq, както и самият G е покриващ
граф на себе си. Нещо повече, броят на покриващите графи е точно 2m, защото множеството
от върхове е фиксирано, а всяко ребро от E може да присъства, или не, независимо от другите.

Нотация 2: H Ď G

Понякога за краткост пишем “H Ď G” вместо “H е подграф на G”. Строго формално и
педантично, това е злоупотреба с нотацията за подмножество, понеже нито H е мно-
жество от върхове и/или ребра, нито G е множество от върхове и/или ребра. Но ако
няма възможност за двусмислие, тази нотация позволява компактен запис и понякога
се използва.

Забележете, че “H Ď G” е за обикновени подграфи съгласно Определение 7. За индуцирани
подграфи и за покриващи подграфи нямаме аналогични кратки нотации.

2.1.8 Клики и антиклики.

Всяко U Ď V, такова че U ­“ H и |U| “ k, е k-клика в G, ако между всеки два върха на U има
ребро. U е k-антиклика, ако между никои два върха на U няма ребро. Ако кажем само клика
или антиклика, става дума за k-клика или k-антиклика за някое k. Използваме понятието
независимо множество като синоним на антиклика.

Като алгоритмична задача, задачата за кликите е максимизационна: трудно е да се
намерят големи клики. Намирането на малки клики е тривиално—например, всеки връх
е 1-клика сам по себе си—но безинтересно. Аналогично, задачата за антикликите също е
максимизационна—ако графът не е пълен, лесно може да намерим двуелементна антиклика.

Като пример, да разгледаме графа на Фигура 2.1. Множеството върхове tu, v,wu е 3-
клика. Също така, tx,w,yu е 3-клика. Краищата на всяко ребро са 2-клика, например tv,yu.
Всеки връх сам по себе си е тривиална 1-клика, например txu или tzu. В този граф 4-клика
няма. Примери за антиклики са: tz, vu е 2-антиклика, tu,y, zu е 3-антиклика и така нататък.
4-антиклика в графа няма.
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Определение 11: Кликово число

Кликово число на G е мощността на максималнаа клика в G. То се бележи с ωpGq.
Числото на независимост на G е мощността на максимална антикликаб в G. То се
бележи с αpGq.

аНе максимална по включване, а максимална по мощност.
бДа си припомним, че “независимо множество” е синоним за “антиклика”.

Например, ωpG1q “ 3 и αpG1q “ 3, където G1 е графът от Фигура 2.1.

2.1.9 Допълнение на граф.

Определение 12: Допълнение на граф

Допълнението на G, което бележим с G, е графът

G “ pV, tX Ď V : |X| “ 2uzEq

Неформално казано, E 1 се състои от точно тези ребра, които “ги няма” в G. Да разгледаме
графа от Фигура 2.1. Неговият граф-допълнение е изобразен на Фигура 2.14.

Фигура 2.14 : Графът-допълнение на графа G1 от Фигура 2.1.
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Наблюдение 4

G “ G, за всеки граф G.

Наблюдение 5

Нека G “ pV,Eq е граф. За всяко U Ď V е изпълнено следното: U е клика в G тогава и
само тогава, когато U е антиклика в G.
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Следствие 2

ωpGq “ αpGq.

В Теорема 1 имаме предвид включващо или.
Теорема 1: n ě 6 влече 3-клика или 3-антиклика

Нека G “ pV,Eq е граф с поне 6 върха. В G има 3-клика или 3-антиклика.

Доказателство: Без ограничение на общността, ще докажем твърдението за n “ 6. Нека E 1
е множеството от ребрата на G. Конструираме графа rG “ pV, rEq, където rE “ EYE 1. Очевидно
rG е пълен граф на 6 върха, така че |rE| “ p62q “ 15. Да дефинираме, че червените ребра: в
rG са ребрата от E, а сините ребра са ребрата от E 1. Тогава rE се разбива на множеството от
червените ребра и множеството от сините ребра. Нещо повече. Твърдението, което искаме
да докажем, е еквивалентно на твърдението, че в rG има 3-клика, която индуцира подграф
само с червени ребра или има 3-клика, която индуцира подграф само със сини ребра.

Да разгледаме произволен връх u P V. В rG, този връх е инцидентен с точно 5 ребра.
Всяко от тях е или червено, или синьо. Съгласно обобщения принцип на Дирихле, поне 3 от
тях са в един и същи цвят. Без ограничение на общността, нека този цвят е червен. И така,
три ребра, инцидентни с u, да ги наречем pu, xq, pu,yq, pu, zq, са червени.

Сега разглеждаме ребрата px,yq, px, zq и py, zq. Да допуснем, че поне едно от тях е червено.
Без ограничение на общността, нека това е px,yq. Тогава в rG има 3-клика, а именно tu, x,yu,
такава че индуцираният от нея подграф има само червени ребра, а именно pu, xq, pu,yq и
px,yq, които са червени съгласно текущите допускания.

Сега да допуснем, че нито едно от ребрата px,yq, px, zq и py, zq не е червено. Тогава и
трите са сини. Тогава в rG има 3-клика, а именно tx,y, zu, такава че индуцираният от нея
подграф има само сини ребра, а именно px,yq, px, zq и py, zq, които са сини съгласно текущите
допускания. 2

:Това слагане на цветове на ребрата е много различно от оцветяването на ребра съгласно Определение 39
на стр. 76. В Определение 39 се иска всички двойки инцидентни ребра да са в различни цветове. Тук няма
такова изискване.
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2.2 Неориентирани мултиграфи.

2.2.1 Определение. Паралелни ребра. Основен граф. Примки.

Неформално казано, “неориентиран мултиграф” е обобщение на “неориентиран граф”, в което
позволяваме да има много ребра с краища едни и същи два върха. Това усложнява дефини-
цията на понятието – вече не можем да идентифицираме ребро с двата върха, които са негови
краища. Сега всяко ребро трябва да има собствена идентичност, а множеството от краищата
на дадено ребро е просто един от неговите атрибути. Казвайки само “мултиграф”, имаме
предвид неориентиран мултиграф. Ориентирани мултиграфи ще разгледаме в Глава 3.

Определение 13: Мултиграф

Мултиграф е наредена тройка G “ pV,E, fGq, където V е непразно множество, чиито
елементи се наричат върхове, E е множество, чиито елементи се наричат ребра, VXE “
H и

fG : EÑ tX Ď V : |X| “ 2u

е свързващата функция.

Забележете разликата между Определение 13 и Определение 1. Според Определение 1 върхо-
вете са протоелементи (атоми) и множеството от върховете е опорното множество, а ребрата
са двуелементни подмножества на опорното множество. В Определение 13 ребрата се трети-
рат като друг вид протоелементи, така че множеството от ребрата се явява като второ опорно
множество (без общи елементи с първото). Свързващата функция определя връзката между
двете опорни множества.

Също като при обикновените графи, върховете по правило се записват с малки латински
букви като u, v и т. н., имената на ребрата по правило се записват като e1, e2 и т. н., но сега
пишем fGpe1q “ tu, vu, в случай, че u и v са краищата на реброто e1. Записи като e1 “ tu, vu
или e1 “ pu, vq в контекста на мултиграфи не са разрешени, понеже в този контекст не
идентифицираме ребро с неговите краища.

Също като при обикновените графи, буквата n означава броя на върховете, освен ако
не е дефинирана иначе, и буквата m означава броя на ребрата, освен ако не е дефинирана
иначе. Но за разлика от обикновените графи, при които pn2q е точна горна граница за броя
на ребрата, така че неравенството m ď p

n
2q винаги е в сила, сега броят на ребрата може да е

произволно по-голям от броя на върховете. Иначе казано, ако знаем броя на върховете на
мултиграф, не можем да кажем нищо за броя на неговите ребра.

Фигура 2.15 показва пример за мултиграф.
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Фигура 2.15 : Пример за неориентиран мултиграф G.
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Ако трябва да запишем мултиграфа G от Фигура 2.15 съгласно формалната дефиниция, то
G “ ptu, v,w, x,yu, te1, . . . , e12u, fGq, където fGpe1q “ fGpe2q “ fGpe3q “ tu, vu, fGpe4q “ tu,wu,
fGpe5q “ tv,wu, fGpe6q “ tu, xu, fGpe7q “ fGpe10q “ tw, xu, fGpe8q “ fGpe11q “ tw,yu, fGpe9q “

tv,yu, fGpe12q “ tx,yu.

За всяко E 1 Ď E, такова че @e 1, e2 P E : fGpe
1q “ fGpe

2q, казваме, че ребрата в E 1 са пара-
лелни ребра. Всяко максимално по включване множество от паралелни ребра ще наречем
сноп. Очевидно множеството от ребрата се разбива на сноповете. В примера на Фигура 2.15,
сноповете са te1, e2, e3u, te7, e10u, te8, e11u, te4u, te5u, te6u, te9u и te12u. Неформално говорей-
ки, мултиграфът е “истински мултиграф”, ако има поне един сноп с повече от едно ребро;
в противен случай е обикновен граф. Говорейки формално, мултиграфът е обикновен граф
тогава и само тогава, когато свързващата функция е инекция. Основният граф: на даден
мултиграф G е графът, който се получава от заменянето на всеки сноп с едно единствено
ребро (така че след замените няма паралелни ребра). Фигура 2.16 показва основния граф на
мултиграфа от Фигура 2.15. Имената на ребрата не са показани.

:На английски терминът е the underlying graph of a multigraph.
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Фигура 2.16 : Основният граф на мултиграфа от Фигура 2.15.
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Може да разширим разбирането за мултиграф, като позволим наличието на примки. Примка
е ребро, краищата на което съвпадат. Името очевидно идва оттам, че рисуваме такива ребра
като примки. Фигура 2.17 изобразява мултиграфа от Фигура 2.15, към който са добавени
три примки: две примки e13 и e14 към връх u и една примка e15 към връх v.

Фигура 2.17 : Мултиграф с примки H.
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Формалното определение е почти същото като Определение 13 с единствената разлика, че
кодомейнът на свързващата функция включва и едноелементните подмножества на множес-
твото от върховете.

24



ГЛАВА 2. НЕОРИЕНТИРАНИ ГРАФИ И НЕОРИЕНТИРАНИ МУЛТИГРАФИ © Минко Марков, 2025г.

Определение 14: Мултиграф с възможни примки

Мултиграф с възможни примки е наредена тройка G “ pV,E, fGq, където V е непразно
множество, чиито елементи се наричат върхове, E е множество, чиито елементи се
наричат ребра, V X E “ H и

fG : EÑ tX Ď V : |X| “ 2_ |X| “ 1u

е свързващата функция.

В примера с H от Фигура 2.17, fHpe13q “ fHpe14q “ tuu, fHpe15q “ tvu, fHpe1q “ fHpe2q “

fHpe3q “ tu, vu, и така нататък. По аналогия с казаното преди, примките към един и същи
връх са паралелни ребра, така че te13, e14u сноп, а te15u е друг сноп. Основният граф на
мултиграф с възможни примки H е същият като основния граф на мултиграфа G, който се
получава от G чрез изтриване на примките. И така, основният граф на мултиграфа с примки
от Фигура 2.17 е пак графът от Фигура 2.16.

За удобство приемаме, че “мултиграф” означава “мултиграф с възможни примки”, така че,
ако искаме да забраним примки в разглеждания мултиграф, трябва да кажем това експли-
цитно.

2.2.2 Пренасяне на определения от графи върху мултиграфи

Някои от определенията и резултатите за обикновени графи може да бъдат пренесени вър-
ху мултиграфите, други – не. Някои графови задачи, които ще разгледаме нататък, нямат
смисъл върху мултиграфи, тъй като наличието на паралелни ребра не променя нищо; като
пример, задачата за намиране на Хамилтонов цикъл (вж. Секция 2.9) е практически съ-
щата върху мултиграф и неговия основен граф. От друга страна, задачата за намиране на
Ойлеров цикъл (вж. Секция 2.10) се дефинира именно върху мултиграфи, тъй като при
тях добавянето на ново ребро, паралелно на едно или повече вече налични ребра, може да
промени това дали Ойлеров цикъл съществува, или не съществува.

Съседство и инцидентност при мултиграфите се дефинират по същия начин, както при
обикновените графи, с малката разлика, че сега връх може да е съсед на себе си, ако има
примки. Всяка примка е инцидентна с върха, към който е “вързана”.

Степен на връх в мултиграф се дефинира по начин, подобен на Определение 5, с тази
разлика, че, ако има примки към този връх, всяка примка се брои два пъти. Примерно,
степента на връх u от мултиграфа на Фигура 2.17 е 9, понеже петте ребра e1, e2, e3, e4 и e6

се броят по един път, а двете примки e13 и e14 се броят по два пъти.

Определение 15: Степен на връх в мултиграф с възможни примки.

Нека G “ pV,E, fGq е мултиграф с примки. За всеки връх u P V, степента на u е
сумата от броя на ребрата, инцидентни с u, които не са примки, и два пъти броя на
примките на u.

Лема 3 е тривиално обобщение на Лема 1.
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Лема 3

За всеки мултиграф с възможни примки G е изпълнено:
ÿ

uPVpGq

dpuq “ 2m

Доказателство: Сумата в лявата страна на равенството брои всяко ребро—примка или
не—точно два пъти. 2

При мултиграфите не говорим за “пълен мултиграф”, защото потенциално може да има
колкото искаме много ребра с краища дадени два върха. Празен мултиграф се дефинира
точно както се дефинира празен граф. По тези причини, лесно можем да въведем понятието
“антиклика” при мултиграфите, но не можем да въведем “клика”.

Изолирани и висящи върхове в мултиграф се дефинират точно както при графите. Наб-
людение 2 обаче вече не е в сила, понеже максималната степен на връх не е функция на n.
Лема 1 остава в сила и за мултиграфи, тъй като сумата вляво продължава да брои всяко
ребро два пъти, независимо от това дали става дума за примка, или не. Следствие 1 остава
в сила също. Редица от степени на мултиграф се дефинира също както в Определение 6.
Примерно, редицата от степени на мултиграфа от Фигура 2.17 е 4, 4, 6, 7, 9. Лема 2 обаче не
е в сила за мултиграфи: тривиално е да се конструира мултиграф, в който няма върхове с
една и съща степен, какъвто е мултиграфът на Фигура 2.18.

Фигура 2.18 : Мултиграф с редица от степените 1, 2, 3.

Определенията “подграф” и “индуциран подграф” се обобщават за мултиграфи по естестве-
ния начин. Не е прието да се казва “подмултиграф”, така че се въздържаме от използването
на тази дума и говорим за “подграфи” дори в контекста на мултиграфи. Ако говорим за
индуциран подграф на мултиграф, отново имаме предвид индуциран от множество върхове
подграф; в подграфа “влизат” точно тези ребра, краищата на които са във въпросното мно-
жество. Това означава, че всяка примка, чийто връх е в във въпросното множество, трябва
да се намира и в индуцирания подграф. Примерно, Фигура 2.19 показва индуцирания от
tu, v,yu подграф на мултиграфа от Фигура 2.17.
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Фигура 2.19 : Подграфът, индуциран от tu, v,yu.

e2

e9

e1

e3

e13

e14

e15

u v

y

Допълнение на мултиграф няма, тъй a priori не е ясно кой би бил универсумът, спрямо който
да бъде това допълнение; да си припомним, че пълен мултиграф върху дадено множество
върхове не е дефиниран:.

Пътища и цикли при мултиграфи се дефинират по същия начин, както при обикновени графи
(вж. Секция 2.3). Прости пътища и прости цикли също се дефинират по същия начин, като
обаче има една особеност.

Наблюдение 6

В мултиграф може да има прост цикъл с дължина 1 или 2, което е невъзможно при
обикновените графи. Прост цикъл с дължина 0 обаче не може да има – никой отделен
връх не е прост цикъл.

Наистина, всяка примка задава прост цикъл с дължина 1, а всяка двойка паралелни ребра
задава прост цикъл с дължина 2. Примерно, на Фигура 2.17, u, e13,u е прост цикъл с дъл-
жина 1, а u, e1, v, e2,u е прост цикъл с дължина 2. Наблюдение 9 остава в сила и при прости
цикли с дължина 2—всеки от тях има 4 различни описания—но не и при простите цикли с
дължина 1 (примките), всяка от които има само 1 описание.

Има и друга особеност. Конвенция 3 не е в сила при мултиграфите в общия случай. В
общия случай, редицата от имената на върховете на пътя не го идентифицира уникално,
защото може между два върха, съседи в него, да има повече от едно ребро. Поради това е
смислено пътищата в мултиграфите да се описват пълно: и с върховете, и с ребрата.

Свързаност при мултиграфи се дефинира и се използва, но свързаността на мултиграф е
същата като свързаността на основния му граф.

Върхово покриване и доминиращо множество на мултиграф може да се дефинират, но и
те биха били същите като тези на основния граф.

:Пълен мултиграф може да се дефинира, ако се въведе максимален брой ребра с едни и същи краища,
като това може да е един и същи максимум за всеки два върха, или отделно дефиниран максимум за всяка
двойка върхове. Но това е усложнение, което ние не правим.
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Нищо не пречи на мултиграф да бъде двуделен в смисъла на понятието от Секция 2.6,
стига да няма примки.

Изоморфизмът между мултиграфи се третира в Подсекция 2.8.1.
Върхово оцветяване на мултиграф е очевидно същото като върховото оцветяване на ос-

новния му граф. Реброво оцветяване на мултиграф може да се дефинира по очевидния на-
чин и, за даден мултиграф, то не е същото като за основния му граф, като обаче оптимално
реброво оцветяване на основния граф очевидно влече оптимално реброво оцветяване на мул-
тиграфа, и обратно.

По отношение на планарността е от решаващо значение да се разглеждат мултиграфи с
примки. Наистина, мултиграф е планарен тогава и само тогава, когато основният му граф е
планарен, но въвеждането и дефинирането на дуален граф (на планарен) изисква, в общия
случай, да се разглеждат мултиграфи, и то с примки. Ако не разглеждаме мултиграфи,
понятието “дуален граф” би било твърде ограничено.
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2.3 Пътища и цикли
Неформално казано, нека си представим, че е даден граф и някакво същество живее в графа
и по-точно във върховете на графа, но може да ползва ребрата за придвижване. Намирайки
се в кой да е връх u, то може да се придвижи до произволен съсед v на u, използвайки реброто
с краища u и v. Нека това същество тръгнало от някакъв връх и стигнало до друг връх, или
се е върнало в началния връх, при това минавайки през някакви междинни върхове. “Път в
граф” е описание на придвижването на това същество из графа.

Определение 16: Път.

Нека G “ pV,Eq е граф. Път в G наричаме всяка непразна алтернираща редица от
върхове и ребра

p “ pui0 , ek0 ,ui1 , ek1 ,ui2 , . . . ,uit´1 , ekt´1 ,uitq

където t ě 0, uij P V за 0 ď j ď t, ekj P E за 0 ď j ď t ´ 1, и освен това е изпълнено
ekj “ puij ,uij`1q за 0 ď j ď t ´ 1. Върховете ui0 и uit се наричат краищата на пътя.
Останалите върхове са вътрешните върхове на пътя. Още казваме, че p е път между
ui0 и uit .
Дължината на пътя е броят на ребрата в него. Ще бележим дължината на пътя с |p|.
В случая, |p| “ t.
Ако всички елементи на пътя—върхове и ребра—са уникални, казваме, че p е прост
път.

Забележете, че определението допуска път без нито едно ребро (при t “ 0), така че всеки
отделен връх е тривиален път с дължина нула. Път без върхове обаче не може да има
съгласно това определение. Също така забележете, че пътищата без ограничения са безброй
много в общия случай—тоест, ако графът има поне едно ребро—заради възможността да се
“връщаме” по ребра назад, във върхове, в които вече “сме били”. От друга страна, простите
пътища са само краен брой, щом графът е краен.

На английски традиционно се използва термините path за това, което ние сега нарекохме
“път”, и simple path съответно за “прост път”. В англоезичната литература има и друга кон-
венция за именуване: walk е алтернираща редица като дефинираната горе без ограничения,
trail не допуска повтаряне на ребра, но допуска повтаряне на върхове, а само path не допуска
нито повтаряне на ребра, нито на върхове. Тъй като на български не е прието да се прави
разграничение между тези три възможности с три различни термина, ние ще си останем с
“път” и “прост път”.

Следната нотация се среща в [18, стр. 7].
Нотация 3: u-v път.

Нека е даден граф G и u, v P VpGq. “u-v път” е кратък запис за “път с краища u и v”.

Нека пак разгледаме графа G1 от Фигура 2.1. Един възможен път в него е

p1 “ pu, e1, v, e1,u, e3,w, e8,y, e6, x, e4,w, e5, vq

Фигура 2.20 илюстрира p1. Забележете, че p1 не е прост път. Примери за прости пътища са
p2 “ px, e4,w, e8,yq и p3 “ pzq, като p2 е показан на Фигура 2.21.
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Фигура 2.20 : Път p1 в графа G1 от Фигура 2.1.
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Фигура 2.21 : Прост път p2 в графа G1 от Фигура 2.1.
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Конвенция 3

Когато описваме път e допустимо да изпускаме имената на ребрата и кръглите скоби
в краищата. Например, може да запишем p1 “ u, v,u,w,y, x,w, v, p2 “ x,w,y и p3 “ z.
Този запис е недвусмислен, защото между два върха не може да има повече от едно
ребро и е напълно ясно кои са изпуснаните имена на ребра.

Но дори да използваме икономичния запис без имената на ребрата, помним, че път е алтер-
нираща редица от върхове и ребра, а не редица от върхове.

Конвенция 4

Ако p е път и не сме дали имена на множествата от върховете и ребрата му, то с
Vppq ознаваме множеството от неговите върхове и с Eppq означаваме множеството от
неговите ребра.
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Конвенция 5

Простите пътища, в които няма повтаряне на елементи, се ползват по-често от другия
вид (който има повтаряне на елементи). Затова, отсега нататък, като кажем “път”, раз-
бираме “прост път”. Ако имаме предвид път с повтаряне на елементи, трябва изрично
да споменем, че не е непременно прост.

Заслужава си да разсъждаваме над следното. Понятието “път” се използва в теорията на
графите в два смисъла, които имат нещо общо, но все пак са различни. От една страна, съг-
ласно Определение 16, “път” е редица от върхове и ребра с определени свойства. От друга
страна, често понятието “път” означава подграф на G със своите върхове и ребра. Прочее,
Фигура 2.21 показва именно това: подграф на G1. За да осмислим разликата, да разгледаме
следната редица от върхове и ребра в G1: p4 “ py, e8,w, e4, xq. Задаваме си въпроса, дали p4

е същият обект като p2, или не. Ако ги гледаме като редици от върхове и ребра, както опре-
делението изисква, те са различни обекти (взаимно инверсни пермутации). Ако ги гледаме
като подграфи на G1, както често става на практика, те са един и същи обект (подграф).
Поради това възприемаме следната конвенция.

Конвенция 6

Терминът “път в граф” означава, от една страна, редица от върхове и ребра съгласно
Определение 16, но от друга страна означава подграф. Второто значение се ползва
по-често на практика, а от контекста трябва да е ясно кое значение имаме предвид.

Подчертаваме, че има смисъл да гледаме на път p като на подграф само ако p е прост
път; ако има повтаряне на върхове или ребра, то p и подграфът pVppq,Eppqq са принципно
различни неща.

Наблюдение 7

На всеки път-подграф с дължина поне единица съответстват точно два пътя-редици,
всеки от които е инверсната пермутация на другата. Можем да кажем, че всеки път-
подграф, който има поне едно ребро, има две различни описания, които са редици от
върхове и ребра.

Например, на пътя-подграф на G1, отбелязан на Фигура 2.21 в лилаво, съответстват два
различни пътя-редици, а именно p2 и p4, които са негови описания.

И накрая, подпът на даден път p ще наричаме всяка непрекъсната подредица на p, която
отговаря на изискванията за път, тоест е алтернираща редица от върхове и ребра, започваща
и завършваща на връх. Подчертаваме, че става дума за непрекъсната подредица. Например,
ако p “ pu, e1, v, e2,w, e3, x, e4,yq е път, то подпътища са, например, puq, pu, e1, v, e2,wq и
pv, e2,wq, но pu, e2,wq не е подпът и pe1, v, e2q не е подпът.

Понякога се налага да разглеждаме два или повече пътя, които нямат общи върхове с изк-
лючение на това, че може да имат общи краища. Следното определение се среща например
в [18, стр. 7].

Определение 17: Независими пътища.

Нека p1, . . . , pk са пътища в един и същи граф G. Казваме, че p1, . . . , pk са независими,
ако нито един от тях не съдържа вътрешни върхове на някой от другите.
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В частност, ако става дума само за два пътя, те да са независими означава или да нямат
никакви общи върхове, или имат един общ край и нямат други общи върхове, или и двата
им края са общи и нямат други общи върхове.

Определение 18: Цикъл.

Нека G “ pV,Eq е граф и p е път в него, където:

p “ pui0 , ek0 ,ui1 , ek1 ,ui2 , . . . ,uit´1 , ekt´1 ,uitq

Казваме, че p е цикъл, ако ui0 “ uit . Казваме, че p е прост цикъл, ако p е цикъл с поне
едно ребро и освен това, всички елементи освен ui0 “ uit са уникални.

Иначе казано, цикъл е път, на който краищата съвпадат. Определението допуска цикъл без
нито едно ребро (при t “ 0), така че всеки отделен връх е тривиален цикъл с дължина нула.
Обаче не може да има прост цикъл без ребра.

Тъй като “цикъл” е частен случай на път, дефиницията на “дължина” е същата: дължината
на цикъла е броят на ребрата в него. Отново използваме нотацията |p| за дължината.

Нека пак разгледаме графа G1 от Фигура 2.1. Един цикъл в него е

c1 “ pu, e1, v, e1,u, e3,w, e4, x, e2,uq

Фигура 2.22 : Цикъл c1, който не е прост, в графа G1 от Фигура 2.1.
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Цикълът c1 е показан на Фигура 2.22. c1 не е прост цикъл. Прост цикъл е c2 “ pu, e3,w,
e4, x, e2,uq, който е изобразен на Фигура 2.23.
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Фигура 2.23 : Прост цикъл c2 в графа G1 от Фигура 2.1.
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Подобно на пътищата, циклите може да се описват като пропускаме имената на ребрата
и записваме само имената на върховете. В случая, c1 “ u, v,u,w, x,u и c2 “ u,w, x,u.

Наблюдение 8

Минималната дължина на прост цикъл в обикновен граф е 3.

Наистина, всеки отделен връх като u или z в последния пример представлява цикъл (с
дължина 0), но това не е прост цикъл. Едно ребро, например e1 “ pu, vq, е цикъл с дължина
2, ако го разгледаме като u, e1, v, e1,u, но това не е прост цикъл, защото e1 се повтаря. И
така, е точната долна граница за дължината на простите цикли в обикновените графи е 3.
Забележете разликата между обикновените графи и мултиграфите, при които може да има
прости цикли с дължина 1 или 2 (вижте Наблюдение 6).

Конвенция 12 е аналог на Конвенция 7 от неориентираните графи.
Конвенция 7

Простите пътища и простите цикли се ползват по-често от другия вид. Затова, отсега
нататък, като кажем “цикъл”, разбираме “прост цикъл”. Ако имаме предвид цикъл,
който не е прост, трябва изрично да споменем, че не е прост.

Граф, в който няма цикли, се нарича ацикличен. Тъй като тук имаме предвид прости цик-
ли, това определение е смислено; ако имахме предвид цикли, които не са непременно прости,
ациклични графи нямаше да има, защото всеки отделен връх е цикъл съгласно Определе-
ние 18.

Четен цикъл е всеки цикъл с четна дължина. Нечетен цикъл е всеки цикъл с нечетна
дължина. k-цикъл е всеки цикъл с дължина k.

Конвенция 8 и Наблюдение 9 са аналогични съответно на Конвенция 6 и Наблюдение 7.
Конвенция 8

Терминът “цикъл в граф” означава, от една страна, редица от върхове и ребра съгласно
Определение 18, но от друга страна означава подграф. Второто значение се ползва по-
често на практика, а от контекста трябва да е ясно кое значение имаме предвид.
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Подчертаваме, че има смисъл да гледаме на цикъл c като на подграф само ако p е прост
цикъл; ако има повтаряне на върхове или ребра, то c и подграфът pVpcq,Epcqq са принципно
различни неща.

Наблюдение 9

На всеки цикъл-подграф с дължина k съответстват точно 2k на брой цикли-редици,
които се получават една от друга с ротация и/или рефлексия. Можем да кажем, че
всеки цикъл-подграф c има 2|c| различни описания, които са редици от върхове и
ребра.

Например, цикълът c2 от Фигура 2.23 има следните различни описания:

u, e3,w, e4, x, e2,u
x, e2,u, e3,w, e4, x
w, e4, x, e2,u, e3,w
u, e2, x, e4,w, e3,u
x, e4,w, e3,u, e2, x
w, e3,u, e2, x, e4,w

Следното твърдение е прекалено очевидно, за да бъде наречено “лема” или “теорема”, но е
добре да бъде изразено в явен вид, а не да се ползва тихомълком нататък.

Наблюдение 10

Нека p е път и Vppq има разбиване tV1,V2u. Тогава в Eppq има ребро e, такова че единият
край на e е във V1, а другият му край е във V2.
Нека c е цикъл и Vpcq има разбиване tV1,V2u. Тогава в Epcq има две различни ребра e 1
и e2, които може да имат или да нямат общ край, такива че за всяко от тях, единият
край е във V1, а другият е във V2.

Ето пример за път p и цикъл c, като върховете и на пътя, и на цикъла са разбити на два
дяла, които са означени със син и червен цвят:. Както се вижда, в пътя има ребро e с
краища в различни цветове, а в цикъла има две ребра e 1 и e2, краищата на всяко от които
са в различни цветове.

p
e

c

e 1 e2

:Нарочно не казваме “върховете са оцветени в два цвята”, за да не става объркване с върхово оцветяване
на граф (Определение 36). При върховото оцветяване се иска краищата на всяко ребро да са в различни
цветове, докато в Наблюдение 10 няма такова изискване.
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Определение 19: Хорда

Нека G “ pV,Eq е граф и C е цикъл в G. Хорда на C е всяко ребро e “ pu, vq P E, такова
че u, v P VpCq, но e R VpEq.

На прост български, хорда е ребро, чиито краища са в цикъла, но те не са съседи в цикъла.
Ето илюстрация: реброто e е хорда на C.

e

C
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2.4 Свързаност в графи.

2.4.1 Основни определения и свойства.

Определение 20: Свързаност в граф. Свързан граф.

Нека G “ pV,Eq е граф. За всеки два върха u, v P V казваме, че u и v са свързани, ако
съществува u-v път. G е свързан, ако всеки два върха в него са свързани.

Не всеки граф е свързан. Например, графът на Фигура 2.1 на стр. 7 не е свързан, защото
връх z не е свързан с никой друг връх.

Нека QG Ď V ˆ V е следната релация: @u, v P V : uQvØ u и v са свързани. Да наречем тази
релация, релацията на достижимост върху G.

Лема 4

Релацията на достижимост е транзитивна.

Доказателство: Ще покажем, че за всеки три върха u, v, w е изпълнено следното: ако
има u-v път p и има v-w път q, то има u-w път r. Читателят може да се изкуши да каже,
че това е очевидно, ако вземем r “ pY q. Но, ако p и q имат други общи върхове освен v, то
pY q не е път. Налага се да направим конструкция, която задължително изгражда път.

Без ограничение на общността, нека p е най-къс u-v път и q е най-къс v-w път:. Нека
връх b е най-близкият до u връх в p от VppqXVpqq. Тогава b е най-близкият до w връх в q от
VppqXVpqq. Нека p 1 е подпътят на p между u и b включително и q 1 е подпътят на q между b
и w включително. Тогава r “ p 1Y q 1 е прост път между u и w, тъй като Vpp 1q XVpq 1q “ tbu.
2

Лема 5

Нека RG и QG са релациите, дефинирани съответно на стр. 8 и на тази страница. QG
е рефлексивно и транзитивно затваряне на RG. 2

Щом RG е симетрична и QG е рефлексивно и транзитивно затваряне на RG, то QG е
рефлексивна, симетрична и транзитивна. Тогава QG е релация на еквивалентност. Нейните
класове на еквивалентност са множества върхове, във всяко от които всеки два върха са
свързани, но никои два върха от различни класове не са свързани. Като пример да разгле-
даме графа на Фигура 2.1 на стр. 7. Релацията на достижимост върху него има два класа
на еквивалентност: tu, v,w, x,yu и tzu.

Определение 21: Свързани компоненти.

Нека G “ pV,Eq е граф и QG е релацията на достижимост върху G. Подграфите на G,
индуцирани от класовете на еквивалентност наQG, се наричат свързаните компоненти
на G.

Като пример да разгледаме пак графа на Фигура 2.1 на стр. 7. Той има точно две свързани
компоненти, които са очертани на Фигура 2.24.

:Какво е дължина на път в граф е описано в Подсекция 2.4.2
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Фигура 2.24 : Двете свързани компоненти на графа G1 от Фигура 2.1.
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Възможно е следното алтернативно определение на “свързани компоненти”, която използва
Определение 20.

Определение 22: Свързани компоненти, алтернативно определение.

Свързаните компоненти на граф са максималните по включване свързани подграфи.

Наблюдение 11

Определения 21 и 22 са еквивалентни.

Теорема 2: Изтриване на ребро от цикъл на свързан граф

Нека G “ pV,Eq е свързан граф. Нека c е цикъл в G и нека e е ребро от c. Тогава G´ e
е свързан.

Доказателство: Ще докажем, че за всеки x,y P V има x-y път в G ´ e. Тъй като G е
свързан, то в G съществува x-y път p. Ако e не е ребро от p, то пътят p съществува и в G´e.

Да разгледаме възможността e да бъде ребро от p. Тогава p не е път в G´ e и трябва да
посочим друг път между x и y. Нека краищата на e са върховете u и v – очевидно това са
върхове от цикъла c. Без ограничение на общността, нека пътят p в G съдържа върховете u
и v в този ред: p “ x . . . . . .u, v . . . . . .y. С други думи, в посока от x към y, връх u се появява
преди връх v в p. Забележете, че u и v са съседи в p, понеже реброто e “ pu, vq е в p, а p е
прост път – щом p е прост път, то тази поява на u в него е единствена и тази поява на v в
него е единствена. Възможно е x да съвпада с u или y да съвпада с v. Нека a е първият връх
от c, който се появява в p в посока от x към y. Разбира се, a може да съвпада с x или u,
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но без ограничение на общността да разгледаме общия случай, в който x, a и u са различни
върхове. Аналогично, b е последният връх от c, който се появява в p в посока от x към y. b
може да съвпада с v или y, но без ограничение на общността да разгледаме общия случай, в
който v, b и y са различни върхове. Тогава p има вида p “ x . . . . . .a . . . . . .u, v . . . . . .b . . . . . .y.
Нека p 1 е подпътят на p от x включително до a включително. Нека p2 е подпътят на p от b
включително до y включително:

p “ x . . . . . . . . .a
loooooomoooooon

p 1

. . . . . .u, v . . . . . .b . . . . . . . . .y
loooooomoooooon

p2

Но a и b са различни върхове, тъй като p е прост път. Тогава c се получава от обединението
на два пътя, да ги наречем q1 и q2, и двата от които имат крайни върхове a и b:

c “ q1 Y q2

Точно единият от q1 и q2 съдържа реброто e (което означава, че съдържа и u и v). Без
ограничение на общността, нека това е q1. Тогава подпътят на p между a включително и b
включително е q1:

p “
loooooomoooooon

p 1

x . . . . . .
q1

hkkkkkkkkkkkikkkkkkkkkkkj

a . . . . . .u, v . . . . . .b . . . . . . . . .y
loooooomoooooon

p2

С други думи, p “ p 1 Y q1 Y p
2. Но изтриването на e не касае q2. След изтриването на e, q1

вече не е път (в G´ e), но q2 остава път (в G´ e). Нещо повече: p 1 Y q2 Y p
2 е път в G´ e с

краища x и y. 2

Гаранции за свързаност. Ясно е, че пълният граф е свързан за всяко n, а празният не е
свързан при n ě 2. Неформално казано, при фиксирано множество от върхове, наличието на
повече ребра благоприятства свързаността, а на по-малко ребра, несвързаността. Теорема 3,
Теорема 4 и Теорема 5 дават количествени резултати в този смисъл.

Теорема 3 ползва понятието “редица от степените” (Определение 6).
Теорема 3: Редица от степените, гарантираща свързаност

Нека G “ pV,Eq е граф с редица от степените pd1,d2, . . . ,dnq. Нека dk ě k за всички k,
такива че k ď n´ 1´ dn. Тогава G е свързан.

Доказателство: Да допуснем противното. Тогава G има поне две свързани компоненти.
Да кажем, че V “ tv1, v2, . . . , vnu. БОО, нека dpviq “ di, за i P t1, . . . ,nu. Нека H е

свързаната компонента, в която се намира връх vn. Забелязваме, че |VpHq| ě dn` 1, понеже
vn има dn съседи, всеки от които е връх в H. Допускаме, че dk ě k за всички k, такива че
k ď n´ 1´ dn.

Но по допускане G има поне още една свързана компонента освен H. Да наречем тази
друга свързана компонента K. Нека j “ |VpKq|. Но G има общо n върхове и H има поне
dn ` 1 върхове. Тогава j ď n´ pdn ` 1q “ n´ 1´ dn. Но щом dk ě k за всички k, такива че
k ď n´ 1´ dn, в частност е вярно, че dj ě j.

Ключовото наблюдение е, че числото dj е на j-та позиция в редицата от степените, която
е ненамаляваща; щом K има j върхове, неизбежно максималната степен на връх в K е поне
dj. Но от това следва веднага, че K има поне dj ` 1 върхове. От това и факта, че dj ě j,
следва, че K има повече от j върхове.
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От полученото противоречие следва, че допускането, че G не е свързан, е невярно. 2

Теорема 4: Точна долна граница за δpGq в гарантирано свързан граф

Нека G “ pV,Eq е граф. Ако δpGq ě
P

n´1
2

T

, то G е свързан. Ако δpGq ă
P

n´1
2

T

, то G може
да не е свързан.

Доказателство: Да допуснем, че δpGq ě
P

n´1
2

T

и G не е свързан. Тогава G има поне две
свързани компоненти G1 и G2. Нека те имат съответно n1 и n2 върха. Без ограничение на
общността, нека n1 ě n2. Тогава n2 ď

X

n
2

\

; ако допуснем, че n2 ě
X

n
2

\

` 1, то графът трябва
да има поне 2

`X

n
2

\

` 1
˘

“ 2
X

n
2

\

` 2 върха, а това е невъзможно, тъй като 2
X

n
2

\

` 2 ą n. И
така, n2 ď

X

n
2

\

.

Съгласно Наблюдение 2, ∆pG2q ď n2 ´ 1, от което следва, че:

∆pG2q ď

Y

n

2

]

´ 1 (2.1)

От друга страна, δpGq ě
P

n´1
2

T

по допускане и, очевидно, δpG2q ě δpGq, така че:

δpG2q ě

R

n´ 1
2

V

(2.2)

Но:
R

n´ 1
2

V

ą

Y

n

2

]

´ 1 (2.3)

което се доказва тривиално, ако разгледаме случаите n четно и n нечетно. От (2.1), (2.2) и
(2.3) следва веднага, че δpG2q ą ∆pG2q, което е невъзможно. Следователно G е свързан.

Сега да допуснем, че δpGq ă
P

n´1
2

T

. Първо да допуснем, че n е четно. Да речем, n “ 2s. Тогава
δpGq ă

P

2s´1
2

T

, а
P

2s´1
2

T

“ s. Тогава δpGq ď s ´ 1. Очевидно съществува граф с 2s върха, в
който минималната степен на връх е s ´ 1 и който не е свързан – това е граф, състоящ се
от и само от две копия на Ks, които нямат общ връх. Сега да допуснем, че n е нечетно. Да
речем, n “ 2s`1. Тогава δpGq ă

P

2s`1´1
2

T

, а
P

2s`1´1
2

T

“
P

2s
2

T

“ s. Тогава δpGq ď s´1. Очевидно
съществува граф с 2s ` 1 върха, в който минималната степен на връх е s ´ 1 и който не е
свързан – това е граф, състоящ се от и само от едно копие на Ks и едно копие на Ks`1, които
нямат общ връх. 2

Доказателството на Теорема 5 се основава на Лема 6.
Лема 6: Максимален брой ребра при даден брой свързани компоненти.

Нека G “ pV,Eq е граф с k свързани компоненти, където 1 ď k ď n. Тогаваm ď p
n´k`1

2 q.

Доказателство: Нека свързаните компоненти са G1, . . . , Gk, и Gi има ni върха за 1 ď i ď k.
Тъй като компонентите имат поне по един връх, очевидно 1 ď ni ď n´k`1 за всяко i. Освен
това,

řk

i“1 ni “ n. При дадени n1, . . . , nk, броят на ребрата се максимизира, когато всеки Gi
е пълен граф – това е очевидно.

Сега ще докажем, че броят на ребрата в G е максимален, когато една свързана компо-
нента съдържа n´ k` 1 върха, което означава, че тя съдържа pn´k`1

2 q ребра, а останалите
компоненти имат по един връх, което означава, че имат по нула ребра. Това следва лесно от
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факта, че функцията-брой на ребрата е квадратична в броя на върховете, но ще извършим
доказателството подробно. Да си представим алгоритъм, който получава свързаните компо-
ненти G1, . . . , Gk със съответно n1, . . . , nk върха и прави следното: докато не е вярно, че
всички свързани компоненти без една имат по точно един връх, разглежда две компоненти
Gi и Gj със съответно ni и nj върха (където ni ą 1 и nj ą 1) и прехвърля по един връх от
едната от тях в другата съгласно следното правило:

• ако Gi и Gj имат еднакъв брой върхове, прехвърляме връх от коя да е от тях в другата,

• в противен случай прехвърляме от тази с по-малко върхове в другата.

докато една от тях не остане само с един връх. След всяко прехвърляне на връх, компонен-
тата, която получава връх, става пак пълен граф (с добавяне на всички необходими за целта
ребра), а тази, от която се вади връх, остава пълен граф, но на върхове с един по-малко от
преди.

Без ограничение на общността, нека ni ě nj и нека прехвърлим един връх от Gj в Gi.
Да видим как това се отразява на броя на ребрата след добавяне и махане на необходимите
бройки ребра. Преди прехвърлянето на връх, в тези компоненти е имало pni2 q ` p

nj
2 q ребра.

След прехвърлянето и добавянето и махането на ребра, така че Gi и Gj пак да са пълни
графи е вярно, че Gi вече има pni`1

2 q ребра, а Gj, само pnj´i2 q ребра. Тогава общият брой ребра
на G нараства с

¨

˚

˚

˚

˝

ˆ

ni ` 1
2

˙

`

ˆ

ni ´ 1
2

˙

looooooooooooomooooooooooooon

брой ребра в Gi и Gj след прехвърлянето

˛

‹

‹

‹

‚

´

¨

˚

˚

˚

˝

ˆ

ni

2

˙

`

ˆ

nj

2

˙

looooooomooooooon

брой ребра в Gi и Gj преди прехвърлянето

˛

‹

‹

‹

‚

тъй като в останалите свързани компоненти не се мени нищо. Но
ˆ

ni ` 1
2

˙

`

ˆ

nj ´ 1
2

˙

´

ˆ

ni

2

˙

´

ˆ

nj

2

˙

“

1
2
ppni ` 1qni ` pnj ´ 1qpnj ´ 2q ´ nipni ´ 1q ´ njpnj ´ 1qq “

1
2
pn2
i ` ni ` n

2
j ´ 3nj ` 2´ n2

i ` ni ´ n
2
j ` njq “

1
2
p2ni ´ 2nj ` 2q “ ni ´ nj ` 1

Излиза, че дори да започнем да прехвърляме при равен брой върхове в двете компоненти
пак “печелим” едно ребро, а ако прехвърляме от по-малка като брой върхове компонента в
по-голяма, “печалбата” е дори по-голяма.

Лесно се вижда, че всяка итерация на този алгоритъм увеличава с поне единица броя
на ребрата в графа, и крайният брой ребра, независимо от поредицата избори от коя в коя
компонента да прехвърляме, е pn´k`1

2 q. Това е абсолютният максимум за броя на ребрата
при k свързани компоненти. Както стана ясно от доказателството, тази горна граница е
достижима. 2

Теорема 5: Точна долна граница за m в гарантирано свързан граф

Нека G “ pV,Eq е граф. Ако m ě p
n´1

2 q ` 1, то G е свързан. Ако m ď p
n´1

2 q, то G може
да не е свързан.
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Доказателство: От Лема 6 знаем, че при две свързани компоненти максималният брой
ребра е pn´2`1

2 q “ p
n´1

2 q, а при повече от две свързани компоненти е дори по-малък. Следова-
телно, ако ребрата са повече от pn´1

2 q, няма как да има повече от една свързана компонента;
с други думи, графът е свързан.

От друга страна, ако ребрата са точно pn´1
2 q, може да има две свързани компоненти,

едната от които е пълен граф на n´ 1 върха, а другата е изолиран връх. 2

2.4.2 Разстояния в графи. Диаметър, радиус и център на граф.

Определение 23: Разстояние в свързан граф.

Нека G “ pV,Eq е свързан граф. За всеки два не непременно различни върха u и v,
разстоянието между u и v е дължината на най-къс път между u и v. Разстоянието
между u и v се бележи с distpu, vq.

Не е добра идея да се каже “най-късият път”, защото може да има много най-къси пътища.
Но може алтернативно да се каже “минималната дължина на u-v път”.

Определение 24: Метрика.

Нека A е произволно множество и f : AˆAÑ R` Y t0u. Казваме, че f e метрика, ако:

@x,y P A : fpx,yq “ 0Ø x “ y

@x,y P A : fpx,yq “ fpy, xq
@x,y, z P A : fpx,yq ` fpy, zq ě fpx, zq

Наблюдение 12

Функцията dist от Определение 23 е метрика.

За пример да вземем свързания граф, показан на Фигура 2.14. В него distpu,uq “ 0, distpv, zq “
1, distpu, vq “ 2 и така нататък.

u

v

G
G1

Фигура 2.25: Най-късият път
между u и v в G е очертан с черве-
на прекъсната линия. Най-късият
път между u и v в G1 е очертан
със синя прекъсната линия.

Понякога разглеждаме едновременно свързан граф G,
негов свързан подграф G1 и някакви върхове u и v, ко-
ито са върхове както в G, така и в G1. Лесно се вижда,
че разстоянието между u и v в оригиналния граф може
да е различно от разстоянието между u и v в подграфа.
Като пример да разгледаме графа G на Фигура 2.25 и
някакъв негов подграф G1, очертан в синьо. Разстоя-
нието между u и v в G е 2, защото такава е дължината
на най-късия път между u и v в G. Каква е дължината
на най-къс път между u и v в G1? Този път трябва да
се състои изцяло от сини ребра и сини върхове—защото
е в подграфа. Лесно се вижда, че ако използваме са-
мо сини ребра и върхове, най-късият път между u и v
има дължината 6. Ако вече сме въвели и G, и G1, то

използването на нотацията “distpu, vq” е двусмислено; за конкретния пример, distpu, vq може
да е 2, ако имаме предвид целия граф, но може и да е 6, ако имаме предвид подграфа. За
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да различаваме разстоянието между u и v в G от разстоянието между u и v в G1, слагаме
индекс G или G1 така:

distGpu, vq “ 2
distG1pu, vq “ 6

Наблюдение 13: Разстоянието в целия граф не надхвърля разстоянието в подграф

За произволен свързан граф G, за произволен свързан подграф G 1 на G и за произволни
върхове u, v P VpG 1q е изпълнено:

distGpu, vq ď distG 1pu, vq

Определение 25

Нека G “ pV,Eq е свързан граф и u P V е произволен. Ексцентрицитетът на u е

εpuq “ max tdistpu, vq | v P Vu

Радиусът на G е

radpGq “ min tεpuq |u P Vu

Диаметърът на G е

diampGq “ max tεpuq |u P Vu

Център на графа е всеки връх x, такъв че εpxq “ radpGq. Периферен връх на графа е
всеки връх x, такъв че εpxq “ diampGq.

С думи, ексцентрицитетът е максималното разстояние между u и кой да е друг връх на
графа; радиусът на графа минималното, по всички върхове, максимално разстояние в графа;
диаметърът е максималното, по всички върхове, максимално разстояние в графа. Диаметър
и радиус на графи са важни понятия: ако графът моделира комуникационна мрежа, в която
има закъснение единица между съседни върхове, то максималното закъснение, което може
да се получи между два върха на мрежата, е равно на диаметъра на графа. Също така,
върховете-центрове (те може да са повече от един) в графа отговарят на тези върхове на
мрежата, които са най-централно разположени в смисъл, че закъснението между тях и кой да
е друг връх е минимално. Съответно периферните върхове са най-отдалечено разположените
върхове.

4
3

4 5

4 5

5
3

4

5

4

Фигура 2.26: Граф с диаметър
5 и радиус 3.

Като пример, да разгледаме графа на Фигура 2.26. До
всеки връх на графа е написан неговият ексцентрици-
тет. Да се убедим, че ексцентрицитетите на върховете
са написани вярно. Първо забелязваме, че няма двой-
ки върхове на разстояние повече от 5. После, за всеки
от четирите жълти върха, максималното разстояние
до друг връх е 5; а именно, за всеки от трите жълти
върха вдясно, жълтият връх вляво е на разстояние 5,
и съответно левият жълт връх е на разстояние 5 от кой
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да е от жълтите върхове вдясно. След това забелязваме, че за двата бели върха вляво, вър-
ховете на максимално разстояние са жълтите върхове вдясно (на разстояние 4); аналогично,
за трите бели върха вдясно, максимално отдалечен връх (на разстояние 4) е жълтият връх
вляво. И накрая, за левия зелен връх, максимално отдалечен (на разстояние 3) е всеки от
жълтите върхове вдясно; аналогично за десния зелен връх максимално отдалечен (на разс-
тояние 3) е жълтият връх вляво. Тогава графът има диаметър 5 и радиус 3, като в жълто
са оцветени периферните върхове, а в зелено, центровете.

От примера на Фигура 2.26 може да помислим, че винаги радиусът е горе-долу половината
от диаметъра и по-точно, че radpGq “

Q

diampGq
2

U

. Това обаче не винаги е така! Най-общо,
следното отношение е в сила

radpGq ď diampGq ď 2 ¨ radpGq

Клас от графи, за които радиусът е равен на диаметъра, са циклите. Във всеки граф-
цикъл: с дължина k, за всеки връх u:

εpuq “

Z

k

2

^

Примери за това има на Фигура 2.27:

Фигура 2.27 : Графи-цикли и ексцентрицитетите на върховете им.

2 2 2 2 2 2 2 2 2 3 3 3 3 3 3

Да си припомним дефиницията на пълния граф Kn от на стр. 16. Лесно се вижда, че диа-
метърът на Kn е 1 за n ą 1. Радиусът също е 1 при n ą 1. Освен това, всеки връх в Kn е
едновременно център и периферен връх. Всичко това не е изненада—при пълната свързаност
“всеки с всеки” в Kn, понятията диаметър, радиус, център и периферен връх се обезсмислят
и формалното прилагане на определенията води до такива на пръв поглед парадоксални
изводи.

В Подсекция 2.4.2 досега разглеждахме само свързани графи. Можем ли да дефираме смис-
лено разстояния в графи, които не са свързани? Отговорът е, че можем, само че разстоянието
може да не е число. Ако G е не-свързан граф и u и v са върхове от различни свързани ком-
поненти, има смисъл да дефинираме разстоянието между u и v като безкрайност. Формално,
това е нещо, което записваме с “8” и което може да участва в сравнения с числа, като 8 ą x
за всяко реално x. Резултатът от сравнението 8 ă 8 обаче е недефиниран. Сумата от число
и 8 е 8, а 8`8 също е 8.

Определение 26: Разстояние в не непременно свързан граф.

Нека G “ pV,Eq е граф. За всеки два не непременно различни върха u и v, разстояни-
ето между u и v е

• дължината на най-къс път между u и v, ако u и v са свързани,

• 8, в противен случай.

:Не казваме просто “цикъл”, за да не се бърка понятието с цикъл в граф. Тук имаме предвид, че самият
граф е цикъл.
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И при не непременно свързаните графи бележим това разстояние с “distpu, vq”, само че сега
е възможно distpu, vq “ 8.

Припомнете си дефиницията на “метрика” (Определение 24). Разстоянието в не непременно
свързаните графи също е метрика с малката разлика, че сега f : AˆAÑ R` Y t0,8u.

• Разстоянието между връх и себе си очевидно е нула.

• Разстоянието е симетрично, понеже за всеки два върха u и v, или distpu, vq е число и
distpu, vq “ distpv,uq, или distpu, vq “ 8, но тогава и distpv,uq “ 8 и пак distpu, vq “
distpv,uq.

• Неравенството на триъгълника е изпълнено. Нека u, v и w са произволни върхове. Ще
покажем, че distpu, vq ` distpv,wq ě distpu,wq.

˛ Ако distpu, vq и distpv,wq са числа, то очевидно u и v са свързани, както и v и w са
свързани и тогава, както знаем (Наблюдение 12) distpu, vq` distpv,wq ě distpu,wq.

˛ Ако distpu, vq е число, а distpv,wq е 8, то u и v са свързани, а v и w не са свързани,
което влече, че и u и w не са свързани. Ерго, distpu,wq “ 8. Тогава е вярно, че
distpu, vq ` distpv,wq ě distpu,wq, защото и лявата, и дясната страна са 8.

˛ Ако distpu, vq “ distpv,wq “ 8, то пак distpu, vq ` distpv,wq ě distpu,wq, защото
лявата страна е 8`8 “ 8, а u и w

∗ или са свързани, така че distpu,wq е число и distpu, vq ` distpv,wq ě distpu,wq
е изпълнено,

∗ или не са свързани, така че distpu,wq е 8 и distpu, vq ` distpv,wq ě distpu,wq е
изпълнено.

2.4.3 Обиколка на граф

Определение 27: Обиколка на граф

Нека G “ pV,Eq е граф. Обиколката на G е дължината на най-къс цикъл в G. Обикол-
ката на G се означава с “girthpGq”.

На английски терминът е именно girth, откъдето идва и името на функцията. Ако G е ацик-
личен (Определение 47), приемаме, че girthpGq “ 8.

Съгласно Наблюдение 8, girthpGq ě 3, щом става дума за обикновен цикличен граф, като
тази граница е точна.

Да разгледаме граф с обиколка, по-голяма от 3. Твърдим, че следният граф, който се нарича
графът на Petersen, има обиколка 5.
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Наистина, ето 5-цикъл в графа на Petersen.

Нека читателят се убеди сам или сама, че графът на Petersen няма нито 3-цикли, нито 4-
цикли.

2.4.4 Срязващи върхове и мостове. Разцепване на срязващи върхо-
ве. Блокове в графи.

Определение 28: Срязващ връх и срязващо ребро

Нека G “ pV,Eq е граф. Срязващ връх в G е всеки u P V, такъв че G ´ u има повече
свързани компонентни от G. Срязващо ребро, още се нарича мост, е всяко e P E, такова
че G´ e има повече свързани компоненти от G.

Определение 29: Срязващ връх и срязващо ребро, алтернативно определение

Нека G “ pV,Eq е граф. Срязващ връх в G е всеки u P V, такъв че за някои различни
върхове v,w P V е вярно, че всеки път между v и w съдържа u като вътрешен връх.
Срязващо ребро е всяко e P E, такова че за някои различни върхове v,w P V е вярно,
че всеки път между v и w съдържа e.
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Лема 7

Определения 28 и 29 са еквивалентни. 2

Лесно се вижда, че на всеки висящ връх в свързана компонента с повече от два върха
съответства точно един срязващ връх, а именно единственият му съсед. Самият висящ връх
не е срязващ. Ако свързаната компонента има точно два върха, или с други думи, ако е едно
единствено ребро, то в нея срязващ връх няма. На всеки висящ връх съответства точно един
мост, а именно единственото ребро, инцидентно с него; това остава в сила дори свързаната
компонента да се състои само от това ребро. Фигура 2.28 илюстрира Определения 28 и 29. В
графа G1, връх u е срязващ. В графа G2, и e, и e1 са мостове, но е показано само изтриването
на e.

Фигура 2.28 : Срязващ връх и срязващо ребро.

u

G1

G1 ´ u

u е срязващ връх.

e

G2

G2 ´ e

e1

e1

e е срязващо ребро (e1 също).

Допълнение 3: Приложение на срязващи върхове и ребра

Срязващите върхове и мостовете са важни понятия, ако графът моделира някаква
свързаност. Например, ако моделира комуникационна мрежа, или пътна мрежа, или
електрическа мрежа.
Нека графът моделира комуникационна мрежа от компютри и жични връзки между
тях. Нека мрежата е свързана в смисъл, че всеки два компютъра могат да си “гово-
рят”; може би не директно, а през други компютри, но имат връзка един с друг. Тогава
срязващ връх в графа съответства на компютър, чиято повреда би довела до това, че
мрежата би се разпадала на две или повече подмрежи, които не си “говорят”. В раз-
паднатата мрежа има компютри, които не могат да комуникират взаимно. А срязващо
ребро отговаря на жична връзка, чиято повреда би довела до разпадане на мрежата
на точно две подмрежи, които не си “говорят”.
И така, срязващите върхове и мостовете отговарят на някакъв критично важни компо-
ненти на мрежата. Мрежа, чийто съответен граф има срязващи върхове или мостове
е потенциално по-ненадеждна от мрежа, чийто съответен граф няма такива елементи.
От гледна точка на надеждността, очевидно предпочитаме мрежи, чиито съответни
графи нямат срязващи върхове или мостове.
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Определение 30: Разцепване на срязващи върхове

Нека G “ pV,Eq е граф и нека u P V е срязващ връх. Нека свързаните компоненти на G
са C1, . . . , C` и нека u P VpC1q. Нека U “ Npuq. Нека C1´u има k свързани компоненти,
наречени G1, . . . , Gk. Нека Ui “ VpGiq X U, за 1 ď i ď k. Нека z1, . . . , zk са k нови
върхове; те не са от V. Нека, за 1 ď i ď k,

Ei “ tpzi, xq | x P Uiu
Hi “ pVpGiq Y tziu,EpGiq Y Eiq

Очевидно Hi са свързани графи. Да разцепим u означава да преобразуваме G, заме-
няйки C1 със свързаните компоненти H1, . . . , Hk, а свързаните компоненти C2, . . . , C`
останат непокътнати. Графът–резултат означаваме с Ga u.

Неформално казано, разцепването на срязващ връх u се състои в създаването на негови
копия (самият u изчезва), на брой колкото са свързаните компоненти спрямо него, всяко
копие бива свързано с точно една от тези компоненти, с точно тези върхове в нея, с които u
е бил свързан. Подчертаваме, че разцепването на върхове е приложимо само към срязващи
върхове, въпреки че има очевидно обобщение—разцепване на множество от върхове, което
множество е обобщение на “срязващ връх” (Секция 2.12). Фигура 2.29 показва разцепване на
връх – след разцепването на u се появяват три свързани компоненти.

Фигура 2.29 : Разцепване на връх.

u

G1

u е срязващ връх.

G1 a u

След разцепването на u.

Операцията “разцепване на срязващ връх” е асоциативна: можем да разцепваме различни
върхове в каквато искаме последователност и резултатът е един и същи. Ако u1, . . . , ut са
различни срязващи върхове в G, пишем G a u1 a ¨ ¨ ¨ a ut. Резултатът от разцепването на
всички срязващи върхове е предмет на следващата дефиниция.

Определение 31: Блокове в граф

Нека G “ pV,Eq е граф. Блок в G е всеки максимален по включване свързан подграф,
който няма срязващи върхове.

Определение 32: Блокове в граф, алтернативна дефиниция

Нека G “ pV,Eq е граф. Блоковете на G са тези свързани компоненти, които се полу-
чават от разцепването на всички срязващи върхове.

47



ГЛАВА 2. НЕОРИЕНТИРАНИ ГРАФИ И НЕОРИЕНТИРАНИ МУЛТИГРАФИ © Минко Марков, 2025г.

Наблюдение 14

Определения 31 и 32 са еквивалентни.

Фигура 2.30 илюстрира блоковете на два графа G1 и G2. Тя илюстрира и “разцепване на
срязващи върхове”:

Фигура 2.30 : Блокове в графи.

G1

Блоковете на G1 в синьо.

G2

Блоковете на G2 в синьо.

2.4.5 Срез в граф

Да си припомним, че k-разбиване на множество A за някакво k P N` е всяко множество
X “ tS1,S2, . . . ,Sku, такова че

• Si Ď A, 1 ď i ď k.

• Si ­“ H, 1 ď i ď k.

• Si X Sj “ H, 1 ď i ă j ď k.

•
Ťk

i“1 Si “ A.

Определение 33: Срез в граф.

Нека G “ pV,Eq е граф. Срез в G наричаме всяко 2-разбиване X на V. Ако X “ tV1,V2u,
то срез-множеството на X е

E 1 “ tpu, vq P E |u P V1 ^ v P V2u

За всяко ребро e P E 1 казваме, че e прекосява среза X. Теглото на X е |E 1|. Страните
на среза са V1 и V2.

Забележка: ако графът е тегловен (вж. Секция 3.2), то теглото на среза е сумата от теглата
на ребрата, които прекосяват среза.

На английски, “срез” и “срез-множество” са съответно cut и cut-set.
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Понятието “срез” има голяма практическа важност. Примерно, задачата за намиране на мак-
симален поток в граф, която е от огромна важност в оптимизацията, има бързо алгоритмично
решение, което използва срезове в графи. Повече за тази задача има в Секция 4.5. Задачата
за максимален поток в граф се дефинира върху ориентирани графи, но “срез в ориентирани
графи” е тривиално обобщение на току-що въведеното понятие “срез”.

Друго важно приложение на срезовете е в областта на компютърното зрение [48, глава 5,
стр. 79].

Понякога срезът се дефинира не като разбиването на V, а просто като множеството от ребра-
та, които го прекосяват, тоест, като срез-множеството [48]. Често в практиката са интересни
срезове, които се дефинират спрямо два предварително избрани върха: нека предварително
са фиксирани различни върхове s, t P V и тогава всеки срез, такъв че s и t се намират в
различни негови страни, се нарича s{t-срез.

По правило срезовете в графи се онагледяват чрез рисунки, в които едната страна на среза се
рисува вляво, а другата, вдясно. Това много прилича на начина, по който се рисуват двудел-
ните графи (вж. Секция 2.6). Естествено, не всеки граф е двуделен, докато срез може да се
дефинира във всеки граф, така че теорията на срезовете в графи и теорията на двуделните
графи са различни неща. Пример за рисунка на срез в граф е показана на Фигура 2.31.

Фигура 2.31 : Срез в граф.

u

x

w

a

v

b

c

y

z

Ребрата от срез-множеството са в червено. Двете страни на среза
са маркирани с жълта основа.
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2.5 Върхово покриване и доминиращо множество на граф

Допълнение 4: За практическата важност на понятията

Да си представим n на брой експеримента, които се извършват в някаква лаборато-
рия. Резултатите от някои двойки експерименти си противоречат; от други двойки,
не. Иска се да се намери минимално подмножество от експерименти, чието игнориране
води до изчезване на противоречията. Да моделираме задачата с граф. Върховете на
на графа отговарят на експериментите, а ребрата, на противоречията. Иска се да се
намери минимално подмножество от върхове, такива че тяхното изтриване от графа
да не оставя нито едно ребро. Множество от върхове, чието изтриване води до това,
че не остават ребра, се нарича “върхово покриване”. С други думи, търсим минимално
върхово покриване.

Сега да си представим, че са дадени някакви градове и пътища между тях. Иска се
да се построят болници в градовете, но—за да се икономисат пари—не във всеки град.
Изискването е, за всеки град, или в него да има болница, или в съседен град да има
болница, и да бъдат построени колкото е възможно по-малко болници. Ако моделираме
задачата с граф, иска се да се намери минимално подмножество от върхове, такива че
всеки връх на графа да е един от тях, или да има съсед измежду тях. Множество от
върхове, такова че всеки връх е в него или има съсед в него, се нарича “доминиращо
множество”. С други думи, в тази задача търсим минимално доминиращо множество.

Определение 34: Върхово покриване и доминиращо множество.

Нека G “ pV,Eq е граф и U Ď V. Казваме, че U е върхово покриване на G, ако:

@pu, vq P E : u P U_ v P U

Казваме, че U е доминиращо множество на G, ако

@u P Vpu P U_ Dv P Npuqpv P Uq q

Като алгоритмични задачи, и двете са минимизационни. Трудно е да се намерят малки
върхови покривания и малки доминиращи множества. Най-малката мощност на върхово
покриване на G се бележи с τpGq и се нарича число на покриване на G. Най-малката мощност
на доминиращо множество на G се бележи с γpGq и се нарича доминиращо число на G.
Примери за върхово покриване и доминиращо множество са показани на Фигура 2.32 чрез
графа на Petersen P. Лявата част на фигурата показва, че τpPq “ 6. Както се вижда там, P
може да бъде покрит от 6 върха. От друга страна, P не може да бъде покрит от по-малко от
6 върха. Ето защо. Само 5-цикълът, нарисуван като външен, “иска” поне 3 върха, за да бъде
покрит. Независимо от това, 5-цикълът, индуциран от вътрешните пет върха, “иска” също
поне 3 върха
Дясната страна на фигурата показва, че γpPq “ 3. Както се вижда там, P може да бъде
доминиран от 3 върха. От друга страна, P не може да бъде доминиран от по-малко от 3 върха.
Ето защо. P е 3-регулярен граф, а в 3-регулярен граф един връх може да доминира най-много
4 върха общо, включително и себе си. Тогава кои да е два върха могат да доминират най-
много 2 ¨ 4 “ 8 върха общо, включително и себе си. Но Pq има 10 върха, следователно, той
не може да бъде доминиран от 2 върха.
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Фигура 2.32 : Върхово покриване и доминиращо множество в графа на
Petersen.

Върхово покриване с 6 върха. Доминиращо множество с 3 върха.

Определенията на върхово покриване и доминиращо множество привидно си приличат, но
всъщност са много различни. Разликата в мощностите на минимално върхово покриване
и минимално доминиращо множество може да е драстична. Например, всяко минимално
върхово покриване на Kn има точно n ´ 1 върха (налага се да изтрием n ´ 1 върха, за да
не останат ребра), докато всяко минимално доминиращо множество на Kn има точно 1 връх
(избираме кой да е връх и забелязваме, че всички останали са му съседи). От друга страна,
празният граф на n върха има минимално върхово покриване с мощност 0 (става дума за
празното множество; тъй като този граф няма ребра, няма нужда да изтриваме върхове
изобщо, така че да не останат ребра), но минималното доминиращо множество е с мощност
n (всички върхове трябва да са в него, понеже няма ребра и никой връх не можа да доминира
друг връх).

Сравнете Наблюдение 15 с Наблюдение 5. Наблюдение 5 казва, че клика в даден граф
влече антиклика в графа-допълнение, и обратното. А Наблюдение 15 казва, че върху един и
същи граф, върхово покриване и антиклика са комплементарни в смисъл, че допълнението
на върхово покриване до V е антиклика, и обратното.

Наблюдение 15

Нека G “ pV,Eq е произволен граф. За всяко U Ď V е изпълнено следното: U е върхово
покриване тогава и само тогава, когато VzU е антиклика. 2

Следствие 3

αpGq ` τpGq “ n, за всеки граф G.

Наблюдение 16

Нека G “ pV,Eq е граф без изолирани върхове. Тогава всяко върхово покриване е
доминиращо множество. Конверсното не е вярно. 2
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Забележка: конверсното твърдение на импликацията pÑ q е импликацията qÑ p. В случая,
конверсното твърдение би било “всяко доминиращо множество е върхово покриване”.

Следствие 4

Нека G “ pV,Eq е граф без изолирани върхове. Тогава τpGq ě γpGq. 2

Допълнение 5: За графа на Petersen

Графът на Petersen, който използвахме тук за илюстрация, е интересен математически
обект, който е достатъчно малък, за да бъде възприеман визуално с лекота, и е доста-
тъчно сложен, за да има нетривиални свойства. Графът на Petersen често се използва
за илюстрация на различни свойства в теорията на графите. Той е 3-регулярен граф с
10 върха и 15 ребра. Практиката е показала, че много хипотези (недоказани твърдения)
в теорията на графите намират лесно опровержение (стига да не са верни, разбира се),
ако бъдат “опитани” върху графа на Petersen.
Името на графа идва от датския математик Julius Petersen. Въпреки името, този граф
е изследван преди Petersen от английския математик Kempe в контекста на т. нар.
конфигурации на Desargues. Desargues е френски математик от 16-17 век, който доказал
следната теорема.

Теорема 6: Теорема на Desargues

Нека A1B1C1 и A2B2C2 са произволни триъгълници. Нека правите A1B1 и A2B2 се
пресичат в точка OAB, правите A1C1 и A2C2 се пресичат в точка OAC и правите
B1C1 и B2C2 се пресичат в точка OBC. Правите A1A2, B1B2 и C1C2 се пресичат в
една и съща точка X тогава и само тогава, когато OAB, OAC и OBC лежат на една
и съща права.

Фигура 2.33 илюстрира Теорема 6. На фигурата са показани общо 10 прави: трите
зелени прави, върху които лежат върховете на двата триъгълника, шестте кафяви
прави, определени от страните на триъгълниците, и черната права, определена от OAB,
OAC и OBC. Тези 10 прави се пресичат по тройки в 10 точки, които са именувани.

Фигура 2.33 : Илюстрация на теоремата на Desargues.

A1

A2

B1
B2

C1

C2

OAB

X

OBC

OAC

52



ГЛАВА 2. НЕОРИЕНТИРАНИ ГРАФИ И НЕОРИЕНТИРАНИ МУЛТИГРАФИ © Минко Марков, 2025г.

Да наречем такава съвкупност от 10 прави и техните 10 пресечни точки по тройки,
конфигурация на Desargues. Kempe забелязал, че ако в конфигурация на Desargues
съпоставим на всяка права един връх и свържем два върха с ребро тогава и само
тогава, когато съответните им прави не се пресичат в една от десетте пресечни точки,
ще получим това, което днес бихме нарекли граф, изоморфен на графа на Petersenа.
Например, на Фигура 2.33 черната права не се пресича (в една от десетте пресечни
точки) с точно три други прави, а именно с трите зелени прави; а в графа на Petersen,
върхът, който съответства на синята права, е съсед точно на трите върха, съответни
на зелените прави, и така нататък.
За повече подробности около графа на Petersen и връзката с конфигурациите на
Desargues вижте книгата на Holton и Sheehan [34].

аСекция 2.8 обяснява понятието “изоморфизъм”.

Допълнение 6: NP-трудност на τpGq и γpGq

Като алгоритмични задачи, намирането на минимално върхово покриване и на ми-
нимално доминиращо множество са практически нерешими в общия случай. Най-
добрите известни алгоритми за тях, грубо казано, работят с разглеждане на възмож-
ности, чиито брой е експоненциален в броя на върховете, ако не са дадени някакви
ограничения върху графите – оттам идва и “в общия случай”.
Намирането на τpGq и γpGq за произволен граф G са задачи от известния клас на
NP-трудните задачи. Характерното за тези задачи е, че имат огромна практическа
важност, за нито една от тях не е известен практично бърз алгоритъм, но и не е дока-
зано, че такъв алгоритъм не съществува. Освен това, всички тези задачи се свеждат
бързо една до друга в следния смисъл: ако за една от тях има бърз алгоритъм, то за
всяка от тях има бърз алгоритъм, и, обратно, ако за една от тях се докаже, че няма бърз
алгоритъм, от това ще следва, че за никоя от тях няма бърз алгоритъм. Най-важното
предизвикателство пред съвременната теоретична компютърна наука е отговорът на
въпроса дали наистина NP-трудните задачи са практически нерешими. Популярното
име на това предизвикателство е задачата дали P “ NP.
Всичко това е доста неформално казано, но този материал е далече извън обхвата
на настоящите лекционни записки. Добро въведение в теорията на изчислителната
сложност, част от която е NP-трудността, са учебниците “Computers and Intractability”
на Garey и Johnson [26] и “Computational Complexity” на Papadimitriou [47].
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2.6 Двуделни графи

Определение 35

Нека G “ pV,Eq е граф. Ако съществува разбиване на V на две подмножества V1 и V2,
такива че @pu, vq P E : u P V1 ^ v P V2, казваме, че G е двуделен граф. Множествата V1 и
V2 са дяловете на G.

Ако е даден произволен граф G и е казано, че tV1,V2u е бипартиция на VpGq:, има се предвид,
че tV1,V2u е разбиване на VpGq, такова че за всяко ребро на G, единият край е от V1, а
другият, от V2; с други думи, че G е двуделен граф с дялове V1 и V2. На английски терминът
е bipartition. Както ще стане ясно в Секция 4.2, ако G е свързан, бипартицията е само една;
в общия случай има точно 2k´1 бипартиции, където k е броят на свързаните компоненти.

Някои автори като Berge [10] и Golumbic [28] ползват следната нотация за двуделни графи.
Нотация 4

Ако за граф G напишем “G “ pV1,V2,Eq” и е известно или ясно, че V1 и V2 са множества
от върхове, то имаме предвид, че G е двуделен граф с дялове V1 и V2.

Лесно се вижда, че всеки от дяловете в Определение 35 е антиклика (вижте Подсекция 2.1.8).

Фигура 2.34 показва рисунка на двуделен граф. Типично, двуделните графи се рисуват така:
дяловете вляво и вдясно, върховете им разположени вертикално, и ребрата с отсечки между
дяловете.

Фигура 2.34 : Двуделен граф.

u

x

w

a

v

b

Единият дял е tu, v,w, xu, а другият дял е ta,bu.

Двуделните графи имат голямо приложение при:

• моделиране на житейски ситуации, в които има два вида обекти, като обектите от
първия вид са в някаква релация с обектите от втория; в този случай ребрата на графа
моделират някакъв афинитет;

:“Бипартиция” може да звучи грозно, но на български се ползва, примерно в медицината.
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• моделиране на житейски ситуации, в които има само един вид обекти, а ребрата моде-
лират някаква непоносимост.

Определение 35 има малък формален недостатък. Според него, графът, състоящ се от един
единствен връх (и без ребра) не е двуделен, защото по определение разбиването става на неп-
разни множества, така че всеки двуделен граф—ако следваме буквата на Определение 35—
има поне два върха. Това не е особен проблем, защото така или иначе, интересни са големите
графи, но за всеки случай ще додефинираме, че графът с един единствен (изолиран) връх
е двуделен, като единият му дял е празен. Но всеки граф с повече от един връх, който е
двуделен, има непразни дялове.

Пълен двуделен граф се нарича двуделен граф, такъв че всеки връх от единия дял е съсед
на всеки връх от другия дял. Ако дяловете имат мощности p и q, пълният двуделен граф
се бележи с Kp,q. Фигура 2.35 показва рисунка на K4,2. Очевидно, Kp,q е същият обект като
Kq,p, тъй като дяловете не са подредени—точно кой от дяловете е нарисуван вляво и кой,
вдясно, е въпрос на естетическо предпочитание.

Фигура 2.35 : K4,2.

Допълнение 7: Недеформируеми структури и двуделни графи

Добре известно е, че следната задача от строителното инженерство се решава елегантно
с използване на двуделни графи. Подробности по нея, както и доста нейни обобщения,
може да се намерят в [6].
Преди да формулираме задачата ще обясним за какво става дума. Да дефинираме дву-
мерна структура, която—за целите на тази задача—ще наричаме “структура от греди
с размери p ˆ q”. Без формална дефиниция: дадени са pp ´ 1qq ` ppq ´ 1q еднакви
стоманени греди с дължина 1, тънки и дълги, неразтегливи, неподатливи на натиск и
неогъващи се. Гредите са наредени в нещо като правоъгълна мрежа с размери p реда
на q колони и са захванати с шарнирниа връзки в краищата си. Пример с p “ 4 и q “ 5
е показан на Фигура 2.36.
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Фигура 2.36 : Структура от греди 4ˆ 5.

Структурата има 4 реда, 5 колони и общо p4´ 1q5` 4p5´ 1q “ 31 греди.

Тъй като връзките са шарнирни, структурата не е фиксирана, а е податлива на дефор-
мации, ако се приложи външна сила. Например, структурата от Фигура 2.36 може да
се деформира до някоя от структурите, показани на Фигура 2.37.

Фигура 2.37 : Деформации на структурата от Фигура 2.36.

Една възможна деформация. Друга възможна деформация.

Сега да допуснем, че в допълнение на p ¨q еднаквите греди са дадени и други
греди, по-дълги, които може да бъдат поставяни диагонално на “квадратите”
на началната структура (преди деформациите). Всички диагонални греди са
с една и съща дължина

?
2. Въпреки че диагоналните греди се захващат

също с шарнирни връзки, те осигуряват недеформируемост на структурата. Най-прост
пример за недеформируема структура от греди е един квадрат с поставен диагонал,
показан тук. Тъй като триъгълникът е недеформируем дори при шарнирни връзки
във върховете, а квадратът с диагонал в някакъв смисъл се състои от два “залепени”
триъгълника, то показаната тук структура е недеформируема.
Лесно се вижда, че структурите на Фигурa 2.38 са недеформируеми. За други струк-
тури е по-трудно да преценим на око дали са деформируеми или не (вж. Фигура 2.39).
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Фигура 2.38 : Недеформируеми структури.

Ако всички във всички квадрати
има диагонали, структурата е неде-
формируема.

Дори в някои от квадратите да ня-
ма диагонали, пак може структура-
та да е недеформируема.

Фигура 2.39 : Не е очевидно дали тези структури са деформируеми.

Структурата е деформируема. Структурата е недеформируема.

Задача 2

Дадена е структура от греди с диагонали. Да се намери просто необходимо и
достатъчно условие, така че структурата да не е деформируема.

Решение: Да дефинираме, че структурата има p´1 хоризонтала и q´1 вертикала,
където под “хоризонтал” се разбират редовете от клетките, които са между гредите
(а не самите греди); и под “вертикал” се разбират колоните от клетките, които са
между гредите (а не самите греди). Например, на Фигура 2.40 с червено са показани
хоризонталите, а с жълто, вертикалите. Гредите на даден хоризонтал са вертикалните
греди в него и гредите на всеки вертикал са хоризонталните греди в него.
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Фигура 2.40 : Хоризонтали и вертикали на структура.

Структурата от Фиг. 2.36 има 3 хо-
ризонтала, тук оцветени в червено.

Структурата от Фиг. 2.36 има 4 вер-
тикала, тук оцветени в жълто.

Следните съображения са очевидни:

• Гредите във всеки хоризонтал са успоредни. Това остава в сила дори хоризонта-
лът да да прави “чупки” надолу и нагоре, както например всички хоризонтали
на Фигура 2.37.

• Аналогично, гредите във всеки вертикал са успоредни. Това остава в сила дори
когато вертикалът прави “чупки” наляво и надясно, както например най-десният
вертикал на Фигура 2.37 вдясно.

• Поставянето на диагонална греда води до това, че съответният ромб е задължи-
телно квадрат.

• За всяка недеформируема структура:

˛ гредите във всеки хоризонтал са успоредни на гредите във всеки друг хори-
зонтал;

˛ гредите във всеки вертикал са успоредни на гредите във всеки друг вертикал;
˛ гредите на всеки хоризонтал са перпендикулярни на гредите на всеки вер-

тикал.

Да си представим двуделен граф G “ pV,Eq с дялове V1 и V2, такъв че V1 има p´1 върха,
а V2 има q ´ 1 върха. Нещо повече, върховете от V1 съответстват на хоризонталите,
а тези от V2, на вертикалите. За всеки два върха u P V1 и v P V2 има ребро pu, vq
тогава и само тогава, когато в пресечната клетка на u-ия хоризонтал и v-ия вертикал
в структурата има поне една диагонална греда. Примери за такива графи има на
Фигура 2.41. Несвързаният граф на Фигура 2.41 вляво отговаря на деформируемата
структура на Фигура 2.39 вляво. Свързаният граф на Фигура 2.41 вдясно отговаря на
деформируемата структура на Фигура 2.39 вдясно.
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Фигура 2.41 : Двуделни графи, съответстващи на структури от греди.

Несвързан граф съответства на дефор-
мируема структура.

Свързан граф съответства на недефор-
мируема структура.

Решение на задачата, която разглеждаме, се дава от Теорема 7. Тя е взета от книгата
на Baglivo и Graver [6, Theorem 10.5, pp. 81], но доказателството и́ не е тривиално и
тук ще го прескочим.

Теорема 7: Необходимо и достатъчно условие за недеформиреумост

Дадена структура от греди е недеформируема тогава и само тогава, когато съ-
ответният двуделен граф е свързан. 2

аОт френската дума charnière, която означава панта или става.

В заключение отбелязваме, че понятието “двуделен граф” има очевидно обобщение триделен
граф – това е граф, чието множество от върхове има разбиване на три дяла, такова че
краищата на всяко ребро са от различни дялове. На свой ред, това може да се обобщи до
k-делен граф по очевидния начин. В записките ще избягваме “триделен граф” и “k-делен
граф”, понеже те са същите като съответно “3-оцветим граф” и “k-оцветим граф ” (вижте
Наблюдение 19).
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2.7 Оцветявания на графи
Под “оцветяване на графи” може да се разбира едно от следните две неща: оцветяване на
върхове или оцветяване на ребра. Тъй като първото е много по-често срещано, ако кажем
само “оцветяване на графи” ще разбираме “оцветяване на върхове”.

2.7.1 Оцветяване на върхове

Допълнение 8: История на задачата за оцветяването

Тази графова задача има интересна история. Широко разпространената версия—да я
наречем “практичната версия”—свърза произхода на задачата с изработването на ад-
министративни карти през 19 век. Административната карта, както подсказва името,
се фокусира върху административното делене на някаква територия на някакви облас-
ти, игнорирайки релефа и други подробности. За по-ясно възприемане, всяка област
се оцветява в един цвят, а нейните съседи, в различни, достатъчно контрастиращи
цветове.

Забележка 1

Определението на “съседни области” е: “такива, които имат обща граница, която
не е просто точка”. Очевидно, ако допускаме съседни области да са и такива,
които имат само обща точка, то може да има произволно много области, които
са взаимно съседни и това да налага използването на произволно много цветове.
Пример за реални области, имащи само обща точка, са щатитеЮта, НюМексико,
Аризона и Колорадо в САЩ. По нашето определение на “съседство”, нито два от
тях не са съседни.

И така, през 19 век английските картографи, правейки административни карти, ус-
тановили, че 4 цвята са необходими за оцветяване на някои карти и достатъчни за
оцветяването на всяка известна карта.

Забележка 2

Лесно може да се даде пример за карта, която иска 4 цвята: представете си една
област, обградена от “цикъл” от нечетен брой области, като началната област
е съседна на всяка област от “цикъла”, а областите от “цикъла” са съседни по
двойки по протежение на цикъла.

Примерна, хипотетична административна карта на Обединеното Кралство е показан
на Фигура 2.42. Картата илюстрира едно възможно делене на Обединеното Кралство
на райони за гласуване.
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Фигура 2.42 : Хипотетична административна карта на Обединеното
Кралство.

Картата използва 4 цвята: магента, син, зелен и оранжев, като всички двойки
съседни райони са в различни цветове. Територията на Лондон е в бежово,
защото тамошните териториални единици са прекалено малки по площ. Те
са показани уголемени вдясно, оцветени отново в основните 4 цвята. Карта-
та показва възможно териториално разделяне на UK с цел по-справедливо
разпределяне на парламентарните места при гласуване и е взета от сайта на
Heriot-Watt University .

По онова време използването на цветове при печатането било лукс. Колкото повече
цветове се използвали, толкова оскъпяването било по-голямо, което мотивирало из-
ползването на минимален брой цветове. Картографите започнали да се питат, дали
има карта, която да иска повече от 4 цвята, или 4 цвята стигат за всяка карта. След
малко ще обясним каква е връзката между оцветяването на карти и графите.

Другата версия—може да я наречем “академичната версия”—за възникването на за-
дачата за оцветяване на карти е описана в книгата на Rousse Ball [7]. Според нея,
задачата първоначално била спомената в лекция на Möbius през 1840 г., но истинският
интерес към нея започнал през 1850 г. след запитване на един студент към професор
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De Morgan дали е вярно, че 4 цвята винаги стигат; De Morgan не можел да отговори
и се обърнал към прочутия Hamilton, който също не можал да отговори. С времето
задачата достигнала до математици като Cayley и Peirce и започнала да интригува
математическата общност. Чак през 1976 г. било доказано, че 4 цвята наистина са дос-
татъчни. Доказателството станало известно като Теоремата за четирите цвята на
Appel и Haken (вж. [4], [5]), които го редуцирали до систематично разглеждане на 1936
конфигурации. Разглеждането на всички тези случаи било направено с компютър и
това бил първият важен резултат в математиката, в чието доказателство се използва
резултат от работата на компютър.

Теорема 8: Теорема за четирите цвята, формулировка чрез карти

Всяка административна карта може да бъде оцветена с не повече от 4 цвята. 2

Да се върнем на оцветяването на административни карти, с което започнахме. Задачата
да бъде оцветена административна карта по указания начин може да бъде формулира-
на и чрез графи. Можем да съпоставим граф на картата, където върховете отговарят
на районите, а ребро между два върха се слага тогава и само тогава, когато съответните
райони са съседни.

Забележка 3

Полученият граф е планарен граф. Конверсно, на всеки планарен граф съот-
ветства поне една географска карта, чиито райони отговарят на върховете, а
съседствата между районите, на ребрата. Не всеки граф е планарен. Същест-
вуват не-планарни графи, които не може да бъдат оцветени с 4 цвята. Повече
информация за планарните графи има в Секция 2.13.

Да бъде оцветена картата с не повече от 4 цвята е същото като да бъде оцветен—
съгласно Определение 36—съответният планарен граф с не повече от 4 цвята.

Теорема 9: Теорема за четирите цвята, формулировка чрез графи

За всеки планарен граф G, χpGq ď 4. 2

На Фигура 2.43 вдясно е показан графът на съседствата, който се получава от картата
на Фигура 2.42. На Фигура 2.43 вляво е показан междинен етап от получаването на
този граф.
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Фигура 2.43 : Получаването на графа, съответстващ на картата от
Фигура 2.42.

Лондон с неговото териториално
разделение е игнориран.

Това е самият граф.

Тривиално е да се съобрази, че графът на Фигура 2.43 е 4-оцветим: това е очевидно,
щом съответната му карта е оцветена с 4 цвята.

Определение 36: Оцветяване на върхове

Нека G “ pV,Eq е граф. Оцветяване на върховете на G, или просто оцветяване на G,
е функция f : V Ñ C, където C е множество, чиито елементи се наричат цветове. Иска
се функцията да е такава, че @pu, vq P E : fpuq ­“ fpvq.

Има смисъл оцветяването да е сюрекция, за да няма неизползвани цветове.

Като алгоритмична задача, задачата се дефинира за произволни графи, не само за планарни,
и е минимизационна—трудно е графът да бъде оцветен с малко цветове. Оцветяване с n цвята
би било тривиално, но безинтересно. Лесно се вижда, че всяко множество от върхове от един
и същи цвят е антиклика. Така че задачата всъщност е, да се разбие V на минимален брой
антиклики.

Определение 37: Хроматично число.

Минималният брой цветове, с които може да бъде оцветен даден граф G, се нарича
хроматичното число на G. Хроматичното число на G се бележи с χpGq.

Оцветяването на върховете се появява в практически приложения, в които графът модели-
ра несъвместимост между някакви обекти, като несъвместимостта е симетрична. Върховете
отговарят на обектите, а ребро между два върха се поставя тогава и само тогава, когато
съответните обекти са несъвместими. По отношение на реалната ситуация може да ни инте-
ресуват две неща:
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• да намерим максимален брой обекти, които са съвместими по двойки; в термините на
графите, това е задачата за намиране на максимална антиклика.

• да намерим разбиване на множеството от обектите на минимален брой подмножества,
такива, че във всяко от тях обектите да са съвместими по двойки; в термините на гра-
фите, това е задачата за разбиване на множеството от върховете на минимален
брой антиклики.

Втората задача се формулира с цветове: върховете от всяка антиклика са оцветени в един и
същи цвят, който е различен от цветовете на върховете от останалите антиклики.

Ето пример за такава задача, при която графът моделира симетрична несъвместимост.
Дадено е някакво помещение за работа. Да кажем, цех. Дадени са някакви дейности A1, . . . ,
An, които може да се вършат в този цех, като всяка дейност си има свое място, на което може
да се върши, и там има машини, специфични за нея. Да кажем, че всяка дейност се върши за
единица време. Ние искаме да извършим всички дейности за минимално общо време. Всички
дейности биха могли да се вършат едновременно, тъй като има достатъчно място (което би
значело да загубим само единица време за всички дейности), но има едно важно ограничение:
някои двойки дейности са несъвместими и не могат да се вършат едновременно. Например,
шлайфане, което отделя прах, и боядисване, което иска да няма прах във въздуха. Заради
наличието на такива несъвместимости не може да извършим всички дейности наведнъж.
Нека съответният граф, моделиращ несъвместимостта, е G. Ако се интересуваме какъв е
максималният брой дейности, които може да извършим наведнъж, то ние всъщност питаме
какво е числото на независимостта на G, което означаваме с αpGq (вижте Определение 11).
Ако се интересуваме в колко единици време най-малко може да бъдат извършени всички
дейности, то ние всъщност питаме какво е хроматичното число на G, което означаваме с χpGq.
Заслужава да се отбележи, че и намирането на αpGq, и намирането на χpGq, са NP-трудни
задачи за графи без ограничения. Понятието “NP-трудност” е дефинирано неформално в
Допълнение 6.

Фигура 2.44

Пример за оцветяване на граф е показан на Фигура 2.44 вляво. На фигурата
е изобразен графът на Petersen, чиито върхове са оцветени в три цвята:
син, червен и зелен. Това е оптимално оцветяване за графа на Petersen,
следователно той има хроматично число 3. Ще докажем, че оцветяването
е оптимално в смисъл, че графът на Petersen не може да бъде оцветен с
по-малко цветове. Забелязваме, че графът на Petersen има нечетен цикъл:
например, външният контур на нарисувания граф е цикъл с дължина 5.
От друга страна, от Теорема 10 на тази страница следва, че ако граф има
поне един нечетен цикъл, то хроматичното му число не е 2. Следователно,

хроматичното число на графа на Petersen не е 2. Очевидно хроматичното му число не е 1.
Следователно, хроматичното му число е поне 3 и показаното оцветяване е оптимално като
брой цветове.

Веднага се вижда, че χpGq “ 1 тогава и само тогава, когато G е празният граф—наличието
на поне едно ребро влече χpGq ě 2. В сила е следният любопитен резултат.

Теорема 10: Граф е 2-оцветим тстк няма нечетни цикли

Нека G “ pV,Eq е непразен граф. χpGq “ 2 тогава и само тогава, когато G няма нечетни
цикли.
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Без ограничение на общността, нека G е свързан.

Доказателство, I: Да допуснем, че χpGq “ 2. Нека цветовете са бял и черен и функцията
на оцветяването е f. С други думи, f : V Ñ tбял, черенu. Ще докажем, че G няма нечетни
цикли.

Да допуснем, че G има поне един нечетен цикъл C. Разглеждаме произволен u P Vpcq. Без
ограничение на общността, нека fpuq “ бял. Очевидно VpCq се разбива на тези две множества

W “ tx P VpCq | fpxq “ бялu
B “ tx P VpCq | fpxq “ черенu

И W, и B е непразно, понеже |C| ě 3.
Лесно се вижда, че W се състои от u, двата съседа на двата съседа на u в C и така

нататък, докато B се състои от двата съседа на u в C и така нататък. Формално, в сила е

W “ tx P VpCq |distCpu, xq е четноu
B “ tx P VpCq |distCpu, xq е нечетноu

Ако сме изключително прецизни и педантични, ще докажем това по индукция по разстоя-
нието от връх u.

Нека ` “
Y

|C|

2

]

. Би трябвало да е очевидно, че щом |C| е нечетна, в C има точно два
върха a и b, такива че distCpu,aq “ ` и distCpu,bq “ `, като a и b се явяват максимално
отдалечените от u върхове в C. Очевидно е, че a и b са съседи в C; тоест, pa,bq P EpCq. Нека
pa,bq “ e. Забелазваме, че a и b са на еднакво разстояние от u в C, откъдето следва, че
fpaq “ fpbq. Но тогава краищата на e са в един и същи цвят, което е недопустимо.

Полученото противоречие показва, че допускането, че G има поне един нечетен цикъл C,
е невярно.

Доказателство, II: Да допуснем, че няма нечетни цикли. Ще докажем конструктивно, че
χpGq “ 2. Нека x е произволен връх от VpGq. Дефинираме функцията на оцветяването по
следния начин:

@v P V : fpvq “

#

бял, ако distpx, vq е четно
черен, ако distpx, vq е нечетно

Разбира се, дефинирането на функцията не е достатъчно. Трябва да докажем, че тя реали-
зира именно оцветяване на графа. С други думи, трябва да докажем, че няма ребро, двата
края на което са в един и същи цвят.

Да допуснем, че има ребро e P E, такова че e “ py, zq и fpyq “ fpzq. Без ограничение на
общността, нека fpyq “ fpzq “ бял, тоест distpx,yq е четно и distpx, zq е четно. Нека distpx,yq “
2s за някое s P N` и distpx, zq “ 2t за някое t P N`. Веднага се вижда, че 2s ď 2t` 1, защото
от факта, че има път с дължина 2t между x и z и факта, че има ребро между z и y, следва,
че има път с дължина ď 2t` 1 между x и y. Аналогично, 2t ď 2s` 1. И така:

2s ď 2t` 1
2t ď 2s` 1

Тогава 2t´ 1 ď 2s ď 2t` 1Ø t´ 1
2 ď s ď t`

1
2 . Но s и t са цели числа, така че s “ t. Излиза,

че y и z са равноотдалечени от x.
Нека p е произволен x-y път с мининална дължина и q е произволен x-z път с мининална

дължина. Както видяхме, |p| “ |q|. Единият край на тези два пътя съвпада (връх x), но те
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може да имат и други общи върхове освен x. Нека връх a е най-отдалеченият от x връх,
който е общ за p и q. Нека подпътят на p между x и a включително е p 1 и подпътят на
p между a и y включително е p2. Нека подпътят на q между x и a включително е q 1 и
подпътят на q между a и z включително е q2. Това означава, че p “ p 1 Y p2 и q “ q 1 Y q2.
Фигура 2.45(a) илюстрира пътищата p и q заедно с реброто e “ py, zq.

Твърдим, че |p 1| “ |q 1|. Да допуснем, че |p 1| ­“ |q 1|. Без ограничение на общността, нека
|p 1| ă |q 1|. Тогава пътят p 1 Y q2 свързва x със z и е по-къс от q; това противоречи на нап-
равеното по-рано допускане, че q е най-къс път между x и z. Фигура 2.45(б) дава нагледно
доказателство, че |p 1| “ |q 1|: ако не беше така, тоест ако |p 1| ă |q 1|, заместването на q 1 с p 1 в
q би дало по-къс между x и z от q.

Доказахме, че |p 1| “ |q 1|. Освен това знаем, че |p| “ |q| и че |p| “ |p 1|`|p2| и |q| “ |q 1|`|q2|.
Следователно, |p2| “ |q2|. Нека |p2| “ k. Тогава |q2| “ k. Нека r означава пътя y, e, z. Веднага
виждаме, че |c| “ 2k` 1, където c “ p2 Y q2 Y r (вж. Фигура 2.45(в)). Но това означава, че
c е нечетен цикъл, което противоречи на първоначалното допускане, че в G няма нечетни
цикли.

Фигура 2.45 : Илюстрация на доказателството на Теорема 10.

x

a

y

z

p

q

p2

q2
q 1

p 1

c e

Фигура 2.45(a)

x

a

y

z

q2

p 1

Фигура 2.45(б)

a

y

z

p2

q2
c r “ y, e, z

Фигура 2.45(в)

2

Абсолютно очевидно е, че наличието на k-клика в графа G влече χpGq ě k, защото само кли-
ката иска k цвята за своето оцветяване. Затова следното твърдение е наречено “наблюдение”.

Наблюдение 17

ωpGq ď χpGq, за всеки граф G.

Наблюдение 18

Лесно може да се измисли пример за граф G, такъв че ωpGq ă χpGq. Например, нека
G е граф-цикъл с 5 върха. Тогава ωpGq “ 2, защото 3-клика няма, но χpGq “ 3, защото
има нечетен цикъл (припомняме си Теорема 10).

Допълнение 9: Разликата между ωpGq и χpGq може да е произволна

В Наблюдение 18 видяхме пример за граф G, такъв че ωpGq “ χpGq ´ 1. Всъщност,
разликата между кликовото число и хроматичното число може да е произволно голяма,
но това е тежък резултат, излизащ много от рамките на тези лекционни записки. Тук
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ще докажем нещо по-скромно: тази разлика може да е 2.

Теорема 11: Възможно е ωpGq “ χpGq ´ 2

Съществува граф G, такъв че ωpGq “ χpGq ´ 2.

Доказателство: Разгледайте този граф G, който е един от графите на Mycielski:

a

bf

cd

u

v

wx

y
z

G

Твърдим, че ωpGq “ 2 и χpGq “ 4. Това, че ωpGq “ 2, е очевидно: в този граф 3-клика
няма. Ще докажем, че χpGq “ 4. Да допуснем, че χpGq ă 4.
Да разгледаме цикъла a,b, c,d, f,a. Той е нечетен цикъл, следователно, съгласно Тео-
рема 10, χpGq ą 2. Заключаваме, че χpGq “ 3. БОО, нека цветовете са червен, зелен и
син. Ето едно възможно оцветяване на цикъла в тези цветове:

bf

cd

a
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Възможни са и други оцветявания, но за всяко оцветяване в три цвята на този цикъл
е вярно, че единият цвят се ползва точно веднъж, а всеки от други два се ползва
точно два пъти – ако допуснем, че някой цвят се ползва поне три пъти, ще има ребро
с двата края в един цвят, което не е разрешено. БОО, нека цветът, който се ползва
точно веднъж, е червеният и нека a е червеният връх. Връх b е или зелен, или син.
Ако b е зелен, единственото възможно оцветяване е това, което е показано. Ако b е
син, оцветяването може да бъде довършено по единствен начин, а именно c е зелен, d е
син и f е зелен. И така, щом цветът, който се ползва веднъж, е червеният и a е червен,
върху останалите четири върха синият и зеленият цвят се редуват. БОО, разглеждаме
само показаното оцветяване (b е зелен и т. н.).
Има точно пет двойки върхове измежду a, . . . , f, които не са съседи върху цикъла:
ta, cu, tb,du, tc, fu, ta,du и tb, fu. За три от тези двойки е вярно, че цветовете на двата
върха в двойката са различни, а именно ta, cu, ta,du и tb, fu:

bf

cd

a

Да разгледаме избраното оцветяване на цикъла в контекста на целия граф:

u

v

wx

y
z

G

bf

cd

a
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Щом ползваме само трите цвята червен, зелен и син, при това положение се налага y
да е син, u да е червен и v да е зелен:

u

v

wx

y
z

G

bf

cd

a

Но тогава z не може да е нито червен, нито зелен, нито син, бивайки съсед и на u, и
на v, и на y. Полученото противоречие показва, че допускането χpGq ă 4 е грешно.

От друга страна, G е 4-оцветим, както се вижда от следната рисунка.

u

v

wx

y
z

G

bf

cd

a

Заключаваме, че χpGq “ 4. 2

Изследователите на графи са нарекли свойството, кликовото число да е равно на хрома-
тичното, перфектност. Но определението на “перфектен граф” е по-сложно от изискването
ωpGq “ χpGq. Всеки граф може да бъде модифициран чрез добавяне на достатъчно голяма
клика, така че кликовото и хроматичното число да се изравнят. Перфектността на графите
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изисква всяка част от графа да има определена структура. Това налага следното определе-
ние.

Определение 38: Перфектен граф.

Граф G е перфектен, ако за всеки индуциран подграф G 1 на G е вярно, че ωpG 1q “
χpG 1q.

Перфектните графи са интересни както от теоретична, така и от практическа гледна точка.
Примерно, задачите за намиране на αpGq, χpGq и ωpGq са бързо решими, ако G е перфектен,
въпреки че са NP-трудни (вижте Допълнение 6) в общия случай. Перфектните графи са
въведени от великия изследовател на теорията на графите Claude Berge [11]. Примери за
перфектни графи ще видим в следващи секции.

Теорема 12: χpGq ď 1
2 `

b

2m` 1
4

За всеки граф G, χpGq ď 1
2 `

b

2m` 1
4 .

Доказателство: Оцветяването на върховете на граф с k цвята е същото като разбиването
на множеството от върховете му на k антиклики. Нека графът е G “ pV,Eq. Нека χpGq “ k.
Тогава съществува разбиване X “ tS1,S2, . . .Sku на V, където Si е антиклика, за 1 ď i ď k,
но не съществува разбиване на V на k´ 1 антиклики.

Ключовото наблюдение е, че за всеки Si, Sj, такива че 1 ď i ă j ď k, съществува връх
u P Si и съществува връх v P Sj, такива че u и v са съседи. Ако няма такива върхове, то
можем да обединим Si и Sj в една антиклика, като по този начин конструираме разбиване
на V на k´ 1 антиклики, в противоречие с извода, че такова разбиване не съществува.

Следователно, в E съдържа поне едно ребро за всеки i, j, такива че 1 ď i ă j ď k. Тогава
m ě p

k
2q, откъдето

m ě
kpk´ 1q

2
Ø

2m ě k2 ´ kØ

k2 ´ k´ 2m ď 0Ø
ˆ

k´
1`

?
1` 8m
2

˙ˆ

k´
1´

?
1` 8m
2

˙

ď 0Ø
˜

k´

˜

1
2
`

c

1
4
` 2m

¸¸˜

k´

˜

1
2
´

c

1
4
` 2m

¸¸

ď 0

Оттук веднага следва, че

k ď
1
2
`

c

2m`
1
4

И тъй като χpGq “ k, заключаваме, че

χpGq ď
1
2
`

c

2m`
1
4

2
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Теорема 13: χpGq ¨ αpGq ě n

За всеки граф G, χpGq ¨ αpGq ě n.

Доказателство: Както вече отбелязахме, оцветяването на граф G с k цвята е намиране на
разбиване tV1,V2, . . . ,Vku на VpGq, такова че всяко от V1, . . . , Vk е антиклика. Тогава всяко
оптимално оцветяване на G, което става с χpGq цвята, е разбиване tV1,V2, . . . ,VχpGqu на VpGq,
като всяко от тези множества е антиклика. Но тогава |Vi| ď αpGq за 1 ď i ď χpGq, тъй като по
определение не може да има антиклика, по-голяма от αpGq. Тогава

řχpGq

i“1 |Vi| ď χpGq ¨ αpGq.
Но по принципа на разбиването,

řχpGq

i“1 |Vi| “ n. Желаният резултат следва веднага. 2

Теорема 14 е лесно следствие от Теорема 13, Наблюдение 17 и Следствие 2:

ωpGq “ αpGq // от Следствие 2 (2.4)
ωpGq “ αpGq // Наблюдение 4 и (2.4) (2.5)
ωpGq ď χpGq // Наблюдение 17 (2.6)
αpGq ď χpGq // (2.5) и (2.6) (2.7)

χpGq ¨ αpGq ě n // Теорема 13 (2.8)
χpGq ¨ χpGq ě n // (2.7) и (2.8) (2.9)

Но Теорема 14 има и самостоятелно интересно доказателство, което ще направим подробно.

Теорема 14: χpGq ¨ χpGq ě n

За всеки граф G “ pV,Eq, χpGq ¨ χpGq ě n.

Доказателство: Нека k “ χpGq и ` “ χpGq. Ще покажем, че k` ě n. Щом k “ χpGq и
` “ χpGq, то съществуват множества C и D, такива че |C| “ k и |D| “ ` и оцветявания
f : V Ñ C и g : V Ñ D съответно на G и G.

Нека E 1 е множеството от ребрата на G. Също както в доказателството на Теорема 1,
конструираме графа rG “ pV, rEq, където rE “ EY E 1. Очевидно rG е пълен граф на n върха, но
е именуван граф (вижте Подсекция 2.8.3). Да разгледаме h : V Ñ CˆD, дефинирана така:

@u P V : hpuq “ pfpuq,gpuqq

Твърдим, че h е оцветяване на rG съгласно Определение 36. Да разгледаме произволно ребро
e “ pu, vq на rG (което е същото като да разгледаме произволно двуелементно подмножество
tu, vu на V).

• Ако e P E, то hpuq ­“ hpvq, понеже fpuq ­“ fpvq, а hpuq “ pfpuq,gpuqq и hpvq “ pfpvq,gpvqq.

• Ако e P E 1, то hpuq ­“ hpvq, понеже gpuq ­“ gpvq, а hpuq “ pfpuq,gpuqq и hpvq “ pfpvq,gpvqq.

Щом краищата на всяко ребро на rG получават различни цветове от h, то h е оцветяване
на rG. Нещо повече, h е оцветяване на rG в k` цвята, защото |C ˆ D| “ |C| ¨ |D| съгласно
комбинаторния принцип на умножението.

Но rG е пълен граф на n върха, откъдето веднага следва, че χprGq “ n. Това влече, че k` ě n,
понеже, ако допуснем, че k` ă n, то чрез h ние сме конструирали оцветяване на пълен граф
на n върха с по-малко от n цвята, което е очевидно невъзможно. 2
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Лесно се забелязва, че съществува следната връзка между “двуделността” на графите и
оцветяването на графите.

Наблюдение 19

За всеки граф G, G е двуделен тогава и само тогава, когато χpGq ď 2.

Теорема 15: χpGq ď ∆pGq ` 1

За всеки граф G, χpGq ď ∆pGq ` 1.

Доказателство: Ще покажем алгоритъм, който оцветява G с не повече от ∆pGq` 1 цвята.

Алгоритъм 1: Алчно Оцветяване

Вход: граф G “ ptv1, v2, . . . , vnu,Eq и цветове C1, . . . , C∆pGq`1.
Изход: Оцветяване на G с не повече от ∆pGq ` 1 цвята.

¶ Оцветяваме v1 в цвят C1 и присвояваме iÐ 2.

· Ако i ą n, край.

¸ В противен случай, нека C 1 е цветът с най-малък номер, такъв че за всеки vj P Npviq,
такъв че j ă i (което означава, че vj вече е оцветен от нашия алгоритъм) цветът на vj
не е C 1. Такъв цвят C 1 очевидно съществува, защото |Npviq| ď ∆pGq. Оцветяваме vi в
цвят C 1, увеличаваме i с единица и отиваме на ·.

Аргументацията, че такъв “свободен” цвят C 1 има за всеки пореден връх, е доказателство за
коректността на Алгоритъм 1. 2

Алчно Оцветяване не е оптимален, тъй като може да използва повече цветове, отколкото
са необходими. Наистина, да разгледаме графа G, показан на Фигура 2.46(a). Този граф
е двуделен: и е 2-оцветим, съгласно Наблюдение 19. Ако приложим Алчно Оцветяване
с подредба на върховете като на Фигура 2.46(б), ще използваме 5 цвята. Ако приложим
Алчно Оцветяване с подредба на върховете като на Фигура 2.46(в), използваме само 2
цвята, което е оптимално.

:Граф като този на Фигура 2.46(a) се нарича граф-корона. Всеки граф-корона се получава от един пълен
двуделен граф с равномощни дялове, от който са изтрити ребрата на едно перфектно съчетание. “Перфектно
съчетание” е дефинирано в Секция 2.16.
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Фигура 2.46 : Алчно Оцветяване връща оцветявания с различна мощност при
различни наредби на върховете.

Фигура 2.46(а):
Граф-корона.

2

4

6

8

10

1

3

5

7

9

Фигура 2.46(б):
5-оцветяване.

6

7

8

9

10

1

2

3

4

5

Фигура 2.46(в):
2-оцветяване.

Допълнение 10: Алчни алгоритми

Това, което казахме за не-оптималността на Алчно Оцветяване върху графа-корона
от Фигура 2.46(а) може да бъде обобщено за графи с произволна големина. Да си
представим граф-корона, който има 2n върха (тогава всеки дял има точно n върха). В
замисимост от реда, в който Алчно Оцветяване разглежда върховете, е възможно
той да върне оцветяване с n цвята, докато всъщност има оптимално оцветяване със
само 2 цвята (защото графът си остава двуделен).
Следователно, съществуват графи и наредби на върховете им, за които Алчно Оц-
ветяване работи ужасно. “Ужасно” в смисъл, че резултатът, който намира, е много
далече от оптималния—например, оцветяване с n цвята на граф, който е 2-оцветим.
Алгоритъмът работи бързо, но освен бързината му, за нас има значение колко близо
до оптималното е намереното решение.
Алгоритъм като Алчно Оцветяване се нарича алчен алгоритъма, което обяснява
и избора на името му. Алчните алгоритми решават оптимизационни задачи правейки
итеративно поредица от избирания, като критерият за избиране е прост и локално-
оптимален. “Локално-оптимален” означава оптимален само от гледна точка на теку-
щата итерацияб. В случая с Алчно Оцветяване алгоритъмът избира произволен
следващ връх vi. Произволният избор е възможно най-простият избор, но в някакъв
тривиален смисъл е оптимален избор, така че алгоритъмът действително може да се
класифицира като алчен.
Както видяхме, алчният алгоритъм не решава задачата оптимално винаги. Задачата
за оптимално оцветяване на графи е изключително трудна и не е изненада, че избира-
нето на произволен следващ елемент води това, че върху някои примери намереният
резултат е много далече от оптималния. Има задачи, които се решават оптимално с
алчни алгоритми, но задачата за оцветяване на граф с минимален брой цветове не е
от тях.

аНа английски е greedy algorithm.
бПо-изтънчената, но по-сложна за реализация идея всички тези избирания да се правят от единна

глобална гледна точка.
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Допълнение 11: Алчният подход към антикликите не дава опт. оцв.

Както вече споменахме, всяко върхово оцветяване на граф в k цвята по същество
е разбиване на множеството от върховете на k антиклики, като върховете от един
цвят са една антиклика. Да разгледаме алчен алгоритъм, който намира разбиване на
множеството от върховете на антиклики така: първо намира максимална по мощност
антиклика, слага нейните върхове в един дял на разбиването и изтрива тези върхове
от графа, ако при това не останат върхове, то край на работата, в противен случай
продължава аналогично върху остатъка от графа. Формално може да го опишем така:

Алгоритъм 2: Алгоритъм за разбиване на антиклики

Вход: граф G “ pV,Eq.
Изход: Разбиване на V на антиклики.

U е променлива от тип множество от множества от върхове.

¶ UÐH.

· Намери антиклика S Ď V с максимална мощност.

¸ Присвои UÐ UY tSu.

¹ Изтрий върховете на S от G.

º Ако в G не са останали върхове, върни U и прекрати алгоритъма; в противен
случай, иди на ред ·.

Намиране на максимална антиклика е NP-трудни задача, така че · не може да се
реализира ефикасно, поне според текущото познание. Но да оставим това настрани.
Същественото тук е, че алчният подход към антикликите не води непременно до оп-
тимално оцветяване. Ето пример.

a1

G

a2 a3 a4 a5

b

a6 a7 a8 a9 a10

c
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На първата итерация алгоритъмът ще намери S “ ta1,a2, . . . ,a10u на ред ·, защото
това е максималната антиклика в графа. След това U ще стане tta1,a2, . . . ,a10uu на
ред ¸. След това алгоритъмът ще изтрие върховете от ta1,a2, . . . ,a10u на ред ¹ и
графът ще стане този:

G

b

c

Следва проверката на ред º. Тъй като все още има върхове, изпълнението ще отиде
отново на ред ·. В текущия граф максимална антиклика е всяко от tbu, tcu. Да кажем,
че S “ tbu. Тогава U ще стане tta1,a2, . . . ,a10u, tbuu, връх b ще бъде изтрит, цикълът
ще се изпълни още веднъж и алгоритъмът ще върне U “ tta1,a2, . . . ,a10u, tbu, tcuu.
Но това разбиване на антиклики е върхово оцветяване в три цвята, понеже |U| “ 3.
А всъщност входният граф е 2-оцветим, понеже е дърво. Всяко дърво е 2-оцветимо,
понеже е ацикличен граф. Щом няма цикли, в частност няма нечетни цикли.

Заключаваме, че посоченият алгоритъм не винаги намира оптимално върхово оцве-
тяване. И изобщо, алчният подход при оцветяването не работи, дори да се базира на
викане на алгоритъм за NP-трудна задача.

2.7.2 Оцветяване на ребра

Да си представим комуникационна мрежа, която се състои от компютри и двупосочни (си-
метрични) връзки между някои двойки компютри. Двойка компютри, свързани директно,
е съседна. Разглеждаме дискретно време от времеви интервали с дължина единица. В рам-
ките на един времеви интервал, даден компютър комуникира с най-много един свой съ-
сед. При това комуникацията е двупосочна. Искаме да направим разписание:, при което се
осъществяват всички комуникации в минимален брой времеви интервали. Без последното
изискване задачата е тривиална: ако директните връзки са m на брой, m времеви интервала
са достатъчни, за да може всяка съседна двойка да комуникира. Работата е там, че някои
двойки може да комуникират едновременно: в един и същи времеви интервал. За да стане
това, необходимо и достатъчно е нито две от тези двойки да нямат общ елемент (компютър).

Задачата може да се моделира с граф. Върховете са компютрите, а ребрата са директните
комуникационни линии между компютри. Искаме да разбием множеството от ребрата на
минимален брой подмножества, такива че в нито едно подмножество да няма инцидентни
ребра. Можем да мислим за тези подмножества като за “цветове”, но сега цветове на ребрата,
а не на върховете. Множеството от цветовете отговаря точно на интервалите от време: в
първия интервал ще разрешим комуникация по линиите, които са оцветени в първия цвят;
във втория интервал ще разрешим комуникациите по линиите, оцветени във втория цвят,
и така нататък. Подредбата на цветовете няма никакво значение. Важното е, че ребрата

:На английски, schedule.
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от един и същи цвят точно отговарят на комуникациите, които са разрешени в съответния
интервал от време. Тъй като няма инцидентни ребра от един и същи цвят, то няма как в
това разписание да има интервал от време, в който някой компютър да комуникира с повече
от един съседи.

Определение 39: Оцветяване на ребра

Нека G “ pV,Eq е граф. Оцветяване на ребрата на G е функция h : E Ñ C, където C
е множество, чиито елементи се наричат цветове. Иска се функцията да е такава, че
@e P E @e 1 P Ipeq : hpeq ­“ hpe 1q.

Има смисъл оцветяването на ребра да е сюрекция, за да няма неизползвани цветове.

Като алгоритмична задача, оцветяването на ребрата също е минимизационна задача. Мини-
малният брой цветове, с които можем да оцветим ребрата на графа G, се бележи с χ 1pGq и
се нарича хроматичен индекс на G.

Фигура 2.47

При оцветяването на върхове, очевидна долна граница за хроматичното
число е кликовото число (Наблюдение 17). При оцветяването на ребрата,
очевидна долна граница за хроматичния индекс е максималната степен на
връх ∆pGq. Наистина, ако има поне един връх от степен d, трябва хрома-
тичният индекс да е поне d. Лесно можем да измислим пример за граф
G, такъв че χ 1pGq “ ∆pGq; например, четен граф-цикъл. От друга страна,
лесно можем да измислим и пример за граф G, такъв че χ 1pGq ą ∆pGq; нап-
ример, нечетен граф-цикъл. Графът на Petersen също е пример за такъв

граф: той е 3-регулярен граф, но, съгласно Теорема 16, ребрата му не може да бъдат оцве-
тени в 3 цвята по изискванията на Определение 39. Обаче 4 цвята са достатъчни за ребрата
на графа на Petersen, както се вижда на Фигура 2.47 вляво. Ерго, хроматичният индекс на
графа на Petersen е 4.

Теорема 16: Графът на Petersen има хроматичен индекс 4

Графът на Petersen има хроматичен индекс 4.

Доказателство: Да допуснем, че графът на Petersen има хроматичен индекс 3. Нека цве-
товете са червен, зелен и син. Да си представим оцветяването на ребрата с трите цвята като
процес, който е показан на Фигура 2.48 отляво надясно.

Да разгледаме един от циклите на графа. Нека това е цикълът, който е нарисуван като
външен. Тъй като той има дължина 5, той е нечетен и само за неговото реброво оцветяване
са необходими 3 цвята. Лесно се вижда, че точно един от цветовете се среща само веднъж
върху този цикъл, а другите два цвята се срещат по два пъти. Без ограничение на общността,
нека цветът, който се среща върху точно едно ребро, е червен (което значи, че от останалите
четири ребра, две са сини и две са зелени). Без ограничение на общността, червеното ребро да
е реброто най-долу от външния цикъл. Без ограничение на общността, нека реброто вляво от
него е синьо. Това форсира оцветяване на външния цикъл, показано в средата на фигурата.
Това пък форсира оцветяването на петте “радиални” ребра. Сега се налага да оцветим в
синьо и двете ребра, показани със син пунктир в десния край на фигурата, защото всяко от
тях е инцидентно с едно зелено и едно червено ребро. Но тези две ребра са инцидентни! Това
опровергава допускането, че графът на Petersen има хроматичен индекс 3.
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Фигура 2.48 : Невъзможно е да оцветим ребрата на графа на Petersen в 3
цвята.

От друга страна, графът на Petersen може да бъде реброво оцветен в 4 цвята, както се вижда
на Фигура 2.47. Тогава хроматичният индекс на графа на Petersen е точно 4. 2

Фигура 2.49

Заслужава да се отбележи следното. Графът, който е показан на Фигу-
ра 2.49 вляво, много прилича на графа на Petersen и се нарича CL5:. За
разлика от графа на Petersen, CL5 има хроматичен индекс 3, което се виж-
да веднага на фигурата. И CL5, и графът на Petersen са нарисувани като
външен цикъл с форма на правилен петоъгълник, още 5 “радиални” ребра
навътре, и още един цикъл с дължина 5 във вътрешността. Разликата е,
че при графа на Petersen вътрешният цикъл е нарисуван “пресукан” като

пентаграма, а при графа на Фигура 2.49 вътрешният цикъл е нарисуван като правилен пето-
ъгълник. Това е от съществено значение, понеже прави двата графа доста различни. Освен
различни хроматични индекси, те имат и различни обиколки: обиколката на CL5 е 4, докато
обиколката на графа на Petersen е 5, както вече видяхме в Подсекция 2.4.3.

Допълнение 12: Хроматичният индекс е или ∆pGq, или ∆pGq ` 1

И така, видяхме примери за графи, чиито ребра може да бъдат оцветени в ∆pGq цвята,
и примери за графи, чиито ребра не може да бъдат оцветени в ∆pGq цвята, но може да
бъдат оцветени в ∆pGq ` 1 цвята. Важен теоретичен резултат на съветския математик
Визинг е, че други графи няма: можем да оцветим ребрата на графа с ∆pGq ` 1 цвята
ребрата на всеки граф [62].

Теорема 17: Теорема на Визинг

За всеки граф G, χ 1pGq P t∆pGq,∆pGq ` 1u.

Доказателство Доказателството, което ще разгледаме, е модифицирана версия на
доказателството на теоремата на Визинг от тази статия на Robert Green.
Това, че χ 1pGq ě ∆pGq, е очевидно. Ще докажем, че χ 1pGq ď ∆pGq ` 1 за всеки граф G.

Да допуснем противното. Нека G е граф-контрапример с минимален брой ребра. Това
означава, че за всяко ребро e P EpGq е вярно, че χ 1pG´ eq ď ∆pGq ` 1а. За краткост ще
означаваме ∆pGq ` 1 с ∆.
Допускането ни е, че χ 1pGq ą ∆. Тъй като G е реброво-минимален контрапример, зак-
лючаваме, че χ 1pGq “ ∆` 1. Избираме произволно ребро e P EpGq. Нека H “ G´ e. По
допускане, χ 1pHq “ ∆. Нека e “ px,y0q. Нека φ е произволно реброво оцветяване на H
в ∆ цвята.

:Името идва от “Circular Ladder 5”.
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За всеки u P VpHq, за всеки цвят c:

• ако нито едно ребро от Ipuq не е оцветено в c, казваме, че c липсва в u,

• в противен случай казваме, че ci присъства в u.

Веднага забелязваме, че във всеки връх липсва поне един цвят, понеже са повече от
максималната степен на връх в H.

Изпълняваме следния алгоритъм, който строи максимална по включване редица от
два по два различни върхове y0,y1, . . . ,yk и от цветове c0, c1, . . . , ck. Такава редица се
нарича верига на Kempe.

• Знаем, че в y0 липсва поне един цвят. Да речем, че в y0 липсва c0. Ако c0 липсва
и в x, веднага следва, че G е реброво оцветим в ∆ цвята: просто допълваме φ с
оцветяване на px,y0q в c0. Но G не е реброво оцветим в ∆ цвята по допускане.
Следователно, c0 присъства в x.

• Нека px,y1q е реброто, такова че φppx,y1qq “ c0. Очевидно, y1 ­“ y0. В y1 обаче
липсва някакъв цвят. Да кажем, че в y1 липсва c1. Забелязваме, че c1 не може да
липсва в x, понеже, ако c1 липсва в x, то G е реброво оцветим в ∆ цвята. Очевидно
е, че c1 ­“ c0.

• Нека px,y2q е реброто, такова че φppx,y2qq “ c1. Очевидно y2 ­“ y1. Освен това
y2 ­“ y0, защото px,y2q е ребро в H, а H няма ребро px,y0q. Ерго, y2 R ty0,y1u. В
y2 липсва цвят, да кажем c2. Забелязваме, че c2 ­“ c1, защото c1 присъства в y2,
а c2 липсва в y2.

Не е невъзможно обаче c2 да е същият като c0. Ако c2 “ c0, спираме алгоритъма.
В противен случай забелязваме, че c2 не може да липсва в x, иначе G би бил
реброво оцветим в ∆ цвята.

• Нека px,y3q е ребро, такова че φppx,y3qq “ c2. Очевидно y3 ­“ y0, понеже px,y0q

не е ребро в H. Тъй като c2 R tc0, c1u, а c0 и c1 са цветовете съответно на px,y1q и
px,y2q, виждаме, че y3 ­“ y1 и y3 ­“ y2. Накратко, y3 R ty0,y1,y2u.

В y3 липсва цвят, да кажем c3. Очевидно c3 ­“ c2. Не е невъзможно обаче c3 да е
същият като c0 или c1. Ако c3 P tc0, c1u, спираме алгоритъма. В противен случай
забелязваме, че c3 не може да липсва в x, иначе G би бил реброво оцветим в ∆
цвята.

• Нека e4 “ px,y4q е ребро, такова че φppx,y4qq “ c3. И така нататък.

• Рано или късно ще стигнем до ребро ek “ px,ykq, такова че:

˛ φppx,ykqq “ ck´1, като yk R ty0,y1, . . . ,yk´1u и ck´1 R tck´2, . . . , c1, c0u;

˛ в yk липсва цвят ck, такъв че ck P tck´2, . . . , c1, c0u.

Това е и причината за спиране на алгоритъма: за първи път сме се натъкнали
на връх, а именно yk, на който липсва цвят, който вече е липсвал в някой от
досега сложените върхове в редицата; да кажем, че въпросният цвят липсва в yj
за някое j P t0, . . . , k´ 2u. Тогава ck “ cj. Вижте Фигура 2.50.
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Фигура 2.50 : Построяването на веригата на Kempe.

x y0 (липсва c0)

c0

y2 (липсва c2)

c1

yj (липсва cj)

yj`1 (липсва cj`1)

cj

cj´1

тук ребро няма

yk (липсва ck “ cj)

y1 (липсва c1)

Във връх x липсва някакъв цвят. Да кажем, че липсва цвят α, където α е един от
цветовете, с които са оцветени ребрата на H. Да преименуваме цвета cj “ ck, който
липсва в yk и yj, на β. Вижте Фигура 2.51.
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Фигура 2.51 : Във връх x липсва цвят α.

y0 (липсва c0)

y1 (липсва c1)
c0

y2 (липсва c2)

c1

yj (липсва β)

yj`1 (липсва cj`1)

β

cj´1

yk (липсва β)

x (липсва α)

Твърдим, че α присъства в y0. Ако допуснем противното, веднага заключаваме, че
можем да оцветим G в ∆ цвята, използвайки цвят α за реброто px,y0q – ако α липсва и
в x, и в y0 в оцветяването φ на H, то α липсва и в x, и в y0 в G в частичното оцветяване
φ на G (φ е частично оцветяване върху G, понеже в него px,y0q няма цвят), ерго, ако
оцветим px,y0q в α, няма да нарушим изискването никой връх да не е инцидентен с
повече от едно ребро от даден цвят. Вижте Фигура 2.52.
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Фигура 2.52 : Ако α липсва в y0 в H, то G е реброво оцветим в ∆ цвята.

(липсва α)y0

y1

c0

y2

c1

yj

yj`1

β

cj´1

yk

x(липсва α)

α липсва в x и y0 в H.

y0

y1

c0

y2

c1

yj

yj`1

β

cj´1

yk

αx

Оцветяваме px,y0q в α в G.

Твърдим, че α присъства в y1 в H. Аргументацията е по същество същата. Да допуснем,
че α липсва в y1 в H. Да добавим реброто px,y0q, получавайки G, но това е G с частично
оцветяване, понеже px,y0q няма цвят. Оцветяваме px,y0q в цвят c0 и махаме c0 от px,y1q,
получавайки частично оцветяване на G – сега px,y1q няма цвят. Забелязваме, че в това
частично оцветяване няма връх, инцидентен с повече от едно ребро от даден цвят,
защото c0 липсва в y0 поначало. Тогава, ако α липсва в y1, можем да оцветим px,y1q

в α, получавайки оцветяване на G в ∆ цвята. Неформално казано, ако α липсва в y1,
“завъртаме” цвят c0 от px,y1q към px,y0q и си “отваряме възможност” да оцветим px,y1q

в α. Вижте Фигура 2.53.
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Фигура 2.53 : Ако α липсва в y1 в H, може да оцветим G реброво в ∆ цвята.

y0

y1

c0

y2

c1

yj

yj`1

β

cj´1

yk

липсва цвятx

Поначало px,y0q няма цвят в G.

y0

y1

α

y2

c1

yj

yj`1

β

cj´1

yk

c0x

Оцветяваме px,y0q в c0 и px,y1q в α.

Лесно се вижда, че α присъства в y2, y3, . . . , yk. Практически същата аргументация
може да се използва за всеки от тези върхове: за y2 “завъртаме” c0 и c1, и така нататък.

И така, α присъства във всеки връх от веригата на Kempe. За доказателството ни е
съществено само това, че α присъства в yj и yk в H. Да си припомним, че β липсва и
в yj, и в yk. От друга страна, β присъства в x, но в x липсва α (вижте Фигура 2.51).

Да се фокусираме само върху yj, yk, всеки от които има инцидентно ребро (това може
да са две различни ребра или едно и също ребро, това няма значение), оцветено в α, и
върху реброто px,yj`1q, оцветено в β (вижте Фигура 2.54).
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Фигура 2.54 : Същностната част от графа в доказателството.

yj (липсва β)

yj`1

β

yk (липсва β)

α

α

x (липсва α)

Нека J е подграфът на H, индуциран от ребрата (Определение 9), оцветени в α или β.
Ключово наблюдение е, че J няма върхове от степен, по-голяма от две: ако имаше поне
един такъв връх, то в H би имало връх, инцидентен с повече от едно ребро в един и
същи цвят (α или β). Очевидно е, че граф, който има върхове от максимална степен не
повече от две се състои от множество пътища и цикли, които два по два нямат общи
върхове. С други думи, тези пътища и цикли са му свързаните компоненти. Нека P

означава множеството от пътища-свързани компоненти на J.
Сега забелязваме, че върховете x, yk и yj са крайни точки на пътища от P. Може това
да са три различни пътя от P, може два от тези върхове да са крайни точки на един
и същи път от P, а третият да е крайна точка на друг път от P. Причината да са
непременно крайни точки е, че всеки от тези три върха е инцидентен с точно едно
ребро от EpJq. Очевидно не може и трите върха да са крайни точки на един и същи
път, защото един път има най-много две крайни точки.
Същността на доказателството е в това да “пренаредим” цветове върху ребрата на G по
такъв начин, че реброто px,yjq да бъде оцветено в α. Този цвят липсва в x поначало, но
присъства в yj. Трябва пренареждането на цветове да е такова, че реброто, инцидентно
с yj, което има цвят α в първоначалното оцветяване (което е разширение на φ), да се
окаже в цвят β, без да се появи инцидентно с yj ребро в α. Тогава спокойно можем да
оцветим px,yjq в α. До края на доказателството разглеждаме два случая.

Случай 1. yj е крайна точка на път p P P и x R Vppq.
Припомняме си, че p е път от ребра, които са в цветовете α или β. Нещо повече,
тези цветове алтернират върху ребрата на p, иначе би имало връх от p, инцидентен с
две ребра в един и същи цвят. да обърнем цветовете върху p от α в β и обратно. Това
“обръщане” на цветове по никакъв начин не нарушава ограничението в H да няма връх,
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инцидентен с повече от едно ребро в даден цвят, защото p е “отдалечен” от другите
свързани компоненти на J, нямайки общ връх с никой от тях. В частност, връх x остава
инцидентен с точно едно ребро в цвят β след “обръщането” на цветовете. Фигура 2.55)
илюстрира резултата от това обръщане на цветовете върху p, като се разглеждат двата
възможни случая:

• yk не е връх от p и реброто px,ykq не бива засегнато от обръщането на цветовете
и си остава в цвят α

• yk е връх от p, което означава, че yk е другият край на p, при което реброто
px,ykq получава цвят β.

Фигура 2.55 : След обръщането на цветовете върху p от α в β и обратно.

yj

yj`1

β

yk

β

α

α

β

p

x (липсва α)

yk R Vppq

yj

yj`1

β

yk

β

β

α

β

p

x (липсва α)

yk P Vppq

И в двата случая продължаваме така. Вземаме оцветяването φ на H и го пренасяме
върху G като частично оцветяване. При това реброто px,y0q няма цвят. “Завъртаме”
цветовете по веригата на Kempe така: всяко от ребрата px,y0q, . . . , px,yj´1q, да го
наречем px,yiq, получава цвета, който е бил върху px,yi`1q преди “завъртането”, а px,yjq
остава без цвят. Очевидно това не води до връх, инцидентен с повече от едно ребро в
един и същи цвят. Оцветяваме px,yjq в α и получаваме реброво оцветяване на G в ∆
цвята.

Случай 2. yj е крайна точка на път p P P и x P Vppq.
Тогава x е другият край на p. Да поясним: единият край на p е връх yj, следван от
реброто в цвят α, а другият му край е връх yj`1, следван от реброто px,yj`1q в цвят
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β, следвано от връх x. Обръщаме цветовете върху p и сега единият край на p е връх
yj, следван от реброто в цвят β, а другият му край е връх yj`1, следван от реброто
px,yj`1q в цвят α, следвано от връх x. Това е показано на Фигура 2.56.

Фигура 2.56 : Преди и след обръщането на цветовете върху p.

yj

yj`1

β

yk

β

α

α

β

p

x (липсва α)

Преди обръщането.

yj

yj`1

α

yk

α

α

β

α

p

x (липсва β)

След обръщането.

Довършваме доказателството по начин, аналогичен на Случай 1. Вземаме оцветява-
нето φ на H и го пренасяме върху G като частично оцветяване. При това реброто px,y0q

няма цвят. “Завъртаме” цветовете по веригата на Kempe така: всяко от ребрата px,y0q,
. . . , px,yj´1q, да го наречем px,yiq, получава цвета, който е бил върху px,yi`1q преди
“завъртането”, а px,yjq остава без цвят. Очевидно това не води до връх, инцидентен с
повече от едно ребро в един и същи цвят. Реброто px,yj`1q не бива засегнато от тази
промяна на цветове. Оцветяваме px,yjq в α и получаваме реброво оцветяване на G в ∆
цвята. 2

аЗабележете, че ∆pGq ą 1, понеже празният граф и графите с максимална степен 1 не са контра-
примери.

Допълнение 13: Линеен граф на граф

На пръв поглед, хроматично число на граф и хроматичен индекс на граф са прин-
ципно различни неща. Сега ще видим, че хроматичният индекс е частен случай на
хроматичното число. За целта ни трябва следното определение.
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Определение 40: Линеен граф на граф

Нека G “ pV,Eq е граф. Линейният граф на G е графът G 1 “ pE,E 1q, където

E 1 “ tpe1, e2q | e1, e2 P E и e1 и e2 са инцидентни в Gu

Пишем G 1 “ LpGq.
Казваме, че G е линеен граф, ако съществува граф H, такъв че G “ LpHq.

Неформално, G 1 е графът, чиито върхове са ребрата на G, като два върха на G 1 са
съседи тогава и само тогава, когато в G тези ребра имат общ връх. Понятието “линеен
граф”, в оригинал line graph, е наложено от Frank Harary [32, стр. 71]. Според Harary,
за това понятие са били използвани много други термини, например interchange graph,
derived graph, edge-to-vertex dual и други. В контекста на съвременната терминология
на теорията на графите, терминът “line graph” не е особено удачен. Harary [32] нарича
“lines” ребрата на графите, с което създава впечатлението, че графите са геометрични
обекти—щом имат линии—а ние всячески се стремим да подчертаем, че графите са
теоретико-множествени обекти. Но, така или иначе, терминът “line graph” е широко
приет в света на графите в момента и ние не можем да го игнорираме. Доколкото е
известно на автора на тези лекционни записки, на български няма възприет и утвърден
термин, така че тук ще казваме “линеен граф”.
Ето пример. Да разгледаме Фигура 2.57. Вляво е показан граф G. В средата е показан
същия граф, като върху ребрата му са нарисувани нови върхове в червено и червените
върхове са свързани с червени ребра тогава и само тогава, когато съответните им ребра
са инцидентни. Този граф в червено е LpGq. Вдясно е показан само LpGq.

Фигура 2.57 : Граф G и линейният му граф LpGq.

LpGqG

Наблюдение 20

За всеки граф G, оцветяването на ребрата на G в k цвята е същото като оцветя-
ването на върховете на G 1 в k цвята. Следователно, χ 1pGq “ χpLpGqq.

Да разгледаме като пример G от Фигура 2.57. χ 1pGq “ 4, тъй като, от една страна,
∆pGq “ 4, а от друга страна, G има реброво оцветяване в 4 цвята (вижте Фигура 2.58).

86



ГЛАВА 2. НЕОРИЕНТИРАНИ ГРАФИ И НЕОРИЕНТИРАНИ МУЛТИГРАФИ © Минко Марков, 2025г.

Фигура 2.58 : χ 1pGq “ χpLpGqq.

LpGqG

Погледнете пак Фигура 2.58. Това, че G има връх от степен 4 директно съответства на
факта, че LpGq има 4-клика. Върхът от степен 4 в G дава долна граница 4 за χ 1pGq.
Съответно, 4-кликата в LpGq дава долна граница 4 за χpLpGqq.

Не всеки граф е линеен граф. Със сигурност за всеки граф G е дефиниран графът LpGq,
но за даден граф G може да няма граф H, такъв че G “ LpHq. Най-простият пример за
граф, който не е линеен граф, е K1,3 (графът G1 на Фигура 2.59)а. За да се убедим, че
K1,3 не е линеен граф, да допуснем противното – съществува граф G, такъв че LpGq е
изоморфен на K1,3. Тъй като K1,3 има четири върха, G има четири ребра. Нещо повече:
едно от ребрата на G е инцидентно с всяко от другите три ребра, а измежду тях нито
две не са инцидентни. Това, разбира се, е невъзможно. Следователно, K1,3 не е линеен
граф.

Следната теорема (вижте [32, стр. 74]) дава нетривиални необходими и достатъчни
условия за това, даден граф да е линеен граф.

Теорема 18: Теорема 8.4 от [32] за линейните графи

Следните четири условия са еквивалентни:

1. G е линеен граф.

2. Ребрата на G може да се разбият на множества, всяко от което индуцира
пълен подграф, като всеки връх на G се намира в най-много два такива
подграфа.

3. G няма индуциран подграф K1,3. Нещо повече, за всеки два подграфа K3,
за всеки от които е вярно, че има връх на G, съседен на нечетен брой от
неговите (на подграфа K3) върхове, които (два подграфа K3) имат общо
ребро, е вярно, че множеството от техните (на двата подграфа K3) върхове
индуцира подграф K4.

4. Нито един от деветте графа на Фигура 2.59 не е индуциран подграф на G.
2
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Фигура 2.59 : Деветте забранени индуцирани подграфи за лин. графи.

G2G1 G2 G3

G4 G5 G6

G7 G8 G9

От Наблюдение 20 и от факта, че не всеки граф е линеен, следва, че хроматичният ин-
декс е същинскиб частен случай на хроматичното число. С други думи, хроматичното
число е строго по-общото понятие, като можем да избегнем въвеждането на хроматичен
индекс и вместо да говорим за хроматичния индекс на G, да говорим за хроматичното
число на LpGq.

аДруго име за K1,3 е claw graph, защото може да бъде нарисуван като краче на птица.
б“Същински” в смисъл, че хроматичното число не е частен случай на хроматичния индекс.
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2.8 Изоморфизъм на графи

2.8.1 Определение

Терминът “изоморфен” означава “със същата форма”:. Неформално казано, два графа са
изоморфни, ако е изпълнено следното. Нека единият граф е нарисуван с произволна рисун-
ка. Нека другият граф е материализиран от топчета и гумени ластици (от някаква идеална
гума, която може да се разтяга и свива неограничено по наше желание), като топчетата от-
говарят на върховете, а ластиците, на ребрата. И така, графите са изоморфни, ако можем да
наложим изработеното от топчета и ластици съответствие на втория граф върху рисунката
на първия граф по такъв начин, че всяко топче от втория да “легне” върху точно една точка
от рисунката на първия, и всяко гумено ребро на втория да легне точно върху точно едно от
нарисуваните ребра на първия. Очевидно за целта трябва двата графа да имат един и същи
брой върхове, а също така и един и същи брой ребра. Но, както ще видим след малко, това
не е достатъчно, за да бъдат изоморфни.

Определение 41: Изоморфизъм на графи.

Нека G 1 “ pV 1,E 1q и G2 “ pV 2,E2q са графи. Изоморфизъм между G 1 и G2 е всяка
биекция φ : V 1 Ñ V 2, такава че

@u, v P V 1 : pu, vq P E 1 Ø pφpuq,φpvqq P E2 (2.10)

Казваме, че G 1 и G2 са изоморфни, ако съществува изоморфизъм между тях. Фактът,
че G 1 и G2 са изоморфни, се записва кратко така: G 1 » G2.

Пример за изоморфни графи е показан на Фигура 2.60.

Фигура 2.60 : Тези два графа са изоморфни.

a

b

c d
f g

h i

kj

Класически нарисуван граф на Petersen.

2 1 4

1057

3 8

6 9

Нетипично нарисуван граф на Petersen.

Графът на Фигура 2.60 вляво е “класически” нарисуван граф на Petersen с имена на вър-
ховете. Графът на Фигура 2.60 вдясно на пръв поглед е доста различен от графа вляво, но

:Етимологията е следната: на гръцки ἴσος означава “равен”, а μορφή означава “форма”.
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всъщност тези графи са изоморфни; графът вдясно е графът на Petersen, нетипично нари-
суван, с имена на върховете. Една възможност—със сигурност не единствена—е следната:

φpaq “ 6 φpbq “ 10 φpcq “ 2 φpdq “ 9 φpfq “ 1 (2.11)
φpgq “ 4 φphq “ 8 φpiq “ 5 φpjq “ 3 φpkq “ 7

Тогава съответствието на ребрата е следното:

pa,bq съответства на p6, 10q, pa, cq съответства на p6, 2q, pa,dq съответства на p6, 9q
pb,hq съответства на p10, 8q, pb, iq съответства на p10, 5q, pc, fq съответства на p2, 1q
pc, jq съответства на p2, 3q, pd,gq съответства на p9, 4q, pd,kq съответства на p9, 7q
pf,gq съответства на p1, 4q, pf, iq съответства на p1, 5q, pg,hq съответства на p4, 8q
ph, jq съответства на p8, 3q, pi,kq съответства на p5, 7q, pj,kq съответства на p3, 7q

Наблюдение 21

» е бинарна релация над множеството на графите, която наричаме релацията на изо-
морфизъм. Релацията на изоморфизъм е рефлексивна, симетрична и транзитивна, ко-
ето означава, че е релация на еквивалентност.

Определение 41 не е в сила за мултиграфи, понеже при тях и върховете, и ребрата са про-
тоелементи и свързващата функция е тази, която отнася ребра към (ненаредени двойки)
върхове.

Определение 42: Изоморфизъм на мултиграфи.

Нека G1 “ pV1,E1, f1q и G2 “ pV2,E2, f2q са мултиграфи съгласно Определение 13. Изо-
морфизъм между G1 и G2 е всяка наредена двойка pϕ,ψq от биекции

ϕ : V1 Ñ V2

ψ : E1 Ñ E2

такива че

@e P E1 : f2pψpeqq “ tϕpuq,ϕpvqu

където tu, vu “ f1peq.

Казваме, че мултиграфите G1 и G2 са изоморфни, ако съществува изоморфизъм между
тях, и бележим този факт с “G1 » G2”, точно както при обикновените графи.

Определението казва това: за всяко ребро e P E1, ако краищата на e са u и v (очевидно
u, v P V1), то e се изобразява от ψ в такова ребро e 1 P E2, че краищата на e 1 са някакви
върхове x и y от V2, такива че ϕ изобразява u и v в x и y. Ето илюстрация:
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G1 G2

u

v

x

y

e 1e

ϕ

ϕ

ψ

2.8.2 Изоморфизмът като изчислителна задача

Дадени са два графа G 1 “ pV 1,E 1q и G2 “ pV 2,E2q. Пита са дали те са изоморфни, или
не. И ако са изоморфни, да се намери един изоморфизъм между тях – това е биекцията
от Определение 41. Задачата е изключително трудна в най-лошия случай, въпреки че не е
известно да е NP-трудна. За неголеми графи, възникващи в практиката, задачата е решима
в разумно време от специализиран софтуер. Допълнение 25 описва една такава програма и
демонстрира приложението и́.

Очевидно е, че за да са изоморфни два графа, трябва да имат еднакъв брой върхове и
еднакъв брой ребра. Ерго, ако |V 1| ­“ |V 2| или |E 1| ­“ |E2|, веднага можем да кажем, че G 1
и G2 не са изоморфни. Разбира се, може |V 1| “ |V 2| и |E 1| “ |E2| и въпреки това графите
да не са изоморфни. Има още много лесни тестове за отхвърляне на изоморфизъм: ако
броят на свързаните компоненти е различен, графите не са изоморфни, ако минималната
или максималната степен на връх са различни, графите не са изоморфни, и така нататък.
Не е известен обаче лесен тест за доказване на изоморфизъм.

От особено значение при търсенето на изоморфизъм е редицата от степените. Очевидно
е, че ако редиците от степените са различни, графите не са изоморфни. От друга страна,
редиците от степените може да са еднакви и въпреки това графите да не са изоморфни.
Благоприятно за лесното решаване на задачата за изоморфизма е наличието на малко съв-
падения на елементи в редиците от степените. Ако търсим изоморфизъм между G 1 “ pV 1,E 1q
и G2 “ pV 2,E2q съгласно Определение 41, трябва да търсим биекция φ : V 1 Ñ V 2 със свойст-
вото (2.10). При допускането, че |V 1| “ |V 2| “ n, броят на биекциите е n!. Оттук и идеята за
търсене на изоморфизъм с груба сила, проверявайки систематично, биекция след биeкция,
за свойството (2.10). В най-лошият случай, броят на тези проверки ще e n!. Факториелът
расте експлозивно бързо, така че дори за малки стойности на n като 20 тази идея не работи
на практика:. Значително подобрение на тази идея е следното. Нека двата графа имат една
и съща редица от степените. Нека различните стойности, които се появяват в редицата от
степените, са d1, . . . , dk, като di се появява ni пъти, за 1 ď i ď k; и d1 ă ¨ ¨ ¨ ă dk. Иначе
казано, нека редицата от степените е тази:

d1, . . . ,d1
loooomoooon

n1 числа

,d2, . . . ,d2
loooomoooon

n2 числа

, . . . ,dk, . . . ,dk
loooomoooon

nk числа

Очевидно е, че има смисъл да се проверяват само биекции, които изобразят връх от дадена
степен във връх от същата степен, понеже изоморфизмът запазва степените на върховете.
Тогава броят на биекциите, които ще проверим в най-лошия случай, е n1!ˆn2!ˆ¨ ¨ ¨ˆnk!. Ако
max tn1, . . . ,nku е малко, произведението от факториелите е много по-малко от n!, примерно

:20! “ 2 432 902 008 176 640 000 « 2ˆ 1018.
;Очевидно n1 ` ¨ ¨ ¨ ` nk “ n.
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40! « 1048, докато 4!ˆ 4!ˆ ¨ ¨ ¨ ˆ 4!
looooooooomooooooooon

10 множителя

“ 4!10 « 1014, а 2!ˆ 2!ˆ ¨ ¨ ¨ ˆ 2!
looooooooomooooooooon

20 множителя

“ 2!20 “ 1 048 576. Този

трик не помага, ако max tn1, . . . ,nku е голямо, тоест, близо до n по стойност; в екстремния
случай, в който графът е регулярен, k “ 1 и n1 “ n, така че в най-мрачния сценарий, методът
с бруталната сила иска n! проверки на биекции.

Прост пример за неизоморфни графи с еднакви редици от степените са графът на Petersen и
CL5, чиито хроматични индекси сравнихме в Подсекция 2.7.2. За всеки случай, Фигура 2.61
показва двата графа отново, един до друг, всеки с оптимално реброво оцветяване. И двата
графа са с по 10 върха, и двата са 3-регулярни, така че и двата имат редица от степени-
те p3, 3, 3, 3, 3, 3, 3, 3, 3, 3q, но не са изоморфни – ако бяха изоморфни, хроматичните им
индекси щяха да са равни.

Фигура 2.61 : Графът на Petersen и CL5 един до друг.

Графът на Petersen.
Хроматичният индекс е 4.

Графът CL5.
Хроматичният индекс е 3.

Разбира се, има и други причини тези два графа да не са изоморфни. Примерно, графът на
Petersen има обиколка 5, докато CL5 има обиколка 4, както ясно се вижда на фигурата.

2.8.3 Именувани и неименувани графи

Графи с именувани и неименувани върхове

Да си припомним основното определение в тези лекционни записки: Определение 1. Според
него, “граф” е наредена двойка от две множества, като едното от тях е опорното множество
и това е множеството от върховете. Щом е множество, то неговите елементи–върхове имат
идентичност в смисъл, че различаваме всеки връх от всеки друг връх. За целта върховете
имат уникални имена.

На практика обаче, много често ни интересува само фо́рмата на графите, а не идентифи-
каторите (имената) на върховете. Да разгледаме следното наблюдение.

Наблюдение 22

Съществуват точно единадесет графа с четири върха.

Това вярно ли е? Ако следваме буквата на Определение 1, то Наблюдение 22 е невярно,
защото при 4 върха има p42q “ 6 потенциални ребра, всяко от които може да присъства или
не, така че броят на всички графи е точно 26 “ 64, а не 11. За да се убедим, че Наблюдение 22
не е безсмислица, да разгледаме следните 11 графа:
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Тук разглеждаме графи с анонимни върхове. Те се различават един от друг само по
фо́рмата си. Такива графи се наричат неименувани:. Това, че ги наричаме “графи” е фор-
мална злоупотреба с Определение 1, както ще видим по-долу, защото нито един от тях не е
обект, дефиниран от Определение 1, но на практика понятието “неименуван граф” е много
полезно и е абсолютно недвусмислено.

За по-ясно обяснение, да допуснем, че имената на четирите върха са u, v, w и z, и да разг-
ледаме следните четири графа с такива имена на върховете:

G1 G4G2 G3

u u u uv v

v vw w

w

wz z z

z

Забележете, че това са различни графи! В G1 единственият връх от степен три е u, в G2

единственият връх от степен три е v, в G3 единственият връх от степен три е w, и в G4

единственият връх от степен три е z. Това не е един граф, нарисуван по четири начина, а
са четири различни графа съгласно Определение 1. Такива графи наричаме именувани
графи;, защото всеки връх има име. Забележете, че Определение 1 говори точно за имену-
вани графи – в него върховете са елементи на множество, което означава, че са два по два
различни. Следователно, именуваните графи са базовите обекти, които изучаваме в теорията
на графите.

Сега да “изтрием” имената на върховете от G1, . . . , G4. Ще получим четири копия на един
и същи граф с анонимни върхове, а именно този:

Този обект не е граф, ако прилагаме Определение 1 формално. Тук сме го нарисували, но
вече отбелязахме, че рисунката на граф и самият граф са принципно различни неща. А как
да запишем формално граф, чиито върхове са анонимни? Отговорът естествено се базира на
понятието “изоморфизъм”. Лесно се вижда, че G1 » G2 » G3 » G4. Нещо повече, измежду
64-те именувани графа на 4 върха (G1, . . . , G4 са измежду тях), няма други графи, които да
са изоморфни на тях, така че tG1,G2,G3,G4u е един клас на еквивалентост на релацията ».

:На английски терминът е unlabeled graphs.
;На английски терминът е labeled graphs.
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И така, граф с анонимни върхове всъщност е точно един клас на еквивалентост на ». Да
повторим: формалната дефиниция на “неименуван граф” е: клас на еквивалентност на ».

За упражнение да помислим колко класа на еквивалентност има », ако върховете са 4 на
брой? Отговорът е 11: точно колкото са показаните по-горе неименувани графи на 4 върха.
Всеки от тях съответства на точно един от класовете. Очевидно е, че въпросните класове на
еквивалентност имат различни мощности: празният граф е единственият елемент в един от
класовете, също така пълният граф е единствен, докато, както видяхме току-що, има четири
графа в класа на еквивалентност, който отбелязахме с .

Графи с именувани върхове и ребра

Понятието “labeled graph” може да се разшири, като именувани биват и върховете, и реб-
рата. Според Определение 1 опорното множество се състои само от върховете, а ребрата са
двуелементни подмножества от върхове. Това, че можем да въведем имена като “e1”, “e2”
и така нататък за ребрата (което правим на стр. 6) е извън дефиницията. Ако ограничим
вниманието си до Определение 1, ще видим, че ребрата нямат други идентичности освен
множествата от краищата си.

От друга страна, Определение 13 третира и върховете, и ребрата като опорни множес-
тва, използвайки свързващата функция като нещото, което асоциира ребро с върхове. Ако
използваме Определение 13 за базово, то “именуван граф” е такъв, в който и върховете, и
ребрата имат уникални имена. Размяната на имената на две ребра води до друг граф в този
смисъл.

И така, има разлика между именуван граф, в който са именувани само върховете, и
именуван граф, в който са именувани и върховете, и ребрата. Като пример да разгледаме
отново всички графи с четири върха, с именувани върхове, като има един връх от степен
3 и три върха от степен 1. Ако имената на върховете са u, v, w и z, тези графи са точно
следните:

G1 G4G2 G3

u u u uv v

v vw w

w

wz z z

z

Заслужава да се натърти отново, че според Определение 1, ако V “ tu, v,w, zu, то няма други
графи с редица от степените 1, 1, 1, 3 (Определение 6).

Ако обаче са именувани и върховете, и ребрата, графите с редица от степените 1, 1, 1, 3 стават
много повече. Да кажем, че имената на ребрата са e1, e2 и e3. Тогава на всеки от тези четири
графа съответстват 3! “ 6 различни начина да бъдат “раздадени” имената на ребрата. Да
вземем за пример G1. Ето колко различни именувани графи му съответстват, ако ребрата
също имат имена и тези имена са e1, e2 и e3:

u v

wz

e1
u v

wz

e2
u v

wz

e2
u v

wz

e3
u v

wz

e3
u v

wz

e1

e2 e3 e1 e3 e2e1e3 e2 e3 e1 e2 e1

На въпроса “Колко именувани графи има на n върха?” типичният отговор е 2pn2q, но това е
само при положение, че именувани са само върховете. Ако са именувани и върховете, и реб-
рата, като множеството от имена за ребрата е te1, . . . , epn2qu, този брой нараства стремително.
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Забележете, че дори в малкия пример с четири върха и редица от степените 1, 1, 1, 3, ако
множеството от имена на ребрата е te1, . . . , е6u, то именуваните графи (и върхове, и ребра)
са 480. Защо?

• По p63q “ 20 начина можем да изберем кои три от общо шестте ребра да вземем, и за
всяко от тези вземания има шест различни начина да “раздадем” трите имена на трите
ребра (което се илюстрира от последната рисунка), което дава общо 120 начина.

• Но тези 120 начина са по отношение на един единствен фиксиран връх от степен 3. Има
4 различни възможности за това, кой връх да е от степен 3, така че броят на графите
скача до 4 ¨ 120 “ 480.

И това 480 съответства само на един клас на изоморфизъм, а именно (като неименуван граф):

Читателят лесно може да си изведе формула за броя на именуваните графи, където се
именуват и върховете, и ребрата, като

• или имената на ребрата се вземат от te1, . . . , epn2qu, но разглеждаме всеки възможен брой
ребра m, като от 0 ď m ď p

n
2q,

• или броят m на ребрата е фиксиран за някое m P t0, . . . , pn2qu и всички имена на ребра
от te1, . . . , emu трябва да присъстват.
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2.9 Хамилтонови пътища и цикли
През 1857 г. великият ирландски математик и физик William Hamilton измисля развлекател-
на игра, която нарича “The Icosian Game”, след което продава интелектуалната собственост
на играта за значителната за времето си сума от 25 британски лири. Играта е следната:
върху дъска е нарисуван граф-додекаедър:, като върховете са малки еднакви дупки, имену-
вани с буквите A, . . . , T (това са двадесет букви). Има двадесет запушалки (на английски,
plugs), изработени от слонова кост и номерирани с числата 1, . . . , 20, които могат да влизат
в дупките.

Играта се състои в това, да направим “затворена разходка” в додекаедъра, тръгвайки от
произволен връх, минавайки от връх в друг връх само ако между тях има ребро и връщайки
се във върха, от който сме тръгнали по такъв начин, че да посетим всеки връх точно вед-
нъж. Запушалките указват реда на минаване през върховете: тръгва се от върха, в който е
запушалка 1, следва върхът със запушалка 2 (между тези два върха да има ребро), и така
нататък, и се стига до върха, в който е запушалка 20, като между върховете с 1 и 20 в тях
също трябва да има ребро. На сайта puzzlemuseum.com се вижда една от малкото запазени
оригинални изработки на тази игра. Името на играта идва от факта, че додекаедърът има
точно двадесет; върха, така че разходката трябва да мине през всичките двадесет дупки,
преди да се върне там, откъдето е започнала.

В съвременната терминология са приети следните дефиниции.
Определение 43: Хамилтонов цикъл и Хамилтонов път.

Нека е даден граф G. Хамилтонов цикъл в G е всеки цикъл в G, който съдържа всички
върхове на G. Хамилтонов път в G е всеки път в G, който съдържа всички върхове
на G. Казваме, че G е Хамилтонов граф, ако в него има Хамилтонов цикъл.

Обикновено в учебниците по теория на графите тези дефиниции съдържат и уточнението,
че върховете в Хамилтоновия цикъл или път трябва да се срещат точно веднъж. Но ние вече
приехме§, че казвайки “цикъл” или “път” без определения, имаме предвид съответно прост
цикъл или прост път, така че това уточнение за нас е излишно.

Фигура 2.62 съдържа изображение на графа-додекаедър—графът от играта на Hamilton—и
Хамилтонов цикъл в него.

:Фигура 2.80 показва многостен-додекаедър, а Фигура 2.79 показва граф-додекаедър, нарисуван върху
сфера, и неговата стереографска проекция.

;Както вече бе споменато на страница на стр. 160, икоса- идва от старогръцката дума εἴκοσι, която
означава двадесет.

§Конвенция 5 на стр. 31 и Конвенция 7 на стр. 33.

96

http://puzzlemuseum.com/month/picm02/200207icosian.htm


ГЛАВА 2. НЕОРИЕНТИРАНИ ГРАФИ И НЕОРИЕНТИРАНИ МУЛТИГРАФИ © Минко Марков, 2025г.

Фигура 2.62 : Граф-додекаедър и Хамилтонов цикъл в него.

Граф-додекаедър. Хамилтонов цикъл в него.

Наблюдение 23

Ако граф е Хамилтонов, то той съдържа Хамилтонов път. Еквивалентно, ако няма
Хамилтонов път, то той не е Хамилтонов. Конверсното не е вярно – може да има
Хамилтонов път и да няма Хамилтонов цикъл.

Наблюдение 24

Нека G “ pV,Eq е граф и G 1 “ pV,E 1q е негов подграф. Ако в G 1 има Хамилтонов
цикъл или път, то в G също има съответно Хамилтонов цикъл или път. Ако в G няма
Хамилтонов цикъл или път, то в G 1 също няма съответно Хамилтонов цикъл или път.

Не всеки граф е Хамилтонов и не всеки граф има Хамилтонов път. Ако графът е Хамилтонов,
то всеки Хамилтонов цикъл има дължина точно n. Пълният граф Kn за n ě 3 има 1

2pn´ 1q!
Хамилтонови цикъла, ако мислим за тях като за подграфи (вж. Наблюдение 9). Пълният
граф Kn за n ě 2 има 1

2n! Хамилтонови пътя, ако мислим за тях като за подграфи (вж.
Наблюдение 7).

За някои конкретни видове графи можем веднага да кажем дали има или няма Хамилто-
нови цикли или пътища, например:

• ако графът не е свързан, в него няма Хамилтонов път;

• ако графът има срязващ връх, той не е Хамилтонов;

• ако графът е пълен и n ě 3, той е Хамилтонов;

• ако графът е двуделен и дяловете нямат една и съща мощност, той не е Хамилтонов;

• ако графът е пълен двуделен и дяловете са с еднаква мощност, която е поне 2, то той
е Хамилтонов;

• ако графът е n-мерен хиперкуб (вж. Секция 2.15) и n ě 2, то той е Хамилтонов;
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но за общия случай не е известно просто необходимо и достатъчно условие за съществуване
на Хамилтонов цикъл или път.

Всеки Хамилтонов граф може да бъде разглеждан по следния начин. Нека C е Хамилтонов
цикъл в граф G. Тогава може да мислим за G като C плюс множество от хорди (Определе-
ние 19). Ето илюстрация:

C

G

Допълнение 14: NP-трудност на Хамилтонов цикъл и път

Задачата дали даден граф има Хамилтонов цикъл еNP-трудна (вижте Допълнение 6).
Това означава почти сигурно, че за тази задача няма практични алгоритми в общия
случай. Същото е в сила за задачата дали даден граф има Хамилтонов път. Тези две
задачи се свеждат бързо една до друга, така че, ако имахме ефикасен алгоритъм за
едната, щяхме да имаме и за другата; и, обратно, ако се докаже, че за едната от тях
няма бърз алгоритъм, ще следва, че за другата също няма бърз алгоритъм.

Теорема 19: Графът на Petersen не е Хамилтонов

Графът на Petersen не е Хамилтонов, но има Хамилтонов път.

Доказателство: Доказателството, което ще видим сега, е добре известно и може да бъде
видяно например в онлайн решенията на задачите от учебника на Cameron [15]. За краткост
ще означаваме с “P” графа на Petersen.

Фигура 2.63

Това, че в P има Хамилтонов път, се вижда на Фигура 2.63. Да допуснем,
че P е Хамилтонов. Можем да мислим за P като за един външен 5-цикъл
и един вътрешен 5-цикъл, като още пет ребра, да ги наречем радиалните
ребра, свързват върховете във външния цикъл със съответни върхове във
вътрешния цикъл. Изборът на външен цикъл и вътрешен цикъл е чисто
условен, разбира се, понеже P има много симетрии. Всеки 5-цикъл в него
може да бъде избран за външен, който избор определя напълно вътрешния
цикъл. Нека по произволен начин е избран външен цикъл. Това определя

еднозначно вътрешния цикъл и радиалните ребра. Нека Хамилтоновият цикъл се нарича c.
Нека външният цикъл се нарича O, а вътрешният цикъл се нарича I. Да започнем мислено
да се “разхождаме” в графа, следвайки c. Тръгваме от някой връх от u P VpOq. Тъй като
c е цикъл, ще се върнем в u края на “разходката”. При това ще минаваме от върхове от
VpOq във върхове от VpIq—защото c съдържа и върховете от VpIq—и ще се връщаме обратно
във върхове от VpOq, защото “разходката” трябва да приключи в u. Тези минавания от VpOq
във VpIq и от VpIq в VpOq стават през, и само през, радиалните ребра. Очевидно е, че на
всяко минаване от от VpOq във VpIq и от VpIq във VpOq съответства точно едно радиално
ребро измежду тези радиални ребра, които са в c. Поради това, броят на радиалните ребра
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в c е равен на броя въпросните минавания. Щом “разходката” започва и завършва във връх
от VpOq, то има четен брой минавания от външния във вътрешния цикъл и от вътрешния
във външния, следователно c съдържа четен брой радиални ребра, който не е 0. Тъй като
радиалните ребра са общо 5, то c съдържа или точно 2, или точно 4 радиални ребра.

Фигура 2.64

Да допуснем, че c съдържа точно 2 радиални ребра, как-
то е показано на Фигура 2.64 вляво (въпросните две ра-
диални ребра са в червено). Ако двете червени ребра
съдържат върхове от O, които не са съседи в O, както е
показано на лявата от двете подфигури, то при всяко “из-
лизане” на c върху външния O, c трябва хем да съдържа
зелените ребра, хем трябва да съдържа лилавите ребра,
което е невъзможно. Сега да разгледаме възможността

двете радиални ребра да съдържат върхове от O, които са съседи в O. Тази възможност е
показана на дясната подфигура. Тогава c задължително съдържа четирите зелени ребра. Но
тогава двете червени ребра трябва да имат върхове от I, които са съседи в I; това следва от
напълно аналогични съображения на тези, от които изведохме, че краищата на червените
ребра върху O са съседи в O. Но в графа на Petersen няма две радиални ребра, чиито краища
са съседни както върху външния O, така и върху вътрешния цикъл I. И така, отхвърлихме
възможността Хамилтоновият цикъл да съдържа точно две радиални ребра.

Фигура 2.65

Тогава c съдържа точно 4 радиални ребра. Ще илюстрираме тази част
от доказателството на Фигура 2.65. Без ограничение на общността, нека
четирите радиални ребра, които са в c, са ребрата, оцветени в червено.
Разглеждаме останалото радиалното ребро, което ще наричаме “черното”.
Всеки от неговите два върха се съдържа в c. Тогава задължително в c
се съдържат и двете ребра от O, инцидентни с връх от черното ребро,
както и двете ребра от I, инцидентни с черното ребро. Става дума за общо
четири ребра, които на Фигура 2.65 са маркирани със зелено. И така, c

съдържа в себе си четирите червени и четирите зелени ребра. Но веднага се вижда, че това
е невъзможно. Възможно е да конструираме два 5-цикъла, които нямат общи върхове и
съдържат червените и зелените ребра, но няма как да направим един цикъл, който да ги
съдържа. 2

От общи съображения е ясно, че при фиксиран брой на върховете, колкото повече ребра има
в графа, толкова по-възможно: е в него да има Хамилтонов цикъл. Екстремният пример
е Kn, който, както вече отбелязахме, е Хамилтонов, ако n ě 3. Аргументацията, че Kn е
Хамилтонов, е тривиална—можем да “отидем” от който искаме в който искаме връх. Сега
ще формулираме и докажем няколко нетривиални достатъчни условия за съществуване на
Хамилтонов цикъл.

Теоремата на Dirac [20] е публикувана през 1952.
Теорема 20: Теорема на Dirac

Нека G “ pV,Eq е граф, такъв че n ě 3 и δpGq ě
P

n
2

T

. Тогава G е Хамилтонов.

Доказателство: Съгласно Теорема 4, G е свързан. Нека p “ u1,u2, . . . ,uk е максимален
път в G.

:Нарочно не казваме “по-вероятно”, защото терминът вероятност има строг математически смисъл.
Каква е вероятността да съществува Хамилтонов цикъл като функция от броя на ребрата при фиксиран
брой на върховете е въпрос, който е далече отвъд обхвата на тези лекционни записки.

99



ГЛАВА 2. НЕОРИЕНТИРАНИ ГРАФИ И НЕОРИЕНТИРАНИ МУЛТИГРАФИ © Минко Марков, 2025г.

Ще докажем, че всички съседи на крайните върхове на p са върхове от p. Ако допуснем,
че u1 има съсед w, който не е връх от p, можем да конструираме път p1 “ w,u1,u2, . . . ,uk,
който е по-дълъг от p, в противоречие с факта, че p е максимален път. Аналогично показваме,
че всички съседи на uk също са върхове от p.

Твърдим, че за поне едно i, такова че 1 ď i ă k, е вярно, че ui е съсед на uk, а ui`1 е съсед
на u1. Да допуснем, че няма такова i. Тогава за всеки съсед на u1, който е в p (а току-що
показахме, че всички съседи на u1 са в p) е вярно, че върхът вляво от него не е съсед на uk.
Тогава p съдържа поне следните върхове:

• върховете, които са вляво от съседите на u1. Те не са съседи—съгласно последното
допускане—на uk. Съседите на u1 са dpu1q на брой, следователно въпросните върхове
също са dpu1q на брой;

• върховете, които са съседи на uk, а те са на брой dpukq;

• връх uk, който нито е вляво от съсед на u1, нито е съсед на себе си.

Тези множества от върхове имат две по две празно сечение, следователно p има поне dpu1q`

dpukq ` 1 ě 2
P

n
2

T

` 1 върха. Тогава |p| ě n` 1, което е невъзможно.
Следователно съществува поне едно i, такова че 1 ď i ă k и ui е съсед на uk, а ui`1 е

съсед на u1. Тогава в G съществува цикълът

c “ u1,ui`1,ui`2, . . . ,uk´1,uk,ui,ui´1,ui´2, . . . ,u2,u1

Ето илюстрация на цикъла c (в зелено):

u1 u2 ui ui`1 ui`2 uk

Да допуснем, че Vpcq ­“ V. Тъй като G е свързан, съществува връх x P VzVpcq, който е
съсед на връх z от p. z не може да е някой от u1 или uk, защото за всеки от тях, всички
негови съседи са в p.

Да разгледаме пътя q, който започва с x, следващият връх е z, следващият е единият от
двата съседа на z в p и после “върви” по цикъла c, докато не достигне другия съсед на z в p:

q

u1 u2 ui ui`1 ui`2 z

x

uk

Очевидно |q| “ |p| ` 1, в противоречие с това, че p е максимален път. Тогава VzVpcq “ H и
c е Хамилтонов цикъл. 2

Теоремата на Ore [45] е резултат от 1960.
Теорема 21: Теорема на Ore

Нека G “ pV,Eq е граф, такъв че n ě 3 и @u, v P V : pu, vq R EÑ dpuq ` dpvq ě n. Тогава
G е Хамилтонов.

Доказателство: Да допуснем противното – G не е Хамилтонов. Очевидно G не е Kn.
Да конструираме редица от графи, започвайки с G и завършвайки с Kn, като на всяка
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стъпка добавяме ребро между произволна двойка върхове, които до момента не са съседи.
Иначе казано, ребро по ребро допълваме G до Kn. Тази редица се състои от t ` 1 графа,
където t “ pn2q ´m. Да ги преименуваме G с името G0. Нека редицата от получените графи,
включително и началния G “ G0, е:

G0,G1,G2, . . . ,Gt

Очевидно Gt е Kn.
Щом G0 не е Хамилтонов, а Gt е Хамилтонов, съществува i, такова че 1 ď i ď t, Gi´1

не е Хамилтонов и Gi е Хамилтонов. С други думи, на i-тата стъпка за първи път получа-
ваме Хамилтонов граф. Тогава, съгласно Наблюдение 24, всички графи Gi`1, Gi`2, . . . , Gt
също са Хамилтонови, а никой от графите Gi´2, Gi´3, . . . , G0 не е Хамилтонов. Накратко и
неформално, преходът от i´ 1 към i е преход от не-Хамилтоновост към Хамилтоновост.

Очевидно е, че щом Хамилтоновият граф Gi се получава от не-Хамилтоновия Gi´1 чрез
добавяне на едно единствено ребро, в Gi´1 има Хамилтонов път, чиито краища не са съседи
в Gi´1, и въпросното ребро се добавя именно между тях. Също така очевидно е, че за графа
Gi´1 е изпълнено @u, v P V : pu, vq R EpGi´1q Ñ dGi´1puq ` dGi´1pvq ě n, защото тези неравенс-
тва няма как да се нарушат при добавяне на ребра—и оттам, ненамаляване на степените на
върховете—към първоначалния граф G “ G0.

Това, което ще опровергаем е, че съществува не-Хамилтонов граф: H, който съдържа
Хамилтонов път, не е Хамилтонов, и сумата от степените на всеки два несъседни върха е
поне n. Нека съществува такъв граф H. Нека Хамилтоновият път в него е p “ u1,u2, . . . ,un.
Нека dHpu1q “ k. Очевидно Npu1q Ď Vppq, защото Vppq “ VpHq по дефиниция. Нещо повече,
u1 R Npu1q и uk R Npu1q—ако uk P Npu1q, щеше да има и Хамилтонов цикъл—така че Npu1q са
вътрешни върхове в p. Твърдим, че @ui P Npu1q : ui´1 R Npukq. Допускането на противното
директно води съществуване на Хамилтонов цикъл с конструкция, напълно аналогична на
конструкцията от Теорема 20:

u1 u2 ui´1 ui ui`1 uk

Тогава Vppq съдържа следните три множества върхове като подмножества: върховете от
Npukq, върховете вляво от върховете от Npu1q, и връх uk. Две по две тези множества имат
празно сечение, и сумата от мощностите им е поне n`1, понеже |Npu1q|`|Npukq| ě n. Тогава
|p| ě n` 1, което е невъзможно. 2

Заслужава да се отбележи, че Теорема 20 може да се докаже елементарно чрез Теорема 21:
ако @v P V : dpvq ě

P

n
2

T

, то @u, v P V : pu, vq R EÑ dpuq ` dpvq ě n.

В сила е и следната теорема, която дава горна граница pn´1
2 q ` 1 за m, такава че ако m е

над нея, гарантирано графът е Хамилтонов. Както ще видим след малко, границата е точна.
Авторът на теоремата не е известен на автора на тези лекционни записки.

Теорема 22: Точна долна граница за m в гарантирано Хамилтонов граф

Нека G “ pV,Eq е граф, такъв че n ě 3 и m ą p
n´1

2 q ` 1. Тогава G е Хамилтонов.

Доказателство: Да допуснем противното. Ако G е пълен граф, то той е Хамилтонов.
Следователно, G не е пълен. Тогава в G има поне една двойка несъседни върхове x и y. Нека

:В случая, Gi´1 е такъв граф.
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H “ G ´ x ´ y. Очевидно е, че E се разбива на EpHq, Ipxq и Ipyq. Ясно е, че |Ipxq| “ dpxq и
|Ipyq| “ dpyq. По принципа на разбиването,

m “ |EpHq| ` dpxq ` dpyq

Но по условие, m ą p
n´1

2 q ` 1. Следователно,

|EpHq| ` dpxq ` dpyq ą

ˆ

n´ 1
2

˙

` 1

което е същото като

|EpHq| ą

ˆ

n´ 1
2

˙

` 1´ dpxq ´ dpyq

За графа H знаем, че има n´ 2 върха. Съгласно Наблюдение 3, |EpHq| ď pn´2
2 q. Тогава:

ˆ

n´ 2
2

˙

ą

ˆ

n´ 1
2

˙

` 1´ dpxq ´ dpyq Ø

pn´ 2qpn´ 3q
2

ą
pn´ 1qpn´ 2q

2
` 1´ dpxq ´ dpyq Ø

n2 ´ 5n` 6 ą n2 ´ 3n` 2` 2´ 2dpxq ´ 2dpyq Ø
´2n ą ´2´ 2dpxq ´ 2dpyq Ø

dpxq ` dpyq ą n´ 1 Ø
dpxq ` dpyq ě n

Показахме, че за произволни два несъседни върха сумата от степените им е поне n. Тук
става дума за първоначалния граф G; H беше само помощна конструкция. Щом това е в сила
за произволни два несъседа, то то е в сила за всяка двойка несъседи. Прилагаме Теорема 21
и получаваме, че G е Хамилтонов, противно на направеното допускане. 2

И накрая ще покажем, че pn´1
2 q`1 е точна горна граница за броя на ребрата на не-Хамилтонов

граф. С други думи, че съществува не-Хамилтонов граф с толкова ребра. Такъв граф наис-
тина има, например един Kn´1 плюс още един връх плюс още едно ребро между новия връх
и кой да е връх от старите.
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2.10 Ойлерови пътища и цикли
Ще започнем с една занимателна задача. Можете ли да нарисувате това, което е показано
на Фигура 2.66, наведнъж; тоест, без да вдигате молива от листа и без да повтаряте линии?

Фигура 2.66 : Не може да се нарисува наведнъж.

Отговорът е, че не можете. А можете ли да нарисувате наведнъж това, което е показано на
Фигура 2.67?

Фигура 2.67 : Може да се нарисува наведнъж.

Това вече може да се нарисува наведнъж. Вижте Фигура 2.68: започвайки от зелената точка
рисуваме външния квадрат, после пак от зелената точка рисуваме вътрешния, завъртян на
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45 градуса квадрат, и накрая рисуваме диагонала от зелената до синята точка. Лесно се
вижда, че фигурата може да се нарисува наведнъж само ако започнем от зелената точка
и завършим в синята, или обратното. По-долу ще дадем формално доказателство на това
наблюдение.

Фигура 2.68 : Как да нарисуваме наведнъж Фигура 2.67.

Ако се опитаме да нарисуваме Фигура 2.67 наведнъж, като освен това завършим в тази
точка, която сме започнали, ще установим, че това е невъзможно (което следва веднага от
факта, че трябва да започнем в зелената точка и да завършим в синята, или обратно). Но
ако премахнем диагонала на вътрешния квадрат, получавайки това, което е показано на
Фигура 2.69, с лекота можем да нарисуваме обекта наведнъж със затворена линия (тоест, да
вдигнем молива от точката, от която сме започнали).

Фигура 2.69 : Може да се нарисува наведнъж като затворена крива.
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Тази задача може да се моделира с граф. Отсечките са ребрата, а върховете са точките на
пресичане на отсечките. Фигура 2.70 показва графите, съотвестващи на трите фигури, които
току-що разгледахме (Фигури 2.66, 2.67 и 2.69).

Фигура 2.70 : Графите, съответстващи на Фиг. 2.66, 2.67 и 2.69.

G1 G2 G3

Веднага се вижда, че G1 има четири върха от нечетна степен, G2 има два върха от нечетна
степен, а G3 няма върхове от нечетна степен. Както ще видим след малко, наличието на
върхове от нечетна степен, техният брой и свързаността на графа определят еднозначно
това дали фигурата може да се нарисува наведнъж и дали това може да стане със затворена
линия или не.

Принципно Ойлеров цикъл може да съществува и в несвързани мултиграфи – ако точно
една свързана компонента е Ойлерова, а останалите са изолирани върхове, то, формално,
съществува Ойлеров цикъл в целия граф. Тъй като циклите, които ще разглеждаме, не са
непременно прости, дори в празния граф има цикъл, съдържащ всички ребра, в празния
смисъл. За да не се занимаваме с дегенеративни случаи, оттук нататък в тази секция G е
неориентиран нетривиален свързан мултиграф.

Определение 44: Ойлеров цикъл и Ойлеров път

Ойлеров цикъл в G е цикъл, не непременно прост, който съдържа всяко ребро на G
точно веднъж. Ойлеров път в G е път, не непременно прост, който съдържа всяко
ребро точно веднъж. G е Ойлеров, ако има Ойлеров цикъл.

Щом сме казали, че G е нетривиален, поне едно ребро има, така че всеки Ойлеров път/цикъл
трябва да е непразен.

Съгласно нашите дефиниции на “път” и “цикъл” (Определение 16 или Определение 18),
цикъл е частен случай на път, така че Ойлеров цикъл се явява частен случай на Ойлеров
път в Определение 44.

Припомнете си Конвенция 6 на стр. 31. Тя е безсмислена за Ойлерови цикли и пътища!
Забележете, че ако G има Ойлеров цикъл c или Ойлеров път p, то, щом G няма изолира-
ни върхове, pVpcq,Epcqq или pVppq,Eppqq съвпада с G. Поради това разглеждаме Ойлеровите
цикли и пътища като алтерниращи редици от върхове и ребра, точно както се казва в Оп-
ределение 16 и Определение 18.
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Теорема 23: Ойлеров цикъл в свързан мултиграф

G има Ойлеров цикъл тогава и само тогава, когато всеки връх има четна степен.

Доказателство, I: Първо да допуснем, че G има Ойлеров цикъл c. Ще покажем, че G има
върхове само от четна степен. Разглеждаме произволен u P VpGq. Очевидно u P Vpcq.

Да си представим c като кръгова, а не линейна, наредба. Определение 18 говори за цикъла
като за линейна наредба, в която първият и последният връх съвпадат, което съвпадане
задава цикличността. Може да си мислим обаче за всеки цикъл с ненулева дължина като
за истинска кръгова наредба, в която цикличността е естествена; тоест алтерниращата
редица от върхове и ребра, по равен брой от всеки вид, е записана върху окръжност. Всяка
поява на u в c отговаря на точно две ребра – това са съседните елементи на u в c.

Ако u няма примки, няма как два съседни върха в c (естествено, между тях в c има ребро)
да са u. Следователно, на всяка поява на u в c съответстват точно две ребра—съседните
елементи на u в цикъла—като за всеки две различни появи на u, двете двойки ребра нямат
общ елемент. Следователно, множеството от всички тези двойки ребра, върху всички появи
на u в c, е точно Ipuq. Нека u е появява точно t пъти в c. Тогава |Ipuq| “ 2t. Имайки предвид,
че dpuq “ |Ipuq|, заключаваме, че степента на u е четно число.

Да разгледаме по-общия случай, в който u има примки. Нека u има q примки e1,e2, . . . ,
eq. Нека u се появява точно t пъти в c, както в предния случай. Очевидно, t ě q. При
наличието на примки на u има съседни появи на u в c (естествено, с ребро между тях, което
ребро е някоя от примките). По-точно казано, в c има точно q подредици uei u, 1 ď i ď q

(по една за всяка примка на u), като някои от тези подредици може да имат общ край
u. Всяка такава триелементна подредица, отговаряща на дадена примка, има принос `2
към степента на u. Максималните по включване подредици са от вида uej1 ¨ ¨ ¨ ejr u, където
ej1 , . . . , ejr P te1, . . . , equ, са точно t ´ q на брой. Нека E 1 е множеството от всички ребра,
които са вляво и вдясно от всяка от тези подредици. E 1 е точно множеството от ребрата,
инцидентни с u, които не са примки. Тъй като тези максимални по включване подредици
никога не са съседни, в смисъл, че между всеки две от тях в c има поне един връх, който не е
u, очевидно |E 1| “ 2pt´qq. Имайки предвид, че dpuq е сумата от |E 1| и 2q (вж. Определение 15),
заключаваме, че dpuq е четно число.

Доказателство, II: Сега допускаме, че G е свързан и всеки връх е от четна степен. Ще
докажем съществуването на Ойлеров цикъл конструктивно: ще покажем алгоритъм, който
строи Ойлеров цикъл c във всеки свързан граф с върхове само от четни степени. Този алго-
ритъм е много стар. Измислен е от Carl Hierholtzer през 19 век [12, стр. 10], като Hierholtzer
очевидно не е бил запознат с изследванията на Euler върху съществуването на такива цикли
през 18 век. Идеята на алгоритъма е проста. В началото всяко ребро е неизползвано, а c е
празен (празната редица). Използваме временен цикъл s и текущ връх u (u е променлива от
тип връх, а не фиксиран връх от графа). Започвайки от произволен връх a, който е инциден-
тен с поне едно неизползвано ребро (в началото всички върхове са такива), инициализираме
u Ð a и s Ð a. После изпълняваме, докато е възможно, следното: избираме произволно
неизползвано ребро e P Ipuq, маркираме e като използвано и “преминаваме” през e; тоест,
ако другият край на e е v, добавяме e и v към s като s Ð s, e, v; текущият връх u става v,
тоест правим uÐ v.

Правим това, докато можем; тоест, докато не стигнем до текущ връх u, който няма ин-
цидентно необходено ребро. Тъй като ребрата са краен брой и ние променяме статусите на
ребрата само от неизползвани в използвани, рано или късно ще се окажем във връх u, който
няма неизползвани инцидентни ребра. В този момент u е точно този връх a, от който започ-
нахме обхождането (това ще докажем по-долу формално). Ерго, в този момент s е цикъл.
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Вмъкваме s в c (по-долу ще уточним какво точно значи това). Ако всички ребра са изпол-
звани, връщаме c и терминираме алгоритъма. В противен случай продължаваме така: тъй
като G е свързан, в c задължително има връх a, който е инцидентен с поне едно необходено
ребро. Тогава присвояваме u Ð a, s Ð a и отново изпълняваме итерираното добавяне на
ребра и върхове към s, докато можем.

Формално, алгоритъмът може да се запише така. Променлива тип път е алтернираща редица
от върхове и ребра, започваща и завършваща с връх. ε означава празната редица. БОО,
допускаме, че мултиграфът има поне едно ребро, инак той би бил един единствен изолиран
връх.

Алгоритъм 3: Алгоритъм на Hierholtzer

Вход: свързан мултиграф G с поне едно ребро и четни степени.
Изход: Ойлеров цикъл c в G.
u и x са променливи тип връх, а s и c са променливи тип път.

¶ cÐ ε. Маркирай всички ребра на G като неизползвани.

· Докато има неизползвани ребра, прави следното.

¸ Ако c “ ε, избери произволен връх a, инцидентен с неизползвано ребро, в
противен случай избери произволен връх a P c, инцидентен с неизползвано
ребро.

¹ Присвои uÐ a, sÐ a.

º Докато има поне едно неизползвано ребро e “ pu, vq, инцидентно с u
» присвои sÐ s, e, v и маркирай e като използвано.
¼ присвои uÐ v.

½ Вмъкни s в c.

¾ Върни c.

Едно доуточнение. “Вмъкни s в c” на ред ½ означава следното.

• Ако c е празната редица, то присвои cÐ s.

• В противен случай е изпълнено |s| ě 1. Дори s да е примка, това е вярно. Нека y е
първият и последния елемент на s, тоест, s “ y, s 1,y за някаква непразна редица s 1.
В този случай, c съдържа поне една поява на върха y, тоест, c “ c1,y, c2 за някакви
редици c1 и c2. Вмъкването на s в c е замяната на y с s в c, тоест, cÐ c1, s, c2.

Формално и пълно доказателство за коректност на този итеративен алгоритъм би било твър-
де дълго и извън основната тема на тези лекционни записки. Алгоритъмът има два вложени
цикъла. Външният цикъл е на редове ·–½ и той строи c. Вътрешният цикъл е на редове
º–¼ и той строи s. Строго формално доказателство за коректност би трябвало да доказва
чрез инварианти твърдения поотделно за външния цикъл и за вътрешния цикъл. Вместо
това, тук само ще скицираме основното от доказателството за коректност.

Да дефинираме, че неизползваната степен на връх е броят на неизползваните ребра, ин-
цидентни с него, които не са примки, плюс два пъти броят на неизползваните примки, ин-
цидентни с него. Ясно е, че в началото на алгоритъма неизпозваните степени на върховете
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съвпадат точно със степените на върховете. По условие, в началото на алгоритъма всички
степени са четни. Очевидно е, а и лесно се доказва, че при всяко достигане на ред ·, всички
неизползвани степени са четни. Ключовото наблюдение е следното.

Всяко изпълнение на » променя статуса на точно едно ребро, а именно e, от не-
използвано на използвано. Ако e не е примка, изпълнението намалява с единица
неизползваните степени на точно два върха, а именно на u и на v, и по този
начин променя четностите на неизползваните степени и на u, и на v. А ако e е
примка, изпълнението намалява с две неизползваната степен на u и няма отра-
жение върху четностите на неизползваните степени.

Веднага следва, че докато се “върти” вътрешният цикъл (редове º–¼), ако v ­“ a на ред »,
то точно два върха, а именно a и v, които са краищата на s, имат нечетни неизползвани
степени. На ред ¼, връх u получава стойност v, така че при следващото достигане на º:

• ако u ­“ a, то u и a са точно върховете с нечетни неизползвани степени; в този случай u
има поне едно инцидентно неизползвано ребро—понеже неизползваните степени в целия
граф бяха четни преди преди изпълнение на вътрешния цикъл в рамките на даденото
изпълнение на външния цикъл—така че итерирането на вътрешния цикъл продължава;

• ако u “ a, то всички върхове в G имат четни неизползвани степени; ако u има неиз-
ползвана степен нула, итерирането на вътрешния цикъл спира, в противен случай то
продължава.

От това следва, че по отношение на едно единствено изпълнение на външния цикъл,
при последното достигане на º е изпълнено u “ a. Следователно, при всяко излизане от
вътрешния цикъл, променливата u съдържа a, тоест, върхът, който u съдържаше, когато
започна изпълнението на вътрешния цикъл. А от това следва, че при всяко излизане от
вътрешния цикъл, наистина s е цикъл, понеже a и u са съответно началния и крайния връх
на редицата s. Щом s е цикъл, то вмъкването на s в c е добре дефинирано, независимо от
това дали c е празната редица или не.

Тривиално се доказва, че във всеки момент от работата на алгоритъма, в s няма повтаряне
на ребра, понеже в него “влизат” само необходени ребра, които веднага стават обходени. От
това следва, че във всеки момент от работата на алгоритъма, в c няма повтаряне на ребра.

Ако при достигането на ред · не са останали необходени ребра, очевидно c е Ойлеров
цикъл, така че алгоритъмът наистина връща Ойлеров цикъл на ред ¾. В противен случай
следва още едно изпълнение на въшния цикъл на алгоритъма. Лесно се доказва, че в такъв
случай поне един връх от текущия цикъл c е инцидентен с неизползвано ребро – допускането
на противното веднага влече, че G не е свързан. Ерго, връх a на ред ¸ е добре дефиниран. 2

Ще илюстрираме работата на алгоритъма на Hierholzter върху следния мултиграф.

e2 e4

e17 e19

e1 e3 e5

e16 e18 e20

e6 e9 e13e12e8e7 e10 e15e11 e14

w1 w2 w3 w4 w5 w6

z1 z2 z3 z4 z5 z6
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Първоначално c е празен, а всички ребра са неизползвани (ред ¶). На ред · избираме
произволен връх a. Да кажем, че избираме w2. На ред ¸ присвояваме u Ð w2 и s Ð u. Да
си представим s като път в мултиграфа (s ще стане цикъл, но в процеса на работата s е път,
който не е непременно цикъл), който нараства само в единия си край и този край е върхът,
който се съдържа в променливата u.

e2 e4

e17 e19

e1 e3 e5

e16 e18 e20

e6 e9 e13e12e8e7 e10 e15e11 e14

w1 w2 w3 w4 w5 w6

z1 z2 z3 z4 z5 z6

u

s

Изпълнението отива на ред º. u има инцидентни неизползвани ребра. Да кажем, че избираме
e2. Тогава e “ pu, vq на ред » е реброто e2, като u “ w2 и v “ w3. На ред » s “нараства” с
e2,w3, а на ред ¼ u получава стойност w3.

e2 e4

e17 e19

e1 e3 e5

e16 e18 e20

e6 e9 e13e12e8e7 e10 e15e11 e14

w1 w2 w3 w4 w5 w6

z1 z2 z3 z4 z5 z6

u

s

Изпълнението отново е на ред º. Да кажем, че избираме e10 като e. Тогава v “ z3. След
изпълнението на » и ¼ имаме:

e2 e4

e17 e19

e1 e3 e5

e16 e18 e20

e6 e9 e13e12e8e7 e10 e15e11 e14

w1 w2 w3 w4 w5 w6

z1 z2 z3 z4 z5 z6u

s

В момента s е пътят w2, e2,w3, e10, z3. Нека през следващите няколко итерации на вътрешния
цикъл на алгоритъма, s стане w2, e2,w3, e10, z3, e17, z2, e16, z1, e6,w1:

e2 e4

e17 e19

e1 e3 e5

e16 e18 e20

e6 e9 e13e12e8e7 e10 e15e11 e14

w1 w2 w3 w4 w5 w6

z1 z2 z3 z4 z5 z6

u

s
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Сега изборът за e е измежду e7, e8 и e1. Да кажем, че изберем e1. Тогава следващата стойност
на u еw2, върхът, от който тръгнахме. Нещо повече, текущият u няма инцидентни необходени
ребра и изпълнението на º спира. Както виждаме на илюстрацията, в момента s е цикъл.

e2 e4

e17 e19

e1 e3 e5

e16 e18 e20

e6 e9 e13e12e8e7 e10 e15e11 e14

w1 w2 w3 w4 w5 w6

z1 z2 z3 z4 z5 z6

u

s

Вмъкваме s в c (ред ½). Тъй като c е празен, това означава, че c приема стойността на
текущия s. Тоест,

c “ w2, e2,w3, e10, z3, e17, z2, e16, z1, e6,w1, e1,w2

Тъй като има неизползвани ребра, условието на ред · е истина и външният цикъл изпъл-
нява поне още веднъж. Изпълнява се ред ¸, където избираме w1 като връх a. На ред ¹

присвояваме uÐ w1 и sÐ w1 и отиваме на ред º. Нещата изглеждат така:

e2 e4

e17 e19

e1 e3 e5

e16 e18 e20

e6 e9 e13e12e8e7 e10 e15e11 e14

w1 w2 w3 w4 w5 w6

z1 z2 z3 z4 z5 z6

u

cs

След две изпълнения на вътрешния цикъл на алгоритъма имаме s “ w1, e8, z1, e7,w1:

e2 e4

e17 e19

e1 e3 e5

e16 e18 e20

e6 e9 e13e12e8e7 e10 e15e11 e14

w1 w2 w3 w4 w5 w6

z1 z2 z3 z4 z5 z6

u

cs

Текущият u отново е w1, така че s е цикъл. На ред ½ вмъкваме s в c. Тъй като c не е празен,
вмъкването става, като заменяме някоя поява на w1 (върхът, с който започва и завършва s)
в c със самия s. Получаваме:

c “ w2, e2,w3, e10, z3, e17, z2, e16, z1, e6,w1, e8, z1, e7,w1, e1,w2

Нагледно, резултатът от влагането изглежда така:
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e2 e4

e17 e19

e1 e3 e5

e16 e18 e20

e6 e9 e13e12e8e7 e10 e15e11 e14

w1 w2 w3 w4 w5 w6

z1 z2 z3 z4 z5 z6

c

Тъй като има неизползвани ребра, алгоритъмът пордължава. Да кажем, че при следващото
изпълнение на външния цикъл на алгоритъма, a “ w3 на ред ¸, а след приключването на
външния цикъл имаме

s “ w3, e3,w4, e4,w5, e5,w6, e15, z6, e20, z5, e19, z4, e18, z3, e9,w3

Нагледно, нещата изглеждат така:

e2 e4

e17 e19

e1 e3 e5

e16 e18 e20

e6 e9 e13e12e8e7 e10 e15e11 e14

w1 w2 w3 w4 w5 w6

z1 z2 z3 z4 z5 z6

c s

Влагаме s в c:

e2 e4

e17 e19

e1 e3 e5

e16 e18 e20

e6 e9 e13e12e8e7 e10 e15e11 e14

w1 w2 w3 w4 w5 w6

z1 z2 z3 z4 z5 z6

c

Все още има неизползвани ребра. При още едно “завъртане” на външния цикъл получаваме:

e2 e4

e17 e19

e1 e3 e5

e16 e18 e20

e6 e9 e13e12e8e7 e10 e15e11 e14

w1 w2 w3 w4 w5 w6

z1 z2 z3 z4 z5 z6

c s

Влагаме s в c:
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e2 e4

e17 e19

e1 e3 e5

e16 e18 e20

e6 e9 e13e12e8e7 e10 e15e11 e14

w1 w2 w3 w4 w5 w6

z1 z2 z3 z4 z5 z6

c

Все още има необходени ребра. Пак построяваме s:

e2 e4

e17 e19

e1 e3 e5

e16 e18 e20

e6 e9 e13e12e8e7 e10 e15e11 e14

w1 w2 w3 w4 w5 w6

z1 z2 z3 z4 z5 z6

c
s

Влагаме s в c:

e2 e4

e17 e19

e1 e3 e5

e16 e18 e20

e6 e9 e13e12e8e7 e10 e15e11 e14

w1 w2 w3 w4 w5 w6

z1 z2 z3 z4 z5 z6

c

Сега вече няма неизползвани ребра и алгоритъмът връща c.

Има и друг известен алгоритъм за построяване на Ойлерови цикли: алгоритъмът на Fleury.
Тук няма да го описваме. Той е описан, например, в учебника на Bondy и Murty [13, стр. 86].

Теорема 24: Ойлеров път, който не е цикъл, в свързан мултиграф

G има Ойлеров път, който не е цикъл, тогава и само тогава, когато точно два върха са
от нечетна степен.

Доказателство, I: Нека G има път p, който съдържа всяко ребро точно веднъж и има
различни краища u и v. Ще покажем, че dpuq и dpvq са нечетни, а всички върхове освен u и
v имат четни степени.

Имаме p “ u, ¨ ¨ ¨ , v. Добавяме едно ново ребро e между u и v, получавайки мултиграф
G 1. Очевидно G 1 има Ойлеров цикъл c, състоящ се от p плюс новото ребро e:

c “ p, e,u

Съгласно Теорема 23, в G 1 всички върхове са от четна степен. Очевидно dG 1puq “ dGpuq ` 1,
dG 1pvq “ dGpvq ` 1 и @x P VpGqztu, vu : dG 1pxq “ dGpxq. Веднага следва, че dGpuq и dGpvq са
нечетни, а останалите върхове в G са с четни степени.
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Доказателство, II: Нека в G има точно два върха от нечетна степен. Ще покажем, че в
G има Ойлеров u-v път.

Добавяме едно ново ребро e между u и v, получавайки мултиграф G2. Очевидно в G2
всички върхове са от четна степен. Съгласно Теорема 23, в G2 има Ойлеров цикъл c. Изт-
ривайки e от c, получаваме Ойлеров u-v път. 2

Допълнение 15: Хамилтонови цикли, Ойлерови цикли и линейни графи

Задачата да се намери дали даден граф е Хамилтонов или не, е изключително трудна.
Както вече споменахме в Допълнение 14, тя е NP-трудна. От друга страна, задачата
дали даден граф е Ойлеров или не, е алгоритмично лесна – Алгоритъм 3 решава тази
задача бързо дори за огромни графи.
Да разсъждаваме върху следното. Нека е даден граф G. Искаме да разберем дали G
е Хамилтонов. Да допуснем, че G е линеен граф (Определение 40). Това означава, че
G “ LpHq за някакъв граф H. Ако H е Ойлеров, то G е Хамилтонов; нещо повече,
Ойлеровият цикъл в H директно отговаря на Хамилтоновия цикъл в G. Но въпросът
дали G е Хамилтонов не е същият като въпросът дали H е Ойлеров. Следната теорема
от [32] хвърля светлина върху всичко това.

Теорема 25: Теорема 8.8 в [32, стр. 80] за линейните графи

Ако G е Ойлеров, то LpGq е и Ойлеров, и Хамилтонов. Конверсното твърдение не
е вярно. Ако G е Хамилтонов, то и LpGq е Хамилтонов. Конверсното твърдение
не е вярно.

Че нито едно от конверсните твърдения не е истина се вижда от Фигура 2.71 (взета от
Фигура 8.9 на стр. 80 в [32]).

Фигура 2.71 : Ойл. и Хам. цикли в графи и линейните им графи.

J

K

J не е Ойлеров и K не е нито Хамил-
тонов, нито Ойлеров.

LpJq

LpKq

LpJq е Хамилтонов и Ойлеров и LpKq
е Хамилтонов.
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Заключаваме, че дори G да е линеен граф, задачата дали G е Хамилтонов не се свежда
до задачата дали H е Ойлеров, където H е граф, такъв че G “ LpHq.

Допълнение 16: Домино, Хамилтонови цикли и Ойлерови цикли

Играта домино се играе с 28 плочки. Всяка плочка е правоъгълник с размери 1ˆ 2 и е
разделена на два квадрата 1ˆ 1. Върху квадратите има точки, чиито брой варира от
0 до 6. Всички 28 плочки са показани тук:

Когато плочките се редят в редица, те се слагат една до друга така, че страна на
квадрат на едната плочка е долепена точно до страна на квадрат на другата плочка,
като двата квадрат имат един и същи брой точки. Примерно така:

Допустимо е единият от правоъгълниците да е под прав ъгъл спрямо другия:
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По този начин може да строим редица от плочки, при която всяка следваща плочка
е долепена така до предишната, че квадратите, които се оказват един до друг, имат
един и същи брой точки. Затворена редица от плочки е редица, в която последният
квадрат на последната плочка е долепен по първия квадрат на първата плочка и за
тези два квадрата също е вярно, че имат един и същи брой точки.

Иска се да се докаже, че е възможно да се направи затворена редица от всички плочки.
Има елегантно доказателство, използващо теорията на графите. Очевидно доказателс-
твото ще покаже, че има някакъв цикъл в някакъв граф, но какъв е графът и за какъв
цикъл става дума?
Сякаш най-естествено е върховете на графа да са плочките, а ребро между две плочки
да се слага тстк двете плочки имат квадратче с еднакъв брой точки. Задачата се свежда
до това, да се докаже, че в този граф има Хамилтонов цикъл.
Има обаче и друг начин да построим графа. Нека върховете са числата от 0 до 6. Те
отговарят на възможностите за точки в едно квадратче. Нека ребрата са плочките в
смисъл, че за всяка плочка px,yq, където x,y P t0, . . . , 6u, слагаме ребро с краища връх
x и връх y. Забележете, че всеки връх получава примка, като примките съответстват
на плочките от вида px, xq, за 0 ď x ď 6. Задачата е дали има Ойлеров цикъл в този
граф. Ойлеров цикъл има, защото графът е пълният граф на 7 върха, като всеки
връх е с примка. Тогава всеки връх е от степен 8, което е четно число (всяка примка
допринася две, а не едно, към степента на своя връх!). Графът очевидно е и свързан,
така че съгласно Теорема 23, в него има Ойлеров цикъл. Алгоритъмът на Hierholtzer
(Алгоритъм 3) построява Ойлеров цикъл, който директно ни “казва” как да подредим
плочките на доминото в затворена редица.
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2.11 Дървета

2.11.1 Определение

Определение 45: Дърво, не-индуктивна дефиниция.

Дърво е всеки граф, който е свързан и ацикличен.

На английски терминът е tree.

Графът, показан на Фигура 2.1, не е дърво, защото не е свързан и има цикли. Дървета (като
неименувани графи) са изобразени на Фигура 2.72.

Фигура 2.72 : Два графа, които са дървета.

Дърво с 6 върха. Дърво с 12 върха.

Следното определение на “дърво” e еквивалентно на Определение 46.
Определение 46: Дърво, индуктивна дефиниция.

Множеството от дърветата се дефинира така:

¶ База Всеки тривиален граф е дърво.

· Индуктивна стъпка Ако T “ pV,Eq е дърво и u е връх в T и w е връх, който не
е в T , то T 1 “ pV Y twu,EY tpu,wquq е дърво.

Определение 46 задава процедура: за генериране на графи. Започвайки от един единст-
вен връх (базовото множество) и използвайки присъединителната операция добавяне на нов
връх, когото свързваме към точно един от вече съществуващите върхове (с точно едно реб-
ро), ние генерираме безкрайно множество графи. Това множество графи са точно дърветата,
факт, който сега ще докажем. Първо ще докажем следната лема. Да си припомним опреде-
лението на висящ връх на стр. 9: това е връх от степен едно.

:Терминът “алгоритъм” не бил удачен, защото алгоритмите трябва да терминират, докато тази процедура
работи безкрайно.
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Лема 8: Наличие на висящи върхове в дърветата.

Нека G “ pV,Eq е дърво съгласно Определение 45, такова че n ě 2. Тогава G има поне
два висящи върха.

Доказателство: Разглеждаме произволен най-дълъг път p в G. Очевидно |p| ě 1. Нека
u и v са краищата на p. Ще докажем, че и u, и v са висящи върхове. Без ограничение на
общността, ще докажем това само за u. Връх u има поне един съсед x: това съседният му
връх, който е и в p. Ще докажем, че u не може да има други съседи освен x. Да допуснем,
че u е съседен с връх z, такъв че z ­“ x. Ако z също е връх от p, то очевидно в графа има
цикъл, както е показано на следната фигура:

u

p :
vx z

Но в дърветата цикли няма по дефиниция. Ако връх z не е връх от p, която ситуация е
илюстрирана на следната фигура:

u vx

z

то тогава в G има път, по-дълъг от p с единица – а именно пътят, който се получава от
p, следван от реброто, изобразено в червен цвят, последвано от връх z, също нарисуван в
червено. Това противоречи на допускането, че p е най-дълъг път.

И така, допускането, че u не е висящ връх, води до противоречие. 2

Теорема 26: Глобалната и индуктивната дефиниции на “дърво” са еквивалентни

Определение 45 и Определение 46 са еквивалентни.

Доказателство, I: Ще докажем, че всеки граф, генериран от процедурата на Опреде-
ление 46, е свързан и ацикличен. Тъй като Определение 46 е индуктивно, ще направим
доказателството със структурна индукция точно по него.

Базовият случай е базовият случай от определението. Разглеждаме граф ptuu,Hq. Оче-
видно той е свързан и няма цикли. 3

Допускаме, че T “ pV,Eq от индуктивната стъпка е свързан и ацикличен. Ще докажем,
че полученият T 1 е свързан и ацикличен. Първо ще докажем, че T 1 е свързан. За да бъде
свързан, трябва за всеки два върха x,y P VpT 1q да е вярно, че има път между тях. Но
VpT 1q “ V Y twu. Разглеждаме три случая.

• Нито един от x,y не е връх w. Но тогава е вярно, че x,y P V. Съгласно индуктивното
предположение, между всеки два върха в T има път, от което веднага следва, че в T 1
има път между всеки два върха от V.

• Точно единият от x,y е връх w. Без ограничение на общността, нека това е връх x.
Тогава задължително y P V. Но тогава и y, и u са върхове в T . Съгласно индуктивното
предположение, в T между тях има път, който ще наречем p. Очевидно p е път между
y и u и в T 1. Тогава пътят в T 1, който се получава от слепването на p, реброто pu,wq и
връх w, е път между y и x “ w в T 1.
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• И x “ y “ w. Тогава очевидно между x и y има тривиален път с дължина 0.

Доказахме, че T 1 е свързан. Сега ще докажем, че е ацикличен. Забелязваме, че нито един
връх от T 1 не може да бъде връх в цикъл:

• връх w е от степен 1, а всеки връх, който е връх в цикъл, е от степен поне 2;

• останалите върхове на T 1 са върховете от T , а съгласно индуктивното предположение
T е ацикличен и освен това, очевидно добавянето на реброто pu,wq не може да създаде
цикъл от върхове на VpTq.

Доказахме, че T 1 е свързан и ацикличен, тоест, дърво.

Доказателство, II: Ще докажем, че всяко дърво съгласно Определение 45 може да бъ-
де конструирано от процедурата от Определение 46. Нека D е произволно дърво съгласно
Определение 45. Ако D има точно един връх, то D може да бъде конструиран от базата на
Определение 46. В противен случай, съгласно Лема 8, в D има поне един висящ връх u1.
Нека D1 “ D´ u1. Ако D1 има точно един връх то D1 може да бъде конструиран от базата
на Определение 46. В противен случай, съгласно Лема 8, в D1 има поне един висящ връх u2.
Нека D2 “ D´ u2. Ако D2 има точно един връх то D2 може да бъде конструиран от базата
на Определение 46. И така нататък. Очевидно, при всяко от тези изтривания на висящ връх,
графът остава свързан и ацикличен, тоест дърво. Следователно има редица от дървета D,
D1, D2, . . . , Dk за някое k. Ясно е, че това последователно изтриване на върхове може да
се прави само краен брой пъти, защото началният D има краен брой върхове. И така, за
някое k: е вярно, че Dk има точно един връх. Изтритите върхове са u1, u2, . . . , uk, в реда
на триенето. Тогава графът с точно един връх Dk може да бъде конструиран от базата на
Определение 46, а след това с |VpDq| ´ 1 прилагания на индуктивната стъпка добавяме из-
тритите върхове в обратния ред на изтриването им, като свързваме всеки от тях към точно
този връх, който е бил единственият му съсед точно преди изтриването. Очевидно по този
начин получаваме D. 2

Определение 47: Гора.

Гора е всеки ацикличен граф.

На английски терминът е forest. Очевидно това е обобщение на “дърво”: всяка гора е дърво,
ако е свързан граф. Освен това, свързаните компоненти на всяка гора са дървета;. Всяка
гора е обединение на дървета, които два по два нямат общи върхове.

2.11.2 Свойства на дърветата

За доказателството на Теорема 27 ще използваме Определение 45.
Теорема 27: В дърво има точно един път между кои да е два върха

Граф е дърво тогава и само тогава, когато между всеки два негови върха има точно
един път.

Доказателство, I: Да разгледаме произволно дърво T и произволни u, v P VpTq. Ще дока-
жем, че има точно един u-v път. Че има поне един u-v път следва от това, че T е свързан.

:А именно, k “ |VpDq| ´ 1.
;Също както в реалния свят гората се състои от дървета. . .

118



ГЛАВА 2. НЕОРИЕНТИРАНИ ГРАФИ И НЕОРИЕНТИРАНИ МУЛТИГРАФИ © Минко Марков, 2025г.

Сега ще използваме и факта, че T е ацикличен, за да покажем, че не може да има повече от
един u-v път.

Допускаме противното: между u и v има поне два пътя p и q. Връх u се явява край и на
p, и на q. Разглеждаме p и q като крайни редици от върхове, като търсим първия връх от
u нататък, който е различен за p и q. Такъв трябва да има, иначе p и q биха били един и
същи път. Може само в единия от p и q да се среща такъв връх, но трябва да се среща. Без
ограничение на общността, нека w е първият връх от u нататък в p, който не се среща в q.
Нека a е върхът преди w, в посока от u нататък, в p. С други думи, a е последният от u
нататък в p, който е общ за p и q. Нека b е първият връх след a в p, в посока от u нататък,
който е връх и в q. Очевидно е, че такъв общ връх трябва да има, понеже p и q имат друг
(освен u) общ край, а именно връх v, така че няма как след a, в посока от u нататък, да
имат само върхове, които не са общи.

И така, установихме, че в p има подпът p 1 с краища a и b, който не е подпът на q.
Аналогично, в q има подпът q 1 с краища a и b, който не е подпът на p. Както споменахме,
единият от p 1 и q 1 може да няма вътрешни върхове:, но това няма значение. Важното е, че
p 1 Y q 1 е цикъл в T , а ние знаем, че в дърветата няма цикли. Следователно, допускането, че
има поне два различни u-v пътя, е погрешно.

Доказателство, II: Да разгледаме произволен граф G, в който между всеки два върха
има точно един път. Веднага се вижда, че G е свързан.

Ако допуснем, че в G има поне един цикъл, веднага следва, че в G има поне два върха,
между които има два различни пътя, което е невъзможно при по-рано направеното допуска-
не, че между всеки два върха има точно един път. Но тогава допускането, че в G съществува
цикъл, е грешно. С други думи, G е ацикличен.

Следователно, G е дърво. 2

За доказателството на Теорема 28 ще използваме Определение 45.
Теорема 28: Дърво плюс ребро е уницикличен граф

Нека T “ pV,Eq е дърво и u, v P V са различни върхове, които не са съседи. Тогава
графът G “ pV,EY tpu, vquq има точно един цикъл.

Доказателство: Ще покажем, че G има поне един цикъл. Наистина, u и v са свързани с
(един единствен) път p в T съгласно Теорема 27, като p съдържа поне един вътрешен връх,
понеже u и v не са съседи в T . Нека

p “ u, e1,w1, . . . , ek,wk, ek`1, v

като tw1, . . . ,wku Ď V е множеството от вътрешните върхове на p, te1, . . . , ek`1u Ď E е множес-
твото от ребрата на p, а k ě 1. Нека реброто pu, vq в G бъде наречено e 1. Нека q “ ptu, vu, te 1uq.
Тогава c “ pY q е цикъл в G.

Ще покажем, че в G не може да има повече от един цикъл. Да допуснем, че в G има
цикъл c 1, който е различен от c. Ясно е, че c 1 също съдържа реброто e 1, защото и той се е
появил с добавянето на e 1 към T . Тогава c 1 съдържа и върховете u и v. Следва, че u, e 1, v
е общ подпът за c и c 1. Ако “тръгнем” от u през e 1, v и така нататък в c и c 1, все някъде
трябва да има разлика; трябва има някакъв връх z, общ за c и c 1, след който в c има ребро
pe, а в c 1 има ребро re, като pe ­“ re. Този връх z може да съвпада с v или да не съвпада с
v, това няма значение, важното е, има такъв връх, след който следва бифуркация – двата

:Не може и p 1, и q 1 да нямат вътрешни върхове. Това би било възможно само ако има две различни
ребра с краища a и b, а това е възможно само при мултиграфите, каквито в момента не разглеждаме.
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цикъла се разделят. Ако нямаше такъв връх, след който се разделят, те биха били един и
същи цикъл. От друга страна обаче, след “раздялата” при z, циклите трябва да се съберат
отново в някакъв връх ω; това е очевидно предвид факта, че u е общ връх за двата цикъла.
Обаче подпътят на c от z до ω образува цикъл с подпътя на c 1 от z до ω, като този цикъл
(той не е нито c, нито c 1) се намира изцяло в T . Знаем, че T е ацикличен, така че такъв трети
цикъл не може да има, така че и c 1 не може да съществува. 2

Определение 48: Уницикличен граф

Свързан граф, който има точно един цикъл, се нарича уницикличен граф.

На английски терминът е unicyclic graph. Теорема 28 казва, че добавянето на ребро към
несъседи на дърво води до уницикличен граф.

За доказателството на Теорема 29 ще използваме Определение 46.
Теорема 29: Във всяко дърво, m “ n´ 1

Във всяко дърво, m “ n´ 1.

Доказателство: Със структурна индукция съгласно Определение 46. В базовия случай на
Определение 46, очевидно за графа с един връх и нула ребра, твърдението е вярно. 3

Нека твърдението е вярно за дървото T от индуктивната стъпка. С други думи, допускаме,
че

|EpTq| “ |VpTq| ´ 1 (2.12)

Трябва да докажем, че твърдението е вярно за дървото T 1. С други думи, да докажем, че

|EpT 1q| “ |VpT 1q| ´ 1 (2.13)

Но това е съвършено очевидно предвид факта, че |EpT 1q| “ |EpTq|`1 и |VpT 1q| “ |VpTq|`1; ако
заместим |EpT 1q| с |EpTq|`1 и |VpT 1q| с |VpTq|`1 в (2.13), ще получим равенство, еквивалентно
на (2.12). 2

Лема 8 казва, че дърво с поне два върха има поне два висящи върха. Теорема 30 дава точния
брой на висящите върхове, изразен чрез броя на върховете от степен поне 3. Забележете, че
върховете от степен 2 нямат значение за броя на висящите върхове; в сумата бихме могли
да сумираме и по тях, понеже, ако dpvq “ 2, очевидно dpvq ´ 2 “ 0, така че техният “принос”
би бил нула.

Теорема 30: Броят на висящите върхове в дърво

Нека T “ pV,Eq е дърво с поне два върха. Броят p на висящите върхове в T е

p “ 2`
ÿ

vPV
dpvqě3

pdpvq ´ 2q

Доказателство: От Лема 1 знаем, че
ř

vPV dpuq “ 2m, а от Теорема 29 знаем, че m “ n´1.
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Тогава
ÿ

vPV

dpvq “ 2n´ 2 Ø

´ 2 “

˜

ÿ

vPV

dpvq

¸

´ 2n Ø

´ 2 “
ÿ

vPV

pdpvq ´ 2q Ø

´ 2 “
ÿ

vPV
dpvq“1

pdpvq ´ 2q `
ÿ

vPV
dpvq“2

pdpvq ´ 2q `
ÿ

vPV
dpvqě3

pdpvq ´ 2q Ø

´ 2 “ ´p` 0`
ÿ

vPV
dpvqě3

pdpvq ´ 2q Ø

p “ 2`
ÿ

vPV
dpvqě3

pdpvq ´ 2q (2.14)

Това остава в сила дори ∆pTq “ 2. Тогава, от една страна, дървото е прост път и има точно
два висящи върха, а, от друга страна,

ÿ

vPV
dpvqě3

pdpvq´2q “ 0, понеже tv P V |dpvq ě 3u “ H, така

че (2.14) остава в сила. 2

2.11.3 Коренови дървета

В Компютърните науки следната разновидност на понятието “дърво” се използва много по-
вече повече от общото понятие “дърво” от Определение 45.

Кореново дърво, не-индуктивна дефиниция
Определение 49: Кореново дърво, глобална дефиниция. Родител и дете.

Нека T “ pV,Eq е дърво. Избираме произволен връх r P V и го наричаме корен. След
избора на корен T става кореново дърво. Изборът на корен еднозначно определя релация
на родителство върху всяко ребро. Нека e P E е произволно ребро и нека e “ pu, vq.
Съгласно Теорема 27, съществува точно един път p между r и u и съществува точно
един път q между r и v. Нещо повече.

• Или Vppq “ Vpqq Y tuu, в който случай v е предпоследният връх преди u в p и
казваме, че v е родителят на u, а u е дете на v:

r
p

e

v u

• или Vpqq “ Vppq Y tvu, в който случай u е предпоследният връх преди v в q и
казваме, че u е родителят на v, а v е дете на u.

r
q

e

u v
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На английски терминът е rooted tree.

Конвенция 9: “Дърво” без “кореново” означава не-кореново дърво

Въпреки че кореновите дървета се ползват много повече в Компютърните науки от
обикновените, не-коренови дървета, ако кажем само “дърво” без прилагателното “ко-
реново”, разбираме дърво, което не е кореново. Ако искаме да кажем дърво, което е
кореново, трябва да кажем “кореново” експлицитно.

Ето пример за кореново дърво. Първо да разгледаме обикновеното (не-кореново) дърво T на
Фигура 2.73.

Фигура 2.73 : Обикновено дърво T .

db

zv

a c

u w

x y

Фигура 2.74 илюстрира две различни коренови дървета, които се получават от не-кореновото
дърво от Фигура 2.73 след различни избирания на корен:

• Дървото T 1 се получава от T след избор на a за корен.

• Дървото T 2 се получава от T след избор на x за корен.

Прието е кореновите дървета да се рисуват така, както е показано на фигурата: върховете се
рисуват по нива́ съгласно разстоянието до корена, като коренът се рисува най-горе, а всяко
следващо ниво е под предното.

Фигура 2.74 : Коренови дървета, получени от дървото на Фигура 2.73 при
различни избори на корен.

d

b

z

v

cu w

x

y

a

T 1

b

d z

c w

y

a

x

v

u

T 2
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Върховете в кореново дърво, които нямат деца, се наричат листата на дървото. В последния
пример, листата на T 1 са u, d и z, а листата на T 2 са a, u, d и z. Всяко листо в кореновото дърво
е висящ връх в съответното не-кореново дърво, но обратното не винаги е вярно. Възможно
е (точно един) висящ връх в не-кореновото дърво да не е листо в полученото кореново, и
това е точно тогава, когато този връх е избран за корен. Примерно, в T 1 връх a не е листо,
въпреки че a е висящ връх в T .

За удобство дефинираме, че акоD е не-кореново дърво с един единствен връх f и направим
D кореново дърво (при което нямаме друг избор, освен да направим f корен), то f е и листо.
И така, коренът е листо в един единствен случай – дървото има точно един връх.

Няма единно мнение за това, кои върхове са вътрешните върхове на кореново дърво. Много
автори, например Rosen [54, стр. 748], използват термина “вътрешен връх” (на английски е
“internal vertex”) за всеки връх в кореново дърво, който не е листо. Други автори като Epp
[22] ползват “internal vertex” и в контекста на не-кореновите дървета, (стр. 688), и в контекста
на кореновите дървета, като явно не смята корена за вътрешен връх (вижте определението
на стр. 694 в [22]). Ние ще приемем определението на Rosen.

Определение 50: Вътрешни върхове в кореново дърво

Вътрешните върхове на кореново дърво са точно тези върхове, които не са листа.

В тези записки въведохме понятието “вътрешен връх” и при пътищата (Определение 16).
Нека не бъркаме двете употреби на “вътрешен връх” – те са различни! Пътищата наистина
са частен случай на дървета, но не-коренови. Ако път с дължина ě 1 бъде направен ко-
реново дърво чрез избор на един от краищата за корен, то този връх (коренът) се явява
вътрешен връх съгласно Определение 50, ако гледаме на обекта като на кореново дърво, но
не е вътрешен връх, ако гледаме на обекта като на не-кореново дърво.

В контекста на дадено кореново дърво, дефинираме поддърво, вкоренено във връх. Нефор-
мално, то се състои от този връх и всичко, което се намира “под него” (и върхове, и ребра).
Формално, ако T е кореново дърво с корен r и u P VpTq, то поддървото на T , вкоренено в u,
е подграфът на T , индуциран от множеството от всички върхове u1, за които u е връх от
уникалния r-u1 път. Поддървото на T , вкоренено в u, се смята за кореново дърво с корен u и
се бележи с “TJuK”. Очевидно е, че TJuK “ T тогава и само тогава, когато u “ r. Като пример
да разгледаме T 1 и T 2 от Фигура 2.74. На Фигура 2.75 са показани T 1JxK и T 2JxK, очертани
полупрозрачен червен цвят съответно върху T 1 и T 2. Ясно е, че T 1JxK и T 2JxK са различни
обекти, въпреки че съответното не-кореново дърво е едно и също.
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Фигура 2.75 : Поддърветата, вкоренени в x във всяко от кореновите дър-
вета на Фигура 2.74.
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В кореновите дървета се дефинират и релации на предшествие и наследство над върхо-
вете. За произволен връх, образно казано, предшествениците му са върховете “над него”, а
наследниците му са върховете “под него”. Ето и формалните дефиниции.

Определение 51: Предшественици и наследници на връх.

Нека T е кореново дърво с корен r и u е произволен връх в него. За всеки връх v
казваме, че v е предшественик на u, ако v е връх от u-r пътя. За всеки връх v казваме,
че v е наследник на u, ако u е предшественик на v.

Забележете, че наследниците на u са точно върховете на TJuK.
Релациите на предшествие и наследство са рефлексивни и транзитивни.

• Измежду предшествениците на u е самият u, така че предшествието е рефлексивно.
Предшествениците на u са самият u, родителят на u, ако има такъв, неговият родител,
ако има такъв, и така нататък чак до корена r; ерго, ако връх v е предшественик на
u, а връх w е предшественик на v, то w е предшественик на u; ерго, предшествието е
транзитивно.

• Измежду наследниците на u е самият u, така че релацията на наследство е рефлек-
сивна. Наследниците на u са самият u, децата на u, ако има такива, техните деца, ако
има такива, и така нататък чак до листата на TJuK; ерго, ако връх v е наследник на
u, а връх w е наследник на v, то w е наследник на u; ерго, релацията на наследство е
транзитивна.

Предшествието се явява рефлексивното и транзитивно затваряне на родителството, а дру-
гата релация (може ли да се каже “наследствието”?) се явява рефлексивното и транзитивно
затваряне на релацията “ е дете на ” (може ли да се каже “детството”?).
Примерно, в T 1 от Фигура 2.74, предшествениците на x са самият x, b и a, а наследниците
на x са x, v, y, u, c, w, d и z.
Дали кореновите дървета са ориентирани графи:, или не? Обикновените дървета катего-
:Вж. Глава 3.
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рично са неориентирани графи. При кореновите дървета говорим не за “съседство” на два
върха, а за “родител” и “дете”. Това е терминология, характерна за ориентираните графи.
Някои автори, например Rosen [54, стр. 747], казват, че кореновите дървета са ориентирани
графи: избирайки корен, избираме и ориентация (посока) на всяко ребро, като ориентацията
на ребрата е от корена навън (към листата). Това е смислено съображение, но, от друга
страна, когато строим покриващо кореново дърво на неориентиран граф, то трябва да е
неориентиран граф, бивайки подграф на неориентиран граф. Трудно е да се даде категори-
чен еднозначен отговор, приложим навсякъде, дали кореновите дървета са ориентирани или
неориентирани.

Може обаче и да фиксираме ориентация на ребрата в явен вид и тогава говорим за ори-
ентирани коренови дъврета. Подсекция 3.1.9 разглежда подробно ориентираните дървета.

Определение 52: Височина на връх и на кореново дърво. Дълбочина на връх.

Нека T е кореново дърво с корен r. Нека u е произволен връх в T . Височината на u
е максималното разстояние между u и кое да е листо в TJuK. Височината на T е
височината на r.

Дълбочината на u е разстоянието между u и r.

На английски съответните термини са height и depth. Очевидно височината на T може да се
дефинира и като максималната дълбочина на връх в T . Забележете, че терминът “ниво в
кореново дърво”, който използвахме на стр. 122, означава “множеството от върховете, които
имат една и също дълбочина”.

Да разгледаме кореновите дървета T 1 и T 2 на Фигура 2.74. В T 1: височината на a е 5, висо-
чината на b е 4, височината на x е 3, и така нататък, височината на d е 0 и височината на z е
0, а височината на самото T 1 e 5. В T 2: височината на a е 0, височината на b е 1, височината
на x е 3, което е и височината на самото T 2, и така нататък. В T 1: дълбочината на a е 0, на x
е 2, на d е 5, и така нататък. В T 2: дълбочината на a е 2, на x е 0, на d е 3, и така нататък.

Определение 53: Разклоненост на кореново дърво.

Нека T е кореново дърво. Разклонеността на T е максималният брой деца на кой да
е връх в дървото.

На английски терминът е branching factor.

Да разгледаме кореновите дървета T 1 и T 2 на Фигура 2.74. Разклонеността на T 1 е 2, а
разклонеността на T 2 е 3. Очевидно разклонеността е свързана с ∆pTq, където T е съответното
не-кореново дърво; а именно, разклонеността на кореновото дърво е равна на ∆pTq, ако
коренът на кореновото дърво е връх от максимална степен в не-кореновото (това е случаят
с T 2), или е равна ∆pTq ´ 1, в противен случай (това е случаят с T 1).

На английски често се казва “k-ary tree” като синоним на “кореново дърво с разклоненост k”.
На български ще казваме “k-ично дърво”. От особено значение е случаят, в който k “ 2.

Определение 54: Двоично дърво.

Двоично дърво е кореново дърво с разклоненост 2.

На английски терминът е binary tree.
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Определение 55: Пълно дърво.

Пълно k-ично дърво е кореново дърво, в което всеки вътрешен връх има точно k деца.
Пълно дърво е кореново дърво, което е пълно k-ично дърво за някое k.

На английски термините са съответно full k-ary tree и full tree.

Ето пример за пълно троично дърво.

Наблюдение 25: Какви са степените на върховете в съответното не-кореново дърво

Нека T е пълно кореново k-ично дърво с повече от един връх. Нека T 1 е съответното
му не-кореново дърво (в очевидния смисъл). Тогава за степените на върховете на T 1 е
вярно следното.

• Точно един връх има степен k. Това е върхът, който е коренът в T .

• Нула или повече върхове имат степен k ` 1. Това са точно върховете, които са
вътрешни, но различни от корена, в T .

• Поне k върха са висящи. Това са точно листата в T .

• Върхове от други степени няма.

Забележете, че това остава в сила дори когато k “ 1: пълното 1-ично кореново дърво е прост
път, вкоренен в единия си край.

Определение 56: Подредено дърво.

Подредено дърво е кореново дърво, в което децата на всеки вътрешен връх са подредени
отляво надясно.

На английски терминът е ordered tree.

Следната фигура показва две коренови дървета T 1 и T 2. Ако гледаме на тях като на подре-
дени дървета, те са различни подредени дървета, защото в T 1 децата на a са подредени по
различен начин, отляво надясно, в сравнение с T 2. Но ако гледаме на T 1 и T 2 на обикновени
коренови дървета, а не подредени дървета, те са едно и също дърво, защото имат едно и
също множество от върхове и децата на всеки връх в T 1 са точно същите върхове, които са
неговите деца и в T 2.
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Кореново дърво, индуктивна дефиниция Следните определения на “кореново дърво”
са еквивалентни на Определение 49. Доказателството на това остава на читателя.

Определение 57: Кореново дърво, първа индуктивна дефиниция.

¶ База Всеки тривиален граф ptuu,Hq е кореново дърво с корен u, множество от
листа tuu, разклоненост 0 и височина 0.

· Индуктивна стъпка Нека T1 “ pV1,E1q, . . . , Tk “ pVk,Ekq са коренови дървета,
които две по две нямат общи върхове, с корени съответно r1, . . . , rk, множества от листа
съответно W1, . . . , Wk, разклонености съответно b1, . . . , bk и височини съответно h1,
. . . , hk. Нека r е връх, който не се намира в никое от тях. Нека E 1 “ tpr, riq | 1 ď i ď ku.
Тогава

T “
´

tru Y
Ťk

i“1 Vi,E
1 Y

Ťk

i“1 Ei

¯

е кореново дърво с корен r, множество от листа
Ťk

i“1Wi, разклоненост
max tk,b1, . . . ,bku и височина max th1, . . . ,hku ` 1.

Определение 58: Кореново дърво, втора индуктивна дефиниция.

¶ База Всеки тривиален граф ptuu,Hq е кореново дърво с корен u, множество от
листа tuu, разклоненост 0 и височина 0.

· Индуктивна стъпка Нека T1 “ pV1,E1q, и T2 “ pV2,E2q са дървета, които нямат
общи върхове, с корени съответно r1 и r2, множества от листа съответно W1 и W2,
разклонености съответно b1 и b2 и височини съответно h1 и h2. Нека v P V1, нека v има
fv деца и нека дълбочината на v е tv. Тогава

T “ pV1 Y V2,E1 Y E2 Y tpv, r2quq

е кореново дърво с корен r1. Множеството от листата на T е pW1ztvuq YW2, разклоне-
ността му е max tb1,b2, fv ` 1u, а височината му е max th1, tv ` 1` h2u.
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Определение 59: Кореново дърво, трета индуктивна дефиниция.

¶ База Всеки тривиален граф ptuu,Hq е кореново дърво с корен u, множество от
листа tuu, разклоненост 0 и височина 0.

· Индуктивна стъпка Нека T “ pVT ,ET q, е коренови дървета с корен съответно
r, множества от листа W, разклоненост b и височини съответно h. Нека z1, . . . , zq са
врърхове, които не са във VT , и нека ` PW. Тогава

D “ pVT Y tz1, . . . , zqu,ET Y tp`, z1q, . . . , p`, zqquq

е кореново дърво с корен r и множество от листа pWzt`uqYtz1, . . . , zqu. Разклонеността
на D е max tb,qu. Височината на D е или h, ако дълбочината на ` в T е по-малка от h,
или h` 1, ако ` в T е h.

Изоморфизмът между коренови дървета има една особеност: разговорно казано, той трябва
да “съблюдава корените”, освен върховете и ребрата. Поради това Определение 60 се полу-
чава от Определение 41 с допълнително изискване.

Определение 60: Изоморфизъм между коренови дървета.

Нека T 1 “ pV 1,E 1q и T 2 “ pV 2,E2q са коренови дървета с корени съответно r 1 и r2.
Изоморфизъм между кореновите дървета T 1 и T 2 с корени съответно r 1 и r2 е всяка
биекция φ : V 1 Ñ V 2, такава че

@u, v P V 1 : pu, vq P E 1 Ø pφpuq,φpvqq P E2

φpr 1q “ r2

И така, изоморфизъм между коренови дървета е всеки изоморфизъм между съответните
не-коренови дървета, който освен това изобразява корен в корен. Като пример, кореновите
дървета на Фигура 2.74 не са изоморфни, въпреки че съответните не-коренови дървета са
изоморфни (нещо повече, те са едно и също не-кореново дърво): забележете, че нито една
биекция от VpT 1q във VpT 2q, която изобразява a (коренът на T 1) в x (коренът на T 2), не е
изоморфизъм.

Свойства на кореновите дървета

Теорема 31: Брой на върховете на пълно кореново k-ично дърво

Във всяко пълно кореново k-ично дърво T с повече от един връх е вярно, че n “ ks`1,
където s е броят на вътрешните върхове.

Доказателство: Първо ще разгледаме случая, в който k ě 2. Да разгледаме не-кореновото
дърво T 1, съответно на T . Очевидно броят на висящите върхове на T 1 е равен на броя на
листата на T , тоест, n´ s. Съгласно Теорема 30:

n´ s “ 2`
ÿ

vPV
dpvqě3

pdpvq ´ 2q // съгласно Наблюдение 25

“ 2`
ÿ

vPV
dpvq“k

pdpvq ´ 2q `
ÿ

vPV
dpvq“k`1

pdpvq ´ 2q
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Но, съгласно Наблюдение 25, T 1 има точно един връх от степен k и точно s ´ 1 върха от
степен k` 1. Тогава

n´ s “ 2` 1 ¨ pk´ 2q ` ps´ 1qpk´ 1q “ 2` k´ 2` ks´ k´ s` 1

Тогава n “ ks` 1.
Сега да разгледаме случая k “ 1. Тогава твърдението, което доказваме, става n “ s` 1.

Но при k “ 1 кореновото дърво е прост път, вкоренен в един от краищата си, и T има точно
едно листо и точно n ´ 1 вътрешни върхове, така че s “ n ´ 1. Тогава твърдението става
n “ n´ 1` 1, което очевидно е вярно.

Твърдението е в сила и за n “ 1, независимо от това дали k ą 1 или k “ 1. Ако n “ 1, то
s “ 0 и n “ ks` 1 следва веднага. 2

Ето едно лесно следствие от Теорема 31. Нека е дадено пълно k-ично кореново дърво и
разклонеността k ě 2 е фиксирана. Могат да варират параметрите брой върхове n, брой
листа и брой нелиста. Тогава, ако фиксираме и кой да е от тези три параметъра, това
определя напълно и останалите два.

Следствие 5

Нека T е пълно k-ично кореново дърво, като k ě 2. Тогава,

¶ Изразено в n:

˛ броят на вътрешните върхове е
n´ 1
k

,

˛ а броят на листата е
pk´ 1qn` 1

k
.

· Изразено в броя на вътрешните върхове s:

˛ n “ ks` 1,

˛ а броят на листата е pk´ 1qs` 1.

¸ Изразено в броя на листата `:

˛ n “
k`´ 1
k´ 1

,

˛ а броят на вътрешните върхове е
`´ 1
k´ 1

.

Доказателство: Доказателствата са елементарни. Винаги тръгваме оттам, че n “ ks` 1,
където s е броят на вътрешните върхове.

Първо, n´ 1 “ ks, така че s “ n´1
k

, а оттук броят на листата е n´ s “ n´ n´1
k
“

pk´1qn`1
k

, с
което доказахме ¶.

Съждение · съдържа буквално n “ ks`1, откъдето пък броят на листата е n´s “ pk´1qs`1.

Нека ` означава броя на листата. Очевидно, ` “ n´ s. Тогава n “ kpn´ `q ` 1 “ kn´ k`` 1,
откъдето k` “ pk´ 1qn` 1, откъдето n “ k`´1

k´1 . Тъй като n “ ks` 1 и n “ `` s, вярно е, че
`` s “ ks` 1, откъдето `´ 1 “ pk´ 1qs, откъдето s “ `´1

k´1 , с което доказахме ¸.

Съждения ¶ и · не съдържат k´1 в знаменател на израз и остават верни и при k “ 1. Нека
k “ 1, тоест, T е прост път, вкоренен в единия си край. Съждение ¶ казва, че вътрешните
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върхове са n´ 1 на брой, а листата са 1 на брой. Това е вярно дори при n “ 1. Съждение ·

казва, че n “ s` 1, а листата са 1 на брой, което очевидно е вярно, дори при n´ 1. 2

Следствие 6 се получава лесно от Следствие 5 след заместване на k с 2.
Следствие 6

Ако T е пълно двоично дърво, броят на върховете n е нечетно число, като броят на
вътрешните върхове е

n´ 1
2

“

Y

n

2

]

, а броят на листата е
n` 1
2

“

Q

n

2

U

. Тогава листата
са с точно едно повече от вътрешните върхове.

Теорема 32: Броят на листата е ď kh при k-ично дърво с височина h

Нека T е k-ично дърво с височина h. Нека ` е броят на листата. Тогава ` ď kh. Алтер-
нативно, logk ` ď h.

Доказателство: Що докажем твърдението с индукция по h. Базата е за h “ 0. Но h “ 0
тстк n “ 1, което означава да има един единствен връх, който е и корен, и (единственото)
листо. Следователно, ` “ 1 и неравенството става 1 ď k0. 3

Да допуснем, че броят на листата е не по-голям от kh за всяко дърво с височина h. Но
очевидно всяко дърво D с височина h ` 1 се получава от някое дърво T с височина h, като
към поне едно листо на T с дълбочина h се добавят нови листа (като в индуктивната стъпка
на Определение 59). Нещо повече. Броят на листата на D е максимален, когато на всяко
листо на T “му порастват” k листа. Тъй като листата на T са не повече от kh, то листата на
D са не повече от k ¨ kh “ kh`1. 2

Забележете, че Теорема 32 е вярна дори в дегенеративния случай k “ 1. Тогава дървото има
точно едно листо независимо от височината. От друга страна, очевидно 1 ď 1h.

Следствие 7: Височината на k-ично дърво е поне логаритмична в n

Нека T е k-ично дърво с височина h и k ě 2. Тогава h ě plogk nq ´ 1, като тази долна
граница е точна.

Доказателство: Искаме да покажем, че

h ě plogk nq ´ 1

Но това е същото като да покажем, че

h ě logk
n

k

От Следствие 5 знаем, че ` “ pk´1qn`1
k

. От Теорема 32 знаем, че h ě logk `. Тогава

h ě logk
pk´ 1qn` 1

k

Дали е вярно, че

pk´ 1qn` 1
k

ě
n

k
?
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Да, със сигурност, понеже

pk´ 1qn` 1
k

ě
n

k
Ø pk´ 1qn` 1 ě n

при k ě 2. Но pk´1qn`1
k

ě n
k
влече logk

pk´1qn`1
k

ě logk nk . От това, че h ě logk
pk´1qn`1

k
, следва,

че h ě logk nk .

А това, че долната граница plogk nq ´ 1 за височината е точна, се доказва тривиално: logk n
не е непременно долна граница за височината, примерно при k “ 2 и n “ 14, височината е 3,
докато log2 14 « 3.807354922. 2

Интересен е частният случай, в който в пълно k-ично дърво всички листа имат една и съща
дълбочина. Иначе казано, във всяко ниво t има точно kt върха, за 0 ď t ď h, където h е
височината на дървото. Такова дърво се нарича съвършено k-ично дърво, на английски perfect
k-ary tree. За всяко h има точно едно съвършено k-ично дърво, ако дървото е с анонимни
върхове. Фигура 2.76 показва съвършените двоични дървета с височини 0, 1, 2 и 3.

Фигура 2.76 : Съвършени двоични дървета.

h “ 0 h “ 1 h “ 2 h “ 3

Нека читателят формулира еквивалентна индуктивна дефиниция на множеството от съ-
вършените k-ични дървета и докаже еквивалентността на двете дефиниции. Тук само ще
отбележим, че съвършените k-ични дървета се явяват максималните пълни k-ични дървета,
при фиксирана височина, и за тях нестрогото неравенство в Теорема 32 става равенство:
` “ kh.

В частния случай k “ 2 става дума за съвършено двоично дърво. Броят на листата на
съвършено двоично дърво е точно 2h, а n “ 2h`1 ´ 1, като вътрешните върхове са точно
2h ´ 1, тоест, с едно по-малко от броя на листата. От това, че n “ 2h`1 ´ 1, веднага имаме
h “ plog2 pn` 1qq´1 за съвършените двоични дървета. Лесно се вижда, че това е същото като
h “ rlog2 ns´ 1. Забележете, че това се явява частен случай на твърдението от Следствие 7.

2.11.4 Покриващи дървета

“Покриващо дърво” е частен случай на “покриващ граф” (Определение 10), но тъй като
ще разглеждаме най-често покриващи графи, които са дървета, заслужава си да направим
отделно определение.

Определение 61: Покриващо дърво.

Нека G “ pV,Eq е свързан граф. Покриващо дърво на G е всяко дърво T “ pV,E 1q,
където E 1 Ď E.
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На английски терминът е spanning tree.

Ето пример за покриващо дърво на графа на Petersen. Върховете са анонимни.

Разглеждаме покриващи дървета само в обикновени графи, въпреки че понятието лесно
може да се обобщи и за покриващи дървета на мултиграфи; ако разглеждаме мултиграф
с възможни примки, то примките никога не участват в покриващо дърво (понеже всяка
примка е цикъл), а от всеки сноп паралелни ребра може да участва най-много едно ребро, в
противен случай покриващия граф би съдържал цикъл.

Теорема 33: Свързаност и наличие на покриващо дърво

За всеки граф G “ pV,Eq, G има поне едно покриващо дърво тогава и само тогава,
когато G е свързан.

Доказателство: Ако G има покриващо дърво, то очевидно G е свързан, понеже между
всеки два върха в покриващото дърво има път, което влече съществуване на път между тези
два върха и в G.

Ще докажем твърдението в другата посока. Ако G е свързан, то следният алгоритъм
строи покриващо дърво на G.

Алгоритъм 4: Построяване на покриващо дърво

Вход: свързан граф G “ ptv1, v2, . . . , vnu,Eq.
Изход: Покриващо дърво на G.

¶ Ако G няма цикли, върни G и край.

· В противен случай, нека c е произволен цикъл в G и нека e е произволно ребро от c.

¸ Направи GÐ G´ e и после отиди на ¶.

Доказателството за коректността на алгоритъма е много лесно. Поначало G е свързан
граф. Съгласно Теорема 2, изтриването на ребро от цикъл на свързан граф оставя графа
свързан, така че изтриването на e на ред ¸ не нарушава свързаността на графа. Тривиално
е да се покаже по индукция, че при всяко достигане на ред ¶ графът е свързан.

Очевидно е, че множеството от върховете на графа не се променя при изтриване на ребра.
След това забелязваме, че броят на циклите в първоначалния граф G е краен, а след всяко
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минаване през тялото на цикъла на алгоритъма : броят на циклите намалява поне с единица,
така че, рано или късно, при достигането на ред ¶ графът ще е ацикличен и алгоритъмът ще
го върне и терминира. Следователно, алгоритъмът връща граф, който е свързан, ацикличен
и чиито върхове са същите като на първоначалния граф, така че резултатът е покриващо
дърво на първоначалния граф. 2

Какъв е максималният брой на покриващите дървета? Нека G е свързан граф. От
Теорема 33 знаем, че G има поне едно покриващо дърво. Но колко точно са покриващите
дървета на G? Нека κpGq е броят на именуваните покриващи дървета на G. Забележете, че
става дума за именувани покриващи дървета, а не за покриващи дървета с анонимни върхове
(припомнете си Подсекция 2.8.3). Като пример да разгледаме графа на Фигура 2.77. Той има
точно 24 покриващи дървета, показани под него.

Фигура 2.77 : Граф и неговите покриващи дървета.
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:На български има опасност от двусмислие в това изречение заради употребата на “цикъл” в два напълно
различни смисъла – цикъл в графа и цикъл в алгоритъма, работещ върху графа. На английски термините
са съответно “cycle” и “loop”, така че двусмислие не може да има.
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Очевидно κpGq “ 1 тстк G е дърво; в този случай, графът съвпада с единственото си покри-
ващо дърво, понеже самият той е дърво. Ако започнем да добавяме ребра към дървото G, по
този начин създавайки цикли, броят на покриващите дървета расте стремително. Примерно,
графът на Фигура 2.77 има 4 цикъла и 24 покриващи дървета. Лесно се вижда, че при фик-
сирано множество от върхове на G и възможност да се добавят ребра, κpGq е максимално
тстк G е пълен граф, защото, колкото повече ребра има, толкова повече възможности има
за различни покриващи дървета.

Пълният граф на n върха има точно nn´2 покриващи дървета. Този резултат е известен като
формула на Cayley. И така, 1 ď κpGq ď nn´2, като тези граници са точни.

Има доста начини за извеждане на формулата на Cayley. Сякаш най-лесният е чрез Теоре-
ма 34, която има алгоритмично доказателство. В Допълнение 17 има две други извеждания
на формулата на Cayley (Теорема 36 и Теорема 39).

Теорема 34: Формула на Cayley, доказателство с кодове на Prüfer

Броят на именуваните дървета на n върха е nn´2, за всяко n ě 2.

Доказателство: Следното доказателство дължим на математи́ка Heinz Prüfer [50], който
открива биекция между дърветата на n върха и редиците с дължина n ´ 2 над t1, . . . ,nu.
Това е интересно приложение на комбинаторния принцип на биекцията, понеже дърветата се
броят трудно, ако работим от общи съображения, а редиците се броят изключително лесно.
Доказателството е алгоритмично: конструира се алгоритъм, който по дадено дърво генери-
ра редица. Поотделно се доказва, че функцията, която реализира алгоритъмът, е инекция
(различни дървета пораждат различни редици) и сюрекция (всяка редица е образ на някое
дърво). От това следва съществуването на желаната биекция.

Въпросните редици са известни като кодове на Prüfer, на английски Prüfer codes, понеже
всеки от тях кодира биективно някое дърво.

Ще игнорираме случая n “ 1, въпреки че, формално погледнато, от една страна 11´2 “

1´1 “ 1, а от друга страна има точно едно дърво с един връх. Нека n ě 2.

Първа част на доказателството: генериране на код от дърво Ако a е редица от
числа и b е число, то “a,b” означава редицата a с още един елемент, а именно b, “залепен”
накрая. “x y” означава празната редица.

Алгоритъм 5: Код на Prüfer от дърво

Вход: дърво T “ pt1, 2, . . . ,nu,Eq, като n ě 2.
Изход: Кодът на Prüfer на T .

¶ w Ð x y.

· Ако |E| “ 1, край. Върни w.

¸ В противен случай, нека u е висящият връх на T с най-малка стойност.
À Нека v е съседът на u в T .
Á w Ð w, v.
Â Изтрий u от T и иди на ·.

Забележете, че върхът, който се “записва” в кода, не е изтритият u, а неговият единствен
съсед v.
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Ще докажем коректността на алгоритъма. Първо да се убедим, че операциите му са добре
дефинирани.

• Ако изпълнението е на ред ¸, T има повече от два върха и, съгласно Лема 8, T има
поне два висящи върха; ерго, u е добре дефиниран. Щом u е висящ, той има точно един
съсед, така че и v на ред À е добре дефиниран.

• Резултатът от изтриването на висящия връх u от дървото T (ред Â) е дърво, така че
при следващото достигане на ред ·, T пак е дърво.

Да отбележим два факта. Нека T означава първоначалното (входното) дърво.

Факт1 Всеки връх x на T се появява dpxq ´ 1 пъти в кода-изход. В частност, висящите
върхове не се появяват изобщо (нула пъти).

Факт2 След първото изпълнение на ¸, връх u се оказва изтрит, а в началото на кода се
появява идентификаторът на неговия съсед v и той остава там до края. Останалата част от
кода-изход е кодът на T ´ u.

Факт1 е очевиден. Ако Факт2 не е очевиден, да съобразим, че върховете на T ´ u не са
t1, . . . ,nu, а подмножество на t1, . . . ,nu, което в общия случай съдържа “дупка” (дупката е
изтритият u). Това, че множеството от върховете на T´u не се състои само от последователни
естествени числа, няма никакво значение. За конструирането на кода няма значение дали
върховете са последователни естествени числа или не; важното е да са две по две различни и
тогава минималният висящ връх, който е следващият връх за изтриване, е добре дефиниран.

Ще докажем по индукция по броя на върховете n във входното дърво, че алгоритъмът връща
различни кодове за различни дървета. Обаче алгоритъмът, който описахме, не е рекурси-
вен, а е итеративен, а индукция по големината на входа (броя на върховете) не е подходяща
техника за итеративни алгоритми. Индукцията е подходяща техника за доказване на ко-
ректността на рекурсивни алгоритми. За да ползваме индукция по големината на входа,
модифицираме алгоритъма в рекурсивен така:

Алгоритъм 6: Код на Prüfer от дърво, рекурсивен

Вход: дърво T “ pV,Eq, |E| ě 1, V Ă N`.
Изход: Кодът на Prüfer на T .

¶ Ако |E| “ 1, върни x y и край.

· В противен случай, нека u е висящият връх на T с най-малка стойност.
À Нека v е съседът на u в T .
Á Извикай алгоритъма върху T ´ u. Нека върнатият код е w.
Â Върни v,w и край.

Лема 9: Инективността на генерирането на код на Prüfer

За всеки две различни дървета T1, T2 върху едно и също множество от върхове V,
алгоритъмът Код на Prüfer от дърво, рекурсивен връща различни кодове.

Доказателството на Лема 9 е по индукция по n. Базата е n “ 2. На пръв поглед, доказа-
телството се чупи заради това, че при n “ 2, алгоритъмът връща задължително x y и нищо
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друго. На втори поглед обаче, проблем с доказателството няма! Твърдението е, че за всеки
две различни дървета над едно и също множество върхове, върнатите кодове са различни.
Но, ако множеството от върхове е двуелементно, то дървото над него е едно единствено,
ерго не съществуват две различни дървета над него, така че твърдението е за елемент на
празното множество (двойка различни дървета е един обект). А ние знаем, че @x : Ppxq е
истина винаги, когато променливата x взема стойности от празното множество, независимо
какъв е предикатът. Така че базата “излиза”. 3

Да допуснем, че твърдението е вярно за някакво n ě 2. Разглеждаме две различни дървета
T1, T2 над едно и също множество върхове V, като |V| “ n` 1.

• Да допуснем, че минималният висящ връх в T1 е x, в T2 е y, и x ­“ y. БОО, нека x ă y.
Тогава x не е висящ връх в T2 и, съгласно Факт1, x се присъства в кода на T2, но няма
да присъства в кода на T1. Ерго, кодовете на T1 и T2 се различават.

• Да допуснем, че T1 и T2 имат един и същи минимален висящ връх x, но съседите на x
са различни в T1 и T2. Но кодовете на T1 и T2 започват със съседа на x. Тогава те се
различават пак.

• Да допуснем, че T1 и T2 имат един и същи минимален висящ връх x и съседът на x в
T1 и T2 е един и същи. В този случай кодовете на T1 и T2 започват с един и същи връх.
Но T1 ´ x и T2 ´ x трябва да са различни дървета, инак T1 и T2 биха били едно и също
дърво. Щом T1 ´ x и T2 ´ x са различни и имат по n върха всеки, то кодовете им са
различни съгласно индуктивното предположение. Ерго, изходите v,w на ред Â за T1 и
T2 се различават. 2

Следствие 8

Алгоритъмът Код на Prüfer от дърво реализира инекция.

Ето пример за работата на алгоритъма. Дървото е първото от покриващите дървета от
Фигура 2.77. В самото начало, w е празен.

1

3

2

4

5

6

w “ x y

Висящите върхове са 2, 5 и 6. Минималният висящ връх: е 2. Неговият съсед е 1. Записваме
1 в w и изтриваме 2 от дървото. Дървото и кодът стават такива.

:Върховете са числа, така че има смисъл да говорим за минимален връх.
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1

3

4

5

6

w “ x1y

Висящите върхове са 1, 5 и 6. Минималният висящ връх е 1. Неговият съсед е 3. Записваме
3 в w и изтриваме 1 от дървото. Дървото и кодът стават такива.

3

4

5

6

w “ x1, 3y

Висящите върхове са 3, 5 и 6. Минималният висящ връх е 3. Неговият съсед е 4. Записваме
4 в w и изтриваме 3 от дървото. Дървото и кодът стават такива.

4

5

6

w “ x1, 3, 4y

Висящите върхове са 5 и 6. Минималният висящ връх е 5. Неговият съсед е 4. Записваме 4
в w и изтриваме 5 от дървото. Дървото и кодът стават такива.
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4

6

w “ x1, 3, 4, 4y

Изпълнението отново е на ред ·, но сега вече реброто е само едно и алгоритъмът терминира,
връщайки x1, 3, 4, 4y. И така, x1, 3, 4, 4y е кодът на дървото от входа. Във втората част на
доказателството ще видим алгоритъм, който от код строи съответното дърво, и в частност
от този код построява именно дървото, с което започнахме.

Втора част на доказателството: генериране на дърво от код

Лема 10: Сюрективността на генерирането на код на Prüfer

За всяко n ě 2, за всеки код C, който е редица с дължина n ´ 2 над t1, . . . ,nu, съ-
ществува дърво T с върхове t1, . . . ,nu, такова че Код на Prüfer от дърво върху T
връща C.

Доказателството на Лема 10 е по индукция по n. Базата е n “ 2. Наистина, има един единс-
твен код, а именно празната редица x y, с дължина 2´ 2 “ 0. От друга страна, алгоритъмът
при вход дърво с върхове t1, 2u връща именно x y, така че дърво с желаното свойство има. 3

Да допуснем, че твърдението е вярно за някакво n ě 2. Разглеждаме произволен код C с
дължина n´ 1 над t1, . . . ,n` 1u. Съгласно принципа на Dirichlet, поне едно число от t1, . . . ,
n` 1u не се среща в C. Нека k е минималното число, което не се среща в C. Нека C 1 е кодът,
който се образува от C чрез изтриване на първия елемент. Тогава C 1 е редица с дължина
n ´ 2 над t1, . . . ,n ` 1uztku. Съгласно индуктивното предположение, съществува дърво T 1
с множество от върхове t1, . . . ,n ` 1uztku, такова, че C 1 е изходът на Код на Prüfer от
дърво върху T 1.

Ключовото наблюдение е, че, съгласно Факт2, Код на Prüfer от дърво върху T
връща кода, започващ с k и продължаващ с C 1. Но това е точно C. Ерго, има дърво, върху
което алгоритъмът връща C. 2

Следствие 9

Алгоритъмът Код на Prüfer от дърво реализира сюрекция.

Това е и края на доказателството на Теорема 34. 2

Лема 10 подсказва как да построим дърво от код. Ето илюстрация на работата на този
алгоритъм. Нека кодът е x1, 3, 4, 4y, който код вече се появи в примера за алгоритъма в
обратната посока. Щом дължината е 4, то множеството от върховете е t1, 2, 3, 4, 5, 6u. И
така, ще генерираме уникалното дърво T с множество от върхове t1, 2, 3, 4, 5, 6u, чийто код
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е x1, 3, 4, 4y. Минималното число от t1, 2, 3, 4, 5, 6u, което не се среща в x1, 3, 4, 4y, е 2. Кодът
след изтриване на първия елемент е x3, 4, 4y. И така, x3, 4, 4y е кодът на някое дърво T 1 над
t1, 2, 3, 4, 5, 6uzt2u, тоест, над t1, 3, 4, 5, 6u.

Разглеждаме кода x3, 4, 4y на дърво с множество от върхове t1, 3, 4, 5, 6u. Минималното число
от t1, 3, 4, 5, 6u, което не се среща в кода, е 1, а кодът след изтриването на първия елемент е
x4, 4y. И така, x4, 4y е кодът на някое дърво T 2 над t1, 2, 3, 4, 5, 6uzt1, 2u, тоест, над t3, 4, 5, 6u.

Разглеждаме кода x4, 4y на дърво с множество от върхове t3, 4, 5, 6u. Минималното число от
t3, 4, 5, 6u, което не се среща, е 3, а кодът след изтриването на първия елемент е x4y. И така,
x4y е кодът на някое дърво T 3 над t1, 2, 3, 4, 5, 6uzt1, 2, 3u, тоест, над t4, 5, 6u.

Разглеждаме кода x4y на дърво с множество от върхове t4, 5, 6u. Минималното число от
t4, 5, 6u, което не се среща, е 5, а кодът след изтриването на първия елемент е x y. И така, x y
е кодът на някое дърво T4 над t1, 2, 3, 4, 5, 6uzt1, 2, 3, 5u, тоест, над t4, 6u.

Разглеждаме кода x y на дърво с множество от върхове t4, 6u. Това е спирачката на рекур-
сията, така че директно построяваме T4:

4

6

T4

Тогава T 3 се получава от T4 чрез добавяне на връх 5 и реброто p4, 5q:

4

5

6

T 3

Тогава T 2 се получава от T 3 чрез добавяне на връх 3 и реброто p3, 4q:
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3

4

5

6

T 2

Тогава T 1 се получава от T 2 чрез добавяне на връх 1 и реброто p1, 3q:

1

3

4

5

6

T 1

Тогава T се получава от T 1 чрез добавяне на връх 2 и реброто p1, 2q:

1

3

2

4

5

6

T

Допълнение 17: Други извеждания на формулата на Cayley

Първи начин Броят на покриващите дървета на граф е равен на детерминантата
на една матрица, която характеризира графа. Резултатът е в сила дори за мултигра-
фи (наличието на примки е без значение за покриващите дървета). Този нетривиален
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резултат е част от алгебричната теория на графите и е открит още през 19 век от ве-
ликия физик Gustav Kirchhoff. Резултатът присъства имплицитно в негова статия [38]
(превод на английски има в [37]). Подробно изследване на работата на Kirchhoff има в
[36]. За подробно доказателство на резултата на Kirchhoff вижте [56, глава 9, стр. 135].

Определение 62: Матрица на Laplace на граф

Нека G “ pt1, . . . ,nu,Eq е граф. Матрицата на Laplace на граф G е квадратна,
nˆ n, симетрична матрица L, където

Lri, js “

$

’

&

’

%

dpiq, ако i “ j,
´1, ако i ­“ j и pi, jq P E,
0, в противен случай

Теорема 35 е от [56, 9.8 Theorem, стр. 141].

Теорема 35: The Matrix-Tree Theorem (за броя на покриващите дървета)

Нека G е граф без примки с матрица на Laplace L. Нека L0 означава L с последния
ред и колона изтрити (или, по-общо казано, с i-ия ред и колона изтрити, за кое
да е i). Тогава

detpL0q “ κpGq

Като пример да си припомним графа от Фигура 2.77, който, както се убедихме, има
точно 24 покриващи дървета.

1

3

2

4

5

6

Матрицата на Laplace за този граф е
»

—

—

—

—

—

—

–

2 ´1 ´1 0 0 0
´1 3 ´1 ´1 0 0
´1 ´1 3 ´1 0 0
0 ´1 ´1 4 ´1 ´1
0 0 0 ´1 2 ´1
0 0 0 ´1 ´1 2

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl
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Съгласно Теорема 35, броят на покриващите го дървета е точно 24:

κpGq “ det

»

—

—

—

—

–

2 ´1 ´1 0 0
´1 3 ´1 ´1 0
´1 ´1 3 ´1 0
0 ´1 ´1 4 ´1
0 0 0 ´1 2

fi

ffi

ffi

ffi

ffi

fl

“ 24

Следствие от Теорема 35 е следното ([56, Corollary 9.10-b, стр. 142]) твърдение.
Следствие 10: Броят на покриващите дървета и собствените ст-сти на матр.

на съседство

Нека G е свързан, d-регулярен, граф без примки с матрица на съседство A. Нека
собствените стойности на матрицата на съседство A са λ1, . . . , λn´1, λn, като
λn “ d. Тогава

κpGq “
pd´ λ1qpd´ λ2q ¨ ¨ ¨ pd´ λn´1q

n

Следното наблюдение е от [56, Proposition 1.5, стр. 4].
Наблюдение 26: Собств. стойности на матр. на съседство на пълния граф

Собствените стойности на матрицата на съседство за пълния граф Kn са тези:

• ´1 с кратност n´ 1 и

• n´ 1 с кратност 1.

От Следствие 10 и Наблюдение 26 веднага следва формулата на Cayley.
Теорема 36: Формула на Cayley, алгебрично доказателство

Броят на покриващите дървета на именуван Kn е

κpKnq “
pn´ 1´ p´1qqpn´ 1´ p´1qq ¨ ¨ ¨ pn´ 1´ p´1qq

n
“
nn´1

n
“ nn´2

Втори начин Теорема 37 е от [2, стр. 204].
Теорема 37: Броят на именуваните гори по отн. на фиксирано подм-во от

върхове

Разглеждаме множество от върхове V “ t1, . . . ,nu. Фиксираме произволно k-
елементно подмножество A на V. Тогава броят на именуваните гори над V, със-
тоящи се от точно k дървета, като всеки връх от A е в различно дърво, е:

Tn,k “

$

’

&

’

%

řn´k

i“0 p
n´k
i
qTn´1,k´1`i, ако n ě k ą 1

0, ако n ě 1 и k “ 0
1, ако n “ 0 и k “ 0

(2.15)
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Първо да видим пример. Нека n “ 4, k “ 2 и A “ t1, 2u.

1 2

34

1 2

34

1 2

34

1 2

34

1 2

34

1 2

34

1 2

34

1 2

34

Вижда се, че T4,2 “ 8.

Доказателство: Началните условия са очевидни. Ще докажем рекурсивната част
от формулата. Очевидно няма значение точно кои върхове са в A; значение има само
кардиналността на A. БОО, нека A “ t1, . . . , ku. Фиксираме произволен връх от A.
Нека това е връх 1. Индексната променлива i има смисъл на броя съседите на връх 1.
Те може да са от 0 до n´ 1´ pk´ 1q “ n´ k, което дава и границите на сумирането в
(2.15).
Изтриваме връх 1 и получаваме гора с n´ 1 върха и с точно k´ 1` i дървета, защото
едно дърво изчезва, а се появяват i нови дървета. Различните гори с n ´ 1 върха и
k´ 1` i дървета са Tn´1,k´1`i. Връщаме връх 1, като трябва да го направим съсед на
точно i върха измежду върховете от VzA. Но |VzA| “ n ´ k, следователно има точно
p
n´k
i
q начина да изберем съседите на върнатия връх 1. Всяко свързване на връх 1 с

i върха измежду върховете на някоя гора (общо Tn´1,k´1`i гори́) дава различна гора,
което доказва и верността на (2.15).
Това, че Tn,n “ 1 следва от (2.15). 2

Резултатът е от [2, стр. 204].
Теорема 38: Пак за броя на именуваните гори по отн. на фиксирано подм-во

от върхове

В сила е

Tn,k “ kn
n´k´1 (2.16)

Доказателство: С индукция по (2.15). Базовите случаи n ě 1,k “ 0 и n “ k “ 0 са
очевидни.

143



ГЛАВА 2. НЕОРИЕНТИРАНИ ГРАФИ И НЕОРИЕНТИРАНИ МУЛТИГРАФИ © Минко Марков, 2025г.

В индуктивната стъпка имаме:

Tn,k “

n´k
ÿ

i“0

ˆ

n´ k

i

˙

Tn´1,k´1`i “

n´k
ÿ

i“0

ˆ

n´ k

i

˙

pk´ 1` iqpn´ 1qn´1´pk´1`iq´1

“
ÿ

0ďiďn´k

ˆ

n´ k

i

˙

pk´ 1` iqpn´ 1qn´k´i´1

“
ÿ

0ďn´k´iďn´k

ˆ

n´ k

n´ k´ pn´ k´ iq

˙

pk´ 1` pn´ k´ iqqpn´ 1qn´k´pn´k´iq´1

“
ÿ

0ďiďn´k

ˆ

n´ k

i

˙

pn´ i´ 1qpn´ 1qi´1

“

n´k
ÿ

i“0

ˆ

n´ k

i

˙

pn´ 1qi ´
n´k
ÿ

i“0

ˆ

n´ k

i

˙

ipn´ 1qi´1

“

n´k
ÿ

i“0

ˆ

n´ k

i

˙

pn´ 1qi1n´k´i ´
n´k
ÿ

i“1

ˆ

n´ k´ 1
i´ 1

˙

n´ k

i
ipn´ 1qi´1

“ pn´ 1` 1qn´k ´ pn´ kq
n´k´1
ÿ

i“0

ˆ

n´ k´ 1
i

˙

pn´ 1qi1n´k´1´i

“ nn´k ´ pn´ kqpn´ 1` 1qn´k´1 “ nn´k ´ pn´ kqnn´k´1

“ nn´k ´ nn´k ` knn´k´1 “ knn´k´1 (2.17)

2

Теорема 39: Формула на Cayley, комбинаторно доказателство

В контекста на Теорема 37, Tn,1 очевидно е броят на дърветата над V. Според
Теорема 38, Tn,1 “ 1nn´1´1 “ nn´2. Тогава броят на дърветата е nn´2.
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2.12 Многосвързаност на графи
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2.13 Планарност на графи
Изложението на материала в тази секция е близко до изложението в [27].

В тази секция ще разглеждаме както обикновени графи, така и мултиграфи, но винаги
свързани. Наличието на паралелни ребра и примки няма значение за планарността, така
че в ключовата Теорема на Kuratowski (Теорема 52)—необходимото и достатъчно условие
граф да е планарен—графите, които ще разглеждаме, ще са обикновени. От друга страна,
Ойлеровата характеризация на планарните графи (Теорема 40) е в сила за мултиграфи, а не
само за обикновени графи, така че там ще разглеждаме мултиграфи. Преди да представим
някакъв резултат ще уточняваме дали графите са обикновени или мултиграфи.

От друга страна, има смисъл да разглеждаме само свързани графи, независимо дали са
обикновени или мултиграфи, защото, ако свързаните компоненти са повече от една, то те
могат да се разглеждат една след друга. Нещо повече, някои от резултатите като Ойлеровата
характеризация на планарните графи (Теорема 40) не са в сила при повече от една свързани
компоненти. И така, разглеждаме само свързани графи или мултиграфи, освен ако изрично
не кажем друго.

2.13.1 Определение

В Подсекция 2.13.1 разглеждаме неориентирани мултиграфи.

Подчертаваме, че следното определение дефинира геометричен обект. То ползва поняти-
ята проста отворена крива и проста затворена крива. Обикновено в учебниците по графи
планарните ребра са само отворени криви. Тук въвеждаме и затворени криви, защото допус-
каме мултиграфите да имат примки. Ако не допускаме примки, няма причина да допускаме
планарни ребра–затворени криви.

Проста отворена крива е, не особено формално казано, несамопресичаща се крива с два
края като тази: . Проста затворена крива е, още по-неформално казано, крива, която
“тръгва” от някаква точка и, без да се пресича, се връща в същата точка, примерно така:

. Формалното определение на “проста отворена крива” е: подмножество на равни-
ната, такова че между него и затворения интервал r0, 1s има хомеоморфизъм. Формалното
определение на “проста отворена крива” е: подмножество на равнината, такова че между
него и единичната окръжност има хомеоморфизъм. За определението на “хомеоморфизъм”
в този смисъл вижте Определение 73 в Допълнение 24.

Определение 63: Планарно вписване на мултиграф.

Планарно вписване на мултиграф е всяка наредена двойка G “ pV,Eq, където V “

tu1,u2, . . . ,unu е непразно множество от точки в равнината, наречени планарни вър-
хове, а E “ ts1, s2, . . . , smu е множество от прости отворени или затворени криви в
равнината, наречени планарни ребра. За всяко планарно ребро, ако е отворена крива,
то двата му края съвпадат с точно два от планарните върхове, а ако е затворена кри-
ва, точно една точка от него съвпада с някой планарен връх. Планарните ребра не се
пресичат с изключение на това, че може да имат общи точки–планарни върхове.

Определение 64 казва, че трябва да има изоморфизъм между планарния мултиграф и пла-
нарното му вписване; неслучайно Определение 64 прилича на Определение 42.
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Определение 64: Планарен мултиграф.

Нека G “ pV,Eq е мултиграф. G е планарен тогава и само тогава, когато съществува
планарно вписване на мултиграф G “ pV,Eq, такова че:

• Съществува биекция φ : V Ñ V.

• Съществува биекция ψ : EÑ E, такава че @e P E:

˛ ако реброто e не е примка и краищата му са x и y, то ψpeq е отворена, като
φpxq и φpyq са краищата на ψpeq в равнината.

˛ ако реброто e е примка, инцидентна с върха x, то ψpeq е затворена, като
единственият планарен връх от V, принадлежащ на ψpeq, е φpxq.

Както ще докажем след малко, не всеки граф има планарно вписване. Полуформално казано,
граф е планарен, ако може да бъде нарисуван в равнината така, че кривите, съответстващи
на ребрата, да не се пресичат (освен евентуално в общи краища). Това, че някой граф е
нарисуван с пресичане на (планарните си) ребра не означава, че той няма планарно вписване.
Например, ето две рисунки на K4: в лявата има пресичане на ребра, следователно тя не
показва планарно вписване, но дясната показва планарно вписване:

Задачата да се изчисли дали даден граф е планарен или не, тоест дали може да се нарису-
ва в равнината без пресичане на ребра или не, не е тривиална. Следният пример показва това.
Нека “K5 ´ e” означава K5, от който е изтрито произволно ребро. След малко ще докажем,
че K5 не е планарен, а сега ще покажем, че K5 ´ e е планарен.

Нека върховете на K5´e са x, y, u, v и z. Без ограничение на общността, нека липсващото
ребро е между върховете u и v. Да се опитаме да нарисуваме K5´e без пресичане на планарни
ребра като първо нарисуваме върховете x, v, z, y и u в този ред по часовниковата стрелка
като върхове на правилен петоъгълник, след това сложим периферия на петоъгълника от 5
планарни ребра и накрая сложим още 4 планарни ребра-диагонали. Ето разполагането на
периферията:

x

u v

y z
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Ако първо сложим планарните ребра px,yq и px, zq като диагонали:

x

u v

y z

очевидно няма как да сложим останалите две планарни ребра pu, zq и pv,yq без да получим
пресичане на планарни ребра:

x

u v

y z

Ако обаче започнем с pu, zq и px, zq като диагонали:

x

u v

y z

можем да добавим и останалите px,yq и py, vq без пресичане и да се убедим, че K5 ´ e е
планарен:
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x

u v

y z

И така, виждаме, че ако разглеждаме планарното вписване като процес, в който планарните
ребра се слагат в равнината едно след друго, конкретните им разполагания имат значение.
Дори ако графът е планарен, може да не успеем да довършим планарното вписване при
неподходящо разполагане на начално сложените планарни ребра. За да опишем коректно
този факт обаче ни е необходимо ключовото понятие “лице на планарното вписване”, кое-
то въвеждаме в Подсекция 2.13.2. Засега правим само следното наблюдение, което ползва
понятието “алчен алгоритъм” от Допълнение 10.

Наблюдение 27

В общия случай не можем да решим задачата за намиране на планарно вписване на
планарен граф чрез очевидния алчен алгоритъм: сложи първо планарните върхове по
произволен начин (все пак, трябва да са две по две различни точки) и после слагай
планарните ребра последователно в произволен ред, така че никое планарно ребро
да не пресича вече сложени планарни ребра, докато всички планарни ребра не бъдат
сложени.

2.13.2 Лица на планарните вписвания.

Определение 65: Лица на планарно вписване.

Нека G е планарен граф и G е някое негово планарно вписване. Да махнем от равнината
всички планарни върхове и ребра. Тази операция води до разпадането на равнината на
свързани райони, които наричаме лицата на G. Точно едно от лицата е неограничено
– това е външното лице, а останалите са вътрешните лица.

Например, следното планарно вписване на K5 ´ e има лица f1, . . . , f6. Външното лице е f1:
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x

f6

f5
f4

f3
f1

u v

y z

f2

Очевидно е, че при вписванията на свързани планарни графи, всяко лице има точно един
ограждащ цикъл. Ограждащият цикъл е цикълът от точно тези планарни ребра и върхове,
които участват в границата на лицето. В последния пример, ограждащият цикъл на f1 е
цикълът x,y, v, x. Надолу ще видим, че ограждащият цикъл може да е прост или да не е
прост.

Ако графът не е непременно свързан, едно лице може да има няколко ограждащи ци-
къла. Като пример да разгледаме следното планарно вписване на граф с четири свързани
компоненти. Лицето f 1 има 3 ограждащи цикъла: единият е a,b, c,d,a, другият е p,q, r, s,p
и третият е x,y, z, x. Лицето f2 има два ограждащи цикъла: единият е p,q, r, s,p и другият е
l,m,n, l.

l

b

d p

q

s x z

y

n

m
f 1 f2

c r

a

Но ние вече се разбрахме да разглеждаме само свързани графи. При свързаните графи
наистина всяко лице има точно един ограждащ цикъл.

Дефиницията на планарно вписване говори за точки и криви в равнината, а това са гео-
метрични понятия. Ние ще гледаме на планарните вписвания не на ниво геометрия, а на
по-високо ниво:. Конкретното разположение на планарните върхове и конкретните форми
на планарните ребра няма да ни интересуват. По причини, които ще станат ясни след малко,
следните три планарни вписвания на K4 ще считаме за еквивалентни, тоест едно и също
вписване, нарисувано по три различни начина:

w

x

u

v u xw
u

v
v

x

w

:По-високото ниво е топологията, а още по-високо ниво е теоретико-множественото, или още комбина-
торното ниво. Топологическо вписване и комбинаторно вписване не е точно едно и също, но за целите на
тази лекция ще игнорираме разликата. Тя е илюстрирана в [18, стр. 97].
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На лицата няма да гледаме като на конкретни геометрични фигури, а по-общо, като на гра-
фови цикли, но цикли в дадена посока. Да изберем една посока на въртене в равнината,
например обратната на часовниковата стрелка. Тогава всяко лице описваме чрез изреждане
на върховете на ограждащия го цикъл във вече избраната посока:. Дали посоката е по или
срещу часовниковата стрелка е без значение, важното е за всички лица посоката да е една
и съща. Всяко планарно вписване ще считаме за определено, ако за всяко лице е казано кой
е ограждащият го цикъл (описан в избраната посока). За простота ще считаме, че лице и
неговият ограждащ цикъл са синоними. Такова описание на вписването не е геометрично,
а е чисто комбинаторно. От комбинаторното вписване може да направим конкретна рисун-
ка с конкретна геометрия на точките и линиите, но това вече е задача на изчислителната
геометрия.

Да разгледаме пак планарно вписване на K4 “
`

tu, v,w, xu, tpu, vq, pu,wq, pu, xq, pv,wq, pv, xq, pw, xqu
˘

.
То се идентифицира чрез четирите си лица:

f1 “ u, v, x,u
f2 “ x, v,w, x
f3 “ u,w, x,u
f4 “ u,w, v,u

За да се убедим, че лицата имат такива описания, да ги разгледаме подробно едно по едно:

w

u

v

x

w

u

v

x

f1

f2

f3
f4

w

u

v

x

w

u

v

x

Дали в описанието на лицата ще записваме началния връх два пъти, както правим тук, или
веднъж, например f1 “ u, v, x, не е съществено, а е въпрос на избор.

Заслужава да се отбележи, че по отношение на комбинаторното описание на вписванията,
външното лице не се отличава от другите лица по нищо. Този факт има и друга интерпре-
тация. Планарните графи са точно графите, които могат да бъдат вписани в сферата. Това
се показва тривиално със стереографска проекция между равнината и сферата.

:Ако не използваме термина “цикъл”, можем да кажем неформално, че за всяко лице описанието е пос-
ледователността от върхове, които би видяло “двумерно същество” (живеещо в равнината), което обикаля
систематично дадено лице по границата в избраната посока, докато не се върне там, откъдето е тръгнало.
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Допълнение 18: Стереографска проекция

Определение 66: Стереографска проекция

Да си представим тримерното Евклидово пространство R3 и в него, Евклидовата
равнина R “ tpx,y, 0q | x,y P Ru. След това да си представим сферата S “ tx P

R3 |distpx, p0, 0, 1qq “ 1u. Очевидно R X S “ tp0, 0, 0qu. Стереографска проекция е
биекцията, който изобразява Sztp0, 0, 2qu в R по следния начин: за всяка точка
X P Sztp0, 0, 2qu построяваме лъча с начало точка p0, 0, 2q, който съдържа точка
X. Този лъч пресича R в някаква точка Y, която е образът на X. И така, цялата
сфера без p0, 0, 2q се изобразява в равнината, а обратната функция изобразява
равнината в сферата без p0, 0, 2q.

Фигура 2.78 илюстрира понятието стереографска проекция. На нея, “северният полюс”
p0, 0, 2q е жълтата точка, върху сферата е нарисувана оранжева дъга, а в равнината е
нарисуван образът на дъгата в ярко зелено.

Фигура 2.78 : Стереографска проекция.

По-сложна стереографска проекция е показана на Фигура 2.79, която показва сфера със
сферично вписване на графа-додекаедър и стереографска проекция, която изобразява
сферичното вписване на додекаедъра (в оранжево) в равнинно вписване (в зелено).
Графът-додекаедър очевидно отговаря на многостена-додекаедър, който е показан на
Фигура 2.80 в Допълнение 20.
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Фигура 2.79 : Стереографска проекция на додекаедъра.

Наблюдение 28: Има сферично вписване т.с.т.к. има планарно вписване

Всеки граф може да бъде нарисуван в равнината без пресичане на планарни ребра
тогава и само тогава, когато може да бъде нарисуван върху сферата без пресичане на
“сферичните ребра”:

• на всяко планарно вписване очевидно съответства поне едно сферично вписва-
не, а именно това, което се получава от обратната функция на стереографската
проекция,

• а на всяко сферично вписване, в което “северният полюс” не се съдържа във
вписванетоа, съответства поне едно планарно вписване, а именно това, което се
получава от стереографската проекция.

аАко “северният полюс” е точка от сферичното вписване, винаги можем да завъртим вписването
по такъв начин, че “северният полюс” да се окаже точка от някое лице на вписването.

Тъй като върху сферата за външно лице не може да се говори, очевидно външното лице в
равнината не е съществено различно от другите лица и всяко лице от сферичното вписване
може да бъде проектирано върху външно лице в равнината при подходяща стереографска
проекция. Това е важно и заслужава да бъде казано отново.

Наблюдение 29: Условност на избора на външно лице

В комбинаторното описание на кое да е планарно вписване външно лице няма. Всяко ге-
ометрично планарно вписване има точно едно външно лице, но ако от комбинаторното
описание правим геометрично вписване, можем да изберем което искаме комбинаторно
лице за външно.

От изложеното дотук читателят може да остане с впечатлението, че:
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¬ за всеки планарен граф, броят на лицата е един и същи за всяко вписване,

­ за всеки планарен граф, лицата са едни и същи за всяко вписване,

® за всяко вписване, всеки две лица са различни в комбинаторния смисъл, и

¯ лицата винаги имат прости ограждащи цикли.

Както ще видим, ¬ е вярно твърдение—което ще покажем в подсекция 2.13.3—а ­, ® и ¯ не
са верни и сега ще ги опровергаем.

Да разгледаме твърдение ¯. Всяко лице има прост ограждащ цикъл тогава и само тогава,
когато графът има поне три върха и няма срязващи върхове. Ще оставим този факт без
доказателство, като само ще дадем два примера за планарни графи H 1 и H2, всеки от които
има поне един срязващ връх. Ще нарисуваме планарните им вписвания, H 1 и H2 с външни
лица съответно f 1 и f2.

v4

u2 u5

u4u3

H 1

f2

v8

v6

v2 v7

v3 v5

H2

f 1

v1u1 u6

u7

Очевидно

f 1 “ u1,u7,u2,u3,u7,u4,u5,u7,u6,u1

f2 “ v1, v2, v3, v4, v3, v5, v6, v5, v7, v8, v7, v2, v1

тоест ограждащите ги цикли не са прости.

Сега ще опровергаем твърдение ­ като покажем, че на един и същи планарен граф може да
съответстват различни планарни вписвания. При това, различни не като геометрия, а като
комбинаторни описания на лицата. Да разгледаме следните две планарни вписвания на един
и същи планарен граф:

u6

u1 u2

u8 u9

u3 u4

u5

u1 u2

u8 u9

u3

u4

u6

u7 u7u5

За да се убедим, че вписванията са различни, достатъчно е да забележим, че във вписването
отляво има лице, в което присъстват u8 и u6, а във вписването отдясно няма такова лице.
Последният пример показва различни вписвания на един и същи граф, но едното от тях
може да бъде получено от другото чрез преименуване на върхове: ако разменим местата на
имената u2 и u8 във вписването вдясно, ще получим вписването вляво. Може да се дадат
примери за различни вписвания на един и същи граф, които не могат да бъдат получени
едно от друго чрез просто преименуване, например:
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f 1

Графът е един и същ и в двете двете вписвания, и броят на лицата е 6, но вписването вляво
има лице f 1 с 10 върха, а нито едно от шестте лица вдясно не е с 10 върха. Показахме, че
лицата може да съответстват на цикли, които не са прости, както и че един и същи планарен
граф може да има различни планарни вписвания.

И накрая ще опровергаем твърдение ®. Да рагледаме следното планарно вписване на K3:

f2f 1

c

a b

И f 1, и f2 имат описание a, c,b,a. Тъй като идентифицираме лице с неговото описание,
излиза, че двете лица, в комбинаторния смисъл, не са различни.

Всички разгледани примери досега бяха на обикновени графи. Да разгледаме и един пример
на планарно вписване на мултиграф с паралелни ребра и примки:

e3

e7

e1

e6 e5

e4

e2
e8

f7

f3

c

a

b

f1

f2

f6f4 f5

Мултиграфът има върхове a, b и c и ребра e1, . . . , e8, три от които са примки (e6 към връх
a и e4 и e5 към връх c), а други три са паралелни (e1, e2 и e3 с краища a и b). Показаното
планарното вписване има седем лица f1, . . . , f7, които описваме така:

155



ГЛАВА 2. НЕОРИЕНТИРАНИ ГРАФИ И НЕОРИЕНТИРАНИ МУЛТИГРАФИ © Минко Марков, 2025г.

f1 “ a, e6,a
f2 “ a, e1,b, e2,a
f3 “ a, e2,b, e3,a
f4 “ a, e3,b, e8, c, e7,a
f5 “ c, e4, c
f6 “ c, e5, c
f7 “ a, e1,b, e8, c, e5, c, e7,a, e6,a

Тъй като става дума за мултиграф с паралелни ребра, в описанията на циклите участват и
имената на ребрата (освен имената на върховете).

2.13.3 Характеристика на Euler. Следствия от нея.

Характеристика на Euler. Разглеждаме мултиграфи с възможни примки.

Теорема 40: Теорема на Euler

За всеки свързан планарен мултиграф G с n върха иm ребра е вярно, че всяко планарно
вписване на G има един и същи брой лица, да речем f лица, като е изпълнено

n´m` f “ 2 (2.18)

Това равенство е известно като Ойлерова характеристика.

Казвайки “характеристика”, имаме предвид характеристика на равнината:. В Секция 2.14
вписваме графи в други двумерни повърхнини като тороида, за които (2.18) не е в сила.

Доказателство: Преписваме твърдението така:

f “ m´ n` 2 (2.19)

Нека планарното вписване на G се казва G. Ще докажем (2.19) с индукция по f. Базовият
случай е f “ 1 (забележете, че f “ 0 е невъзможно). G да има точно едно лице и мултиграфът
да е свързан очевидно влече, че G е дърво. Щом G е дърво, прилагаме Теорема 29 и заклю-
чаваме, че m “ n´1. Заместваме f с 1 и m с n´1 в (2.19) и получаваме 1 “ pn´1q´n`2. 3

Индуктивното предположение е, че f ´ 1 “ p ´ q ` 2 е в сила за всяко планарно вписванe
с f ´ 1 лица, за някакво f ´ 1 ě 1, където p е броят на планарните ребра, а q е броят на
планарните върхове.

В индуктивната стъпка разглеждаме произволен граф G с m ребра и n върха, който има
планарно вписване G, което има f лица. Ще докажем (2.19), ползвайки индуктивното пред-
положение.

Некаm 1 и n 1 са съответно броят на планарните ребра и планарните върхове на вписването
G. Очевидно, m 1 “ m и n 1 “ n. Избираме произволно ребро e от G, което не е мост; такова
ребро трябва да има, в противен случай G би бил дърво. Изтриваме от G планарното ребро
e 1, което е планарният образ на e. Преди изтриването на e 1 от G, в G е имало точно две

:Или сферата – вижте Наблюдение 28.
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различни лица, за които e 1 е било общо – това е очевидно. След изтриването на e 1 тези
две лица се сливат в едно лице и по този начин броят на лицата намалява с единица. С
други думи, G´ e 1 има точно f´ 1 лица. Тогава индуктивното предположение е приложимо
за G ´ e 1. Броят на ребрата на G ´ e 1 е m 1 ´ 1, понеже го получихме от G с изтриване на
планарно ребро, а броят на върховете му е n 1. От индуктивното предположение, приложено
върху G´ e 1, имаме:

f´ 1 “ pm 1 ´ 1q ´ n 1 ` 2

Но това е същото като f “ m 1 ´ n 1 ` 2. Припомняме си, че m 1 “ m и n 1 “ n и получаваме

f “ m´ n` 2 2

Допълнение 19: Върху доказателствата по индукция

Да разгледаме отново предложеното доказателство по индукция на Теорема 40. В него
правим нещо като “стъпка назад”: разглеждайки произволен граф, чието вписване има
точно f лица, махаме ребро, с което сливаме две лица и броят на лицата става f ´ 1.
Това е “стъпката назад”. След нея вече индуктивното предположение е приложимо и
довършването на доказателството е елементарно. Може да се запитаме: а дали не може
да се мине без тази стъпка назад? Дали не може доказателството, пак по индукция по
броя на лицата, да се направи по следния начин? Да наречем “Д1” следния опит за
доказателство на Теорема 40.

Д1

• Базата е същата: f “ 1 и пак става дума за дърво.

• Нека за някое f разгледаме произволен планарен мултиграф G, който
има планарно вписване G с точно f лица. Нека G имаm ребра и n върха.
Да допуснем, че е изпълнено f “ m ´ n ` 2. Разглеждаме произволно
лице F на G и произволни два планарни върха u и v от F. Щом са
върхове от едно и също лице, можем да добавим едно ново планарно
ребро e 1 към G, поставяйки e 1 изцяло във F, без e 1 да докосва или
пресича нищо друго от G, освен че двата края на e 1 се идентифицират
с u и v. По този начин e 1 “разсича” F на две нови лица F1 и F2. Тъй като
самото F престава да съществува, броят на лицата нараства с единица.
Новото планарно вписване има f ` 1 лица, m ` 1 планарни ребра и n
планарни върха. Дали f`1 “ pm`1q´n`2? Да, това следва директно от
индуктивното предположение с добавяне на единица и от двете страни
на равенството.

Д1 е формално некоректно, а да бъде изтъкната същината на тази формална неко-
ректност е причината за написването на това допълнение. Това, което липсва на Д1, е
едно друго доказателство. Д1 неявно допуска, че всеки свързан планарен мултиграф
с n върха и m ě n ´ 1 ребра може да бъде генериран по следния начин: генерираме
негово планарно вписване, започвайки от планарно дърво с n върха и слагайки едно по
едно m´n` 1 “ m´pn´ 1q планарни ребра, всяко от които се слага между два върха
от едно и също лице (което гарантира, че можем да сложим новото планарно ребро
без да пресичаме непозволено вече сложени планарни ребра), при които вписването
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остава планарно. Това неявно допускане трябва да се докаже, за да стане предложе-
ното доказателство истинско. Лесно се вижда, че въпросното неявно допускане касае
алтернативно, индуктивно определение на “свързано планарно вписване”.

Определение 67: Индуктивно определение на свързано планарно вписване
върху фиксирано множество от планарни върхове.

Нека е дадено непразно крайно множество V от планарни върхове.

¶ База Всяко планарно дърво върху V е свързано планарно вписване върху
V.

· Индуктивна стъпка Нека D е свързано планарно вписване върху V. Нека F
е произволно лице спрямо D. Нека u и v са произволни, не непременно различни,
планарни върхове от F. Слагаме ново планарно ребро e 1 с краища u и v, такова
че единствените общи точки между e 1 и планарните върхове и ребра от D са
именно u и v.

¸ Заключение Нищо, което не може да бъде генерирано с краен брой прила-
гания на ¶ и ·, не е свързано планарно вписване върху V.

Лема 11

Определение 67 е еквивалентно на Определение 63, ако в Определение 63 се ог-
раничим до свързани планарни вписвания.

Доказателство: В едната посока доказателството е тривиално – очевидно процедура-
та от Определение 67 генерира само свързани планарни вписвания върху V. Това може
да се докаже и по индукция, но едва ли има смисъл; наистина е очевидно. В другата
посока трябва да докажем, че всяко свързано планарно вписване G върху V може да
се генерира от тази процедура. Наистина, започвайки от произволно такова вписване
G, изпълняваме обратния алгоритъм, който е много аналогичен на Алгоритъм 4:

• Проверяваме дали вписването е на дърво, тоест дали има цикли, тоест дали ли-
цата са точно едно.

• Ако да, терминираме.

• Ако не, намираме планарно ребро, принадлежащо на две лица—такова трябва
да има—и го изтриваме, сливайки двете лица в едно, след което пак отиваме на
проверката.

Имайки “обратния алгоритъм”, редуцираме даденото вписване G до планарно дърво
D, след което очевидно с краен брой прилагания на индуктивната стъпка от Опреде-
ление 67 можем да възстановим G от D като просто слагаме ребрата в обратен ред на
реда на махането им. 2

И така, ако съчетаем Д1 с Определение 67 и Лема 11, ще имаме валидно доказателство
на Теорема 40. Но сложността на този подход надхвърля сложността на предложеното
доказателство на теоремата. Тук излагаме този възможен подход само за да илюст-
рираме нещо важно за доказателствата по индукция – понякога “очевидното” просто
доказателство е невалидно, защото се основава на индуктивна дефиниция, която не
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е изложена или най-малкото, за която не е доказано, че е еквивалентна на “нашата”.
В конкретния случай се оказа, че наистина имплицитната по отношение на Д1 дефи-
ниция е еквивалентна на “нашата”. Но Хипотеза 1 на стр. 164 е пример за това, че в
някои случаи имплицитната дефиниция не е еквивалентна на “нашата” и по този начин
просто изглеждащото “доказателство” всъщност е невалидно.

И накрая, забележете, че предложеното доказателство на Теорема 40 по същество е ка-
то съчетаване на Д1 с Определение 67 и Лема 11, но по икономичен и елегантен начин:
докато Лема 11 изпълнява всички “стъпки назад”, то доказателството на Теорема 40
прави само една “стъпка назад”.

Допълнение 20: Характеристиката на Euler и Платоновите тела

Теорема 40 има интересен геометричен аспект. Теоремата в този си вид е твърдение
за мултиграфи графи с възможни примки. В частност, тя е в сила за обикновени
графи. Но тогава тя е в сила и за многостени по следната причина. Многостените са
геометрични обекти, но на всеки многостен M естествено съответства обикновен граф
GM: върховете на GM съответстват на върховете на M, а ребрата на GM съответстват
ръбовете на многостена. GM е планарен, понеже:

• многостенът може да бъде трансформиран в сфера чрез континуална трансфор-
мация, така че самият многостен естествено задава вписване на графа в сферата;

• както вече отбелязахме в Наблюдение 28, графите, които може да бъдат вписани
в сферата са точно графите, които може да бъдат вписани в равнината.

Следователно, лицата на многостена съответсват на лицата на вписването.

Наблюдение 30: Ойлерова характеристика на многостените

Приложена за многостени, Теорема 40 казва, че за всеки многостен:

броят на върховете ´ броят на ребрата ` броят на лицата “ 2

Числото 2 се нарича Ойлерова характеристика на многостените.

По-общо казано, Ойлеровата характеристика описва свойство на повърхнината, в която
се вписват графите, съответстващи на многостените—тази повърхнина е сферата. Как-
то ще видим в Секция 2.14, съществуват повърхнини, по-сложни от сферата, например
тороидът, чиято характеристика не е 2. Оригиналната статия на Ойлер на латински,
както и преводи на английски и немски, може да бъдат намерени на този сайт (вж.
[23]).

От особен интерес са регулярните многостени, наречени още Платонови телаа.

Определение 68: Регулярен многостен

Регулярен е всеки многостен M, такъв че:

• стените на M са конгруентни регулярни многоъгълници и

• във всеки връх на M се срещат един и същи брой стени.
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Добре известен факт, който ще докажем след малко, използвайки теорията на графите,
е, че съществуват точно пет Платонови тела:

1. регулярният тетраедър,

2. кубът, който може да наречем регулярен хексаедър,

3. регулярният октаедър,

4. регулярният додекаедър и

5. регулярният икосаедър.

Във всяко от тези имена, коренът е гръцката дума ἕδρα, която означава сядане, седе́не,
и оттам лице на геометрично тяло. Префиксът пред корена идва от броя на стените
на съответното тяло:

1. тетра- идва от старогръцката дума τέτρας, която означава четири,

2. хексa- идна от старогръцката дума ἕξ, която означава шест,

3. окта- идва от старогръцката дума όκτω, която означава осем,

4. додека- идва от старогръцката дума δώδεκα, която означава дванадесет, и

5. икоса- идва от старогръцката дума εἴκοσι, която означава двадесет.

Фигура 2.80 показва петте Платонови тела. Фигурата е взета от уикипедия.

Фигура 2.80 : Петте платонови тела.

тетраедър хексаедър октаедър додекаедър икосаедър

Ще покажем, че няма други Платонови тела, разглеждайки ги като графи, вписани
в сферата (тоест, планарни графи). За целта ще използваме Теорема 40. Да разгле-
даме произволно Платоново тяло, като всъщност разглеждаме съответния му граф
G “ pV,Eq, а също така разглеждаме и вписването на G в сферата. Нека F е множест-
вото от лицата на това вписване. Тъй като всички върхове са от една и съща степен,
с dv означаваме степента на кой да е връх. Аналогично, тъй като всички лица на сфе-
ричното вписване са от една и съща степен, с df означаваме степента на кое да е лице
(вж. Определение 69). Нека n, m и f съответно означават броя на върховете, ребрата
и лицата на вписването.
От Лема 1 знаем, че

ř

uPV dpuq “ 2m. Тогава

ndv “ 2m (2.20)
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От Лема 12 знаем, че
ř

tPF dptq “ 2m. Тогава

fdf “ 2m (2.21)

От Теорема 40 знаем, че

n´m` f “ 2 (2.22)

Замествайки n и f в (2.22) съгласно (2.20) и (2.21), съответно, получаваме

2m
dv
´m`

2m
df
“ 2Ø

1
dv
`

1
df
“

1
2
`

1
m

(2.23)

Но m ą 0. Тогава

1
dv
`

1
df
ą

1
2

(2.24)

От неравенство (2.24) и факта, че dv ě 3 и df ě 3 лесно извеждаме, че единствените
пет възможности за стойностите на dv и df са:

dv “ 3,df “ 3 (2.25)
dv “ 3,df “ 4 (2.26)
dv “ 3,df “ 5 (2.27)
dv “ 4,df “ 3 (2.28)
dv “ 5,df “ 3 (2.29)

Първата възможност (2.25) съответства на тетраедъра, втората възможност (2.26) съ-
ответства на хексаедъра (куба), третата възможност (2.27) съответства на додекаедъ-
ра, четвъртата възможност (2.28) съответства на октаедъра и петата възможност (2.29)
съответства на икосаедъра.

а На английски, Platonic solids.

Горни граници за броя на ребрата при планарните графи. Тази дефиниция има
смисъл не само за обикновени графи, но и за мултиграфи с възможни примки.

Определение 69: Степен на лице на планарно вписване.

За всяко планарно вписване на някой планарен мултиграф, за всяко лице t, степента
на t е дължината на цикъла, ограждащ t. Степента на t бележим с dptq.

Като пример ще разгледаме степените на двете лица f 1 и f2 на следното вписване:

f2

f 1

u v w a

b

d

c
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Степента на f2 е очевидно 4. Степента на f 1 е 10, тъй като ограждащият цикъл u, v,w,a,b,
c,d,a,w, v,u, който не е прост, има дължина 10.

Лема 12

За всеки планарен мултиграф G с m ребра, ако G е произволно планарно вписване на
G с f на брой лица t1, t2, . . . , tf, в сила е:

f
ÿ

i“1

dptiq “ 2m

Доказателство: Всяко ребро се брои точно два пъти при сумирането на степените на
лицата. 2

Този резултат остава в сила дори когато G е тривиален граф: тогава той има един връх,
нула ребра и планарното му вписване има едно лице (с нула ограждащи ребра). Наистина,
ř1
i“1 0 “ 2ˆ 0.

Оттук насетне в текущата подсекция разглеждаме само обикновени графи.

Теорема 41: m ď 3n´ 6 при планарните обикновени графи

За всеки планарен обикновен граф G, не непременно свързан, с поне две ребра, ако n
е броят на върховете и m е броят на ребрата, то

m ď 3n´ 6

Доказателство: Нека G е свързан – ако не е свързан, доказваме неравенството за свър-
заните компоненти и сумираме по компонентите. И така, G е свързан планарен граф. Нека
лицата са f на брой, наречени t1, t2, . . . , tf. Имаме:

n´m` f “ 2 съгласно Теорема 40
n´ 2 “ m´ f очевидно
3n´ 6 “ 3m´ 3f очевидно
3n´ 6 “ m` 2m´ 3f очевидно

3n´ 6 “ m`
f
ÿ

i“1

dptiq ´ 3f Съгласно Лема 12

Забележете, че
řf

i“1 dptiq ´ 3f е неотрицателно количество за всеки планарен обикновен
граф с поне две ребра, защото всяко лице има ограждащ цикъл с дължина поне 3, тоест
dptiq ě 3 за всяко i. Щом

řf

i“1 dptiq ´ 3f ě 0, следва, че 3n´ 6 ě m. 2

Следствие 11

K5 не е планарен граф.

Доказателство: Директно от Теорема 41: K5 има 10 ребра, 5 върха, и 10 ę 3ˆ 5´ 6. 2
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Следствие 12

За всеки планарен обикновен граф, m ă 3n ´ 6 тогава и само тогава, когато всяко
негово планарно вписване има поне едно лице от степен поне 4. 2

И така, горната граница 3n ´ 6 за броя на ребрата е достижима, и то точно тогава, когато
всички лица са от степен точно 3. Лесно се вижда, че тази горна граница е в сила само за
обикновени планарни графи – при планарните мултиграфи няма горна граница за броя на
ребрата при фиксиран брой на върховете.

Определение 70: Триангулация.

Всяко планарно вписване, в което всяко лице е от степен 3, ще наричаме триангулация.

За удобство и по-кратко изразяване може да игнорираме разликата между триангулация
като геометрично понятие, от една страна, и графа, на който е тази триангулация, от дру-
га страна. Тогава терминът “триангулация” ще бъде приложим и за графи; а именно за
графите, чието планарно вписване е триангулация. Следният очевидно коректен алгоритъм
трансформира произволно свързано планарно вписване на граф в триангулация.

Алгоритъм 7: Триангулиране

Вход: Планарно вписване G.
Изход: Триангулация.

¶ Ако всички лица на G са от степен 3, върни G.

· В противен случай, нека S е произволно лице на G от степен ě 4. Нека u и v са
два различни произволни планарни върха от S, между които няма планарно ребро.
Добави към G планарно ребро между u и v, така че новото ребро да не пресича други
планарни ребра във вътрешни точки. Отиди на ¶.

Съгласно Следствие 12, Триангулиране връща планарно вписване на граф, за който m “

3n´ 6. Той “раздробява” лицата от степен ě 4 на лица от степен точно 3. Ние вече видяхме
пример за работата на Триангулиране, без да сме използвали в явен вид името на алгори-
тъма. На фигурата на стр. 147 е показан граф-цикъл с дължина 5, който не е триангулация
(съответно не е вярно, че m “ 3n ´ 6, защото 5 ­“ 3 ˆ 5 ´ 6). После добавяме ребрата pu, zq
и px, zq, но това все още не е триангулация (съответно не е вярно, че m “ 3n ´ 6, защото
7 ­“ 3ˆ 5´ 6). И накрая добавяме ребрата px,yq и py, vq (вж. фигурата на стр. 148), с което
полученият граф, който наричаме K5 ´ e, е триангулация (съответно m “ 3n ´ 6, защото
9 “ 3ˆ 5´ 6).

Допълнение 21: За индуктивно дефинираните триангулации

Ще разгледаме индуктивно определение на понятието “триангулация”. То се оказва не-
коректно в смисъл, че не е еквивалентно на Определение 70. Важният извод тук е, че
не всяко индуктивно определение на вече дефинирано понятие, което индуктивно опре-
деление звучи смислено, е непременно еквивалентно на първоначалното не-индуктивно
определение.
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Всяко индуктивно определение е алгоритъм, който генерира елементите на някакво
множество, започвайки от база, която се състои от един или повече елемента на мно-
жеството, и прилагайки индуктивна стъпка, която—ако вече са генерирани някакви
елементи на множеството—генерира нови елементи от досега генерианите, използвай-
ки една или повече присъединителни операции. В общия случай, индуктивната
стъпка се прилага неограничен брой пъти, защото по правило индуктивно генерира-
ните множества са безкрайни, но всеки отделен елемент на множеството се генерира
чрез краен брой стъпки. Това ни позволява да казваме “алгоритъм”, а не “процедура”:
алгоритмите задължително трябва да завършват след краен брой стъпки.

Алгоритъм 8: Индуктивно Триангулиране

Вход: Равнината без нищо вписано в нея.
Изход: Триангулация.

¶ (База) Ако в равнината не е вписано нищо, сложи планарно вписване на K3.

· (Индуктивна стъпка) Ако вече е вписана някаква триангулация G, вземи
произволно нейно лице S, сложи в негова вътрешна точка един нов планарен
връх x и свържи x с трите върха на S чрез планарни ребра, които не се пресичат,
и така получи нова триангулация G 1.

Присъединителната операция в случая е добавяне на нов връх и нови ребра, инциден-
тни с него.

Фигура 2.81 илюстрира работата на този алгоритъм.

Фигура 2.81 : Алгоритъм, строящ триангулации.

b

a c

Фиг.2.81(a):
започваме с
3-клика.

b

a

d
c

Фиг.2.81(б):
слагаме нов връх
d и три ребра.

b

a

d

f

c

Фиг.2.81(в): слагаме
нов връх f и три
ребра.

b

a

d

f

g

c

Фиг.2.81(г): слагаме
нов връх g и три
ребра.

Читателят може да се изкуши да допусне, че Индуктивно Триангулиране може
да генерира всяка възможна триангулация, аналогично на Триангулиране (вж. Ал-
горитъм 7).

Хипотеза 1

Алгоритъм Триангулиране може да генерира всяка възможна триангулация.
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Ако Хипотеза 1 беше вярна, то доказателството на теоремата за четирите цвята (вж.
Теорема 8) би било абсолютно тривиално. Тривиално упражнение е да се докаже със
структурна индукция, че обектите, генерирани от Индуктивно Триангулиране, са
оцветими с не повече от четири цвята:

• В базата на индуктивната дефиниция, очевидно K3 е 4-оцветим;

• в индуктивната стъпка, ако допуснем, че триангулацията G е 4-оцветима, то пла-
нарните върхове на лицето S ползват не повече от 3 от тях и имаме “свободен”
цвят, в който да оцветим новодобавения връх x, така че G 1 получава оцветяване
с не повече от четири цвята, такова че на всяко планарно ребро двата края са
различни цветове.

Очевидно оцветяването на планарното вписване с не повече от четири цвята оп-
ределя 4-оцветяване на съответния планарен граф-триангулация. И така, графите-
триангулации, които Триангулиране генерира, са 4-оцветими. Съгласно Хипотеза 1,
това са всички триангулации. Очевидно всеки планарен граф може да се получи от
някакъв граф-триангулация чрез изтриване на нула или повече ребра. Но изтриването
на ребра не може да промени 4-оцветимостта. Следователно, всеки планарен граф е
4-оцветим.

Ясно е, че доказателството на теоремата за четирите цвята не може да е толкова просто.
Невъзможно е водещи математици в света да се опитват да докажат теоремата с десети-
летия и да не забележат, че има доказателство със сложността на задача за домашно.
Хипотеза 1 не може да е вярна. Сега ще опровергаем Хипотеза 1 с контрапример—
триангулация, която не може да бъде генерирана от Индуктивно Триангулиране.
Ще започнем от факта, че всеки планарен граф има връх от степен ď 5 (вж. Теоре-
ма 43, която е надолу в тази секция). Първо да се запитаме, може ли да има планарен
граф, в който всеки връх е от степен точно 5? От най-общи съображения, такъв граф
трябва да има поне 6 върха, а именно някакъв връх от степен 5 и неговите 5 съседа.
В действителност, такъв граф G “ pV,Eq трябва да има поне 12 върха по следните
причини:

• Както вече знаем, m ď 3n´ 6.

• От друга страна, знаем, че
ř

vPV dpvq “ 2m, а
ř

vPV dpvq трябва да е 5n, така че
m “ 5n

2 .

Отm ď 3n´6 иm “ 5n
2 веднага следва n ě 12. А дали тази долна граница е достижима?

Тоест, дали има 5-регулярен планарен граф с 12 върха? Фигура 2.82 показва, че такъв
граф има.
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Фигура 2.82 : Конструиране на планарен 5-регулярен граф с 12 върха.

Фиг.2.82(a): започваме с
връх от степен 5.

Фиг.2.82(б): слагаме пет
съседа от степен 5.

Фиг.2.82(в): свързваме
съседите в цикъл.

Фиг.2.82(г): слагаме още
пет върха от степен 5.

Фиг.2.82(д): свързваме
ги със свободните
“валентности” на
предните пет върха.

Фиг.2.82(е): свързваме ги
в цикъл, после нов връх
от степен 5 към
последните свободни
“валентности”.

Графът на Фигура 2.82—който, както лесно се вижда, е изоморфен на графа-икосаедър,
който на свой ред съответства на многостена-икосаедър, показан на Фигура 2.80—е
контрапример за Хипотеза 1. Той представлява триангулация, която не може да бъде
генерирана отИндуктивно Триангулиране. За да се убедим в това, достатъчно е да
съобразим, че Индуктивно Триангулиране генерира триангулации (и съответно,
графи), които имат връх от степен 2 (базата) или 3 (индуктивната стъпка). А графът
на Фигура 2.82 няма такива върхове, тъй като е 5-регулярен.

Теорема 42: m ď 2n´ 4 при планарните обикновени двуделни графи

За всеки планарен обикновен двуделен граф G с поне две ребра, ако n е броят на
върховете и m е броят на ребрата, то

m ď 2n´ 4

Доказателство: Нека G е свързан – ако не е свързан, доказваме неравенството за свърза-
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ните компоненти и сумираме по компонентите. И така, G е свързан планарен двуделен граф.
Нека лицата са f на брой, наречени t1, t2, . . . , tf. Имаме:

n´m` f “ 2 съгласно Теорема 40
n´ 2 “ m´ f очевидно
2n´ 4 “ 2m´ 2f очевидно

2n´ 4 “ m`
2m´ 4f

2
очевидно

2n´ 4 “ m`
řf

i“1 dptiq ´ 4f
2

Съгласно Лема 12

Забележете, че
řf

i“1 dptiq´ 4f е неотрицателно количество за всеки планарен двуделен граф
с поне две ребра, защото всяко лице има ограждащ цикъл с дължина поне 4, тоест dptiq ě 4
за всяко i. Щом

řf

i“1 dptiq ´ 4f ě 0, следва, че 2n´ 4 ě m. 2

Следствие 13

K3,3 не е планарен граф.

Доказателство: Директно от Теорема 42: K3,3 има 9 ребра, 6 върха, и 9 ę 2ˆ 6´ 4. 2

Теорема 43: Във всеки планарен граф има връх от степен ď 5

Във всеки планарен граф има връх от степен, не по-голяма от 5.

Доказателство: Да допуснем противното – съществува планарен граф G “ pV,Eq, такъв
че @v P Vpdpvq ě 6q. Тогава:

ÿ

vPV

dpvq ě 6n Ø
ÿ

vPV

dpvq “ 6n` k за някое неотрицателно k

От Лема 1 знаем, че
ř

vPV dpvq “ 2m. Следователно,

2m “ 6n` k Ø m “ 3n`
k

2

Но тъй като k
2 е неотрицателно, този извод противоречи на Теорема 41 на стр. 162. 2

Допълнение 22: Теоремата за шестте цвята. Теоремата за петте цвята.

Теоремата за четирите цвята (Теорема 8) е изключително сложен теоретичен резултат.
В това допълнение ще докажем два по-слаби резултата. Напълно естествено, техните
доказателства са много по-прости и лесно разбираеми. Както и може да се очаква,
по-слабата от тези теореми, а именно за шестте цвята, е по-лесната от двете.

Теорема 44: Теоремата за шестте цвята

Всеки планарен граф е 6-оцветим.
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Доказателство: Ще докажем теоремата с индукция по броя на върховете. За база
ще вземем планарните графи с не повече от 6 върха. Те са очевидно 6-оцветими. Да
допуснем, че всеки планарен граф с ď n върха е 6-оцветим. Да разгледаме произволен
планарен граф G “ pV,Eq с n ` 1 върха. Съгласно Теорема 43, Du P V : dpuq ď 5.
Очевидно G´u също е планарен, освен това G´u има n върха. Съгласно индуктивното
предположение, G´u е 6-оцветим. Нека φ е произволно оцветяване на G´u в не повече
от 6 цвята. По конструкция, |Npuq| ď 5. Тогава върховете от Npuq “ползват” не повече
от пет цвята и задължително има един цвят, да кажем белият цвят, такъв че никой
връх от Npuq не е оцветен в него. Тогава оцветяването f 1 на G, което дава бял цвят
на u, а на всеки друг връх v дава цвета φpvq, е легитимно оцветяване с не повече от 6
цвята. 2

Теорема 45: Теоремата за петте цвята

Всеки планарен граф е 5-оцветим.

Доказателство: Нека цветовете са жълт, зелен, син, червен и кафяв. С цел по-кратко
изложение няма да правим строга разлика между планарен граф, неговите върхове и
ребра, от една страна, и планарното му вписване със своите планарни върхове и ребра,
от друга страна.
Ще докажем теоремата с индукция по броя на върховете. За база ще вземем планар-
ните графи с не повече от 5 върха. Те са очевидно 5-оцветими. Да допуснем, че всеки
планарен граф с ď n върха е 5-оцветим. Да разгледаме произволен планарен граф
G “ pV,Eq с n` 1 върха. Съгласно Теорема 43, Du P V : dpuq ď 5. Очевидно G´u също
е планарен, освен това G ´ u има n върха. Съгласно индуктивното предположение,
G´ u е 5-оцветим. По конструкция, |Npuq| ď 5.
Дотук доказателството повтаря доказателството на Теорема 44. Но сега се налага да
продължим по друг начин. Сега разполагаме само с пет цвята. Ако Npuq “ 5, оцветя-
ването на G´ u с ď 5 цвята може да е такова, че върховете от Npuq са оцветени в пет
различни цветове и нямаме “свободен” цвят, който да дадем на u. Може да се наложи
да “пребоядисаме” върхове в G ´ u по такъв начин, че хем да “освободим” един цвят
за u, хем оцветяването да остане валидно (да няма ребро, чиито краища са в един и
същи цвят).

Ако |Npuq| ď 4, то “пребоядисване” не се налага; очевидно съществува поне един цвят
измежду петте, без ограничение на общността нека това е зеленият цвят, който не се
използва от никой връх в Npuq. Тогава оцветяваме u в зелено и сме готови.

Нека |Npuq| “ 5. Ако има поне един цвят измежду петте, който не се използва от никой
връх в Npuq, доказателството се извършва аналогично.

Нека всичките пет цвята се ползват от петте върха на Npuq. Ще “пребоядисваме” вър-
хове в G´ u, за да “освободим” един цвят за u.
Нека Npuq “ tv1, v2, v3, v4, v5u. Без ограничение на общността, нека в планарното впис-
ване на G, тези върхове са наредени по този начин:

pv1, v2, v3, v4, v5q

ако обикаляме около u в дадена посока, да речем, по часовниковата стрелка. Нека
цветовете им са, както е показано на следната рисунка:
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u

v5 v2

v3v4

v1

Между всеки два от върховете tv1, v2, v3, v4, v5u може да има или да няма ребро, но
тези възможности не са независими. Да разгледаме десетте ненаредени двойки tv1, v2u,
tv1, v3u, tv1, v4u, tv1, v5u, tv2, v3u, tv2, v4u, tv2, v5u, tv3, v4u, tv3, v5u, tv4, v5u. Да наречем
тези двойки, потенциалните ребра. От тях, tv1, v2u, tv2, v3u, tv3, v4u, tv4, v5u, tv1, v5u са
късите потенциални ребра, а останалите, дългите. Подчертаваме, че това разграниче-
ние между къси и дълги потенциални ребра е възможно само след указването на раз-
положението на върховете в равнината; ако разсъждавахме на ниво граф (а не на ниво
планарно вписване) без да уточним някаква кръгова наредба между tv1, v2, v3, v4, v5u,
такова категоризиране на потенциалните ребра би било безсмислено. Още дефинираме,
че кое да е потенциално ребро присъства в G, ако в G има ребро с краища съответните
два върха.
Тривиално е да се покаже, че поне едно от потенциалните ребра не присъства в G.
Ако допуснем обратното, в G би имало подграф, изоморфен на K5. Става дума за
индуцирания от tv1, v2, v3, v4, v5u подграф. Сега ще покажем по-силно твърдение: поне
три от дългите потенциални ребра не присъстват в G, независимо от това дали и
колко къси потенциални ребра присъстват. Доказателството се основава на наличието
на петта ребра pu, v1q, . . . , pu, v5q в (планарното вписване на) G. Лесно се вижда, че
най-много две дълги потенциални ребра може да се разположат в равнината, така че да
няма пресичане нито на дълги ребра, нито на дълго ребро с някое от pu, viq за 1 ď i ď 5.
Следната рисунка онагледява възможността да има две дълги ребра, инцидентни с v1:

v5 v2

v3v4

v1

u

Следователно, за поне два върха от tv1, v2, v3, v4, v5u, без ограничение на общността нека
това са v2 и v4, е вярно, че те не са съседи в G. Останалата част на доказателството
използва допускането, че между v2 и v4 няма ребро. Подчертаваме, че никъде надолу
няма да използваме допускане, че има ребра pv1, v3q и pv1, v4q. Последната рисунка
имаше за цел да покаже, че не може да има повече от две дълги ребра. Дълги ребра
може изобщо да няма.
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Цветовете на v2 и v4 са зелено и червено. Нека H е подграфът на G, индуциран от
зелените и червените върхове.

Случай I: v2 и v4 се намират в различни свързани компоненти на H. Нека H 1 е
свързаната компонента на H, която съдържа v2. Например:

u

v5

v3v4

v1

v2 H 1

Правим следната смяна на цветове на върхове:

• всеки връх на H 1, който е бил зелен преди смяната на цветове, става червен,

• всеки връх на H 1, който е бил червен преди смяната на цветове, става зелен,

• цветът на всеки връх в G, който не е в H 1, не се променя.

Ще докажем, че тази смяна на цветове представлява легално оцветяване на върховете
на графа. Тоест, че не може да се получи ребро, двата края на което са оцветени в един
цвят.

1. ребрата, нито един връх на които не е от H 1, очевидно не могат да имат два края
от един цвят след смяната;

2. да разгледаме произволно ребро px,yq, точно единият край на който, да речем
x, е в H 1. Преди смяната на цветовете, x е бил червен или зелен, y е бил жълт,
син или кафяв. След смяната, x е пак в един от цветовете червен или зелен
(обратния на предния цвят), а y си остава в цвят, който не е нито червен, нито
зелен. Следователно, двата края на px,yq не са оцветени в един цвят след смяната.

3. да разгледаме произволно ребро px,yq от H 1. Без ограничение на общността нека x
е бил червен, а y, зелен преди смяната. Тогава след смяната x е зелен, а y, червен.
Следователно, двата края на px,yq не са оцветени в един цвят след смяната.

Доказахме твърдението. Ето как изглежда горният пример след смяната на цветовете
на H 1:
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u

v5

v3v4

v1

v2 H 1

След смяната на цветовете, цветът, в който е бил оцветен v2 преди смяната, а именно
зеления, е “свободен” в смисъл, че нито един съсед на u не го ползва. Оцветяваме u в
него и получаваме 5-оцветяване на G:

u

v5

v3v4

v1

v2

Случай II: v2 и v4 се намират в една и съща свързана компонента на H. Нека тази
свързаната компонента на H бъде наречена H2. Например:

u

v3v4

v1

v2 H2
v5

В този случай е безсмислено да сменяме оцветяването на върховете от H2 като в Слу-
чай I—червено в зелено и обратно—защото няма да “освободим” нито червения, нито
зеления цвят за u; u би имал и червен, и зелен съсед след смяната. Но забелязваме, че
v1 и v3 в този случай са, в някакъв смисъл, изолирани един от друг. Формално, в G не
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съществува алтерниращ жълто-син път с краища v1 и v3. Сега ще докажем този факт.
Тъй като H2 е свързан, съществува алтерниращ зелено-червен прост път между v1 и
v3 в H2. На следната рисунка е показан такъв примерен път p, очертан в пурпурно:

p
u

v5

v3v4

v1

v2 H2

Заедно с ребрата pu, v4q и pu, v2q и връх u, пътят p образува прост цикъл c в G:

c

u

v5

v3v4

v1

v2

Спрямо цикъла c има точно два района на равнината и очевидно всеки върховете v1 и
v3 се намира в един от тези райони. Следователно:

• нито може да има ребро с краища v1 и v3 в G, защото такова ребро би пресичало
ребро от c, а по конструкция G е планарен;

• нито може да има алтерниращ жълто-син път с краища v1 и v3. Ако допуснем,
че има такъв път q и той няма общ връх с c, би имало непозволено пресичане на
ребра и G не би бил планарен (q е очертан в светло синьо):
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q

u

v5

v3v4

v1

v2

Да допуснем, че хипотетичният път q има поне един общ връх с c. Върховете на
q са оцветени в жълто и синьо. Върховете на c са оцветени в три цвята: зелен,
червен и бял (това е цветът на u в момента, u още не е оцветен в нито един от
петте цвята, така че можем да считаме, че е оцветен в някакъв шести временен
цвят, например бял). Получаваме противоречие – общият връх трябва да е от
една страна син или жълт, а от друга, зелен, червен или бял.

q

u

v5

v3v4

v1

v2

Доказахме, че при текущите допускания не съществува алтерниращ жълто-син път
между v1 и v3. Нека J е подграфът на G, индуциран от жълтите и сините върхове.
Щом в G няма алтерниращ жълто-син път между v1 и v3, то v1 и v3 са в различни
свързани компоненти на J. Нека v3 се намира в свързаната компонента J 1 на J:
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J 1

v3v4

v1

v2
u

v5

Извършваме смяна на цветовете жълто в синьо и синьо в жълто върху J 1, остaвяйки
другите върхове на G в същите цветове като преди.

J 1

v3v4

v1

v2
u

v5

По начин напълно аналогичен на Случай I доказваме, че след тази смяна на цветовете
не може да получим ребро, чиито два края са оцветени в един и същи цвят. Но тогава
връх v3 се оказва жълт. По този начин си “освобождаваме” синия цвят и оцветяваме u
в синьо.

v5

v3v4

v1

v2
u

2
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2.13.4 Хомеоморфизъм на графи.

Разглеждаме свързани мултиграфи. Нека G е свързан мултиграф. Ще започнем с наблюде-
нието, че по отношение на планарността, висящите върхове нямат значение. Ако има висящи
върхове, можем спокойно да ги игнорираме. По-прецизно казано, ако има висящи върхове в
G, ние ги трием, докато не се получи граф без висящи върхове. G е планарен тогава и само
тогава, когато полученият граф е планарен.

Изтриване на висящите върхове може да се наложи да става става итеративно, защото
след “първия пас” на изтриване на висящи върхове може са стане така, че други върхове,
които преди не са били висящи, да станат от висящи, и така нататък. Тази ситуация възниква,
ако G е или дърво, или не е дърво, но има “израстъци-дървета”. Следната фигура илюстрира
втората възможност: графът G е K4 ´ e с три “израстъка-дървета”; трием висящите върхове
на три итерации, въпросните “израстъци” изчезват и остава само K4 ´ e.

Не е трудно да се съобрази, че ако G е дърво, то итеративното изтриване на висящите върхове
ще редуцира това дърво до един единствен връх.

Следващото наблюдение е, че върховете от степен две също нямат значение за планарността,
но в различен смисъл. Тях няма да трием, понеже изтриване на върхове от степен две може
да направи планарен граф от непланарен граф, а ще ги елиминираме по друг начин. Без
ограничение на общността, нека G е нетривиален и няма висящи върхове. Ако в G няма
върхове от степен, по-голяма от две, то всички върхове са точно от степен две и G е граф-
цикъл, а всеки граф-цикъл задължително е планарен и в този смисъл, не е интересен от
гледна точка на задачата дали даден граф е планарен или не.

Да допуснем, G че има поне един връх от степен, по-голяма от две, както и поне един
връх от степен две. Да разгледаме всички максимални по включване пътища p1, . . . , pt в
G, чиито вътрешни върхове са от степен две (краищата им са върхове от степен, по-голяма
от две). Нека pi има краища ui и vi, за 1 ď i ď t; очевидно върховете u1, . . . , ut, v1, . . . ,
vt не са непременно два по два различни. Ако ui “ vi за някое i, то очевидно pi е цикъл,
в който всички върхове са от степен две с изключение на ui “ vi, който е от степен, по-
голяма от две. За всяко i P t1, . . . , tu, изтриваме вътрешните върхове на pi, които са от
степен две, и слагаме едно ново ребро e 1i, което има краища ui и vi. Иначе казано, заменяме
“вътрешността” на pi с едно ребро.:

Тези идеи са илюстрирани на Фигура 2.83. Различните пътища с вътрешни върхове от
степен две и крайни върхове от степен, по-голяма от две, са оцветени в различни цветове
за по-лесното проследяване на резултата от заменянето им с ребра. Графът-резултат G 1 е
мултиграф с примка. Лесно се вижда, че ако превърнем G 1 в обикновен граф, заменяйки
сноповете от паралелни ребра с по едно ребро и изтривайки примките, и после продължим

:При тези операции може да стане така, че започвайки от обикновен граф да получим мултиграф. Ето
защо. Паралелни ребра може да се получат по два начина. Първо, ако преди замяната на pi с ново ребро
e 1 е имало ребро e с краища ui и vi, то след замяната e и e 1 ще се окажат паралелни ребра. Второ, ако два
различни пътя pi и pj преди замяната им с (различни) ребра са имали едни и същи краища, то след замяната
им с ребрата e 1 и e2, те (ребрата e 1 и e2) ще се окажат паралелни ребра. А примка ще се получи от замяната
на всеки pi, който е (прост) цикъл, с ребро.
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да прилагаме изложените правила за елиминиране на върхове от степени едно и две и пара-
лелните ребра, докато можем, ще колабираме целия граф до един единствен връх:. Но това
не е целта на изложението тук. Целта е да илюстрираме факта, че върховете от степен две
нямат значение за планарността – което вече направихме убедително.

Наблюдение 31

Върховете от степен две нямат значение за планарността на графите в следния смисъл:
ако всеки максимален по включване път, чиито вътрешни върхове са от степен две,
бъде заменен с едно ребро, полученият граф (който може да е мултиграф с примки;
това е без значение) е планарен тогава и само тогава, когато оригиналният граф е бил
планарен.
Планарността на даден граф се определя единствено от върховете от степен, по-голяма
или равна на три и от това, кой от тях с кой друг от тях е свързан. Дали тези свързвания
стават с ребра или с пътища, чиито вътрешни върхове са от степен две, няма значение.

Фигура 2.83 : Върховете от степен две нямат значение за планарността.

G

x

y

Оригиналният граф G с върхове от сте-
пен две.

G 1

x

y

Полученият граф G 1 без върхове от сте-
пен две.

:Не всеки граф може да бъде колабиран до един единствен връх по този начин. Това е възможно тогава
и само тогава, когато графът има параметър treewidth, по-малък от 3. Даденият G има treewidth 2 и затова
може да бъде сведен до един връх по този начин. За да увеличим параметъра treewidth на G на 3, достатъчно
е да сложим едно ребро между x и y. Повече информация за параметъра treewidth на графи има в [18].

176



ГЛАВА 2. НЕОРИЕНТИРАНИ ГРАФИ И НЕОРИЕНТИРАНИ МУЛТИГРАФИ © Минко Марков, 2025г.

Определение 71: Подразделяне на ребра и серийно редуциране на ребра

Нека G “ pV,Eq е произволен мултиграф и e “ pv,wq e произволно ребро в G. Подраз-
делянето на eа е трансформирането на G в

G 1 “
`

V Y tuu, pEzteuq Y tpv,uq, pu,wqu
˘

където u е връх, такъв че u R V. Ако e е примка (което означава, че v “ w), то pv,uq
и pu,wq са две паралелни ребра.
Обратната операция на подразделянето е серийното редуциране на ребраб. Нека x е
произволен връх от в G, инцидентен с точно две различни ребра e1 “ py, xq и e2 “ px, zq,
нито едно от които не е примка. Серийното редуциране на e1 и e2 е трансформирането
на G в

G2 “
`

Vztxu, pEzpte1u Y te2uqq Y te3u
˘

където e3 е ребро с краища y и z, такова че e3 R E.
аНа английски често се ползва терминът е egde subdivision, но той не е универсален. Gibbons

[27, стр. 76] казва “insertion of a vertex of degree 2”. Diestel [18, стр. 20] казва “replace . . . edges with
independent paths”. В [58, стр. 491] се казва “edge subdivision”.

бНа английски се използа терминът series reduction, но и той не е универсален. Gibbons [27, стр.
76] казва “the reverse of this process”, имайки предвид подразделянето на ребра. Diestel [18] успява да
изгради изложението си без да ползва това понятие. В [58, стр. 491] се казва “series reduction”.

Забележете, че новопоявилото се ребро e3 в серийното редуциране може да е примка. Никоя
примка обаче не може да изчезне в резултат на серийно редуциране.

Определение 72: Хомеоморфизъм на графи.

Два графа G и H са хомеоморфни, ако съществува граф J, такъв че J се получава от
G чрез крайна редица, може и празна, от подразделяния и серийни редуцирания на
ребра и J е изоморфен на H.

Забелязваме, че релацията “са хомеоморфни” е симетрична, така че G и H са “равностойни
участници” в Определение 72. Освен това, релацията е рефлексивна и транзитивна, така че
тя е релация на еквивалентност. Като пример за хомеоморфизъм може да послужат графите
G и G 1 на Фигура 2.83. Те са хомеоморфни. Нека се убедим, че е така. Графът G 1 се получава
от G чрез серийни редуцирания на ребра и той е изоморфен на себе си.

Изоморфизмът присъства в Определение 72 по една причина: графите G и H, бидейки
произволни графи, може да имат нямат общи имена на върхове; дори да имат общи имена
на върхове, тези общи имена може да са върху “несъответстващи” си върхове, в смисъла на
изоморфизма. Ако ограничим вниманието си върху Фигура 2.83, няма нужда да мислим за
изоморфизъм, понеже G 1 се получава от G, по отношение на върховете, чрез и само чрез
изтриване на върхове, така че останалите върхове, а именно тези в G 1, точно съответстват
на върхове от G в смисъла на изоморфизма.

Лесно се вижда, че можехме да въведем “хомеоморфизъм на графи” само чрез едната
операция от Определение 72, а именно подразделянето. Можехме да кажем, че G и H са
хомеоморфни тогава и само тогава, когато съществува G 1, който се получава от G чрез под-
разделяния на ребра и съществува H 1, който се получава от H чрез подразделяния на ребра,
такива че G 1 и H 1 са изоморфни. Причината да въвеждаме и обратната на подразделянето
операция на серийно редуциране на ребра е по-лесната мислена визуализация: ако човек се
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опитва да види дали два графа са хомеоморфни, съвсем естестествено е мислено да извършва
както подразделяния, така и серийните редуцирания на ребра.

Друг пример за хомеоморфни графи е показан на Фигура 2.84. Само “съществените”
върхове, тези от степен, по-голяма от две, са именувани. Проверете сами, че единият граф се
получава от другия чрез серия от подразделяния и серийни редуцирания на ребра, съгласно
Определение 72; а също така, че има изоморфни графи G 1 и H 1, които се получават съответно
от G и H само с подразделяния на ребра, и че има изоморфни графи G2 и H2, които се
получават съответно от G и H само със серийно редуциране на ребра.

Фигура 2.84 : G и H са хомеоморфни графи.

1 2

5 4

36

G a d

c g

fb

H

Наблюдение 32

Със серийни редукции на ребра не може да намалим броя на паралелните ребра в
мултиграф; няма как с такива редукции да сведем сноп от k ě 2 ребра паралелни
ребра до едно единствено ребро, освен в случая k “ 2, в който поне единият от двата
върха е не-инцидентен с други ребра (но тогава серийната редукция дава примка).
Също така със серийни редукции на ребра не можем да изтрием примка. Следователно,
със серийни редукции на ребра не може да направим обикновен граф от “истински”
мултиграф.

Допълнение 23: Още за хомеоморфизма

Етимологията на “хомеоморфизъм” е следната: на гръцки ὅμοιος означава “подобен”, а
μορφή означава “форма”. Следното определение е взето от топологията. То е значително
по-старо от Определение 72.

Определение 73: Хомеоморфизъм между пространства

Две топологически пространства са хомеоморфни, ако между тях има биекция,
такава че и тя, и обратната и́ функция–биекция са непрекъснати.

Неформално и не съвсем точно казано, едното пространство може да се получи от
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другото без разкъсвания и по чисто “еластичен” начин. Поначало “хомеоморфизъм”
е възникнало именно в топологията и е пренесено в теорията на графите по-късно.
Пренасянето му в теорията на графите става много естествено, ако на графите се гледа
не теоретико-множествено, а топологически, като на вид топологически пространства.
Подробно въведение в историята на понятието “хомеоморфизъм” и използването му
има в [44].

Трябва да не бъркаме “хомеоморфизъм” с “хомоморфизъм”! Това са съвсем различни
понятия, въпреки че звучат много подобно.

Възможен е и друг подход към дефинирането на графи, които в се различават само
по върховете от степен 2, например, в чудесната книга “Graph Theory” на Diestel [18].
Нека “подразделяне на ребра” е дефинирано като в Определение 71. За даден граф G,
подразделяне на G е всеки граф, който се получава от G чрез подразделяния на ребра.

Определение 74: Топологичен минор, [18, стр. 20]

За всеки два графа G1 и G2 казваме, че G1 топологичен минор на G2, ако G2

съдържа подграф G 1, такъв че G1 е изоморфен на подразделяне на G 1.

Diestel използва “хомеоморфизъм” само в чисто топологическия смисъл, никога за гра-
фи. Неговото изложението на теоремата на Kuratowski се базира на понятията “тополо-
гичен минор”, което понятие ще въведем по-долу, и “минор” от Допълнение 24. Първо
да видим разликата между подхода на Diestel и подхода, възприет в тези лекционни
записки, който е взет от Gibbons [27].

Подходът на Gibbons [27] е, първо да се дефинира хомеоморфизъм и после в централ-
ния резултат—теоремата на Kuratowski на страница 77 (Теорема 52 в тези записки)—да
каже “подграф, хомеоморфен на”. При Diestel [18] аналогичният резултат е Лема 4.4.3
на страница 97. Там се говори за топологични минориа. Сега ще видим, че “граф G1

е хомеоморфен на подграф на граф G2” и “G1 е топологичен минор на G2” не каз-
ват едно и също нещо, въпреки че сходство има. Релацията на хомеоморфизъм е
симетрична, докато релацията “е топологичен минор на” е антисиметрична, ако гле-
даме на графите като на неименувани графи (понятие, въведено в Подсекция 2.8.3).
Ако за два неименувани графа е вярно, че първият е топологичен минор на втория и
вторият е топологичен минор на първия, то това е един и същи (неименуван) граф.
Ако обаче неименуваните графи са различни, то или нито един не е топологичен минор
на другия, или точно единият от двата е топологичен минор на другия. Следователно
става дума за частична наредба, защото релацията “е топологичен минор на”, освен
антисиметрична, е рефлексивна и транзитивна.
Ако G1 е топологичен минор на G2, то G1 е “по-малък” от G2 в някакъв смисъл. По-
прецизно казано, G1 предхожда G2 във въпросната частична наредба. Хомеоморфиз-
мът, от друга страна, дефинира релация на еквивалентност. Между два различни гра-
фа, които са хомеоморфни, не е задължително единият да предхожда другия в никакъв
смисъл. Можем да свържем понятията “хомеоморфизъм” и “топологичен минор” така:
графите G1 и G2 са хомеоморфни тогава и само тогава, когато съществува трети граф
G3, такъв че и G1, и G2 са топологични минори на G3, тоест, и G1, и G2 са “по-малки”
от G3. Да разгледаме G и H от Фигура 2.84. Както вече отбелязахме, те са хомеомор-
фни. От друга страна, нито единият от тях не е топологичен минор на другия. Нека
се убедим в това. Очевидно и G, и H са хомеоморфни на K3,3 – и двата се получават
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от K3,3 чрез подразделяне на ребра. Обаче H има четири пътя, които имат вътрешни
върхове от степен две, а G има само три такива пътя, следователно H не е “по-малък”
от G и няма как H да е топологичен минор на G. От друга страна, измежду пътищата
в H, имащи вътрешни върхове от степен две, само един има три вътрешни върха, а
останалите имат по два вътрешни върха; а и трите пътя в G, имащи вътрешни върхове
от степен две, имат по три вътрешни върха. Следователно, няма как G да е топологи-
чен минор на H. По отношение на частичната наредба “е топологичен минор на”, нито
един от двата не е по-малък от другия; иначе казано, H и G са несравними.
В резюме: ако G1 е хомеоморфен на подграф на G2, то не е задължително G1 да пред-
хожда G2, докато, ако G1 e топологичен минор на G2, то G1 задължително предхожда
G2.

аВсъщност, Diestel говори за минори, не непременно топологични, но преди това в Лема 4.4.2
показва, че по отношение на K5 или K3,3 е все едно дали ще се ползва “минор” или “топологичен
минор”.

Допълнение 24: Минори в графи

Разглеждаме прости графи, тъй като паралелните ребра и примките са без значение
по отношение на минорите.

Определение 75: Контракция на ребро

Нека са даден граф G “ pV,Eq и нека e P E. Нека e “ pu, vq. Нека V1 “ Npuqztvu и
V2 “ Npvqztuu. Нека z е нов връх. Нека G 1 “ G´u´ v. Контракция на реброто e
е операция, която трансформира G в графа pVpG 1qYtzu,EpG 1qYEzq, където Ez “
tpz, xq | x P V1 Y V2u.

Неформално казано, контракцията на ребро е идентифицирането на двата му края,
при което реброто се превръща в примка и после изчезва, а ако се появят снопове от
(по две) паралелни ребра, всеки сноп се заменя с едно ребро. Крайният резултат е
обикновен граф. Фигура 2.85 илюстрира контракции на ребра.

Определение 76: Минор на граф

Нека са дадени два графа H и G. Казваме, че H е минор на G, ако граф, изомор-
фен на H, се получава от G чрез серия от изтривания на върхове, изтривания на
ребра и контракции на ребра.
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Фигура 2.85 : W4 е минор на Q3.

¶ изтриване на ребро · контракция на ребро

¸ контракция на ребро ¹ контракция на ребро

º получихме W4

Фигура 2.85 показва, че графът W4
а е минор на тримерния хиперкуб Q3

б.
Лесно се вижда, че “подграф, изоморфен на” и “топологичен минор” (Определение 74)
са частни случаи на “минор”.

• Ако H е изоморфен на подграф на G, то този подграф може да бъде получен със
серия от изтривания на върхове и ребра. Следователно, H е минор на G.

• Ако H е топологичен минор на G, то в G съществува подграф G 1, такъв че H
се явява подразделение на G. Можем да получим G 1 от G само с изтривания
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на върхове и ребра. За да получим H от G 1, използваме третата операция от
Определение 76, а именно контракцията на ребра. С контракции на ребра може
да редуцираме всеки път, чиито вътрешни върхове са от степен 2, до едно ребро.
Следователно H е топологичен минор на G.

Конверсното обаче не е вярно. Ако H е минор на G, то е възможно H да не е изоморфен
на нито един подграф на G и дори да не е хомеоморфен на нито един подграф на G.
За да се убедим в това, да разгледаме пак Фигура 2.85. W4 нито е подграф на Q3, нито
е хомеоморфен на подграф на Q3, защото ∆pW4q “ 4, а ∆pQ3q “ 3. И така, понятието
“минор” е по-общо от “топологичен минор”, което понятие на свой ред е по-общо от
“подграф, изоморфен на”. Заключаваме, че в Определение 76 няма излишък – и трите
изредени операции са съществени за понятието, което се дефинира.

Следното необходимо и достатъчно условие за планарност на графи е доказано през
1937 г. от Klaus Wagner [59]. Тази теорема прилича твърде много на теоремата на
Kuratowski на стр. 194, само че е формулирана чрез минори, а не чрез хомеоморфни
подграфи.

Теорема 46: Теорема на Wagner

Граф е планарен тогава и само тогава, когато не съдържа нито K5, нито K3,3 като
минори.

Този резултат е интересен сам по себе си, но не е епохален, имайки предвид, че се появя-
ва седем години след теоремата на Kuratowski, казваща нещо доста сходно. Важността
му е друга. Wagner, гледайки на задачата за планарността на графи от гледната точка
на минорите, е формулирал една много по-обща хипотеза, доказването на която е от-
нело десетилетия и е довело до най-значителните и дълбоки резултати в съвременната
теория на графите.

Хипотеза 2: Хипотеза на Wagner [60]

Във всяко безкрайно множество от неименувани графи съществуват два графа,
единият от които е минор на другия.

Според Diestel [18, стр. 373]:

Wagner did indeed discuss this problem in the 1960s with his then students,
Halin and Mader, and it is not unthinkable that one of them conjectured a
positive solution. Wagner himself always insisted that he did not—even after the
graph minor theorem had been proved.

Тази хипотеза вече е доказана от Robertson и Seymour, в резултат на което е станала
теорема, известна като The Graph Minor Theorem (теорема за минорите).

Теорема 47: Теоремата за минорите (The Graph Minor Theorem)

Във всяко безкрайно множество от неименувани графи съществуват два графа,
единият от които е минор на другия.
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Доказателството се простира върху няколкостотин страници в двадесет (20) статии,
започвайки с [52] и завършвайки с [53]. Резюме на най-важното от този епохален труд
има както в [18], така и в свободно достъпната статия на Lovász [41].

Ще дадем еквивалентна формулировка на Теорема 47, но първо ще дадем едно опре-
деление.

Определение 77: Квазинаредба

Бинарна релация е квазинаредбаа, ако е рефлексивна и транзитивна.
Квазинаредба ď Ď A ˆ A е добра квазинаредбаб, ако ď няма нито безкрайни
антиверигив, нито безкрайни спускащи се надолу вериги. Спускаща се надолу
веригаг е множество ta1,a2,a3, . . .u Ď A, такова че . . . ď a3 ď a2 ď a1.

аНа английски терминът е quasi-order. Preorder е синоним.
бНа английски е well-quasi-order, или WQO накратко.
вАнтиверига е подмножество на A, такова че @a,b P A : a ­“ bÑ a ę b^ b ę a.
гНа английски терминът е descending chain.

Теорема 48: Теоремата за минорите, алтернативна формулировка [18, глава
12.2]

Крайните графи са добре квазинаредени от минорната наредба ĺ.

Еквивалентността на двете формулировки (Теорема 47 и Теорема 48) се вижда лесно.

• Това, че няма безкрайни спускащи се надолу антивериги е очевидно, имайки пред-
вид, че графите са крайни, а всяка от операциите изтриване на връх, изтриване
на ребро и контракция на ребро прави графа по-малък.

• Това, че няма безкрайни антивериги е точно каквото казва Теорема 47.

Нотацията “ĺ” се използва за означаване на минори: H ĺ G означава, че H е минор на
G (или е изоморфен на минор на G, ако говорим за именувани графи).
Пример за минорно затворено множество е множеството от всички гори: всеки минор
на ацикличен граф очевидно е ацикличен, защото операциите от Определение 76 не
могат да образуват цикли, така че всеки минор на гора също е гора. Друг такъв пример
е множеството от планарните графи, защото всеки минор на планарен граф очевидно
също е планарен. Трети пример е множеството от графите, които имат върхово пок-
риване не повече от k; очевидно вземането на минор не може да увеличи числото на
покриването. Контрапример за минорно затворено множество е множеството от свър-
заните графи, защото изтриването на ребро или връх може да наруши свързаността;
в частност дърветата не са минорно затворено множество. Друг контрапример са 2-
оцветимите графи – ако е даден четен цикъл (както знаем, той е 2-оцветим) и направим
контракция на едно ребро, ще получим цикъл с дължина с единица по-малка, тоест
нечетен цикъл, за който знаем, че не е 2-оцветим. Трети контрапример е множеството
от графите, които имат доминиращо число не повече от k; ако в G има връх от степен
n´ 1, то очевидно γpGq “ 1, но изтриването на този връх може да увеличи числото на
доминирането.
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Определение 78: Идеал и обструкции

Нека е дадена квазинаредба ď Ď A ˆ A. Идеал по отношение на ď, или просто
идеал, е всяко I Ď A, което е затворено надолу по отношение на ď. Иначе казано,
I Ď A е идеал, ако

@a,b P A : pa P I^ b ď aÑ b P Iq

Нека I Ď A е идеал. Множество от обструкции за I е всяко O Ď A, такова че
@a P A : a P IØ p@b P O : b ę aq.

Нека квазинаредбата, която разглеждаме, е минорната наредба върху неименуваните
графи. Ето примери за идеали по отношения на нея.

• Множеството от всички гори е идеал, защото, ако G е ацикличен и H ĺ G, то и
H е ацикличен.

• Множеството от планарните графи е идеал, защото всеки минор на планарен
граф очевидно също е планарен.

• Множеството от графите, които имат върхово покриване не повече от k, е идеал,
защото ако τpGq ď k и H ĺ G, то очевидно τpHq ď k.

Ето контрапримери за идеали по отношение на нея.

• Множеството от свързаните графи не е идеал, защото изтриването на ребро или
връх може да наруши свързаността. В частност, дърветата не са идеал.

• Множеството от 2-оцветимите графи не са идеал – ако е даден четен цикъл (как-
то знаем, той е 2-оцветим) и направим контракция на едно ребро, ще получим
нечетен цикъл, за който знаем, че не е 2-оцветим.

• Множеството от графите, които имат доминиращо число не повече от k, не е
идеал – ако в G има връх от степен n´ 1, то очевидно γpGq “ 1, но изтриването
на този връх може да увеличи числото на доминирането.

Ето примери за множества от обструкции.

• Нека идеалът е множеството от ацикличните графи. Множество от обструкции
е, например, множеството tC3u, където C3 означава 3-цикъла.

• Нека идеалът е множеството от планарните графи. Множество от обструкции е,
например, tK5,K3,3u.

Следната теорема е взета от [21]. Авторите Downey и Fellows казват, че произходът и́
не може да бъде установен и че тя е математически фолклор.

Теорема 49: WQO principle

Нека ď Ď AˆA е произволна добра квазинаредба. За всеки идеал I по отношение
на ď съществува крайно множество от обструкции.
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Следствие 14

Ако за всеки два елемента x,y P A можем да тестваме в полиномиално време дали
x ď y, то съществува с полиномиален алгоритъм за тестване дали произволен
z P A принадлежи на идеала I, или не.

Доказателство: Да допуснем, че за всяка обструкция o P O бихме могли в полино-
миално време да решим дали o ď z. Но от Теорема 49 знаем, че обструкциите са само
краен брой. Очевидно е, че въпросът дали z P I има утвърдителен отговор тогава и
само тогава, когато за всяка обструкция o не е вярно, че o ď z. И така, тестването за
принадлежност към идеала се свежда до тестване за краен брой обструкции. 2

Сега вече разглеждаме не коя да е квазинаредба, а именно минорната квазинаредба.
Теорема 50 е изключително труден за доказване резултат на Robertson и Seymour от
[51]. Забележете, че теоремата не твърди, че можем да тестваме в кубично време дали
за два произволни графа, единият е минор на другият! Задачата дали за два произвол-
ни графа, единият е минор на другия, съдържа като подзадача NP-пълната задачата
дали за два произволни графа, единият е подграф на другия; ако подзадачата е NP-
пълна, то самата задача е NP-трудна, а както знаем, засега не е известна NP-трудна
задача, решима в полиномиално време. Това, което се твърди, е, че за предварително
фиксиран граф H съществува кубичен алгоритъм, с който можем да тестваме дали
H ĺ G, за всеки G.

Теорема 50: Тестване за минори в кубично време [51]

За всеки фиксиран граф H, за всеки граф G, тестването дали H ĺ G може да
се извърши във Op|VpGq|3qа.

аНотацията Opxq означава всяка функция, която е ограничена от горе от cx, за някаква
константа c.

Теорема 50 заедно със Следствие 14 дава един изключителен резултат – ако дадено
графово свойство се запазва при вземане на минори, то съществува кубичен алгоритъм
за неговото проверяване! И това е в сила за всяко графово свойство, което се запазва
при вземане на минори; иначе казано, за всеки идеал в минорната наредба, защото
идеал в минорната наредба е именно графово свойство, което се запазва при вземане
на минор. Това заслужава да бъде записано като самостоятелна теорема.

Теорема 51: Тестване в кубично време за принадлежност към идеал

Ако дадено графово свойство се запазва при вземане на минори, то съществува
кубичен алгоритъм за неговото проверяване.

Да си припомним примерите за идеали в минорната наредба – ацикличните графи,
планарните графи, графите с число на върховото покриване не повече от k. Добре
известно е, че ацикличността може да се тества в линейно време, също и планарността,
така че за тези свойства не ни трябва дълбокия резултат на Robertson и Seymour. Обаче
за графите с число на върховото покриване не повече от k, тази теорема е първият
резултат в историята, който дава основание да твърдим, че може свойството да се
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тества в кубично време! От общи съображения, дали числото на върхово покриване е
не повече от k може да тестваме, непрецизно казано, във време Θpnkq, но не по-добро.
Иначе казано, от общи съображения асимптотичната долна граница е nk. Това, че има
по-добра асимптотична долна граница, а именно кубичната, изобщо не е очевидно.

Теорема 51 е приложима в огромен брой случаи. Достатъчно е да покажем, че ня-
кое графово свойство се запазва при вземане на минори, за да твърдим, че същест-
вува полиномиален и дори кубичен алгоритъм за това свойство. Вижте статията на
Lovasz [41] за нетривиални приложения на Теорема 51, например за задачата Linkless
Embedding – дали даден граф може да се нарисува в тримерното пространство по
такъв начин, че никои два цикъла без общи върхове да не са разположени като “об-
хващащи се взаимно пръстени”. За тази задача от общи съображения дори не можем
да твърдим, че принадлежи на класа на сложност NP. А Теорема 51 ни казва, че не
само принадлежи на NP, а дори принадлежи на P, и дори нещо повече, има кубичен
алгоритъм за нея. Поради простата причина, че свойството linkless embedding на граф
се запазва върху минори.

За съжаление, Теорема 51 е неконструктивен резултат, което означава, че тя доказва
само съществуването на кубичен алгоритъм, без да ни казва абсолютно нищо за това,
какъв е самият алгоритъм. Има далечна аналогия с теоремата на Weierstrass в анали-
зав, която гарантира съществуване на минимум и максимум, ако са изпълнени опреде-
лени условия, но не ни казва нищо за това, как да намерим минимум или максимум.
Въпреки това, Теорема 51 е резултат с фантастична стойност, както чисто теоретично,
така и от практическа гледна точка – доказателството за съществуване на кубичен
алгоритъм понякога вдъхновява научни изследвания, които в крайна сметка намират
бърз практичен алгоритъм за задача, която дотогава е изглеждала безнадеждна. За
повече подробности вижте тази публикация в блог, поддържан от Lance Fortnow и Bill
Gasarch.

а “W4” идва от wheel. Графът се получава от добавянето на нов връх към 4-цикъл и свързване на
новия връх към и само към всеки връх от 4-цикъла.

б“Хиперкуб” е дефиниран в Секция 2.15.
вАко реална функция е непрекъсната и ограничена в затворен интервал, то тя достига както

минимум, така и максимум в него.

2.13.5 Теорема на Kuratowski.

Оригиналната статия на Kuratowski [39] (на френски) е свободно достъпна. Има превод на
английски от Jan Jaworowski [40], но той не е свободно достъпен.

Започваме с едно определение, взето от [27, стр. 75].
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Определение 79: Парче и съединение.

Нека G “ pV,Eq е свързан граф. Нека G1 “ pV1,E1q е подграф на G. Парче на G спрямо
G1 е всеки от следните графи.

¬ За всяка свързана компонента H “ pVH,EHq на G´ V1, графът

pH “
`

VH Y pNpVHq X V1q,EH Y tpa,bq P E |a P VH ^ b P V1u
˘

­ За всяко ребро px,yq P EzE1, такова че x,y P V1: самото ребро px,yq.

Общите върхове на кое да е парче H с G1 се наричат точки на захващане на H към
G1, или просто точки на захващане на H, ако G1 се подразбира. Останалите върхове
на H са интерналните върхове на Hа. Множеството от интерналните върхове на H се
бележи с interpHq.
Ако дадено парче има повече от една точки на захващане, то се нарича съединениеб.

а“Интернални върхове” звучи грозно, но не можем да ползваме термина “вътрешни върхове”, за-
щото той вече е дефиниран в контекста на пътищата

бВ [27, стр. 75] терминът е bridge. Тъй като вече сме дефинирали “мост” по друг начин (Опреде-
ление 28), налага се да използваме друг термин на български.

Фигура 2.86 илюстрира Определение 79. Вляво е показан граф G с подграф G1 (нарисуван в
зелено и с удебелени ребра), а вдясно са петте парчета H1, H2, H3, H4 и H5 на G спрямо G1.
Парчетата H2, H3 и H4 са ребра и—въпреки че имат общ връх j в G—като парчета на G те са
отделни подграфи. Съединения са H1, H2, H3 и H4, а H5 не е съединение, понеже има само
една точка на захващане. Ако G е блок, то всяко негово парче, спрямо кой да е подграф, е
съединение; обратното би значело, че G има срязващ връх.

Фигура 2.86 : Парчета спрямо подграф.

a
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Граф G с подграф G1.
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j
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h

f

j u

v

w
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Парчетата на G спрямо G1 са H1, . . . , H5.

Забележете, че ребрата pj,hq, pj, fq и pj,uq са три отделни съединения, наречени H2, H3 и H4,
а не едно съединение.

Може би вече се вижда какво е значението на парчетата за планарността: ако подграфът G1

е планарен, то това дали целият граф G е планарен се определя еднозначно от парчетата
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спрямо G1. Нещо повече. Ако поне едно от тези парчета не е планарно, то очевидно и G не е
планарен, но конверсното не е вярно – може всички парчета да са планарни и въпреки това
G да не е планарен, защото някои от тези парчета са съединения и са захванати към G1 по
такъв начин, че не може да бъдат сложени в равнината едновременно и безконфликтно.
Последното може да се получи, ако разполагането на някое от тях “пречи” на разполагането
на друго. За кратък запис на тази идея ще въведем следната нотация от [27, стр. 76], но само
в случай, че подграфът, спрямо който разглеждаме съединения, е цикъл.

Нотация 5: « и ff

Нека G е граф и C е цикъл в него. Нека H и J са две съединения спрямо C. Нека
те са планарни графи със съответни планарни образи rH и rJ. Казваме, че H и J са
съвместими спрямо C, или просто съвместими, ако C се подразбира, ако в равнината
може да разположим rH и rJ в едно и също лице на равнината спрямо rC, където rC е
планарен образ на C. Ако H и J са съвместими, пишем H «C J, в противен случай пишем
H ffC J. Ако C се подразбира може да пишем просто H « J или H ff J, съответно.

Фигура 2.87 : Съвместими и несъвместими съединения спрямо цикъл.

rC

rH

rJ

H «C J

rC

rH

rJ

H ffC J

Фигура 2.87 илюстрира Нотация 5.

Лема 13 ползва Определение 17.
Лема 13

Нека G е свързан граф и H е произволно съединение спрямо произволен подграф на G.
Нека H има поне три точки на захващане a, b и c. Тогава съществува връх z P interpHq,
такъв че в H има z-a път pa, z-b път pb и z-c път pc, които три пътя са независими.

Доказателство: Образно казано, Лема 13 твърди, че в H има подграф, който прилича на
звезда с три лъча. Центърът на звездата е z, а трите и́ лъча са pa, pb и pc. Вижте Фигура 2.88.
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Фигура 2.88 : “Звезда с 3 лъча” при 3 точки на захващане.

b

z

a

c

pa

pb pc

Очевидно съединението H не е само едно ребро, така че interpHq ­“ H. Да разгледаме произ-
волен w P interpHq. Тъй като H е свързан граф, в него има w-a път qa, w-b път qb и w-c път
qc. Започвайки с w, qa, qb и qc, ще построим желаните z, pq, pb и pc. Ако qa, qb и qc са
независими, преминаваме към Стъпка 3. В противен случай, преминаваме към Стъпка 1.

Стъпка 1: Ако qa и qb са независими пътища, преминаваме към Стъпка 2. Нека qa и qb
не са независими. Да разгледаме върха u P Vpqaq X Vpqbq, който е максимално отдалечен от
w както в qa, така и в qb. Ясно е, че u ­“ w.

Без ограничение на общността можем да допуснем, че u ­“ a и u ­“ b, защото:

• Ако u “ a, то задължително съществува друг w-a път, в който максимално отдале-
ченият от w общ връх с qb не е връх a. Ако нямаше такъв друг w-a път, то a би се
намирал върху всеки w-b път и тогава a и b не биха били върхове от едно и също
съединение. И така, можем да изберем като qa този друг път.

• Напълно аналогично, винаги можем да изберем като qb такъв w-b път, в който макси-
мално отдалеченият от w общ връх с qa не е връх b.

Нека q 1a е подпътят на qa от u до a и нека q 1b е подпътят на qb от u до b. Както видяхме,
можем да мислим за qa и qb като за пътища с общ край w, които се “разделят завинаги”
след u на q 1a и q 1b (преди u, qa и qb може да “вървят заедно” като на фигурата, може да се
“събират и разделят”, това няма значение):

189



ГЛАВА 2. НЕОРИЕНТИРАНИ ГРАФИ И НЕОРИЕНТИРАНИ МУЛТИГРАФИ © Минко Марков, 2025г.

w

a

qa

qb

b

u

q 1a

q 1b

Преименуваме u на w, q 1a на qa и q 1b на qb. В някакъв смисъл, “изрязваме” общата част,
оставяйки независими пътища:

a b

w

qa

qb

Преминаваме към Стъпка 2.

Стъпка 2: Нека qc е произволен w-c път спрямо новата стойност на w. Ако трите пътя
qa, qb и qc са независими, преминаваме към Стъпка 3. В противен случай, също както в
Стъпка 1, допускаме без ограничение на общността, че c не се намира нито в qa, нито в qb,
и освен това qc не съдържа нито a, нито b. С други думи, поне единият от qa и qb има общи
вътрешни върхове с qc. Ще разгледаме случаят, в който и qa, и qb имат общи вътрешни
върхове с qc. Читателят лесно може да съобрази какво да правим, ако точно единият от qa
и qb има общи вътрешни върхове с qc.

И така, и qa, и qb имат общи вътрешни върхове с qc. Дефинираме v като върха от
VpqcqX pVpqaqYVpqbqq, който най-отдалечен от w в qc. Без ограничение на общността, нека
v P Vpqbq. Следната фигура илюстрира текущите допускания:

a b

wqa
qb

c

qc

v
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Наричаме “qa” пътят от v до a в qa Y qb, наричаме “qb” пътят от v до b в qb, и наричаме
“qc” пътят от v до c в qc. Очевидно новите qa, qb и qc са независими:

a b

wqa
qb

c

qc

v

Преименуваме v на w и преминаваме към Стъпка 3:

a b

qa
qb

c

qc

w

Стъпка 3: Преименуваме w на z, qa на pa, qb на pb и qc на pc:

a b

pa
pb

c

pc

z
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Доказахме, че в H съществува структурата, показана на Фигура 2.88. 2

Лема 14

Нека G е свързан граф и J е произволно съединение спрямо произволен подграф на G.
Нека J има поне четири точки на захващане a, b, c и d. Тогава поне едно от следните
две твърдения е вярно.

• Съществува връх z P interpJq, такъв че в J има z-a път, z-b път z-c път и z-d път,
които четири пътя са независими. В такъв случай казваме, че в J има звезда с
четири лъча. Накратко пишем в J има F.

• Спрямо някакво разбиване на ta,b, c,du на две двуелементни подмножества, да
кажем ta,bu и tc,du, съществуват z1, z2 P interpJq, такива че в J има z1-a път, z1-b
път, z2-c път и z2-d път, както и z1-z2 път, които пет пътя са независими. В такъв
случай казваме че в J има буква H. Накратко пишем в J има f.

Доказателство: Образно казано, Лема 14 твърди, че в H има подграф, който прилича на
звезда с четири лъча или на знака f. Вижте Фигура 2.89.

Фигура 2.89 : “Звезда с 4 лъча” (F) или “буква H” (f) при 4 точки на захващане.

a

b

c

dz

Звезда с 4 лъча. Ползваме знак F.

z1

z2

a

b

c

d

Буква H. Ползваме знак f.

Да игнорираме за момент връх d. Лема 13 е приложима за a, b и c. Съгласно нея, в H
съществува подграф, който изглежда като този на Фигура 2.88. Сега да разгледаме и d.

Ако съществува z-d път, който е независим с всеки от pa, pb и pc, то очевидно има F.
В противен случай, да разгледаме произволен z-d път qd. Без ограничение на общността,

нека най-отдалеченият от z връх в qd, общ с pa или pb или pc да е някой връх w от pc. С
разсъждения, аналогични на разсъжденията в доказателството на Лема 13 показваме, че w
е вътрешен връх както за pc, така и за qd. Нещата изглеждат, примерно, така:
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b

z

a

c

pa

pb pc

d
qd

w

Да разгледаме само подпътя на qd от w до d включително:

b

z

a

c

pa

pb pc

d

w

Сега вече е ясно, че ако преименуваме z на z1 и w на z2, има f:

b

z1

a

c

d

z2
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2

Теоремата на Kuratowski е нетривиален резултат, чието доказателство, ако се прави подроб-
но, е доста дълго. Краят на доказателството, изложено тук, е на стр. 215.

Теорема 52: Теорема на Kuratowski

За всеки граф, той е планарен тогава и само тогава, когато не съдържа подграф,
хомеоморфен на K5 или K3,3.

Доказателство: В едната посока, ако графът е планарен, то той не съдържа подграф,
хомеоморфен на K5 или K3,3. Ще докажем контрапозитивното: ако графът съдържа подграф,
хомеоморфен на K5 или K3,3, то той не е планарен. От Следствие 11 и Следствие 13 знаем,
че нито K5 е планарен, нито K3,3 е планарен. Тогава очевидно всеки граф, хомеоморфен на
K5 или K3,3, не е планарен. Тогава всеки граф, който съдържа подграф, хомеоморфен на K5

или K3,3, не е планарен. 3

В другата посока, ако граф няма подграф, хомеоморфен на K5 и няма подграф, хомеоморфен
на K3,3, то той е планарен. Доказателството тук следва по същество доказателството от
учебника на Gibbons [27, стр. 77–80, Theorem 3.5], но е много по-подробно.

Да видим какво доказваме. Нека P, Q и S са следните предикати с домейн множеството
от обикновените графи:

PpGq “ G е планарен
QpGq “ G има подграф, хомеоморфен на K5

SpGq “ G има подграф, хомеоморфен на K3,3

Теоремата на Kuratowski гласи

@G : PpGq Ø  QpGq ^  SpGq

В първата част на доказателството доказахме, че

@G : PpGq Ñ  QpGq ^  SpGq

Във втората част ще докажем, че

@G :  QpGq ^  SpGq Ñ PpGq

Лесно се вижда, че това е същото като

@G : QpGq _ SpGq _ PpGq

Доказателството ще направим, допускайки противното. Противното е

DG :  QpGq ^  SpGq ^  PpGq

И така, допускаме, че съществува граф-контрапример G, който няма подграф, хомеомор-
фен на K5, и няма подграф, хомеоморфен на K5, и не е планарен. Нека G е такъв граф с
минимален брой ребра m. Очевидно m ě 4, понеже графите с ď 3 ребра са планарни.

Щом G е контрапример с минимален брой ребра, то за всеки граф L с по-малко отm ребра
е изпълнено QpLq _ SpLq _ PpLq. Ако обаче L е подграф на G, то L не може да има подграф,
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хомеоморфен на K5, понеже G няма такъв, и не може да има подграф, хомеоморфен на K3,3,
понеже G няма такъв, така че задължително L е планарен. Това си заслужаза да се обособи
в наблюдение.

Наблюдение 33

В текущия контекст, всеки граф с по-малко отm ребра, който не съдържа подграф, хо-
меоморфен на K5, и не съдържа подграф, хомеоморфен на K3,3, е планарен. В частност,
всеки подграф на G с по-малко от m ребра е планарен.

Допускането, че G не е планарен, влече следните факти.

1. G е свързан. В противен случай, G има поне две свързани компоненти. Ако повече от
една от тях имат поне едно ребро, то всяка от тях има по-малко от m ребра, поради
което всяка от тях е планарна съгласно Наблюдение 33, което влече, че целият граф е
планарен. В противен случай точно една от тях съдържа всички m ребра, а останалите
са изолирани върхове, така че без ограничение на общността разглеждаме само тази с
ребрата.

2. G няма срязващи върхове. Другояче казано, G има точно един блок, а именно самият
G e блок. В противен случай, G има поне два блока, всеки от които има по-малко от m
ребра и е планарен съгласно Наблюдение 33, а ако блоковете са планарни, то и самият
G би бил планарен.

3. Това е по-сложно и неочевидно твърдение и ще го обособим като лема.

Лема 15

За всяко ребро e “ px,yq от E е вярно, че G ´ e съдържа цикъл C, такъв че
x P VpCq и y P VpCq.

Доказателство: Нека G ´ e бъде наречен G 1. Първо забелязваме, че G 1 е свързан,
понеже G няма срязващи върхове. Да допуснем, че такъв цикъл (който съдържа и x,
и y) в G 1 няма. Тогава съществува връх z, такъв че всеки път между x и y съдържа
връх z; а поне един път между x и y има, понеже G 1 е свързан. Тогава z е срязващ
връх в G 1 и освен това, x и y се намират в различни компоненти на G a z. Да речем,
че компонентата на Ga z (припомнете си Определение 30), която съдържа x, се казва
G 11, а компонентата, която съдържа y, се казва G 12.

Ако G 11 не съдържа реброто px, zq, добавяме реброто px, zq към него. Независимо от
това дали сме добавили ребро или не, казваме на този граф G21 . Аналогично, ако G 12
не съдържа реброто py, zq, добавяме реброто py, zq към него и независимо от това дали
сме добавили ребро или не, казваме на този граф G22 . Фигура 2.90 показва графа, който
сме конструирали до момента.
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Фигура 2.90 : Графът G 1 плюс px, zq и py, zq.

x

G21 G22

y

z

Графът след изтриването на реброто px,yq и добавянето на px, zq и py, zq.

Ще докажем, че G21 не съдържа подграф, хомеоморфен на K5 или K3,3. Да допуснем
противното: G21 съдържа подграф, хомеоморфен на K5 или K3,3. Забелязваме, че тогава
G съдържа подграф, хомеоморфен на G21 , защото:

• или G21 съвпада с подграфа на G, индуциран от VpG21 q, или G21 се състои от този
подграф плюс още едно ребро, а именно, px, zq. Неформално казано, единственото
нещо, което може би се намира в G21 , но не се намира в G, е реброто px, zq.

• дори G21 да съдържа реброто px, zq, а то да не e в G, пътят p “ x,y, . . . , z в G може
да изиграе ролята на реброто px, zq (вж. Фигура 2.91).

И така, оригиналният G съдържа подграф, хомеоморфен на G21 . Щом G съдържа под-
граф, хомеоморфен на G21 и G21 съдържа подграф, хомеоморфен на K5 или K3,3, то и
оригиналният G съдържа подграф, хомеоморфен на K5 или K3,3

:. Това обаче противо-
речи на по-рано направеното допускане, че G не съдържа подграф, хомеоморфен на K5

или K3,3. Следователно, G21 не съдържа подграф, хомеоморфен на K5 или K3,3. Напълно
аналогично доказваме, че G22 не съдържа подграф, хомеоморфен на K5 или K3,3.

:Релацията хомеоморфизъм е очевидно транзитивна.
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Фигура 2.91 : В оригиналния граф (може да) няма ребро pppx, zqqq,
но съществува пътят p.

x y

z

p

И така, нито G21 , нито G22 съдържа подграф, хомеоморфен на K5 или K3,3. Но всеки от
G21 и G22 има по-малко от m ребра, понеже всеки от G 11 и G 12 съдържа поне едно реб-
ро. Съгласно Наблюдение 33, G21 е планарен и G22 е планарен. Конструираме планарни
вписвания на G21 и G22 , които ще наречем съответно ĂG21 и ĂG22 . Нещо повече: Наблюде-
ние 29 казва, че всяко лице може да бъде външно. Следователно, можем да построим
ĂG21 по такъв начин, че px, zq да е върху външното лице, и можем да построим ĂG22 по
такъв начин, че py, zq да е върху външното лице. Тогава очевидно е възможно да “сгло-
бим” едно планарно вписване от ĂG21 и ĂG22 , “слепвайки” ги в общия планарен z. После,
ако в оригиналния G е нямало ребро px, zq, то изтриваме планарния му образ, и ако в
оригиналния G е нямало ребро py, zq, то изтриваме неговия планарен образ. И после
поставяме планарно ребро, съответстващо на px,yq; това можем да сторим, понеже пла-
нарните x и y са върхове от едно и също лице. С това построяваме планарно вписване
на G, в противоречие с допускането, че G не е планарен.

Важно е да се разбере защо добавихме ребрата px, zq и py, zq в това доказателство. Ние
искаме да построим планарно вписване на G, слепвайки вписвания на два подграфа с
общ връх z и после поставяйки планарно ребро, съответстващо на px,yq. Но ако вземем
произволни планарни вписвания на тези подграфи е възможно да не можем да сложим
планарно ребро между планарните x и y, защото планарните x и y са “затворени” в
някакви вътрешни лица и нямат “директна видимост”. За да сме сигурни, че планарните
вписвани на подграфите са такива, че и планарният x, и планарният y са върху едно
и също лице (нека е външното лице), достатъчно е планарният x да е крайна точка на
планарно ребро re1 от външното лице и планарният y да е крайна точка на планарно
ребро re2 от външното лице. Нещо повече, тъй като двете планарни вписвания биват
“слепени” в планарния връх z, трябва планарният z да е крайна точка както на re1, така
и на re2. Излиза, че re1 е планарният образ на px, zq, а re2 е планарният образ на py, zq.
Следователно, за да работи конструкцията със “слепването”, необходимо е да има ребра
px, zq и py, zq в блоковете, съдържащи съответно x и y.

С което доказахме Лема 15. 3

Разглеждаме произволно ребро e “ px,yq в G. Вече знаем, че G 1 “ G´ e е свързан, че в G 1
има цикъл C, такъв че x и y са върхове в този цикъл, и че G 1 няма подграфи, хомеоморфни
на K5 или K3,3. Освен това G 1 имаm´1 ребра, така че съгласно Наблюдение 33, G 1 е планарен
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граф. Нека ĂG 1 е негово планарно вписване. Нека rx, ry, re и rC са планарните образи съответно
на x, y, e и C. Очевидно rC е проста затворена крива в равнината, тъй като C е прост цикъл.
В общия случай rC не огражда едно лице, а множество лица на вписването.

Без ограничение на общността допускаме, че измежду всички планарни цикли, минаващи
през rx и ry, rC е такъв планарен цикъл, който огражда максимален брой лица на впис-
ването. Очевидно rC разделя равнината на вътрешен и външен район. За всяко съединение
H на G 1 спрямо C, казваме, че H e вътрешно съединение, ако планарният му образ, да го
наречем rH, се намира във вътрешния район спрямо rC. Ако H не е вътрешно, казваме, че H
е външно.

Нотация 6: xñy и yñx

Да изберем някаква произволна посока върху rC. Нека тази посока е по часовниковата
стрелка. Нека rCx,y означава тази дъга на rCztrx,ryu, която лежи в посока по часовнико-
вата стрелка след rx нататък, а rCy,x означава тази дъга на rCztrx,ryu, която лежи в посока
по часовниковата стрелка след ry. Тогава нотацията “xñy ” означава множеството от
всички върхове на C, чиито планарни образи се намират в rCx,y, а “yñx ” означава
множеството от всички върхове на C, чиито планарни образи се намират в rCy,x. Оче-
видно, x,y R xñy и x,y R yñx. Забележете, че xñy или yñx —но не и двете—може
да е празното множество.
Следната фигура илюстрира тази нотация. xñy “ tc,d, f,g,h, i, j,k, `u и yñx “

tu, v,w,p,qu.

rf

rh

rg

rC

ri

rq

rk

rj

rc
rd

r`

ru

rv

rw

rp

rx

ry

Лема 16

В текущия контекст, нито едно външно съединение спрямо rC не може да има повече от
един общ връх с pxñyq Y tx,yu и не може да има повече от един общ връх с pyñxq Y
tx,yu.

Доказателство: Да допуснем противното. Нека някое външно съединение J има поне два
общи върха с pxñyq Y tx,yu. Нека неговият планарен образ е rJ. Веднага следва, че има
планарен цикъл pC, различен от rC, минаващ през rx и ry, а също така и през rJ, и ограждащ
повече лица, отколкото огражда rC. Последното е в противоречие с направеното по-рано
допускане, че измежду всички такива планарни цикли, rC е такъв, който огражда максимален
брой лица на вписването.
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Това е илюстрирано на Фигура 2.92: съединението rJ е външно спрямо планарния цикъл
rC и освен това J има два общи върха с xñy , поради което съществува планарен цикъл pC,
който огражда повече лица от rC.

Фигура 2.92 : pC огражда повече лица от rC.

rx

ry

rJrC

pC

2

От друга страна, вътрешните съединения спрямо rC може да има повече от един общ връх с
xñyY ptx,yuq и може да има повече от един общ връх с yñxY ptx,yuq.

Да си припомним, че не-планарният граф G се получава от планарния граф G 1 с добавяне на
реброто e “ px,yq. Ние вече разглеждаме някакво планарно вписване на G 1, което нарекохме
ĂG 1. Ключово наблюдение за доказателството е, че нещо трябва да “пречи” на поставянето
на планарен образ на e в ĂG 1, инак G би бил планарен. По-точно казано, трябва rx и ry да не
са върху едно и също лице на ĂG 1, защото, ако има такова лице, че rx и ry са планарни
върхове от ограждащата го крива, то можем да сложим планарно ребро re “ prx,ryq в това
лице, без да нарушим планарността, и по този начин да получим планарно вписване на G, в
противоречие с допускането, че G не е планарен.

Да разгледаме само rC, игнорирайки останалото от ĂG 1. Спрямо rC равнината има две лица.
Да речем, външно лице F1 и вътрешно лице F2, като rx и ry са и на F1, и на F2:

rx

ry

rC

F2 F1

Забелязваме, че нещо, което да “пречи” на поставянето на re “ prx,ryq трябва да има както в
F1, така и в F2.

199



ГЛАВА 2. НЕОРИЕНТИРАНИ ГРАФИ И НЕОРИЕНТИРАНИ МУЛТИГРАФИ © Минко Марков, 2025г.

• По отношение на rC трябва има поне едно съединение O , такова че неговият планарен
образ, да го наречем rO, да се намира в F1 и пречи да бъде поставено re в F1. За да може
rO да пречи на поставянето планарно ребро между rx и ry, трябва O да има общ връх o1

с xñy и общ връх o2 с yñx . Както вече видяхме, O не може да има повече от един
общ връх нито с xñy , нито с yñx . Нека ro1 и ro2 са планарните образи съответно на
o1 и o2. За простота, ще си представяме rO като едно планарно ребро:

rx

ry

rO

ro1

ro2

• Аналогично, трябва има поне едно съединение, да го нарeчем I, в F2, чийто планарен
образ rI пречи на поставяне на re в F2. Тъй като сега няма твърдо ограничение за точно
един общ връх с xñy или точно един общ връх с yñx , ще смятаме, че конфигура-
цията, показана на предната фигура (rC и rO) е фиксирана и спрямо нея разглеждаме
различните възможности за rI. От една страна, rI трябва да се захваща за два върха i1
и i2 съответно в xñy и yñx , чиито планарни образи са съответно ri1 и ri2, така че rI да
пречи на поставянето на re (показано със синя пунктирана линия):

rx

ry

ri2

ri1

rI

От друга страна обаче, rI трябва да се захваща за два върха j1 и j2 съответно в o1ño2 и
o2ño1 , чиито планарни образи са съответно rj1 и rj2, така че rI и rO да не може да бъдат
поставени в едно и също лице спрямо rC – нито във F1, нито във F2:
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rO

ro1

ro2

rj2

rI

rj1

До края на доказателството разглеждаме само rC, rO, rI, rx, ry, ro1, ro2, ri1, ri2, rj1 и rj2. Забележете,
че x, y, o1, o2, i1, i2, j1 и j2 не са непременно осем различни върха. Това, което знаем за
задължителните различия между тях е:

• x, y, o1 и o2 са два по два различни,

• ti1, i2u X tx,yu “ H и

• tj1, j2u X to1,o2u “ H.

В този момент от доказателството, в учебника на Gibbons [27, стр. 79] се разглеждат само
пет конфигурации, наречени “essentially different”, като във всяка от тях се открива подграф,
хомеоморфен на K5 или K3,3. За съжаление, Gibbons не обяснява дори в най-общи линии
защо точно тези конфигурации са достатъчни за разглеждане. Тези лекционни записки са
предназначени за читателска аудитория, която за пръв път се сблъсква с подобни разсъж-
дения. Поради това ще направим детайлно разбиване на случаи и подслучаи. Единственото
опроставяне на доказателството ни ще бъде в установяване на изоморфизъм—винаги когато
е възможно—между някои от подграфите, които разглеждаме. Очевидно няма смисъл да се
разглеждат поотделно изоморфни графи, за да се покаже, че във всеки от тях има подграф,
хомеоморфен на K5 или K3,3. Установяване на изоморфизъм между два графа с лист и молив
може да е трудоемко и досадно занимание. Установяване на липса на изоморфизъм с лист
и молив е значително по-трудоемко (и досадно). Поради това ще използваме софтуер, за да
установяваме изоморфизъм или липса на изоморфизъм.

Допълнение 25: nauty: програма за намиране изоморфизми на графи

Най-известната и, в общия случай, най-бързата компютърна програма за установява-
не дали два графа са изоморфни или не, е nauty. Нейнит автор е професор Brendan
McKay от Australian National University. Първата версия на nauty се появява малко
след 1980 г. Следват много подобрени версии, като около 2008 г. към пакета на nauty
се добавя програмата Traces на професор Adolfo Piperno от Sapienza Universita di Roma.
Страници на nauty с Traces има тук и тук. Упътване за потребителя на nauty, версия
2.6, има тук. Теоретичната обосновка на целия софтуерен пакет се съдържа в статията
“Practical graph isomorphism, II” на McKay и Piperno [42].
Името “nauty” не е правописна грешкаа. Идва от no automorphisms. Автоморфизъм
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е изоморфизъм на граф в себе си. Много общо казано, основната идея на nauty е да
пресметне автоморфизмите на двата графа и да ги сравни. Пакетът nauty и Traces
има огромен брой приложения, като установяването на изоморфизъм или липса на
изоморфизъм е само една от тях. Пакетът е написан на С и се предлага като сорс код
с отворен лиценз. След компилиране се генерират множество обектни файлове, които
потребителят може да използва, за да свърже собствена програма на C с тях и така
да използва функциите, които те съдържат. API-то е описано подробно в упътването,
посочено горе.
Пакетът предлага и проста интерактивна програма dreadnaut, чрез която потреби-
телят може да използва основните възможности на пакета. Графите може да бъдат
въведени директно в dreadnaut, но може да бъдат описани в отделни файлове, които
да се зареждат от dreadnaut. Описанието на граф е чрез списъци на съседство, като
при неориентирани графи е допустимо всяко ребро да се описва един път, а не два
пъти. За пълнота, в примера за използване на dreadnaut, който ще дадем, списъците
на съседство са “истински”, тоест всяко ребро се появява точно два пъти. Форматът
на описанието на граф е прост текст, в който първият ред е n=z g, където z е броят
на върховете, а на следващите z реда съдържат списъците на съседство. Идентифи-
каторите на върховете трябва да бъдат числа; а именно, числата 0, 1, . . . , z´ 1. Тази
особеност е леко досадна, ако в описанието на графа, което сме си съставили, етикетите
на върховете са някакви стрингове – тогава се налага да транслираме тези стрингове
в числата 0, 1, . . . , z. Като пример ще разгледаме трите графа H1, H2 и H3 на стр. 210.
Ето ги и тук:

ro1 “ ri2

ro2 “ ri1

rj2
rz2

rz1

rj1

rx

ry

H1

ro1 “ ri2

rj1

rx

rj2

rz2

rz1

ro2 “ ri1

ry

H2

ro1 “ ri2

ro2 “ ri1

rj2

rz2

rz1

rj1

rx

ry

H3

Да им преименуваме върховете, така че да бъдат с етикети, подходящи за nauty:
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Да направим три файла h1.txt, h2.txt и h3.txt, съдържащи описанието (тоест, списъците
на съседство) на, съответно, H1, H2 и H3:

h1.txt h2.txt h3.txt
n=8 g n=8 g n=8 g
0: 5 7 1 3; 0: 5 7 1 3; 0: 7 5 3 1;
1: 5 0 2; 1: 2 5 0; 1: 0 2 5;
2: 1 6 3; 2: 1 6 3; 2: 7 3 1;
3: 4 6 2 0; 3: 4 7 2 0; 3: 4 6 2 0;
4: 5 7 3; 4: 5 3 6; 4: 5 6 3;
5: 4 1 0; 5: 4 1 0; 5: 1 4 0;
6: 3 2 7; 6: 4 7 2; 6: 7 3 4;
7: 4 0 6. 7: 3 6 0. 7: 2 6 0.

Извикването на dreadnaut от командния ред върху тези файлове става по следния
начин. Първо да видим дали H1 и H2 са изоморфни.

$ dreadnaut
Dreadnaut version 2.7 (64 bits).
> c
> < h1.txt
> x @
(0 3)(1 2)(4 7)(5 6)
level 1: 2 cells; 4 orbits; 1 fixed; index 2/6
4 orbits; grpsize=2; 1 gen; 5 nodes; maxlev=2
canupdates=3; cpu time = 0.00 seconds
> < h2.txt
> x
(1 5)(2 4)
level 1: 6 orbits; 2 fixed; index 2
6 orbits; grpsize=2; 1 gen; 3 nodes; maxlev=2
canupdates=1; cpu time = 0.00 seconds
> ##
h and h’ are different.
> q
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dreadnaut е интерактивна програма. Промптът и́ е > . Командата c кара dreadnaut
да прави определено оцветяване на графите, върху които ще работи; това трябва да се
направи, ако търсим изоморфизми. Командата < h1.txt кара dreadnaut да прочете
файла h1.txt. x @ са две команди, като x вика самата nauty, а @ съхранява резултата от
нейната работа в друг работен граф, наречен h 1 (дефолт работният граф е h). После <
h2.txt чете съдържанието на h2.txt. После x пак вика nauty, но сега върху последния
прочетен граф. И накрая ## сравнява двата работни графа h и h 1 и, ако са изоморфни,
дава явно изоморфизъм, а ако не са, съобщава това на потребителя. В случая H1 и H2

не са изоморфни. Командата q прекратява работата на dreadnaut.

Сега да видим работата на dreadnaut върху изоморфни графи, каквито са H1 и H3.

$ dreadnaut
Dreadnaut version 2.7 (64 bits).
> c
> < h1.txt
> x @
(0 3)(1 2)(4 7)(5 6)
level 1: 2 cells; 4 orbits; 1 fixed; index 2/6
4 orbits; grpsize=2; 1 gen; 5 nodes; maxlev=2
canupdates=3; cpu time = 0.00 seconds
> < h3.txt
> x
(0 3)(1 6)(2 7)(4 5)
level 1: 2 cells; 4 orbits; 1 fixed; index 2/6
4 orbits; grpsize=2; 1 gen; 6 nodes (3 bad leaves); maxlev=2
canupdates=1; cpu time = 0.00 seconds
> ##
h and h’ are identical.
0-0 1-5 2-4 3-3 4-2 5-1 6-6 7-7
> q

Работният граф h в края е H3, чието описание е заредено последно, а h 1 е H1. По-
казаното съответствие се чете така: във всяка двойка върхове, този вляво е от H3, а
този вдясно, от H1. Нека читателят се убеди сам, че програмата наистина е намерила
изоморфизъм.

аЧовек може да помисли, че това е неправилно написано “naughty”.

Следните случаи са изчерпателни. Във всеки от тях откриваме, че G има подграф, хомео-
морфен на K5 или K3,3, противно на допускането, че G няма такива подграфи.

Случай 1. o1 ­“ i2 и o2 ­“ i1. Да си представим къде може да се намират i1 и i2 спрямо
четирите върха x, y, o1 и o2: или i1 P yño2, или i1 P o2ñx; или i2 P xño1, или i2 P o1ñy.
Сега да си представим тези възможности заедно с възможностите за j1 и j2. Всичко това
е илюстрирано на следната фигура, като възможностите за i1 са маркирани в синьо, въз-
можностите за i2 са маркирани в зелено, възможностите за j1 са маркирани в оранжево, а
възможностите за j2 са маркирани в сиво.
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ro1

ro2
rj2

rj1

ri2

ri1

rx

ry

Лема 17

Поне едното от следните две е вярно.

• Има връх от ti1, i2, j1, j2u в o2ñx и има връх от ti1, i2, j1, j2u в o1ñy .

• Има връх от ti1, i2, j1, j2u в yño2 и има връх от ti1, i2, j1, j2u в xño1 .

Доказателство: Да допуснем противното. Получаваме “в поне едното от o2ñx и o1ñy

няма нито един от i1, i2, j1 и j2, и освен това в поне едното от yño2 и xño1 няма нито един
от i1, i2, j1 и j2”. Това обаче влече, че i1, i2, j1 и j2 се намират в някое от следните: o1ño2 ,
o2ño1 , xñy , yñx . А това вече е очевидно невъзможно. 2

Ще разгледаме двете възможности поотделно, а именно:

• Връх от ti1, i2, j1, j2u, да кажем i1, да е в o2ñx и друг връх от ti1, i2, j1, j2u, да кажем
i2, да в o1ñy . Да наречем графа в този подслучай A1.

• Връх от ti1, i2, j1, j2u, да кажем i1, да е в xño1 и друг връх от ti1, i2, j1, j2u, да кажем
i2, да в yño2 . Да наречем графа в този подслучай A2.

Разбира се, I може да има и други точки на захващане към C, но това не ни интересува.
Достатъчно е да разгледаме току-що описаните i1 и i2. Да разгледаме A1 и A2 поотделно,
мислейки за rI като за планарно ребро в F2:

ro1

rO

ro1

ro2

rI

ri2

ri1

rx

ry

ri2

ry

rO

ro2

rI

ri1

rx

A1 A2
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Показаните A1 и A2 са изоморфни. Подчертаваме отново, че A1 и A2 не са непременно две
възможности за целия граф G, а—и в двата случая—само на част от него, която е същнос-
тно важна за нашето доказателство. Забелязваме, че A1 всъщност е K3,3. Следователно, G
съдържа подграф, хомеоморфен на K3,3, което довършва доказателството в Случай 1:

ro1

ro2

ri2

ri1

rx

ry

A1

Случай 2. o1 ­“ i2 и o2 “ i1. Следната фигура илюстрира общото положение на върховете,
които разглеждаме:

ro1

ro2 “ ri1
rj2

rj1

ri2
rx

ry

Без ограничение на общността, нека i2 P xño1. Ще игнорираме j1 до края на Случай 2,
така че си представяме това:
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ro1

ro2 “ ri1
rj2

ri2

rx

ry

Очевидно, i1, i2 и j2 са три различни върха. Но тогава I е съединение спрямо C, което има
поне три различни точки на захващане i1, i2 и j2. Прилагаме Лема 13 и заключаваме, че
съществува v P interpIq, такъв че има z-i1 път, z-i2 път и z-j2 път, които са независими. Това
е показано на следната фигура, като rz е планарният образ на z, а rx и ry не са показани:

ro1

ro2 “ ri1

rj2

rz

ri2

Сега да си представим и rx и ry плюс планарното ребро между тях плюс rO (показан само
като планарно ребро), добавени към последната фигура. За j2 ще разгледаме два подслучая:
j2 P po1ñyq Y tyu и j2 P yño2. Да наречем съответните графи B1 и B2:
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ro1

ro2 “ ri1

rj2

rz

rx

ry

ri2

ro1

ro2 “ ri1

rj2

rz

rx

ry

j2 P po1ñyq Y tyu j2 P yño2

B1 B2

ri2

B1 и B2 са изоморфни. Лесно се вижда, че B1 има подграф, хомеоморфен на K3,3:

ro1

ro2 “ ri1

rj2

rz

rx

ry

B1
ri2

Случай 3. o1 “ i2 и o2 “ i1. Следната фигура илюстрира общото положение на върховете,
които имаме предвид:

ro1 “ ri2

ro2 “ ri1
rj2

rj1

rx

ry
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Очевидно i1, i2, j1 и j2 са четири различни върха. Следователно, I има четири точки на
закачане на и съгласно Лема 14, в I има F или f.

Случай 3.A tx,yu X tj1, j2u “ H. Следната фигура илюстрира общото положение на вър-
ховете, които имаме предвид:

ro1 “ ri2

ro2 “ ri1
rj2

rj1

rx

ry

Случай 3.A- В I има F. Без ограничение на общността, нека j1 P xño1:

ro1 “ ri2

ro2 “ ri1
rj2

rx

ry

rj1

Ще разгледаме поотделно два случая: j2 P o1ñy и j2 P yño2:

ro1 “ ri2

ro2 “ ri1

rj2

rz

j2 P o1ñy j2 P yño2

ro1 “ ri2

ro2 “ ri1

rj2

rz

rj1

rx

ry

rj1

rx

ry
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И в двата случая виждаме подграф, хомеоморфен на K3,3:

ro1 “ ri2

ro2 “ ri1

rj2

rz

j2 P o1ñy j2 P yño2

ro1 “ ri2

ro2 “ ri1

rz

rj1

rx

ry

rj1

rx

ry

rj2

Случай 3.A- В I има f. Без ограничение на общността, нека j1 P xño1:

ro1 “ ri2

ro2 “ ri1
rj2

rx

ry

rj1

Първо допускаме, че j2 P o1ñy. Това обаче не определя еднозначно конфигурацията f. Тя
се определя и от разбиването на ti1, i2, j1, j2u на две двуелементни множества. Има точно три
такива разбивания, а именно tti1, j1u, ti2, j2uu, tti1, i2u, tj1, j2uu и tti1, j2u, ti2, j1uu. Да наречем
трите съответни графа H1, H2 и H3 и да ги разгледаме поотделно:
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ro1 “ ri2

ro2 “ ri1

rj2
rz2

rz1

rj1

rx

ry

H1

tti1, j1u, ti2, j2uu

ro1 “ ri2

rj1

rx

rj2

rz2

rz1

ro2 “ ri1

ry

H2

tti1, i2u, tj1, j2uu

ro1 “ ri2

ro2 “ ri1

rj2

rz2

rz1

rj1

rx

ry

H3

tti1, j2u, ti2, j1uu

H1 и H3 са изоморфни. Ако биекцията на изоморфизма е φ : VpH1q Ñ VpH3q, то φpxq “ z2,
φpo2q “ o1, φpyq “ j2, φpj2q “ x, φpo1q “ o2, φpj1q “ z1, φpz2q “ y, φpz1q “ j2. H1 и H2 не
са изоморфни. По тази причина ограничаваме нашето внимание само до H1 и H2. И в двата
има подграф, хомеоморфен на K3,3:

ro1 “ ri2

ro2 “ ri1

rj2
rz2

rz1

rj1

rx

ry

H1

ro1 “ ri2

rj1

rx

rj2

rz2

rz1

ro2 “ ri1

ry

H2

Сега допускаме, че j2 P yño2. Както и преди, конфигурацията f се определя и от разбивани-
ята на ti1, i2, j1, j2u на две двуелементни множества, а именно tti1, j1u, ti2, j2uu, tti1, i2u, tj1, j2uu
и tti1, j2u, ti2, j1uu. Да наречем графите, които разглеждаме, съответно J1, J2 и J3 и да ги раз-
гледаме поотделно:

211



ГЛАВА 2. НЕОРИЕНТИРАНИ ГРАФИ И НЕОРИЕНТИРАНИ МУЛТИГРАФИ © Минко Марков, 2025г.

ro1 “ ri2

ro2 “ ri1

rj2

rz2

rz1

rj1

rx

ry

J1

tti1, j1u, ti2, j2uu

rj2 rj2

ro1 “ ri2

rj1

rx

rz2
rz1

ro2 “ ri1

ry

J2

tti1, i2u, tj1, j2uu

ro1 “ ri2

ro2 “ ri1

rz2

rz1

rj1

rx

ry

J3

tti1, j2u, ti2, j1uu

J3 е изоморфен на вече разгледаните H1 и H3. Нито J1 и J2 са изоморфни помежду си, нито
някой от е изоморфен на J3 или на някой от H1, H2 или H3. Налага се да разгледаме J1 и J2.
Във всеки от тях има подграф, хомеоморфен на K3,3:

ro1 “ ri2

ro2 “ ri1

rj2

rz2

rz1

rj1

rx

ry

J1

rj2

ro1 “ ri2

rj1

rx

rz2
rz1

ro2 “ ri1

ry

J2

Случай 3.B |tx,yu X tj1, j2u| “ 1. Без ограничение на общността, нека y “ j2 и j1 P xño1:

ro1 “ ri2

ro2 “ ri1

rx

ry “ rj2

rj1
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Случай 3.B- В I има F:

ro1 “ ri2

ro2 “ ri1

rz

rj1

rx

ry “ rj2

Веднага виждаме подграф, хомеоморфен на K3,3:

ro1 “ ri2

ro2 “ ri1

rz

rj1

rx

ry “ rj2

Случай 3.B- В I има f. Разглеждаме всички разбивания на ti1, i2, j1, j2u на две двуе-
лементни множества, а именно tti1, j1u, ti2, j2uu, tti1, i2u, tj1, j2uu и tti1, j2u, ti2, j1uu, всяка от
които определя еднозначно конфигурацията f. Да наречем съответните графи L1, L2 и L3 и
да ги разгледаме поотделно:

ro1 “ ri2

ro2 “ ri1

rz2

rz1

rj1

rx

ry “ rj2

L1

tti1, j1u, ti2, j2uu

ro1 “ ri2

rj1

rx

rz2

rz1

ro2 “ ri1

ry “ rj2

L2

tti1, i2u, tj1, j2uu

ro1 “ ri2

ro2 “ ri1

rz2

rz1

rj1

rx

ry “ rj2

L3

tti1, j2u, ti2, j1uu
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L1 и L2 са изоморфни. L2 не е изоморфен на никой от тях, нито на някой от досега разг-
лежданите графи. Разглеждаме L1 и L3. Във всеки от тях има подграф, хомеоморфен на
K3,3:

L1 L3

ro1 “ ri2

ro2 “ ri1

rz2

rz1

rj1

rx

ry “ rj2

ro2 “ ri1

rz1

ry “ rj2

ro1 “ ri2

rz2

rj1

rx

Случай 3.C tx,yu “ tj1, j2u.

Случай 3.C- В I има F:

ro1 “ ri2

ro2 “ ri1

rz

rx “ rj1

ry “ rj2

Очевидно този граф е хомеоморфен на K5. Това е единственият случай в доказателството, в
който използваме K5, а не K3,3.

Случай 3.C- В I има f. Разглеждаме всички разбивания на ti1, i2, j1, j2u на две двуе-
лементни множества, а именно tti1, j1u, ti2, j2uu, tti1, i2u, tj1, j2uu и tti1, j2u, ti2, j1uu, всяка от
които определя еднозначно конфигурацията f. Да наречем съответните графи S1, S2 и S3 и
да ги разгледаме поотделно:
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ro1 “ ri2

ro2 “ ri1

rz2

rz1

rx “ rj1

ry “ rj2

S1

tti1, j1u, ti2, j2uu

ro1 “ ri2
rx “ rj1

rz2

rz1

ro2 “ ri1

ry “ rj2

S2

tti1, i2u, tj1, j2uu

ro1 “ ri2

ro2 “ ri1

rz2

rz1

rx “ rj1

ry “ rj2

S3

tti1, j2u, ti2, j1uu

Оказва се, че S1, S2 и S3 са изоморфни. Разглеждаме S1 и виждаме, че в него има подграф,
хомеоморфен на K3,3:

ro1 “ ri2

ro2 “ ri1

rz2

rz1

rx “ rj1

ry “ rj2

S1

Това е краят на доказателството на теоремата на Kuratowski. 2

Доказателство за не-планарност с Теоремата на Kuratowski Ще разгледаме при-
мер за прилагането на Теоремата на Kuratowski: ще докажем, че графът на Petersen не е
планарен. Естествено е да се опитаме да докажем това чрез K5, понеже графът на Petersen
съдържа K5 в себе си по много очевиден начин – ако на следната рисунка на графа на Petersen
“колабираме” петте червени ребра, за всяко от тях изтривайки го и идентифицирайки двата
му края, ще получим точно K5:
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K5

Но това “колабиране” на ребра не е измежду двете операции, за които става дума в Опре-
деление 71. И наистина, графът на Petersen не съдържа подграф, хомеоморфен на K5. За
да видим, че е така, да съобразим, графът на Petersen е 3-регулярен, а в K5 е 4-регулярен;
от друга страна, всеки два хомеоморфни графа очевидно имат един и същи брой върхове от
степен, различна от 2.

Доказателството с теоремата на Kuratowski, че графът на Petersen не е планарен, използва
K3,3, а не K5. Ще видим, че графът на Petersen съдържа подграф, хомеоморфен на K3,3. На
следната рисунка е показа един такъв подграф, нарисуван с жълто върху графа на Petersen.

За да се убедим, че жълтият подграф наистина е хомеоморфен на K3,3, първо да съобразим,
че жълтият подграф има върхове от (и само от) степени 2 и 3, и да оцветим върховете му
от степен 3 с червено и синьо.
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Второ, да изтрием тези ребра, които не са жълти, за да остане само въпросният подграф.

Сега да свием всички възможни ребра чрез върхове от степен 2, а това са точно белите
върхове.

Вече се вижда ясно, че това е K3,3, като върховете от единия му дял са червените върхове,
а от другия му дял са сините върхове.
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2.13.6 Вписвания на графи в повърхнини и 3D modeling

Съвсем кратко въведение в 3D modeling

Тази подсекция е преход между Секция 2.13 Планарност на графи и Секция 2.14 Впис-
ване на графи в повърхнини от по-висок род. Ще разгледаме приложение на току-що
развитата теория на планарните графи в областта на 3D modeling и ще открием нейните
ограничения, разглеждайки примери, в които тя не е приложима.

3D modeling е дял на компютърната графика, който се занимава със създаването на мате-
матическо представяне (модел) на даден тримерен обект. Това се постига, като повърхнината
на обекта се представя (апроксимира) чрез мрежа от многоъгълници, на английски polygon
mesh, която е множество от точки, отсечки, свързващи някои двойки точки, и многоъгълни-
ци, оградени от такива отсечки. На практика най-често многоъгълниците са триъгълници.
Като пример за 3D modeling да разгледаме Фигура 2.93. Тя показва няколко тримерни моде-
ла на известния Станфордски заек: от най-грубия модел горе вляво до най-прецизния модел
долу вдясно.

Фигура 2.93 : Станфордския заек.

Повърхнината на тялото се нарича 2-многообразие, на английски 2-manifold, ако за всяка
точка, в достатъчно малка околност около точката, повърхнината е “като Евклидовата рав-
нина”. По-стриктно определение на “2-многообразие” ще дадем в Секция 2.14. Тук само ще
кажем, че 2-многообразие не може да има срезове, цепнатини, дупки към вътрешността,
прищипвания и така нататък. Примерно, цилиндърът не е 2-многообразие, докато сферата,
кубът (и изобщо всеки многостен), както и тороидът, са 2-многообразия.

Повърхнината на Станфордския заек е 2-многообразие. Нещо повече, Станфордския заек
е хомеоморфен със сферата (вижте Определение 73): лесно е да си представим, че заекът
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може да бъде трансформиран в сферата по еластичен начин, и обратно, сферата може да
бъде трансформирана в заека еластично.

Вече виждаме връзката между мрежата от модела на заека и планарните графи. Ако
мрежата представлява многостен, какъвто е случаят с моделите на Фигура 2.93, то, ако
игнорираме геометричния аспект на мрежата, тя става комбинаторно планарно вписване на
някакъв планарен граф.

Прости примери за мрежи на 3D модели

На сайта на Maks Ovsjanikov има свободен за ползване уеб ресурс – архив от 3D модели,
някои от които са модели на Станфордския заек. За разглеждането на моделите е необходим
софтуер като свободния софтуерен пакет MeshLab. С MeshLab може да отворите файловете
(в директория PS2/data) с разширение .off и да разгледате моделите по начин, който е не-
възможно да бъде възпроизведен пълноценно в този документ. Отворете в MeshLab файла
bunny_simple.off. Фигура 2.94 показва заека като wireframe (кликнете Render –> Render
Mode –> Wireframe).

Фигура 2.94 : Wireframe на Станфордския заек.

Подчертавам, че с MeshLab можете да разгледате модела по несравнимо по-пълноценен на-
чин и да придобиете несравнимо по-ясна представа за него, отколкото от Фигура 2.94.

За да видите данни за мрежата (polygon mesh), кликнете View –> Show Layer Dialogue и
после Filters –> Quality Measures and Computations –> Compute Topological Measures.
В моя случай резултатът е:
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Opened mesh
/home/minko/Work/lec-graphs/meshes/site1/PS2/data/bunny_simple.off in 105 msec

All files opened in 105 msec
V: 2002 E: 6000 F: 4000
Unreferenced Vertices 0
Boundary Edges 0
Mesh is composed by 1 connected component(s)
Mesh has is two-manifold
Mesh has 0 holes
Genus is 0

“Mesh has is two-manifold” казва, че мрежата моделира 2-многообразие. Ако това не беше така,
следните разсъждения нямаше да са смислени. “Genus is 0” означава, че 2-многообразието е
хомеоморфно на сферата.

V е броят на върховете на мрежата, E е броят на ребрата, а F е броят на триъгълниците
(лицата). В сила е

V ´ E` F “ 2002´ 6000` 4000 “ 2

Това не е изненада, тъй като мрежата е многостен и съгласно Наблюдение 30 има характе-
ристика 2.
Отворете файла bunny.off. Той съдържа мрежа на заека, която е много по-детайлна от
мрежата на bunny_simple.off и съответно има много повече върхове, ребра и триъгълници.
Мрежата е показана на Фигура 2.95.

Фигура 2.95 : Друг wireframe на Станфордския заек.
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Данните за тази мрежа са:

Opened mesh
/home/minko/Work/lec-graphs/meshes/site1/PS2/data/bunny.off in 155 msec

All files opened in 155 msec
V: 14290 E: 42864 F: 28576
Unreferenced Vertices 0
Boundary Edges 0
Mesh is composed by 1 connected component(s)
Mesh has is two-manifold
Mesh has 0 holes
Genus is 0

Отново в сила е:

V ´ E` F “ 14 290´ 42 864` 28 576 “ 2

както очакваме от многостен.

Сега отворете файла torus.off. Той съдържа мрежа на тороид, иначе казано “геврек”. Мре-
жата на тороида е показана на Фигура 2.96.

Фигура 2.96 : Wireframe на тороид.

Данните за тази мрежа са:

Opened mesh
/home/minko/Work/lec-graphs/meshes/site1/PS2/data/torus.off in 185 msec

All files opened in 185 msec
V: 24003 E: 72009 F: 48006
Unreferenced Vertices 0
Boundary Edges 0
Mesh is composed by 1 connected component(s)
Mesh has is two-manifold
Mesh has 0 holes
Genus is 1
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За тази мрежа, в сила е

V ´ E` F “ 24 003´ 72 009` 48 006 “ 0

Сега вече V ´ E` F не е две, а нула. Причината е, че тороидът има “дупка”, поради което е
фундаментално различен от многостените и Наблюдение 30 не е в сила за него и обектите,
които са му хомеоморфни. “Genus 1” (род едно) е понятие, което ще разгледаме подробно в
Секция 2.14. Тук само ще кажем неформално, че повърхнина от род едно е хомеоморфна
на сфера с една “залепена дръжка” върху нея. Залепването на дръжка е същото като на-
личието на дупка като тази на тороида. Тороидът е 2-многообразие, също както и сферата,
но заради “дръжката” не е хомеоморфен на сферата. Броят на “дръжките” е родът (genus)
на повърхнината:. Сферата има нула дръжки и има род нула, тороидът има една дръжка и
има род едно, и така нататък.

Разгледайте Фигура 2.97. Тя показва wireframe на джапанка в два аспекта. Файлът с мрежата
на джапанка бе създаден и предоставен на автора за ползване в лекционните записки от
студента Руси Шишманов.

Фигура 2.97 : Wireframe на джапанка.

Данните за тази мрежа са:

Opened mesh Flip-flop(not_as_ electronic_component).off in 242 msec
All files opened in 242 msec
Saved Mesh /home/minko/Work/lec-graphs/meshes/Rusi-Shishmanov/Flip-flop(not_as_ electronic_component).obj in 209 msec
Saved Mesh /home/minko/Work/lec-graphs/meshes/Rusi-Shishmanov/Flip-flop(not_as_ electronic_component).ply in 49 msec
Snapshot saved to ./snapshot00.png
Snapshot saved to ./snapshot01.png
V: 32787 E: 98361 F: 65574
Unreferenced Vertices 0

:Това е вярно само за така наречените ориентируеми повърхнинаи – всяка такава, ако е 2-многообразие,
е хомеоморфна на сфера с някакъв брой дръжки, който е родът на повърхнината е броят на дръжките. Има
и 2-многообразия, които не са ориентируеми повърхнинаи и които не се получават от сферата с добавяне на
дръжки – например, лентата на Мьобиус или бутилката на Клайн. Повече по този въпрос има в Секция 2.14.
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Boundary Edges 0
Mesh is composed by 1 connected component(s)
Mesh has is two-manifold
Mesh has 0 holes
Genus is 1

За тази мрежа, в сила е

V ´ E` F “ 32 787´ 98 361` 65 574 “ 0

Джапанката (поне тази) е хомеоморфна на тороида, тоест, на сфера с дръжка, поради което
е многообразие от род 1, така че характеристиката V ´ E ` F за нея е нула, също като за
тороида.

Сега отворете файла double_torus2.off. Той съдържа мрежа на двоен тороид, иначе казано
“два залепени геврека”. Мрежата на двойния тороид е показана на Фигура 2.98.

Фигура 2.98 : Wireframe на двоен тороид.

Данните за тази мрежа са:

Opened mesh
/home/minko/Work/lec-graphs/meshes/site1/PS2/data/double_torus2.off in 126 msec

All files opened in 127 msec
V: 8595 E: 25791 F: 17194
Unreferenced Vertices 0
Boundary Edges 0
Mesh is composed by 1 connected component(s)
Mesh has is two-manifold
Mesh has 0 holes
Genus is 2
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За тази мрежа, в сила е

V ´ E` F “ 8 595´ 25 791` 17 194 “ ´2

Сега вече V ´ E ` F е минус две. Двойният тороид е хомеоморфен със сфера с две дръжки
и има род (genus) две, като също е 2-многообразие, но не е хомеоморфен нито на сферата,
нито на тороида.

Една хипотеза за “сфери с дръжки”

От изложението дотук правим следната хипотеза: добавянето на всяка нова “дръжка” към
сферата намалява с точно 2 характеристиката на повърхнината, започвайки от `2 за сферата
без дръжки.

Хипотеза 3

За всяка повърхнина P , която е хомеоморфна на сфера с k дръжки, за всяко вписване
на граф в P, чиито лица са хомеоморфни с кръга, е изпълнено

n´m` f “ 2´ 2k

където n е броят на върховете, m е броят на ребрата, а f е броят на лицата на вписва-
нето.

Очевидно Теорема 40 е частен случай на този резултат за k “ 0, тоест за сфера без дръжки.
Хипотеза 3 е вярна и ще я докажем формално в Секция 2.14.

Сложен пример за 3D мрежа

И накрая да разгледаме една много по-сложна тримерна мрежа. Тя е взета от този сайт на
Georgia Institute of Technology . Тази мрежа е резултат много прецизно тримерно сканиране на
дървена статуетка, наречена Happy Buddha. Тримерният модел се предоставя в два форма́та:
.off и .iv. Да разгледаме .off варианта. Предупреждение: този модел е много голям, като
некомпресирания .ply файл е над 40 мегабайта.

Информация за оригиналната статуетка може да бъде видяна на тази страница на Stanford
University , където може да разгледате оригинала много подробно и да оцените сложността
му. Фигура 2.99 показва снимка на статуетката, взета от станицата на Stanford University.
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Фигура 2.99 : Щастлив Буда – статуетка.

Данните за мрежата–резултат от 3D сканирането са:

Opened mesh
/home/minko/Work/lec-graphs/meshes/site4/happy.ply in 1135 msec

All files opened in 1137 msec
V: 543652 E: 1631574 F:1087716
Unreferenced Vertices 0
Boundary Edges 0
Mesh is composed by 1 connected component(s)
Mesh has is two-manifold
Mesh has 0 holes
Genus is 104

В сила е

V ´ E` F “ 543 652´ 1 631 574` 1 087 716 “ ´206

Съгласно Хипотеза 3, ако повърхнината на статуетката е 2-многообразие—а тя е 2-многообразие
съгласно данните от MeshLab, то в сила е 2´2k “ ´206, където k е броят на дръжките. Оттук
броят на дръжките е 104, което е точно колкото MeshLab съобщава за рода на повърхнината.
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2.14 Вписване на графи в повърхнини от по-висок род

226



ГЛАВА 2. НЕОРИЕНТИРАНИ ГРАФИ И НЕОРИЕНТИРАНИ МУЛТИГРАФИ © Минко Марков, 2025г.

2.15 Графи-хиперкубове

227



ГЛАВА 2. НЕОРИЕНТИРАНИ ГРАФИ И НЕОРИЕНТИРАНИ МУЛТИГРАФИ © Минко Марков, 2025г.

2.16 Съчетания в графи
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2.17 Някои видове перфектни графи

2.17.1 Интервални графи

Да разгледаме една задача. Дадено е множество от изпити X “ tx1, . . . , xnu, които трябва
да се проведат (присъствено!) в зали на някаква университетска сграда. Всеки изпит xi се
характеризира с времето си на започване si и времето си на приключване fi, където si ă fi.
Прецизно казано, всеки изпит е съответният затворен интервал, тоест, xi “ tz P R | si ď z ď
fiu. За удобство понякога идентифицираме xi с наредената двойка psi, fiq.

Нека i ­“ j. Казваме, че изпити xi и xj не се застъпват, ако fi ă sj или fj ă si; в противен
случай xi и xj се застъпват:. Искаме да проведем изпитите в колкото е възможно по-малко
зали. Допускаме, че всеки изпит може да се проведе в коя да е от залите. Причината да не
използваме само една зала може да е само една: има застъпващи се изпити. Да проведем
изпитите в минимален брой зали е същото като да разбием множеството от изпитите на
минимален брой дялове, като във всеки дял няма застъпващи се изпити.

Дълбочината на X може да се дефинира по два еквивалентни начина

depthpXq def
“ max t|Y| : pY Ď Xq ^ p@xi, xj P Y : i ­“ jÑ xi и xj се застъпватqu

depthpXq def
“ max t|Y| : ppY Ď Xq ^ Dz P R : z P

č

Yqu

Твърдим, че depthpXq е необходимият и достатъчен брой зали за провеждането на изпитите.
Необходимостта е очевидна. Достатъчността обаче не е напълно очевидна. Един от начините
да се покаже е конструктивен е със следния алчен алгоритъм.

1. Сортирай изпитите по начално време. БОО, нека сортираната редица е xx1, . . . , xny.

2. Резервирай зала за x1.

3. За i от 2 до n:

(а) ако в момент si има свободна зала от досега използваните, сложи xi в нея,

(б) в противен случай резервирай нова зала—която до момента не е използвана—за xi.

След това доказваме коректността на алгоритъма. Забелязваме, че алгоритъмът резервира
depthpXq на брой зали и това доказваме, че depthpXq е достатъчен брой зали.

Можем обаче да докажем, че depthpXq е достатъчен брой зали и по друг начин. Да констру-
ираме обикновен граф G “ pX,Eq, където

E “ tpxi, xjq | pi ­“ jq ^ pxi и xj се застъпватqu

Това е граф, чиито върхове са интервалите, а ребрата отговарят точно на застъпванията.
По отношение на изпитите, този граф моделира несъвместимостите. Ето пример за някакви
изпити, в който всички изпити започват и завършват на кръгъл час, с изключение на изпита
по Философия, който е от 14:15 ч.

:Забележете, че според тази дефиниция, ако един изпит завършва в 10:00 часа, а друг изпит започва в
10:00 часа, те се застъпват, но ако вторият започваше в 10:01 ч., те нямаше да се застъпват. Как точно е
дефинирано застъпването не е важно. Важното е да е дефинирано недвусмислено и да може да се изчислява
бързо дали два изпита се застъпват.
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Ето графът на застъпванията (несъвместимостите), нарисуван върху изпитите.

10:00 11:00 12:00 13:00 14:00 15:00 16:00

Графите като този си имат име.
Определение 80: Интервален граф

Граф G “ pV,Eq се нарича интервален граф, ако съществува множество I “ ti1, . . . , inu
от затворени интервала върху реалната ос, такива че съществува биекция f : V Ñ I,
такава че

@u, v P V : u ­“ vÑ ppu, vq P EØ fpuq X fpvq ­“ Hq

Дали интервалите са затворени и как точно се дефинира застъпването (достатъчно ли е да
имат обща точка или трябва да имат обща отсечка) не е съществено.

Оригиналната задача беше да се покаже, че дълбочината на множеството от интервали-
изпити е горна граница за броя на залите. Преведено в термините на графа, задачате е:
да се покаже, че кликовото число на графа е горна граница за хроматичното му число.
Забележете, че разполагането на изпитите в зали по такъв начин, че в нито една зала няма
застъпване, е същото като разбиване на множеството от върховете на графа на антиклики,
а, както знаем от Подсекция 2.7.1, това е същото като да се оцветят върховете в цветове,
съответстващи на антикликите; в случая, това са залите.

Добре известно е [28], че интервалните графи са вид перфектни графи (Определение 38),
откъдето веднага следва, че дълбочината на множеството от интервалите е достатъчна за
броя на залите за провеждането на изпитите.
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Определение 80 взема за върхове не директно интервалите, а някакви абстрактни върхове и
ги съпоставя биективно на интервалите. Това е нарочно. Интервалите може да не са дадени,
а да е даден само графът и да се пита дали има такова множество от интервали; тоест, за
произволен граф може има смисъл да питаме дали е интервален или не. Не всеки граф е ин-
тервален. Известно е [28, стр. 182, Theorem 8.1], че интервалните може да се характеризират
и по друг начин: граф е интервален тстк максималните му по включване клики може да се
наредят линейно по такъв начин, че за всеки връх x, максималните (по включване) клики,
съдържащи x, се появяват в непрекъсната подредица (consecutively на английски).

Като пример да разгледаме същия граф, но сега нарисуван самостоятелно, с имена на
върховете, които нямат нищо общо с имената на изпитите.

v2

v1

v3 v4

v5

v6C1

C2

C3

Трите максимални по включване клики са C1, C2 и C3. Имайте предвид, че кликите
са множества от върхове, а не подграфи, така че C1 “ tv1, v2, v3u, C2 “ tv2, v3, v4u и C3 “

tv4, v5, v6u. И наистина, кликите може да се наредят линейно по такъв начин, че всеки връх
се появява в непрекъсната подредица от клики:

@

C1 “ tv1, v2, v3u C2 “ tv2, v3, v4u C3 “ tv4, v5, v6u
D

Полуформално казано, максималните по включване клики на интервалния граф са “за-
лепени” една за друго по линеен начин (а не, да кажем, по кръгов или по дървовиден или по
някакъв по-общ начин). Оттук читателят лесно може да си направи малък пример за граф,
който не е интервален.

Интервалните графи са много полезни на практика и възникват като моделиращо средство
във важни практически задачи [28].

Допълнение 26: Приложения на интервалните графи

Golumbic в [28] посочва интересни приложения на интервалните графи. Ето някои от
тях.

1. Дадени са някакви химически съединения c1, c2, . . . , cn. За всяко i P t1, . . . ,nu е
дадено, че ci трябва да се съхранява в температурния интервал rt 1i, t2i s, където t 1i
и t2i са градуси, като t 1i ă t2i . Колко хладилника са ни необходими, за да съхраня-
ваме тези съединения? Очевидно се допуска, че всеки хладилник може да побере
всички (контейнери със) съединения, и освен това всеки хладилник поддържа
само една температура (защото има само едно отделение).

Ако ползваме n хладилника, нещата стават тривиални: просто слагаме всяко съ-
единение в собствен хладилник.

231



ГЛАВА 2. НЕОРИЕНТИРАНИ ГРАФИ И НЕОРИЕНТИРАНИ МУЛТИГРАФИ © Минко Марков, 2025г.

Има ситуации, в които можем да минем само с един хладилник: да кажем, n “ 3 и
интервалите са r´5˝,`10˝s, r´2˝,`20˝s и r´15˝,`25˝s. Очевидно един хладилник,
поддържащ 0˝, е достатъчен. Причината е, че трите интервала имат общо неп-
разно сечение. Ако третият интервал беше r`11˝,`25˝s, един хладилник нямаше
да е достатъчен.

Да построим интервалния граф върху тези интервали. Минималният брой необ-
ходими хладилници е равен на неговото минимално число на кликово покриване.
Числото на кликово покриване на произволен граф G (не само интервален) е ми-
нималното k, такова че можем да разбием VpGq на k дяла, като всеки от тях е
клика. Съединенията, отговарящи на всяка клика, ще държим в отделен хладил-
ник.

2. В зората на генетиката, Benzer [8] казва:

From the classical researches of Morgan and his school, the chromosome is
known as a linear arrangement of hereditary elements, the “genes”. These
elements must have an internal structure of their own. At this finer level,
within the “gene” the question arises again: what is the arrangement of the
sub-elements? Specifically, are they linked together in a linear order analogous
to the higher level of integration of the genes in the chromosome?
. . .
A number of cases have been investigated on this level. As a rule, closely linked
mutations affecting the same characteristic can be seriated in an unambiguous
way, suggesting a linear model. However, the “distances” (i.e., recombination
frequencies) between mutations are not always strictly additive, and certain
complexities (“negative interference” effects) make quantitative analysis difficult.
. . .
A crucial examination of the question should be made from the point of view of
topology, since it is a matter of how the parts of the structure are connected to
each other, rather than of the distances between them. Experiments to explore
the topology should ask qualitative questions (e.g., do two parts of the structure
touch each other or not?) rather than quantitative ones (how far apart are
they?).

Въпросът, който Benzer поставя, е дали елементите вътре в гена са линейно наре-
дени. За да се отговори на този въпрос се разглеждат данни за мутациите на гена.
При определени допускания, мутациите възникват (по отношение на стандартния
ген) чрез промени в свързани части на вътрешността на гена. Експериментално
може да се установи дали променените части на два мутирали гена се пресичат.

Събират се данни за голямо множество мутирали гени и се отчитат данните за
пресичанията им. Прави се граф на пресичанията G. Въпросът дали данните за
пресичанията са съвместими с хипотезата за линейност на елементите на гена е
същият като въпросът дали G е интервален граф. Както посочва Golumbic [28,
стр. 172], положителен отговор не потвърждава непременно тази хипотеза, но
отрицателен отговор категорично я отхвърля.

3. Сериализация (на английски, seriation) е опит да се поставят някакви археологи-
чески находки в истинския хронологически ред, в който са се появили в миналото.
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Дадено е множество от артефакти (по-точно, видове артефакти, а не индивиди-
артефакти), намерени в гробове (да кажем, от епохата на Древния Египет). Пост-
рояваме граф G, чийто върхове са артефактите, а ребро се слага тстк съответните
артефакти са намерени в един и същи гроб. При хипотезата, че всяка двойка ар-
тефакти, които са съществували в един и същи момент от времето, се намира
заедно в поне един гроб, G е интервален граф, като всяко множество от интерва-
ли, което може да е неговото множество от съответни интервали, е потенциален
кандидат за сериализация на артефактите.

2.17.2 k-дървета
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3.1 Ориентирани графи и ориентирани мултиграфи

3.1.1 Основни определения

Определение 81: Ориентиран граф

Ориентиран граф е наредена двойка G “ pV,Eq, където V е непразно множество, чиито
елементи се наричат върхове, E е множество, чиито елементи се наричат ребра, като

E Ď pV ˆ Vqztpu,uq |u P Vu

На английски ориентиран граф е directed graph, което понякога се съкращава до digraph. Ня-
кои автори като Gibbons [27] не ползват термина “oriented” изобщо. Други автори, например
Diestel, ползват и “directed”, и “oriented”, но с различен смисъл. Според Diestel [18, стр. 28],
oriented graph е ориентиран граф, който се получава от неориентиран граф (Определение 1)
чрез даване на ориентация на всяко неориентирано ребро; това означава, че заменяме всяко
неориентирано ребро tu, vu, което е двуелементно множество:, с точно една от наредените
двойки pu, vq или pv,uq. Съгласно това определение, oriented graph е частен случай на directed
graph – разликата е в това, че в oriented graphs не може да има и двете ребра pu, vq и pv,uq,
докато в directed graphs нищо не пречи да ги има и двете.

Конвенция 10

Ако кажем само “граф”, разбираме неориентиран граф. За да кажем, че имаме предвид
ориентиран граф, трябва да кажем експлицитно “ориентиран”.

Изключение от това правило ще правим само в случаите, когато от контекста е напълно
ясно, че говорим за ориентирани графи.

Обикновено върховете се записват с малки латински букви като u, v и т. н. Имената на
ребрата обикновено се записват като e1, e2 и т. н. Тъй като всяко ребро е наредена двойка
от различни върхове, записваме ребрата като, например, “e1 “ pu, vq”.

Пример за ориентиран граф е G “ ptu, v, x,y, z,a,bu, te1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11uq, къ-
дето e1 “ pu, vq, e2 “ pu, xq, e3 “ pu,aq, e4 “ pv,yq, e5 “ pv, zq, e6 “ pz, vq, e7 “ pz,bq, e8 “ py, xq,
e9 “ pb, xq, e10 “ pa,yq и e11 “ pa,bq. Графът G е нарисуван на Фигура 3.1. Ребрата на ори-
ентираните графи по правило се рисуват със стрелки, като стрелката, съответна на реброто
pu, vq, има посока от u към v. Отново подчертаваме, че “граф” е теоретико-множествено поня-
тие и че граф и негова рисунка са принципно различни неща; тове е в сила за ориентираните
графи по същия начин, по който е в сила за неориентираните.

:Да си припомним: при неориентираните графи, въпреки че пишем това ребро като “pu, vq”, имаме предвид
“tu, vu”.
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Фигура 3.1 : Рисунка на ориентиран граф.

u v

z
x y

a b

e1

e3

e2
e4

e5

e6

e7

e8

e9

e11

e10

Възможно е ребрата да не бъдат именувани явно и тогава пишем

G “ ptu, v, x,y, z,a,bu, tpu, vq, pu, xq, pu,aq, pv,yq, pv, zq, pz, vq, pz,bq, py, xq, pb, xq, pa,yquq

3.1.2 Родители и деца, входна и изходна степен

Определение 82

Нека G е ориентиран граф. Ако e “ pu, vq е ребро в G, казваме, че u е родител на v, а
v е дете на u. Също така казваме, че u е началото на e и v е краят на e.

Като пример да разгледаме графа G на Фигура 3.1. u е родител на a и a е дете на u. v е
родител на z и z е дете на v, но също така z е родител на v и v е дете на z.

Определение 83

Нека G “ pV,Eq е ориентиран граф. За всеки връх u P V, входната степен на u е
|te P E |u е край на eu|, а изходната степен на u е |te P E |u е начало на eu|.

На английски “входна степен” е indegree, а “изходна степен” е outdegree. Ние ще бележим
входната степен на u с “d´puq”, а изходната степен на u с “d`puq” [27, стр. 6].

Неформално казано, входната степен на u е броят на ребрата, с които “влизат” в u, а изход-
ната степен е броят на ребрата, които “излизат” от u. Като пример да разгледаме пак графа
G на Фигура 3.1. Вярно е, че d´puq “ 0, d`puq “ 3, d´pzq “ 1, d`pzq “ 2 и така нататък.

Определение 84

Нека G “ pV,Eq е ориентиран граф. За всеки връх u P V, такъв че d´puq “ 0 казваме,
че u е източник. За всеки връх u P V, такъв че d`puq “ 0 казваме, че u е сифон.

На английски “източник” е source, а “сифон” е sink. В примерния граф на Фигура 3.1, u е
източник, а x е сифон.

Следната лема е аналог на Лема 1 от неориентираните графи.
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Лема 18

Нека G “ pV,Eq е ориентиран граф. Тогава
ÿ

uPV

d`puq “
ÿ

uPV

d´puq “ |E|

3.1.3 Ориентирани графи с примки

Определение 85: Ориентиран граф с възможни примки

Ориентиран граф с възможни примки е наредена двойка G “ pV,Eq, където V е неп-
разно множество, чиито елементи се наричат върхове, E е множество, чиито елементи
се наричат ребра, като

E Ď V ˆ V

Този вид графи точно съответстват на релации над краен декартов квадрат. Забележете, че
ориентираните графи без примки точно съответстват на антирефлексивните релации.
Пример за ориентиран граф с две примки е G “ ptu, v, x,y, z,a,bu, te1, e2, e3, e4, e5, e6, e7, e8,
e9, e10, e11, e12, e13uq, където e1 “ pu, vq, e2 “ pu, xq, e3 “ pu,aq, e4 “ pv,yq, e5 “ pv, zq, e6 “ pz, vq,
e7 “ pz,bq, e8 “ py, xq, e9 “ pb, xq, e10 “ pa,yq, e11 “ pa,bq, e12 “ pu,uq и e13 “ pv, vq. Примките
са e11 и e12. Графът G е нарисуван на Фигура 3.2. Примките се рисуват със стрелки.

Фигура 3.2 : Рисунка на ориентиран граф с примки.
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Определение 86: Съответен неориентиран граф

За всеки ориентиран граф, без значение дали може или не може да има примки, съот-
ветният неориентиран графа е неориентираният граф, който се получава след пре-
махването на ориентацията на ребрата. При това, ако в ориентирания граф има двойка
ребра pu, vq и pv,uq, тя се заменя с едно единствено неориентирано ребро – иначе бихме
получили мултиграф.

аНа английски терминът е the underlying undirected graph of a directed graph.
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Тази дефиниция не е особено формална, защото не ползва теоретико-множествения език,
а по-скоро има предвид рисунката на графа. Формално прецизна дефиниция на “съответ-
ния неориентиран граф” може да се направи, ако гледаме на ориентирания граф G като
на релация, направим нейното симетрично затваряне G 1 и след това заменим всяка двойка
ориентирани ребра pu, vq и pv,uq, за различни u и v, с едно единствено неориентирано ребро
pu, vq. Ако G има примки, те не биват засегнати от симетричното затваряне, така че в резул-
татния неориентиран граф тези примки остават. Фигура 3.3 изобразява ориентирания граф
от Фигура 3.2 и съответния му неориентиран граф.

Фигура 3.3 : Ориентиран граф и съответния му неориентиран граф.
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графът от Фигура 3.2

u v

z
x y

a b

съответният неориентиран граф

Забележете, че докато ребрата в ориентирания граф са показани със свои имена като e1, e2

и така нататък, ребрата в съответния неориентиран граф са показани без имена; тоест, всяко
ориентирано ребро просто се идентифицира с наредената двойка от началото си и края си.
Върховете обаче запазват имената си при преминаването към съответния ориентиран граф.

Съответствието между ориентирани и неориентирани графи може да бъде и в другата посока
– от неориентирани към ориентирани.

Определение 87: Съответен ориентиран граф

За всеки неориентиран граф, без значение дали може или не може да има примки, съ-
ответният ориентиран граф е ориентираният граф, който се получава след замяната
на всяко неориентирано ребро pu, vq с двете ориентирани ребра pu, vq и pv,uq, ако u ­“ v;
ако u “ v, заменяме неориентираната примка, асоциирана с u, с ориентирана примка
pu,uq.

Фигура 3.4 изобразява неориентирания граф от Фигура 3.3 и съответния му ориентиран
граф. Забележете, че при това не получаваме началния ориентиран граф от Фигура 3.2.
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Фигура 3.4 : Неориентираният граф от Фигура 3.3 и съотвентия му ор. граф.
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3.1.4 Подграфи и индуцирани подграфи. Изоморфизъм.

Понятията “подграф”, “подграф, индуциран от подмножество на върховете” и “покриващ
подграф” при ориентираните графи се дефинират напълно аналогично на начина, по който
се дефинират в неориентираните графи (Определения 7, 8 и 10).

Изоморфизъм между ориентирани подграфи се дефинира напълно аналогично на начи-
на, по който се дефинира при неориентираните графи с Определение 41. Ако G 1 и G2 в
Определение 41 са ориентирани графи с възможни примки, то това определение ни дава
точно това, което искаме: графите са изоморфни тстк можем да “нахлупим” единия върху
другия, съблюдавайки посоките на ребрата. Имайте предвид, че ако G 1 и G2 са ориентирани,
то pu, vq и pφpuq,φpvqq са наредени двойки.

3.1.5 Ориентирани мултиграфи.

Сравнете Определение 88 с Определение 13 и Определение 14.
Определение 88: Ориентиран мултиграф

Ориентиран мултиграф е наредена тройка G “ pV,E, fGq, където V е непразно мно-
жество, чиито елементи се наричат върхове, E е множество, чиито елементи се наричат
ребра, V X E “ H и

fG : EÑ V ˆ V

е свързващата функция.

Забележете, че това определение позволява примки. Когато кажем “ориентиран мултиграф”,
подразбираме, че той може да има примки. Фигура 3.5 съдържа рисунка на ориентиран
мултиграф.
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Фигура 3.5 : Рисунка на ориентиран мултиграф.
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Мултиграфът, нарисуван на Фигура 3.5, е G “ ptu, v, x,y, z,a,bu, te1, . . . , e16u, fGq, където

fGpe1q “ pu, vq, fGpe2q “ pu, xq, fGpe3q “ pu,aq, fGpe1q “ pv,yq,
fGpe5q “ pv, zq, fGpe6q “ pz, vq, fGpe7q “ pz,bq, fGpe8q “ py, xq,
fGpe9q “ pb, xq, fGpe10q “ pa,yq, fGpe11q “ pa,bq, fGpe12q “ pu,uq,
fGpe13q “ pv, vq, fGpe14q “ pu,uq, fGpe15q “ pu, vq, fGpe16q “ pv,uq

При ориентираните мултиграфи също можем да говорим за съответен неориентиран мул-
тиграф и, обратно, ако е даден неориентиран мултиграф, може да говорим за съответен
ориентиран мултиграф. Би трябвало да е очевидно как да обобщим Определения 86 и 87 за
мултиграфи.

3.1.6 Ориентирани пътища и цикли. Дагове.

Навсякъде в тази подсекция G “ pV,E, fGq е ориентиран мултиграф. Определенията, които
ще направим за ориентиран мултиграф, съвсем естествено остават в сила за ориентиран
граф, с или без примки.

Забележете приликите и разликите между понятията в тази подсекция и понятията в Сек-
ция 2.3. Отново може да си мислим за някакво същество, което живее във върховете на
ориентирания мултиграфграф и може да се придвижва, като минава от връх във връх-дете.
Последното влече, че трябва да има ориентирано ребро с начало първия връх и край втория
връх. Посоките на ребрата имат значение и придвижване чрез дадено ребро може да стане
само ако се спазва посоката. Това е и основната разлика със Секция 2.3, в която за посока
не ставаше дума.
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Определение 89: Ориентиран път.

Ориентиран път в G наричаме всяка алтернираща редица от върхове и ребра, за някое
t ě 0:

p “ pui0 , ek0 ,ui1 , ek1 ,ui2 , . . . ,uit´1 , ekt´1 ,uitq

където uip P V за 0 ď p ď t, ekp P E за 0 ď p ď t ´ 1, и освен това е изпълнено
fGpekpq “ puip ,uip`1q за 0 ď p ď t ´ 1. Връх ui0 се нарича начало на пътя, а връх uit
се нарича край на пътя. Останалите върхове са вътрешните върхове на пътя. Още
казваме, че p е път от ui0 до uit .
Дължината на пътя е броят на ребрата в него. Ще бележим дължината на пътя с |p|.
В случая, |p| “ t.
Ако всички елементи на пътя—върхове и ребра—са уникални, казваме, че p е прост
ориентиран път.

Сравнете израза “p е път между ui0 и uit” от Определение 16 с израза “p е път от ui0 до uit”
от Определение 89. Предлогът “между” изразява симетричност: със същия успех можеше да
кажем “p е път между uit и ui0” в Определение 16. От друга страна, двата предлога “от . . . до”
изразяват несиметричност: може да няма ориентиран път от uit до ui0 в Определение 89,
така че в общия случай “p е ориентиран път от ui0 до uit” не може да бъде заменено с “p е
ориентиран път от uit до ui0”.

Определение 90: Ориентиран цикъл.

Нека p е ориентиран път в G, където:

p “ pui0 , ek0 ,ui1 , ek1 ,ui2 , . . . ,uit´1 , ekt´1 ,uitq

Казваме, че p е ориентиран цикъл, ако ui0 “ uit . Казваме, че p е прост ориентиран
цикъл, ако p е ориентиран цикъл с поне едно ребро и освен това, всички елементи освен
ui0 “ uit са уникални.

Конвенция 11

Ако от контекста е ясно, че става дума за ориентиран граф, няма смисъл да казваме
“ориентиран път” или “ориентиран цикъл”. Ще казваме само “път” или “цикъл”, а това,
че е ориентиран, се подразбира от факта, че графът или мултиграфът е ориентиран.

Конвенция 12

Простите ориентирани пътища цикли се ползват по-често от другия вид. Затова, отсега
нататък, като кажем “ориентиран път” или “ориентиран цикъл”, разбираме съответно
“прост ориентиран път” или “прост ориентиран цикъл”. Ако имаме предвид ориентиран
път или ориентиран цикъл, който не е прост, трябва изрично да споменем, че не е прост.

Въведохме понятията “Хамилтонов цикъл” и “Хамилтонов път” (Определение 43) в контекста
на неориентираните графи. Тези понятия се пренасят буквално в ориентираните графи.
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Определение 91: Ориентиран Хамилтонов цикъл и ориентиран Хамилтонов път

Нека е даден ориентиран граф G. Ориентиран Хамилтонов цикъл в G е всеки цикъл
в G, който съдържа всички върхове на G. Ориентиран Хамилтонов път в G е всеки
път в G, който съдържа всички върхове на G.

Ако е ясно, че G е ориентиран, може да казваме само “Хамилтонов цикъл” и “Хамилтонов
път”, имайки предвид съответно “ориентиран Хамилтонов цикъл” и “ориентиран Хамилтонов
път”.

Определение 92: даг

Ориентиран граф или ориентиран мултиграф без цикли се нарича даг.

Терминът е транслитерация на dag, което идва от directed acyclic graph.

Ориентираният граф, показан на Фигура 3.1, не е даг. От него обаче може да получим дага,
показан на Фигура 3.6, изтривайки реброто e6.

Фигура 3.6 : Рисунка на даг.
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Забележете, че никой даг не може да има примки, понеже всяка примка е цикъл.

Следната теорема е аналог на теоремата, казваща, че всяка частична наредба над краен
домейн има поне един минимален елемент и поне един максимален елемент.

Теорема 53: Поне един източник и поне един сифон в даг

Всеки даг има поне един източник и поне един сифон.

Доказателство: БОО, ще докажем твърдението само за източник. Да допуснем против-
ното: G е даг, в който няма източник. Нека a1 е произволен връх от VpGq. По допускане, a
не е източник, така че съществува ребро pa2,a1q. Но a2 също не е източник, тъй като сме
допуснали, че източници няма. Тогава съществува ребро pa3,a2q. Но a3 също не е източник.
И така нататък. По този начин можем да построим път

p “ ak,ak´1, . . . ,a3,a2,a1
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за колкото искаме голямо k. Но, ако k ą n, то по принципа на Dirichlet трябва да има
поне едно повтаряне на връх в p. Иначе казано, съществуват j и i, такива че j ą i и aj и
ai са върхове в p, като aj и ai са един и същи връх в G. Тогава подпътят aj, . . . ,ai на p
представлява цикъл в G. Но G няма цикли, защото е даг. Заключаваме, че допускането, че
няма нито един източник, е невярно. 2

Като пример за приложението на Теорема 53 да вземем дага, показан на Фигура 3.6: u е
източник, x е сифон и други източници или сифони няма.

Забележете, че всеки изолиран връх е едновременно източник и сифон, следователно всеки
празен ориентиран граф е даг, в който всеки връх е едновременно източник и сифон.

Очевидно е, че даговете нямат Хамилтонови цикли, защото нямат цикли изобщо. Даг обаче
може да има Хамилтонов път. Ако даг G “ ptv1, v2, . . . , vnu,Eq има Хамилтонов път

p “ vi1 , vi2 , . . . , vin

където pi1, i2, . . . , inq е пермутация на t1, 2, . . . ,nu, можем да мислим за G като за въпросния
Хамилтонов път плюс още ребра, ако има такива. Ако има още ребра, всяко от тях е от вида
pvij , vikq, където j ă k; в някакъв смисъл, всяко ребро e, което не е от Хамилтоновия път,
има същата посока като посоката на Хамилтоновия път. Последното е доста очевидно – инак
би имало цикъл в графа. Фигура 3.7 илюстрира даг с Хамилтонов път, като Хамилтоновият
път е акцентиран. Ясно е в какъв смисъл ребрата, които не са от Хамилтоновия път, имат
същата посока като неговата.

Фигура 3.7 : Даг с Хамилтонов път.

u v a b y z x

Хамилтоновият път в дага, илюстриран на Фигура 3.7, е u, v,a,b,y, z, x. Други Хамилтонови
пътища няма и това не е случайно, както става ясно от следната теорема.

Теорема 54: Единственост на Хамилтонов път в даг

Всеки даг, който не е мултиграф, има най-много един Хамилтонов път.

Доказателство: Да допуснем, че G “ ptv1, . . . , vnu,Eq е даг, който не е мултиграф и в който
има два различни Хамилтонови пътища

p1 “ vi1 , vi2 , . . . , vin
p2 “ vj1 , vj2 , . . . , vjn

където pi1, i2, . . . , inq и pj1, j2, . . . , jnq са различни пермутации на t1, . . . ,nu. Да разгледаме
най-левия връх, в който p1 и p2 се различават. Такъв трябва да има, защото, ако i1 “ j1
и i2 “ j2 и . . . и in “ jn, пермутациите биха съвпадали и p1 би бил същият път като p2. И
така, щом пътищата се различават, има най-ляв връх, който е различен в тях. Да кажем, че
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i1 “ j1, . . . , ik “ jk, но ik`1 ­“ jk`1, така че до позиция k включително двата пътя съвпадат,
но в позиция k` 1 имат различни върхове.

Забележете, че p1 не съдържа vjk`1 на позиция k ` 1, понеже vjk`1 и vik`1 са различни
върхове, но p1 съдържа vjk`1 , защото p1 е Хамилтонов път. Обаче vjk`1 не може да е нито
на първа, нито на втора, . . . , нито на k-та позиция в p1 поради допускането, че i1 “ j1, . . . ,
ik “ jk. Ерго, vjk`1 се среща в p1 на позиция, по-голяма от k`1. Но тогава подпътят q на p2 от
vjk`1 включително до vjn е по-дълъг от подпътя на p1 от vjk`1 включително до vin . Очевидно
е, че q съдържа ребро e “ pa,bq, такова че по отношение на p1 е вярно, че a е вдясно от b.
Последното влече наличие на цикъл в графа, което е невъзможно, тъй като той е даг.

“““ ­“
vi1 vi2

p2:
vik vjk`1 vjn

vi1 vi2

p1:
vik vik`1 vinvjk`1

a b

b a

e

e

q

2

3.1.7 Силна и слаба свързаност в ориентирани графи

Разглеждаме обикновени ориентирани графи, тъй като наличието на примки или паралелни
ребра е без значение за силната или слабата свързаност.

Забележете сходството между Определение 20 и Определение 93.
Определение 93: Силна свързаност в ориентиран граф. Силно свързан ориентиран

граф.

Нека G “ pV,Eq е граф. За всеки два върха u, v P V казваме, че u и v са силно свързани,
ако съществува път от u до v и съществува път от v до u. G е силно свързан, ако всеки
два върха в него са силно свързани.

Примерно, в ориентирания граф, показан на Фигура 3.8, всеки два върха от ta,b, v, x,y, zu
са силно свързани, докато u и b не са силно свързани, понеже съществува път от u до b, но
не съществува път от b до u.
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Фигура 3.8 : Всеки два върха от ta,b, v, x,y, zu са силно свързани.
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Ако гледаме на силната свързаност като на релация, то тя е

• рефлексивна, защото всеки връх е силно свързан със себе си чрез тривиален път с
дължина 0,

• симетрична, по очевидни причини,

• транзитивна, защото, ако u и v са силно свързани и v и w са силно свързани, то u
и w също са силно свързани; простите пътища, необходими, за да покажем силната
свързаност на u и w може да бъдат получени от простите пътища, задаващи силни-
те свързаности между u и v и между v и w, като може да се наложи да “изрежем”
подпътища по начин, аналогичен на този от Лема 4.

Следователно, релацията на силна свързаност е релация на еквивалентност.

Определение 94: Силно свързани компоненти.

Нека G “ pV,Eq е ореиентиран граф. Подграфите на G, индуцирани от класовете на
еквивалентност на релацията на силна свързаност, се наричат силно свързаните ком-
поненти на G.

Като пример да разгледаме ориентирания граф на Фигура 3.8. Той има две силно свързани
компоненти: едната е ptuu,Hq, а другата е pta,b, v, x,y, zu, te4, e5, e6, e7, e8, e9, e10, e11uq. Тези
силно свързани компоненти са означени с цветни фонове на Фигура 3.9.
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Фигура 3.9 : Двете силно свързани компоненти на графа от Фигура 3.8.
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Забележете, че при ориентираните графи е възможно да има ребра извън силно свързаните
компоненти. Примерно, на Фигура 3.9, ребрата e1, e2 и e3 не принадлежат на никоя свързана
компонента. В контраст с това, при неориентираните графи е невъзможно да има ребро,
което не е в никоя свързана компонента.

Нещо повече. Ако ориентираният граф G “ pV,Eq е даг, то множеството от силно свърза-
ните му компоненти е ttvu | v P Vu. С други думи, всеки връх е една силно свързана компо-
нента сам по себе си. И нито едно ребро не принадлежи на никоя силно свързана компонента.
Също така е вярно, че ако множеството от силно свързаните компоненти е ttvu | v P Vu, то
ориентираният граф е даг.

Можем да дефинираме “силно свързаните компоненти” и с алтернативно определение,
аналогично на Определение 22: силно свързаните компоненти са максималните по включване
силно свързани подграфи.

Определение 95: Фактор-граф на ориентиран граф

Нека G “ pV,Eq е ориентиран граф. Нека W е разбиването на V, което се задава от
релацията на силна свързаност. Фактор-графът на G, който означаваме с “G{„”, е
графът с множество от върхове W, в който за всеки X, Y PW има ребро pX, Yq тогава и
само тогава, когато в G има поне едно ребро от връх на X до връх на Y.

Определение 95 може да се направи по-общо: спрямо произволно разбиване на върховете:,
а не непременно това, което релацията на силна свързаност задава. За целите на тези лекции,
както и за приложението им в алгоритмите, това би било безполезно, така че за нас “фактор-
граф” винаги е спрямо разбиването, което се дава от релацията на силна свързаност.

Като пример за фактор-граф да разгледаме графа, показан на Фигура 3.8 и на Фигура 3.9
заедно със силно свързаните си компоненти. Фактор-графът на този граф има два върха и
едно ребро. Това е илюстрирано на Фигура 3.10, на която вляво е изобразен самият граф със
своите две силно свързани компоненти, наречени X и Y, а вдясно е показан фактор-графът
му с двата си върха X и Y и реброто pX, Yq, което присъства, защото в графа има ребро от
връх от X, а именно u, до поне един връх от Y (а именно, има ребра от u до a, x и v).

:Тоест, спрямо произволна релация на еквивалентност „. Както знаем, “разбиване на върховете” и “ре-
лация на еквивалентност върху множеството на върховете”, в някакъв смисъл, е едно и също нещо
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Фигура 3.10 : Фактор-графът на графа от Фигура 3.8.

u v

z
x y

a b

e1

e3

e2
e4

e5

e6

e7

e8

e9

e11

e10

X
Y

Силно свързаните компоненти.

X
Y

Фактор-графът.

Лесно се вижда, че, тъй като силно свързаните компоненти на всеки даг имат по един един-
ствен връх, то, ако G е даг, неговият фактор-граф, неформално казано, съвпада с него.
Формално казано, той е изоморфен с него. Нещо повече. Вярно е, че ориентиран граф без
примки е даг тстк е изоморфен със своя фактор-граф.

Следното определение ползва Определение 86
Определение 96: Слабо свързани компоненти.

Нека G “ pV,Eq е ориентиран граф. Нека H е съответният му неориентиран граф. Под-
графите на G, индуцирани от класовете на еквивалентност на релацията на свързаност
върху H, се наричат слабо свързаните компоненти на G.

Иначе казано, слабо свързаните компоненти са максималните по включване подграфи на
G, между върховете на които няма пътища в никоя посока. Като пример да разгледаме
Фигура 3.11. На нея е показан ориентиран граф G и съответния му неориентиран граф
H. Вижда се, че трите слабо свързани компоненти на G, маркирани със зелен фон, точно
съответстват на трите свързани компоненти на H, маркирани също със зелен фон.
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Фигура 3.11 : Слабо свързани компоненти на ориентиран граф.

a u

x
v

c y

b

G

Ориентиран граф G, който има три слабо свър-
зани компоненти, точно съответстващи на трите
свързани компоненти на H.

a u

v

c y

b

H

x

Неориентираният граф H, съответен на G. Оче-
видно H има три свързани компоненти, очертани
тук със зелен фон.

Очевидно е, че всяко ребро принадлежи на точно една слабо свързана компонента. Докато,
както видяхме, по отношение на силната свързаност може да има ребра извън силно свърза-
ните компоненти и дори може всички ребра да са извън силно свързаните компоненти (тстк
графът е даг).

3.1.8 Ориентирано разстояние

Да си припомним Определение 23 и Определение 26. Ще въведем нещо подобно на Опреде-
ление 26 за ориентирани графи, като аналогията е възможна само донякъде.

Определение 97: Разстояние в ориентиран граф.

Нека G “ pV,Eq е ориентиран граф. За всеки два не непременно различни върха u и v,
разстоянието от u до v е

• дължината на най-къс път от u до v, ако съществува път от u до v,

• 8, в противен случай.

И при ориентираните графи бележим разстоянието с “distpu, vq”. При ориентираните графи
обаче е възможно distpu, vq ­“ distpv,uq, като може едното от distpu, vq и distpv,uq да е число,
а другото, 8, а може и двете да са числа, но различни. Естествено, distpu,uq “ 0 винаги.

Наблюдение 34

Функцията dist от Определение 97 не е метрика, понеже е възможно distpu, vq ­“
distpv,uq.

За пример да вземем свързания граф, показан на Фигура 3.8. В него distpu, vq “ 1, distpv,uq “
8, distpv, zq “ distpz, vq “ 1, distpb, zq “ 1, distpz,bq “ 4 и така нататък.
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И едно предупреждение, което не е излишно, макар че повтаря вече казани неща. Въпреки че
използваме един и същи запис за разстояния в неориентирани и за разстояния в ориентирани
графи, тези две понятия за разстояние са много различни. Когато видим “distpu, vq”, първото,
което трябва да съобразим, е дали става дума за неориентирани графи, в които разстоянието
е симетрично и е метрика, или за ориентирани графи, в които разстоянието не е непременно
симетрично и не е метрика.

3.1.9 Ориентирани коренови дървета

Определение 98: арборесценция

Арборесценция, на английски arborescence или out-tree, е всеки даг G “ pV,Eq, в който
съществува връх r P V, такъв че за всеки връх u P V е вярно, че съществува уникален
ориентиран път от r до u.

Неформално, всяка арборесценция се получава от някое кореново дърво, което тук разглеж-
даме като неориентиран граф, с даване на ориентация на ребрата “навън от корена”.

Определение 99: антиарборесценция

Антиарборесценция, на английски anti-arborescence или in-tree, е всеки даг G “ pV,Eq,
в който съществува връх r P V, такъв че за всеки връх u P V е вярно, че съществува
уникален ориентиран път от u до r.

Неформално, всяка антиарборесценция се получава от някое кореново дърво, което тук раз-
глеждаме като неориентиран граф, с даване на ориентация на ребрата “навътре към корена”.

Фигура 3.12 показва арборесценция и антиарборесценция, чиито съответен неориентиран
граф е едно и също кореново дърво.

Фигура 3.12 : Арборесценция и антиарборесценция.

r

u2u1 u3

u4 u5 u6

u7

u8 u9 u10

u11 u12 u13 u14

Арборесценция с корен r.

r

u2u1 u3

u4 u5 u6

u7

u8 u9 u10

u11 u12 u13 u14

Антиарборесценция с корен r.
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3.2 Тегловни графи
Има много житейски ситуации, в които върху някакви обекти е дефинирано двуместно от-
ношение: и това може да се опише с граф (ориентиран или не, мултиграф или не, в момента
няма значение), като обаче отношението е по-сложно и по-богато от булевото “два обекта или
са в отношение, или не са”.

Да кажем, че имаме компютърна мрежа, в която върховете са устройства като лаптопи,
настолни компютри, сървъри, суичове и така нататък, и две устройства може да са или да
не са свързани директно. Това се моделира лесно с граф, в който върховете са устройствата,
а ребрата са директните връзки. Дали директните връзки са двупосочни или не, е същото
като дали ребрата са неориентирани или ориентирани; в момента това няма значение. Да
кажем, че в даден момент различните директни връзки имат различни капацитети са пре-
нос на информация за единица време: примерно, 155.56 килобита в секунда, 1.014 гигабита
в секунда и така нататък. Този аспект на мрежата не може да бъде моделиран адекватно с
обикновен граф! Графът ни казва само къде има и къде няма директна връчка. В крайно
ограничената ситуация, в която, да кажем, има само четири различни скорости на преда-
ване на информация—1, 2, 3 и 4 мегабита в секунда—можем да опитаме да моделираме с
мултиграф, при който сноповете съдържат или 1, или 2, или 3, или 4 ребра, като всяко
ребро моделира предаване на 1 мегабит в секунда. Тази идея очевидно “не работи” в общия
житейски случай, в който скоростите са някакви положителни реални числа;. Можем обаче
да моделираме адекватно чрез граф, всяко ребро на който е асоциирано с число, което число
има смисъл на въпросната скорост на предаване.

Аналогично, ако имаме пътна мрежа с върхове-градове и шосета-директни връзки, като
дължините на шосетата имат значение, можем да моделираме адекватно с неориентиран (ако
шосетата са двупосочни) граф (или мултиграф, ако допускаме повече от един директно шосе
между два града; това е напълно възможно), в който ребрата са асоциирани с положителни
реални числа, които имат смисъл на дължините на съответните шосета. Опитите да избегнем
асоцииране на ребрата с числа и наместо това да моделираме с дискретни трикове като
например този:

множеството от ребрата на графа да се замени с множество от независими пътища
(в графовия смисъл; вижте Определение 17) по такъв начин, че на шосе, дълго k
километра, да отговаря път в графа с точно k ребра;

са обречени, също както в предишния пример. Ако не асоциираме ребрата с числа, не можем
да моделираме адекватно и това е.

Ето формалната дефиниция, мотивирана от подобни съображения. Ще я направим за ори-
ентиран мултиграф с възможни примки, а за всички други видове графи е очевидно как да
се промени дефиницията.

:Нарочно не се казва “релация”, защото това понятие има строго дефиниран смисъл, от който в момента
искаме да се отдалечим.

;Ако сме педантични, скоростите са рационални числа, понеже “истинските” трансцендентни реални чис-
ла са в някакъв смисъл недостъпни директно—те и затова се казват “трансцендентни”—но толкова педантични
няма да ставаме.
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Определение 100: Тегловен граф

Тегловен ориентиран мултиграф е наредена четворка G “ pV,E, fG,wq, където V е неп-
разно множество, чиито елементи се наричат върхове, E е множество, чиито елементи
се наричат ребра, V X E “ H,

fG : EÑ V ˆ V

е свързващата функция и

w : EÑ R

е тегловната функция.

Възможно е да се дадат тегла и на върховете, но в задачите, които ще разгледаме, от това
няма смисъл, така че тегла ще имат само ребрата.

Не искаме да се ограничаваме до положителни тегла в общия случай, затова кодомейнът
на тегловната функция е R, а не R`. Наистина, ако теглата моделират физически характе-
ристики като време или разстояние, има смисъл да постулираме, че са положителни. Но в
доста реални задачи теглата моделират аспекти на човешка дейност, в която абстракцията
на отрицателните числа е полезна. Примерно, ако графът моделира някакви потоци, може
да е много полезно да допускаме отрицателни тегла:

• ако потокът е от стоки, то да кажем, че са пренесени 10 тона цимент от Варна до
София, в някакъв смисъл е същото като да кажем, че са пренесени ´10 тона цимент
от София до Варна;

• ако потокът е от пари, то да кажем, че Ангел е дал на Боби 10 лева, в някакъв смисъл
е същото като да кажем, че Боби е дал на Ангел ´10 лева.

Забележете, че функцията на теглата е тотална, а не частична. С други думи, ако има тегла,
всички ребра са с тегла. Авторът на лекционните записки не се сеща за естествена житейска
задача, която би се моделирала с граф, в който само част от ребрата имат тегла.

Задачите с графи без тегла по правило може да се разглеждат като частни случаи на задачи
върху тегловни графи, само че теглата са едни и същи; да кажем, всички тегла са единици.
По този начин, графите без тегла са частен случай на тегловните графи – просто теглата
са само единици и не сме ги споменали. А наличието на тегла на ребрата води до поява
на дефиниции, които нямат смисъл при графи без тегла, или промяна на съществуващи
дефиниции. Ето два примера.

• При тегловните неориентирани свързани графи има смисъл да говорим за сумата от
теглата на ребрата на покриващо дърво (вижте Секция 4.3). В графите без тегла това
би било безсмислено: ние знаем, че, ако броят на върховете на графа е n, то всяко пок-
риващо дърво има точно n´ 1 ребра (Теорема 29), така че всички покриващи дървета
биха имали едно и съща сума от теглата на ребрата. В тегловните графи обаче тази
сума е, в общия случай, различна за различни покриващи дървета„ така че задачата
за намиране на покриващо дърво с минимална или максимална сума от теглата на
ребрата е смислена (вижте Секция 4.3).

Естествено, тези съображения са валидни, ако мярката за дадено покриващо дърво е
сумата от теглата на ребрата. Възможни са и други мерки, примерно, може мярката
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да е диаметърът на дървото (припомнете си Определение 25). В такъв случай задачата
би била смислена и върху графи без тегла.

• При тегловните графи по правило дължина на път се дефинира като сумата от теглата
на ребрата му (вижте Секция 4.4). Възможни са и други мерки за дължина на път
в тегловен граф—примерно, максимумът от теглата на ребрата на пътя—но сумата е
най-често използвана мярка в практиката.

И така, в контекста на тегловните графи, “дължина на път” по правило означава сумата
от теглата на ребрата, а не броят на ребрата, както е в графите без тегла. Това е пример
за промяна за общоизвестна дефиниция от областта на графите при разглеждането на
тегловни графи.

252



ГЛАВА 3. ДРУГИ ВИДОВЕ ГРАФИ © Минко Марков, 2025г.

3.3 Хиперграфи
Ако трябва да сме прецизни, хиперграфите не са вид графи, а, точно обратното, графите са
вид хиперграфи. “Хиперграф” е обобщение на “граф” по горе-долу същия начин, по който “n-
арна релация” е обобщение на “бинарна релация”. Авторът на тези лекционни записки обаче
реши да не въвежда отделна глава за хиперграфи, тъй като тук върху тях няма акцент.

За повече информация вижте класикитеGraphs and Hypergraphs [10] и Hypergraphs: Combi-
natorics of Finite Sets [9] на Berge, съвременната Hypergraph Theory: An Introduction на
Bretto [14] и обзорната статия Hypergraphs: an introduction and review на Ouvrard [46]. За
някои приложения на хиперграфите вижте статията Learning with Hypergraphs: Clustering,
Classification, and Embedding [61].

Следното определение по същество повтаря определението на Berge [9, стр. 1], но е форму-
лирано като обобщение на Определение 14.

Определение 101: Хиперграф

Хиперграф е наредена тройка H “ pV,E, fHq, където V е непразно множество, чиито
елементи се наричат върхове, E е множество, чиито елементи се наричат ребра, VXE “
H и

fH : EÑ 2VzH

е свързващата функция. Хиперграфът е прост (казваме още, че е фамилия на Sperner),
ако

@e 1, e2 P E : fHpe
1q Ď fHpe

2q Ñ e 1 “ e2

Забележете, че “хиперграф” се явява обобщение на “мултиграф”, а не просто на “граф”. Оп-
ределение 101 позволява няколко ребра да се изобразяват върху едно и също множество от
върхове.

Ако e е ребро и fHpeq “ tv1, . . . , vku, казваме “v1, . . . , vk са върховете на e”, тоест, третираме
e като (непразно) подмножество на V. При хиперграфите не говорим за “краища на ребро”.

Прост хиперграф очевидно е такъв, в който свързващата функция е инекция и освен
това ребрата—ако гледаме на тях като на множества от върхове—не може да се съдържат
същински.

Някои автори като Bretto [14] казват “хипер-ребра” наместо “ребра”. Също така, Опреде-
ление 101, както и Bretto [14], допуска върхове, които не са в никое (хипер-)ребро и които
отговарят на изолираните върхове от графите, докато Berge [9, стр. 1] не допуска такива
изолирани върхове; при него всеки връх е в поне едно ребро. Ако няма изолирани върхове,
то “прост хиперграф” и “покриване на множеството от върховете” са съвпадащи понятия.

Забележете, че обикновен граф (Определение 1) е прост хиперграф, в който всяко ребро
има кардиналност 2, а мултиграф с възможни примки (Определение 14) е хиперграф, в който
всяко ребро има кардиналност 1 или 2.

Фигура 3.13 показва пример за хиперграф. Типично, ребрата се рисуват с прости затво-
рени криви—окръжности или овали, ако е възможно—като образът на ребро на рисунката
огражда образите на неговите върхове в хиперграфа.
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Фигура 3.13 : Хиперграф H.

v1 v2 v3

v5 v6v4

v7 v8 v9

e1

e2
e3

e5

e6

e4

Хиперграфът, показан на Фигура 3.13, е H “ pV,E, fHq, където V “ tv1, . . . , v9u, E “ te1

, . . . , e6u и fHpe1q “ tv1, v2, v4u, fHpe2q “ tv1u, fHpe3q “ tv2, v4u, fHpe4q “ tv3, v5u, fHpe5q “

tv4, v5, v7, v8u и fHpe6q “ tv6, v8, v9u. Хиперграфът няма изолирани върхове, така че удов-
летворява формалните изисквания на Определение 101. Той не е прост, защото има ребра,
съдържащи други ребра, например e1 съдържа и e2, и e3, ако мислим за ребрата като за
множества от върхове; и не е “мулти”, защото свързваща функция е инекция (няма две или
повече ребра, изобразяващи се върху едно и също множество от върхове, което Определе-
ние 101 позволява). Реброто e2 е примка, в терминология на графите.

Веднага се вижда, че хиперграфи се рисуват трудно. Докато при обикновените графи
можем лесно да изобразим граф с десетки върхове и много десетки ребра по такъв начин,
че човек лесно да си го представи, то хиперграф може да бъде възприет визуално само ако е
много малък, какъвто е примерът на Фигура 3.13. Ако ребрата на този хиперграф бяха много
десетки, би било практически невъзможно да се нарисува ясно, с отчетливи ребра, дори с
умело ползване на цветове. Хиперграфът на Фигура 3.13 има само шест ребра, като само три
от тях имат повече от два върха. Това позволява групирането на образите на върховете в
рисунката по такъв начин, че ребрата да са нарисувани с изпъкнали криви. Читателят лесно
може да си представи ситуация, в която ребра се налага ребра да се рисуват с вдлъбнати
“амеби”, за да не обхващат образите на върхове, които не влизат в реброто:
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Очевидно е, че рисунка с десетки такива “амеби” не би могла да бъде възприета визуално и
поради това би била безполезна.

Така дефинираните хиперграфи се явяват обобщение на неориентираните графи, тъй като
върховете, отговарящи на дадено ребро, са множество – обект, който няма наредба. Въз-
можно е да се дефинират и ориентирани хиперграфи, наречени dirhypergraphs в [14, стр.
95], при което всяко ориентирано (хипер-)ребро има начало, което е непразно множество от
върхове, и край, който също е непразно множество от върхове. Авторът на тези лекционни
записки вижда и друг начин да се дефинират ориентирани (хипер-)ребра: посоката да е една
от възможните пермутации на върховете на (хипер-)реброто. Тук няма да разглеждаме ори-
ентирани хиперграфи. В класическите книги на Berge [10] и [9] не се говори за ориентирани
хиперграфи, така че това е сравнително ново понятие.

Ето пример, в който хиперграф възниква естествено. Да си представим множество от автори
и множество от статии, написани от тези автори. Да кажем, че множеството от авторите е
tv1, . . . , v9u, а множеството от статиите е te1, . . . , e6u. Нека

• v1, v2 и v4 са авторите на e1,

• v1 е авторът на e2,

• v2 и v4 са авторите на e3,

• v3 и v5 са авторите на e4,

• v4, v5, v7 и v8 са авторите на e5, и

• v6, v8 и v9 са авторите на e6.

Но Фигура 3.13 показва точно това!

Хиперграфите може да бъдат представени недвусмислено чрез обикновени графи, но начи-
нът да стане това не е непременно очевидният. Да вземем за пример хиперграфа от Фи-
гура 3.13. Човек може да се изкуши да помисли, че, тъй като ребрата се идентифицират
с множества върхове (хиперграфът не е “мулти”), можем да представим хиперграфа като
граф със същото множество от върхове, като (хипер-)ребрата са клики. Тази идея, разбира
се, не работи. Както се вижда от Фигура 3.13, наличието на ребра, съдържащи други реб-
ра (примерно, e1 съдържа e3), обезсмисля опитите за представяне на ребрата чрез клики,
защото 3-кликата на e1 би съдържала същински 2-кликата на e3, при което, при кликовото
представяне, e3 би изчезнало.

Но дори хипеграфът да е прост, което предотвратява съществуване на вложени ребра,
недвусмислено кликово представяне по този начин е невъзможно. Като пример, ако се опита-
ме да представим реброто e5 от хиперграфа на Фигура 3.13 като 4-клика, тя би изглеждала
така:

v5v4

v7 v8

Тази 4-клика би могла да представя (хипер-)ребро с 4 върха v4, v5, v7 и v8, което е случаят
на Фигура 3.13 и което е показано вляво, но би могла да представя 4 (хипер-)ребра, всяко с
по три върха, наредени в нещо цикъл, което е показано вдясно:
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v5v4

v7 v8

v5v4

v7 v8

Само от 4-кликата не може да разберем какво точно има в хиперграфа. И така, не можем да
представяме недвусмислено хиперграфа като обикновен граф със същото множество върхо-
ве, замествайки (хипер-)ребрата с клики.

До същия извод можем да стигнем и с чисто комбинаторни съображения: върху дадено
множество върхове, хиперграфите са много повече от обикновените графи. Това е в сила
дори ако разглеждаме само прости хиперграфи.

Допълнение 27: За броя на графите и хиперграфите

Нека е фиксирано множество върхове V, като |V| “ n. Броят на всички възможни
графи—неориентирани, без примки, не “мулти”—над V е

2
npn´1q

2

Тук става дума за именувани графи. Тоест, смятаме изоморфните графи за различни
(вижте Подсекция 2.8.3 за разликата между именуван и неименуван граф). Причината
броят да е такъв е много проста: всички възможни ребра са pn2q “

npn´1q
2 на брой (това

следва веднага от Наблюдение 3, което пък е частен случай на Лема 6 при k “ 1) и
всяко от тях може да присъства или не независимо от другите.
Ако позволим и примки, броят на графите нараства до

2
npn`1q

2

Броят на мултиграфите не може да бъде ограничен от функция на n по очевидни
причини.
Определение 101 позволява много ребра да имат едно и също множество върхове, така
че и броят на хиперграфите съгласно Определение 101 не може да бъде ограничен
от функция на n. Да допуснем, че най-много едно ребро може да съдържа дадено
множество от върхове; тоест, че свързващата функция е инекция. Тогава точната горна
граница за броя на хиперграфите е:

22n´1

Изваждането ´1 в степеннния показател е заради това, че не може да има празно ребро
(свързващата функция не изобразява ребра в празното множество), така че всички
възможни (хипер-)ребра са 2n ´ 1 на брой.

Дори да се ограничим само до хиперграфите, чиито ребра имат точно три върха всяко,
броят на тези хиперграфи е

2p
n
3q “ 2

npn´1qpn´2q
6
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тъй като различните ребра са pn3q “
npn´1qpn´2q

6 . Очевидно е, че

lim
nÑ8

2
npn´1qpn´2q

6

2
npn´1q

2

“ 8

И така, броят на обикновените графи е изчезващо малка функция пред броя на доста
ограничените прости хиперграфи с точно три върха в ребро.

Може да представим хиперграф H “ pV,E, fHq чрез обикновен двуделен граф G “ pV,E,E 1q,
където

@x P V @y P E : px,yq P E 1 Ø x P fHpyq

Да си припомним, че съгласно Нотация 4, G “ pV,E,E 1q означава двуделен (обикновен) граф
с дялове V и E и множество от ребра E 1. И така, върховете на G са върховете и ребрата на
H, разбити в два дяла. Фигура 3.14 показва представяне на хиперграфа от Фигура 3.13 чрез
двуделен граф.

Фигура 3.14 : Двуделният граф, описващ хиперграфа от Фигура 3.13.

v1

v2

v3

v5

v6

v4

v7

v8

v9

e1

e2

e3

e4

e5

e6

Идеята да представим хиперграф чрез съответен двуделен граф по същество съвпада с
идеята да представим хиперграф чрез мартица на инцидентност – но за това ще говорим
повече в Подсекция 4.1.2.

Този двуделен граф може да има размер, експоненциален във |V|, тъй като ребрата на
хиперграфа може да са експоненциално много в броя на върховете дори при прости хи-
перграфи, а единият от дяловете на двуделния граф е точно множеството от ребрата на
хиперграфа.
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Ако видим само двуделния граф G, без да сме видели съответния хиперграф H, можем ли
да разберем кой от дяловете отговаря на върховете на H и кой, на ребрата на H? Отговорът е
“не”. Примерно, G на Фигура 3.14 би могъл да представлява хиперграф с върхове e1, . . . , e6 и
ребра v1, . . . , v9:. Фигура 3.15 показва точно този хиперграф; такъв хиперграф ще наричаме
“дуален”.

Фигура 3.15 : Хиперграфът, дуален на H от Фигура 3.13.

e1 e3e2

e4 e5 e6

v1

v2

v3

v4

v5

v6v7

v8

v9

Ако пак гледаме на v1, . . . , v9 като на автори, а на e1, . . . , e6 като на техни статии, хиперг-
рафът от Фигура 3.15 наистина изобразява дуалния на Фигура 3.13 начин да подгледнем на
всичко това. На Фигура 3.13 опорното множество са авторите и статиите се идентифицират
с авторите си, а на Фигура 3.15 опорното множество са статиите и авторите се идентифи-
цират със своите статии. Както показва двуделния граф от Фигура 3.14, тези два различни
погледа върху нещата могат да бъдат обединени в едно, при което и авторите, и статиите са
опорни множества, като нито едното от тях не се идентифицира с подмножества на другото,
а релацията между тях (ребрата на двуделния граф) ги третира по еднакъв начин.

Определение 102: Дуален хиперграф

Нека H “ pV,E, fHq е хиперграф. Дуалният хиперграф на H е хиперграфът H˚ “
pE,V, fH˚q, където

• множеството от ребрата E на H е множеството от върховете на H˚,

• множеството V от върховете на H е множеството от ребрата на H˚,

• @x P V : fH˚pxq “ ty P E | x P yu.

Дуалният хиперграф на дуалния хиперграф е оригиналният хиперграф. Тоест, pH˚q˚ “ H. То-
ва се вижда много лесно, ако мислим за матрицата на инцидентност (вижте Подсекция 4.1.2):
матрицата на инцидентност на H˚ е транспонираната матрица на инцидентност на H; второ
транспониране ни дава първоначалната матрица.

:Не е забранено върховете да се именуват с “e”, а ребрата, с “v”.
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Примерът с H от Фигура 3.13 и дуалният му H˚ показва, че дуалният хиперграф може
да е мулти-хиперграф дори и оригиналният да не е такъв: забележете, че ребрата v6 и v9
на H˚ имат едно и също множество от върхове, а именно te6u. Лесно може да се измисли
пример за прост хиперграф, чийто дуален е мулти-хипеграф в този смисъл; да кажем, H “
ptu, vu, teu, tpe, tu, vuquq, който е прост, чийто дуален е H˚ “ pteu, tu, vu, tpu, teuq, pv, teuquq.

Понятието “степен на връх” в хиперграфите е обобщение на това понятие от мултиграфите,
като при различни автори може да има леки разлики в дефинициите. Berge [9, стр. 3] казва,
че степента на връх x, която се бележи с dpxq, е броят на ребрата, съдържащи x. Да кажем,
че примка в хиперграф е ребро, съдържащо един единствен връх (по аналогия с примките в
мултиграфите); примерно, на Фигура 3.13 примка е e2. Berge не третира примките по особен
начин, що се отнася до степените на върховете, поради което v1 от Фигура 3.13 има степен
2. В контраст с това, Bretto [14, стр. 2] казва

The star Hpxq centered in x is the family of hyperedges pejqjPJ containing x; dpxq “ |J|
is the degree of x except for a loop txu where the degree dpxq “ 2.

Формално, това не е съвсем ясно казано, но най-естествената интерпретация е, че всяка
примка допринася 2, а не 1, към степента на върха x, точно както в мултиграфите. Според
Bretto, v1 от Фигура 3.13 има степен 3.

И двете конвенции (по отношение на примките) имат резон. Ако броим всяка примка два
пъти, то понятието “степен на връх” в хиперграфите е точно обобщение на това понятие от
мултиграфите с възможни примки; ако всяко ребро на хиперграфа има кардиналност ď 2,
степените на върховете са едни и същи независимо дали гледаме на него като на хиперграф
или мултиграф. Ако броим всяка примка по един път като Berge това вече не е вярно, но
тогава пък степента на всеки връх в хиперграфа съвпада точно със степента на този връх в
съответния двуделен граф. Ако вземем за пример пак H от Фигура 3.13, то на Фигура 3.14
ясно се вижда, че степента на v1 в съответния двуделен граф е 2, а не 3.

Ако хиперграфът няма примки, дефинициите на Berge и Bretto съвпадат.
Също както при графите и мултиграфите, ∆pHq означава максималната степен на връх

в H, а δpHq означава минималната степен на връх в H, и H е регулярен, ако ∆pHq “ δpHq.
Ако ∆pHq “ δpHq “ k, то H е k-регулярен.

При хиперграфите има понятие “ранг”, което няма аналог при графите и мултиграфите.
Ранг на хипеграфа H е максималната кардиналност на ребро в него. Наистина, за всеки
нетривиален граф и за всеки мултиграф, в който не всички ребра за примки, рангът е 2—
ако гледаме на обекта като на хиперграф—така че е безсмислено да се говори за ранг при
графи и мултиграфи. При хиперграфите обаче това е важно понятие. Примерно, рангът на
хиперграфа от Фигура 3.13 е 4. Ако всички ребра имат една и съща кардиналност r, казваме,
че хиперграфът е r-униформен, или просто, че е униформен.

Ако ползваме опроделението на “степен на връх” на Berge, очевидно е, че за всеки хиперграф
H “ pV,E, fHq е вярно, че H е k-регулярен тстк H˚ е k-униформен. В контекста на съответния
двуделен граф G:

• H да е регулярен е същото като върховете от дяла на G, съответен на V, да имат една
и съща степен, и

• H да е униформен е същото като върховете от дяла на G, съответен на Е, да имат една
и съща степен.

Това е краят на изложението за хиперграфи в тези лекционни записки. При хиперграфите
може да се дефинират пътища, цикли, свързаност, ацикличност, оцветяване и така нататък
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по начини, които се явяват обощение на тези понятия от графите, но за това и повече вижте
[9] и [14].
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Глава 4

Изчислителни задачи и алгоритми върху
графи
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4.1 Представяния на графи
Без съмнение думата “граф” идва от това, че такъв обект може да се нарисува; тоест, има
графично представяне. Графичните представяния обаче са подходящи за

• хора – компютър трудно би разчел рисунката надеждно;

• малки графи – опитайте да нарисувате граф със стотици хиляди върхове и десетки
милиони ребра, нещо, което лесно може да възникне при някоя практическа задача.

Ние искаме да решаваме задачи върху графи с компютър. За тази цел трябва да представяме
графите по начини, удобни за алгоритмична обработка. Сега ще разгледаме основните такива
представяния на графи.

В цялата Глава 4 върховете на графа, който разглеждаме, са целите положителни числа
1, 2, . . . , n. В теоретичен контекст е удобно да именуваме върховете с u, v и така нататък,
или u1, . . . , un и така нататък, но в програма, решаваща задача върху графи, най-удобно
е върховете да са тип int, като върховете са целите числа от 1 до n, в Pascal-оподобна
конвенция, или числата от 0 до n´ 1, в конвенцията на C. По този начин “минаването” през
всички върхове на графа, което в теорията записваме като

foreach v P VpGq do
прави нещо

в софутуера става

for v from 1 to n do
begin

прави нещо
end

или

for(v = 0; v <= n-1; v ++) {
прави нещо

}

И преди да разгледаме представянията, една забележка. Въпросните представяния предста-
вят графи с именувани върхове (вижте Подсекция 2.8.3) или дори именувани и върхове, и
ребра, ако говорим за матрица на инцидентност. Примерно, при представяне с матрица на
съседство, разместването на редове и колони на матрицата в общия случай води до друго
представяне, което е на друг граф. Той е изоморфен на първия, но като именуван граф е
различен. Ако искаме да установим дали две различни представяния представят един и съ-
щи неименуван граф, трябва да пуснем алгоритъм, който взема за вход двете представяния
и връща дали те представят изоморфни графи (и може би самия изоморфизъм, ако да). Но
задачата за изоморфизъм е изключително тежка, от алгоритмична гледна точка, и далече
извън обхвата на тези лекционни записки.

4.1.1 Матрици на съседство

Матрицата на съседство на граф G е абсолютно същото нещо като матричното представяне
на съответната бинарна релация. Тоест, ако мислим графа като за бинарна релация над
декартовия квадрат t1, . . . ,nu2, която е симетрична (G е неориентиран) и антирефлексивна
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(G няма примки), то матрицата на съседство е точно същата матрица, която съответства на
релацията. А именно, квадратна, n ˆ n, симетрична булева матрица M с нули по главния
диагонал, в която за i, j P t1, . . . ,nu, клетка Mri, js съдържа:

• 0, ако в G няма ребро pi, jq, и

• 1, ако в G има ребро pi, jq.

Фигура 4.1 показва граф и неговата матрица на съседство.

Фигура 4.1 : Матрица на съседство на граф.

1

3 6

2

5

7 4

граф G

1
2
3
4
5
6
7

1 2 3 4 5 6 7
0 1 0 0 1 1 0
1 0 1 0 1 1 0
0 1 0 0 1 1 0
0 0 0 0 0 0 0
1 1 1 0 0 0 1
1 1 1 0 0 0 0
0 0 0 0 1 0 0

матрицата на съседство на G

Ето няколко важни свойства на матриците на съседство на обикновените графи. Нека е даден
обикновен граф G и M е неговата матрица на съседство. Тук, както и навсякъде другаде в
Подсеция 4.1.1, когато казваме “път”, имаме предвид път, който не е непременно прост.

1. M е симетрична, което вече бе споменато.

2. За всяко i, сумата от елементите в ред i, или в колона i, е равна на степента на връх i.
Следствие от този факт и Лема 1 е, че броят на единиците в M е 2m. Оттук следва, че
матрицата на съседство на празния граф с n върха е нулевата nˆ n матрица.

3. G е свързан тстк няма пермутация на редовете и колоните, която да преобразува M в
блокова диагонална форма.

4. M1 иM2 са матрици на съседство на изоморфни графи тстк съществува пермутационна
матрица P, такава че M2 “ P

´1M1P.

5. При повдигане наM на степен k, клетка ri, js съдържа броя на не непременно простите
пътища между i и j с дължина k.

6. Следствие от Свойство 5 е, че @i : M2ri, is “ dpiq. Причината е ясна: всяко ребро e “
pu, vq представлява път u, e, v, e,u, който не е прост, с дължина 2 от u до u.
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Свойство 5 следва от Теорема 55. Теорема 55 е за ориентирани графи, но, ако я приложим към
ориентирания граф, съответен на G (припомнете си Определение 87), получаваме Свойство 5.

Ако разрешим наличието на примки, има две възможности за записването на примка в
матрицата на съседство. Да кажем, че връх i има примка.

• Първо, можем да запишем 1 в Mri, is. Тази възможност точно съответства на отбеляз-
ването, в контекста на бинарните релации R Ď A2, че даден елемент a P A е в релация
със себе си, ако представяме R с матрица.

Обаче Свойство 2 престава да е вярно! В Определение 15 казахме, че всяка примка
примка се брои два пъти в степента на върха, към който е “вързана”. Ако броим при-
носът на примката към степента на върха, към който е “вързана”, като единица, ще
“счупим” Лема 3.

Свойства 5 и 6 остават в сила.

• Второ, може да запишем 2 в Mri, is. При това матрицата не би била булева.

В такъв случай Свойство 2 би останало в сила и не “чупим” Лема 3.

Свойства 5 и 6 престават да са в сила. Като малък пример разгледайте следния граф
с примка, неговата матрицата M на съседство и нейната втора степен M2.

1
2
3

1

2 3

M

1
2
3

M2
1 2 3
2 1 1
1 0 0
1 0 0

1 2 3
6 2 2
2 1 1
2 1 1

Примката е записана с “2” в клетка Mr1, 1s. Обаче M2r1, 1s съдържа 6, което не е
степента на връх 1. Неговата степен е 4.

Няма начин да излезем от това затруднение, причинено от наличието на примки, ако хем
искаме Лема 3 да е в сила и сумата по ред/колона да дава степента, хем искаме повдигането
на матрицата на степен да дава броеве на пътища с определена дължина.

Абстрактно погледнато, всички (разумни) представяния на графи са еквивалентни, защото
всяко от тях представя графите недвусмислено и можем да конвертираме едно представяне
в друго по избор. Практически погледнато, всяко представяне има своите предимства и
недостатъци.

Основните предимства на представянето с матрица на съседства са:

• бързата проверка дали между връх i и връх j има ребро;

• бързото добавяне на ребро между връх i и връх j, ако такова няма;

• бързото изтриване на реброто между връх i и връх j, ако такова има.

Проверката за ребро става с един единствен достъп до матрицата – до клетка ri, js или
rj, is (няма значение коя, матрицата е симетрична). Добавянето и изтриването стават с два
достъпа, ако i ­“ j: променя се съдържанието на ri, js и на rj, is.
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Недостатък на представянето с матрица на съседства е потенциалната му неикономич-
ност. Ако n е голямо, но m е далече по-малко от максималната си стойност 1

2npn´ 1q, мат-
рицата става огромна, понеже размерът и́ е n2 клетки, а съдържанието и́ е основно от нули.
Въпреки че всяка клетка ползва само един бит, фактът, че общо клетките са n2, доминира
в това съображение. Съществуват важни класове графи като:

• дърветата, при които m “ n´ 1;

• планарните графи, при които m ď 3n´ 6;

• графите с малка максимална степен на връх, предвид факта, че m ď 1
2n∆pGq за всеки

граф G.

за които можем да кажем, че m е далече по-малко от максимума 1
2npn´ 1q. За графите от

тези класове е ясно, че, ако ги представяме с матрици и n е много голямо, огромната част
от всички n2 клетки ще е запълнена с нули и тук-там ще има единица.

Ориентиран граф G се представя с матрица на съседство M по подобен начин. Клетката
Mri, js съдържа 1 тстк в G има ребро pi, jq. Фигура 4.2 показва ориентиран граф и неговата
матрица на съседство.

Фигура 4.2 : Матрица на съседство на ориентиран граф.

1

3 6

2

5

7 4

ориентиран граф G 1

1
2
3
4
5
6
7

1 2 3 4 5 6 7
0 1 0 0 1 1 0
0 0 0 0 1 1 0
0 1 0 0 1 1 0
0 0 0 0 0 0 0
0 1 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 1 0 0

матрицата на съседство на G 1

Ето няколко важни свойства на матриците на съседство на ориентираните графи. Нека е
даден ориентиран граф G и M е неговата матрица на съседство.

1. M не е непременно симетрична.

2. За всяко i, сумата от елементите в ред i е равна на изходната степен на връх i (вижте
Определение 83).

3. За всяко i, сумата от елементите в колона i е равна на входната степента на връх i
(вижте Определение 83).
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4. При повдигане наM на степен k, клетка ri, js съдържа броя на (ориентираните) пътища
от i до j с дължина k.

Четвъртото свойство и този път следва от Теорема 55, но сега е директно, понеже G се явява
частен случай на ориентиран мултиграф.

Мултиграфите също може да се представят с матрици на съседство, като обаче при тях мат-
риците не са булеви, а от естествени числа. Ето как става това за ориентирани мултиграфи.
Ако мултиграфът е G “ pV,E, fGq според Определение 88, то матрицата му на съседство е
nˆn матрица от естествени числа, като Mri, js “ |te P E : fGpeq “ pi, jqu|. Фигура 4.3 показва
ориентиран мултиграф граф G2 и неговата матрица на съседство.

Фигура 4.3 : Матрица на съседство на ориентиран мултиграф.

1

3 6

2

5

7 4

ориентиран мулгиграф граф G2

1
2
3
4
5
6
7

1 2 3 4 5 6 7
2 1 0 0 1 1 0
0 0 0 0 2 1 0
0 1 0 0 1 2 0
0 0 0 0 0 0 0
0 1 0 0 0 0 0
2 0 1 0 0 0 0
0 0 0 0 3 0 0

матрицата на съседство на G2

За неориентирани мултиграфи нещата са сходни. Ако мултиграфът е G “ pV,E, fGq според
Определение 14, то матрицата му на съседство е n ˆ n матрица от естествени числа, като
Mri, js “ |te P E : fGpeq “ ti, juu|. Забележете, че това определение третира примките правил-
но, защото, ако i “ j, то ti, ju “ tiu, а кодомейнът на fG според Определение 14 включва и
едноелементните подмножества на V. Фигура 4.4 показва неориентиран мултиграф и него-
вата матрица на съседство.
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Фигура 4.4 : Матрица на съседство на неориентиран мултиграф.

1

3 6

2

5

7 4

неориентиран мулгиграф граф G3

1
2
3
4
5
6
7

1 2 3 4 5 6 7
2 1 0 0 1 3 0
1 0 1 0 3 1 0
0 1 0 0 1 3 0
0 0 0 0 0 0 0
1 3 1 0 0 0 3
3 1 3 0 0 0 0
0 0 0 0 3 0 0

матрицата на съседство на G3

Както се вижда и от фигурата, при неориентираните мултиграфи матрицата е симетрична.

Повдигането на степен на матрицата на съседство дава броя на ориентираните
пътища. Ще осмислим и докажем едно любопитно свойство на матриците на съседство.
Като пример да разгледаме отново G2 от Фигура 4.3, но този път с имена на ребрата, и
неговата матрица на съседство M, показани на Фигура 4.5. Има смисъл да кажем, че Mri, js
е броят на пътищата с дължина 1 от i до j.

Фигура 4.5 : G2 и неговата матрица на съседство M.

1

3 6

2

5

7 4

e1

e2

e3

e4

e5
e6

e11

e7

e8

e9

e10

e12 e13

e14

e15 e16 e17

e18

e19

G2

1
2
3
4
5
6
7

1 2 3 4 5 6 7
2 1 0 0 1 1 0
0 0 0 0 2 1 0
0 1 0 0 1 2 0
0 0 0 0 0 0 0
0 1 0 0 0 0 0
2 0 1 0 0 0 0
0 0 0 0 3 0 0

M
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Да разгледаме произведението на M със себе си, тоест M2:
»

—

—

—

—

—

—

—

—

–

2 1 0 0 1 1 0
0 0 0 0 2 1 0
0 1 0 0 1 2 0
0 0 0 0 0 0 0
0 1 0 0 0 0 0
2 0 1 0 0 0 0
0 0 0 0 3 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

¨

»

—

—

—

—

—

—

—

—

–

2 1 0 0 1 1 0
0 0 0 0 2 1 0
0 1 0 0 1 2 0
0 0 0 0 0 0 0
0 1 0 0 0 0 0
2 0 1 0 0 0 0
0 0 0 0 3 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

—

—

–

6 3 1 0 4 3 0
2 2 1 0 0 0 0
4 1 2 0 2 1 0
0 0 0 0 0 0 0
0 0 0 0 2 1 0
4 3 0 0 3 4 0
0 3 0 0 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Твърдим, че M2ri, js е броят на пътищата с дължина 2 от i до j, по всички i и j. Фигура 4.6
илюстрира този факт.

Фигура 4.6 : G2 и M2.

1

3 6

2

5

7 4

e1

e2

e3

e4

e5
e6

e11

e7

e8

e9

e10

e12 e13

e14

e15 e16 e17

e18

e19

G2

1
2
3
4
5
6
7

1 2 3 4 5 6 7
6 3 1 0 4 3 0
2 2 1 0 0 0 0
4 1 2 0 2 1 0
0 0 0 0 0 0 0
0 0 0 0 2 1 0
4 3 0 0 3 4 0
0 3 0 0 0 0 0

M2

Примерно, има точно 3 пътя с дължина 2 от връх 1 до връх 6:

1, e10, 2, e6, 6
1, e18, 1, e13, 6
1, e19, 1, e13, 6

а от друга страна, M2r1, 6s “ 3. Това не е случайно съвпадение! Въпросното 3 се получава
като скаларно произведение на първия ред на M с шестата колона на M:

r2, 1, 0, 0, 1, 1, 0s ¨ r1, 1, 2, 0, 0, 0, 0s “ 2 ¨ 1` 1 ¨ 1` 0 ¨ 2` 0 ¨ 0` 1 ¨ 0` 1 ¨ 0` 0 ¨ 0 “ 3

Щом първият ред съдържа броя на ребрата от връх 1 до всеки друг връх, а шестата колона
съдържа броя на ребрата от всеки връх до връх 6, то първото събираемо 2 ¨ 1 е броят на
пътищата с точно две ребра от 1 до 6 с вътрешен връх 1, второто събираемо 1 ¨ 1 е броят
на пътищата с точно две ребра от 1 до 6 с вътрешен връх 2, третото събираемо 0 ¨ 2 е броят
на пътищата с точно две ребра от 1 до 6 с вътрешен връх 3, и така нататък. Както вече
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видяхме, наистина има два пътя с дължина 2 с връх 1 като вътрешен, един път с дължина 2
с връх 2 като вътрешен, нула пътища с дължина 2 с връх 3 като вътрешен, и така нататък.

С аналогични разсъждения установяваме, че M3 съдържа броевете на пътищата с дължи-
на 3. Фигура 4.7 илюстрира този факт.

Фигура 4.7 : G2 и M3.

1

3 6

2

5

7 4

e1

e2

e3

e4

e5
e6

e11

e7

e8

e9

e10

e12 e13

e14

e15 e16 e17

e18

e19

G2

1
2
3
4
5
6
7

1 2 3 4 5 6 7
18 11 3 0 13 11 0
4 3 0 0 7 6 0
10 8 1 0 8 9 0
0 0 0 0 0 0 0
2 2 1 0 2 1 0
16 7 4 0 10 7 0
0 0 0 0 6 3 0

M3

Да разгледаме M3r1, 6s “ 11. Наистина, има 11 пътя с дължина 3 от 1 до 6:

1, e18, 1, e18, 1, e13, 6
1, e18, 1, e19, 1, e13, 6
1, e19, 1, e18, 1, e13, 6
1, e19, 1, e19, 1, e13, 6
1, e13, 6, e11, 1, e13, 6
1, e13, 6, e12, 1, e13, 6
1, e18, 1, e10, 2, e6, 6
1, e19, 1, e10, 2, e6, 6
1, e14, 5, e7, 2, e6, 6
1, e13, 6, e3, 3, e1, 6
1, e13, 6, e3, 3, e2, 6

И така нататък. Сега ще докажем строго интуицията, получена от тези наблюдения.

Теорема 55: Mkri, js e броят на ориентираните пътища с дължина k

За всеки ориентиран мултиграф G и за всяко k ě 0:Mkri, js е броят на (ориентираните)
пътища с дължина k от i до j в G, където M е матрицата на съседство на G.

Доказателство: С индукция по k. Базата е за k “ 0. Но M0 е единичната матрица с
единици по главния диагонал и нули извън главния диагонал. Лесно се вижда, че за всички
i, j P t1, . . . ,nu, M0ri, js наистина е броят на пътищата с дължина 0 от i до j:
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• ако i ­“ j, такива пътища няма, което точно отговаря на факта, чеM0ri, js “ 0 при i ­“ j;

• ако i “ j, има точно един такъв път, а именно самият връх i, което точно отговаря на
факта, че M0ri, is “ 1.

С това базата е доказана. 3

Да допуснем, че твърдението е вярно за стойност на аргумента k. Ще докажем, че то остава
вярно за стойност на аргумента k`1. Нека T `i,j означава множеството от пътищата от i до j с
дължина `, за всяко ` ě 0. Тогава нашето допускане може да се запише така: Mkri, js “ |Tki,j|
за всички i, j P t1, . . . ,nu. Ще докажем, че за всички i, j P t1, . . . ,nu:

Mk`1ri, js “ |Tk`1
i,j | (4.1)

За лявата страна на 4.1 знаем от линейната алгебра, че

Mk`1ri, js “
ÿ

1ďsďn

Mkri, ss ¨Mrs, js (4.2)

Да разгледаме дясната страна на 4.1. Да разгледаме Tk`1
i,j . Тъй като k` 1 ě 1, всеки път от

това множество има предпоследен връх, при това точно един. Това е очевидно. Тогава Tk`1
i,j

се разбива на n множества по предпоследен връх. Говорим за обобщено разбиване – някои
от тези n множества може да са празни.

Да въведем още една нотация, за да изразим същото нещо формално. НекаW`
i,j,s означава

множеството от пътищата от i до j с предпоследен връх s и дължина `, където ` ě 1, а
i, j, s P t1, . . . ,nu. И така, забелязахме, че Tk`1

i,j има разбиване

tWk`1
i,j,1 ,W

k`1
i,j,2 , . . . ,W

k`1
i,j,nu

където някои или дори всички дялове на това разбиване може да са празни. Съгласно ком-
бинаторния принцип на разбиването,

|Tk`1
i,j | “

ÿ

1ďsďn

|Wk`1
i,j,s | (4.3)

Ето илюстрация на (4.3) и по-точно на разбиването на множеството от пътищата с дъл-
жина k` 1 по предпоследния връх s:

i j

sпът от i до s с дължина k

ребро

дължина k дължина 1

Тази илюстрация обаче е леко подвеждаща, защото показва i, s и j като два по два различни
върхове. А това не е непременно така. Първо, може i “ j. Второ, независимо от това дали
i “ j или не, може i “ s или j “ s. Поради това има смисъл индексната променлива s в (4.3)
да взема стойности от 1 до n. Ако за някоя такава стойност s не може да е предпоследен
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връх (примерно, на Фигура 4.5, връх 2 не може да е предпоследен по път до връх 1, защото
няма ребро от 2 до 1, а връх 4 не може да е предпоследен по път до връх 1, защото от 4 до
1 изобщо няма пътища), то Wk`1

i,j,s “ H.

След като се убедихме, че (4.3) е вярно, да съобразим, че за всяко s P t1, . . . ,nu, Wk`1
i,j,s

(независимо дали е празно или не) се явява, в някакъв смисъл, Декартовото произведение
на Tki,s и множеството от ребрата от s до j. Тук аргументацията е леко неформална, защото
не казваме точно в какъв смисъл, но важното е, че всеки път отWk`1

i,j,s се явява комбинация
на един път от Tki,s и едно ребро от s до j. Тогава |Wk`1

i,j,s | е произведението от |Tki,s| и броя на
ребрата от s до j, който е е Mrs, js. Показахме, че

|Wk`1
i,j,s | “ |T

k
i,s| ¨Mrs, js (4.4)

От (4.3) и (4.4) извеждаме

|Tk`1
i,j | “

ÿ

1ďsďn

|Tki,s| ¨Mrs, js (4.5)

Но от индуктивното предположение знаем, че |Tki,s| “Mkri, ss. Тогава

|Tk`1
i,j | “

ÿ

1ďsďn

Mkri, ss ¨Mrs, js (4.6)

От (4.2) и (4.6), заключаваме, че (4.1) е в сила. 2

4.1.2 Матрици на инцидентност

Неориентирани графи и мултиграфи без примки. Нека е даден обикновен граф или
неориентиран мултиграф без примки G, като VpGq “ t1, . . . ,nu и EpGq “ te1, . . . , emu. Мат-
рицата на инцидентност на G е nˆm матрица A, в която за i P t1, . . . ,nu и j P t1, . . . ,mu,
Ari, js съдържа:

• 0, ако връх i не е инцидентен с ребро ej,

• 1, ако връх i е инцидентен с ребро ej.

Фигура 4.8 показва неориентиран мултиграф без примки и неговата матрица на инцидент-
ност. Типично, матрицата на инцидентност има n реда и m колони. На фигурата е показана
транспонираната матрица на инцидентност, за да може фигурата да се побере на ширина.
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Фигура 4.8 : Неор. мултиграф без примки и матр. на инцидентност.

1

3 6

2

5

7 4

e1

e2

e3

e4

e5
e6

e11

e7

e8

e9

e10

e12 e13

e14

e15 e16 e17

мултиграф без примки

8 0 1 0 0 1 0 0
9 0 1 0 0 1 0 0
10 1 1 0 0 0 0 0
11 1 0 0 0 0 1 0
12 1 0 0 0 0 1 0
13 1 0 0 0 0 1 0
14 1 0 0 0 1 0 0
15 0 0 0 0 1 0 1
16 0 0 0 0 1 0 1
17 0 0 0 0 1 0 1

1
2
3
4
5
6
7

1 2 3 4 5 6 7
0 0 1 0 0 1 0
0 0 1 0 0 1 0
0 0 1 0 0 1 0
0 0 1 0 1 0 0
0 1 1 0 0 0 0
0 1 0 0 0 1 0
0 1 0 0 1 0 0

транспонираната матр. на инцид.

Истинската, а не транспонираната матрица на инцидентност на графа от Фигура 4.8 e
»

—

—

—

—

—

—

—

—

–

0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0
0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 1 1 1 0 0 0 0 1 1 1 1
1 1 1 0 0 1 0 0 0 0 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Матрицата на инцидентност третира ребрата като атомарни обекти, също както е в Опре-
деление 13, а не ги идентифицира с краищата, както е в Определение 1. Поради това мул-
тиграфите (но без примки) се представят с матрици на инцидентност по абсолютно същия
начин, по който се представят и обикновените графи.

Матриците на инцидентност представят графи, в които са именувани както ребрата, така
и върховете; разменянето на имена на ребра променя, в общия случай, и матрицата. За
разликата между това да са именувани само върховете или и върховете, и ребрата вижте
подсекциите на стр. 92 и на стр. 94.

Матриците на инцидентност имат следните свойства.

1. Матриците на инцидентност са булеви, като във всяка колона има точно две единици.

2. Ред само с нули съответства на изолиран връх. В примера на Фигура 4.8, връх 4 е
изолиран и съответно ред четири на матрицата има само нули.

Аналогично, ред с точно една единица съответства на висящ връх (на примера от
Фигура 4.8 няма такъв).
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И изобщо, броят на единиците на ред i е точно dpiq.

3. Празният граф има празна матрица на инцидентност—тъй като няма ребра—независимо
от броя на върховете

4. Размяната на редове i и j има смисъл на размяна на имената на върхове i и j. Размяната
на колони i и j има смисъл на размяна на имената на ребрата ei и ej.

5. На паралелни ребра в графа съответстват еднакви колони в матрицата.

6. Всяка матрица има “излишък” в смисъл, че всеки n´ 1 реда напълно определят съот-
ветния граф. Може да се обоснове с това, че всеки ред, поелементно, се получава от
сумата на останалите редове по модул 2.

Иначе казано, ако скрием, примерно, първия ред на матрицата на графа от Фигура 4.8,
получавайки тази матрица:

»

—

—

—

—

—

—

–

0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 1 1 1 0 0 0 0 1 1 1 1
1 1 1 0 0 1 0 0 0 0 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

лесно можем да възстановим скрития ред, забелязвайки, че точно колони 10, . . . , 14
имат по едно “1”. Това означава, че точно ребра e10, . . . , e14 са инцидентни с връх 1.

Ако гледаме на матриците на инцидентност като на матрици над GFp2q, току-що нап-
равеното наблюдение казва, че множеството от редовете е линейно зависимо. Оттук
рангът на матрицата е по-малък или равен на n´ 1.

7. Ако графът има две свързани компоненти G1 и G2, то матрицата на инцидентност A
може да се запише в блокова диагонална форма

A1 0

0 A2

»

–

fi

fl

където A1 и A2 са матриците на инцидентност на G1 и G2. Причината е ясна: нито едно
ребро от EpG1q не е инцидентно с връх от VpG2q, и обратно.

Очевидно е как да се обобщи това наблюдение за k свързани компоненти.

Лема 19

Ако G е свързан граф и матрицата му на инцидентност е A, то A не може да се запише
по никакъв начин в блокова диагонална форма

A1 0

0 A2

»

–

fi

fl
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Доказателство: Да допуснем противното: матрицата на инцидентност на свързан граф
може да се запише в блокова диагонална форма, каквато е показана горе.

Нека i е произволен връх “от горната част” на матрицата; тоест, ред номер i “минава” през
A1. И нека j е произволен връх от долната част на матрицата; тоест, ред номер j “минава”
през A2. Тъй като G е свързан, между i и j има път p. Всеки връх на p е или от горната, или
от долната част на матрицата. Тогава в p съществуват съседни върхове i 1, който в матрицата
е в горната част (тоест, ред i 1 “минава” през A1), и j 1, който в матрицата е в долната част
(тоест, ред j 1 “минава” през A2). Да кажем, че реброто e има за краища i 1 и j 1. Да кажем, че
колона ` съответства на e.

Както знаем, в колона ` има точно две единици. Ще покажем, че не може и двете единици
да се намират в A1 или A2.

• Ако колона ` е в лявата страна на матрицата (тоест, “минава” през A1), то едната от
тези единици е в долната лява подматрица, която би трябвало да се състои само от
нули.

• Ако колона ` е в дясната страна на матрицата (тоест, “минава” през A2), то едната от
тези единици е в горната дясна подматрица, която би трябвало да се състои само от
нули.

И в двата случая виждаме, че A не е в блокова диагонална форма. 2

Теорема 56: Рангът на матрицата на инцидентност на свързан граф

Матрицата на инцидентност на свързан граф има ранг n´ 1.

Доказателство: Както вече отбелязахме, рангът не може да надхвърля n ´ 1 за никой
граф. Остава да покажем, че рангът е поне n´ 1, ако графът е свързан.

Разглеждаме произволни k реда на A, където 1 ď k ď n ´ 1. Лема 19 е ключова: A не
може да се запише в блокова диагонална форма

A1 0

0 A2

»

–

fi

fl

където A1 има k реда. Тогава никои k реда не се сумират до ред от нули (по модул 2).
Но GFp2q има само две константи: 0 и 1. Тогава всички възможни сумирания на k реда

(по модул 2), за k P t1, . . . ,n´ 1u, са всички възможни линейни комбинации на редовете. И,
както казахме, нито една от тях не е нулевият ред. Тогава нито една линейна комбинация
на k реда, за k P t1, . . . ,n´ 1u, не е нулевият ред. Тогава всеки k реда, за k P t1, . . . ,n´ 1u,
са линейно независими. Тогава рангът на A е n´ 1. 2

Следствие 15: Рангът на матрицата на инцидентност на свързан граф

Ако G е граф с k свързани компоненти, рангът на неговата матрица на инцидентност
е n´ k. 2

Следствие 15 може да се използва за намиране на броя на свързаните компоненти, но при
това трябва да се внимава: изчисленията върху матрицата трябва да са по модул 2! Иначе
казано, матрицата е над GFp2q, а не над полето на реалните числа. Ако ползваме софтуер
за работа с математика като Maple(TM), трябва да укажем да се работи в GFp2q; от това, че
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матрицата съдържа само нули и единици, софтуерът няма да се “сети” да не работи с реални
числа. Като пример да вземем матрицата на инцидентност на Фигура 4.8. Ето как можем да
я въведем и да и́ намерим ранга в Maple(TM):

C:\Program Files\Maple 2018\bin.X86_64_WINDOWS>cmaple
|\^/| Maple 2018 (X86 64 WINDOWS)

._|\| |/|_. Copyright (c) Maplesoft, a division of Waterloo Maple Inc. 2018
\ MAPLE / All rights reserved. Maple is a trademark of
<____ ____> Waterloo Maple Inc.

| Type ? for help.
> with(LinearAlgebra):
> A := Matrix( [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0],
> [0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0],
> [1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
> [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
> [0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1],
> [1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0],
> [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1] ]):
> Rank(A);

6

Отговорът, който Maple(TM) връща, е 6. Но броят на свързаните компоненти е 2, а n “ 7,
така че според Следствие 15, рангът трябва да е 7 ´ 2 “ 5. Това размнаване се дължи
на факта, че Maple(TM) не работи в GFp2q по подразбиране. Ерго, за Maple(TM) в тези
изчисления 1` 1 “ 2, а не 1` 1 “ 0, както би трябвало в GFp2q.

Нещата може да се оправят така.

C:\Program Files\Maple 2018\bin.X86_64_WINDOWS>cmaple
|\^/| Maple 2018 (X86 64 WINDOWS)

._|\| |/|_. Copyright (c) Maplesoft, a division of Waterloo Maple Inc. 2018
\ MAPLE / All rights reserved. Maple is a trademark of
<____ ____> Waterloo Maple Inc.

| Type ? for help.
> with(LinearAlgebra[Modular]):
> A := Matrix( [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0],
> [0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0],
> [1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
> [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
> [0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1],
> [1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0],
> [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1] ]):
> Rank(2, A);

5

Сега вече рангът е 5, както очакваме. Първият аргумент на командата Rank е модулът.

Неориентирани графи и мултиграфи с примки. Наличието на примки е потенциален
препъни-камък и за матриците на инцидентност. Ако реброто ei е примка, “закачена” към
връх j, какво да сложим в Arj, is?

• Някои учебници като [31, стр. 102] казват, че има смисъл да сложим 2. Тогава остава
в сила това, че сумата във всяка колона е 2, и че сумата във всеки ред е равна на
степента на съответния връх.
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Обаче матрицата вече не е булева и елементите и́ не са от GFp2q и редица свойства
престават да са в сила.

• Други учебници като [3, стр. 139] разглеждат повече възможности.

˛ Може да сложим 0, при което матрицата остава над GFp2q, но това означава да
има колона само от нули (съответстваща на реброто-примка) и тогава, гледайки
само матрицата, не знаем къде е примката.

˛ Може да сложим 1, при което матрицата остава над GFp2q, но сега вече рангът и́
не е n ´ 1, а става n. При това важни свойства на матрицата престават да са в
сила.
Ако гледаме на графа като на частен случай на хиперграф, реброто ei, инцидентно
със и само със връх j, се идентифицира с едноелементното множество tju, и Arj, is
трябва да е 1. Да си припомним, че хиперграфите имат представяне с матрици на
инцидентност (вижте материала на стр. 257).

˛ Може да сложим 2, която възможност вече обсъдихме.

В крайна сметка казваме, че матриците на инцидентност не са подходящо представяне за
графи с примки и съответно няма да изполваме матрици на инцидентност, когато примки са
възможни.

Ориентирани графи и мултиграфи. Матриците на инцидентност могат да представят и
ориентирани графи. Нека е даден обикновен ориентиран граф или ориентиран мултиграф без
примки G, като VpGq “ t1, . . . ,nu и EpGq “ te1, . . . , emu. Сега обаче елементите на матриците
са реални числа, а не елементи на GFp2q. Това означава, че сега 1` 1 “ 2, а не 1` 1 “ 0.

Матрицата на инцидентност на G е nˆm матрица A с елементи от t´1, 0, 1u, в която
за i P t1, . . . ,nu и j P t1, . . . ,mu, Ari, js съдържа:

• 0, ако връх i не е инцидентен с ребро ej,

• 1, ако връх i е началото на ребро ej.

• ´1, ако връх i е краят на ребро ej.

В [3, стр. 139], [17, стр. 214] и [25, стр. 78] конвенцията за знаците е такава. В [31, стр. 102]
е точно обратното: ´1 маркира началото на реброто, а 1 маркира края му. Двете конвенции
са еднакво добри, но са очевидно несъвместими. Ние избираме конвенцията, че 1 маркира
началото, а ´1, края на реброто.

Доказателството на Теорема 57 е аналогично на доказателството на Теорема 56, въпреки че
Теорема 57 е за ориентирани, а Теорема 56, за неориентирани графи, поради което ще го
прескочим. Има го в, примерно, в [17, стр. 214].

Теорема 57: Рангът на матрицата на инцидентност на слабо свързан ориентиран
граф

Матрицата на инцидентност на слабо свързан ориентиран граф има ранг n´ 1.

И оттук лесно се извежда съответствието на Следствие 15: матрицата на инцидентност на
ориентиран граф с k слабо свързани компоненти има ранг n´ k. 2
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4.1.3 Списъци на съседство

Това е много компактен начин за представяне на графи с голямо приложение в практиката.
На английски терминът е adjacency lists. Забележете множественото число: не един списък,
а много списъци.

Неориентирани мултиграфи с възможни примки. Примките не причиняват никакви
затруднения при представяне със списъци на съседства, а мултиграфите се представят тол-
кова естествено, колкото и обикновените графи, така че направо ще разгледаме най-общия
неориентиран случай на мултиграфи с възможни примки.

За всеки връх на графа се конструира свързан списък от неговите съседи в произволен
ред. Това си заслужава да се повтори: не иска съседите да се появяват в нарастващ ред по
своите идентификатори.

Ако даден връх няма съседи, тоест, е изолиран връх, то списъкът му е празен.
За всяко ребро с краища i и j, такива че i ­“ j, връх j се появява в списъка на i, но и връх

i се появява в списъка на j. Ерго, на всяко ребро, което не е примка, съответстват точно два
елемента, в два различни списъка. Ако има сноп от точно k паралелни ребра с краища i и j,
то j се появява точно k пъти в списъка на i, но и i се появява точно k пъти в списъка на j.

За всяко ребро-примка, ако i е върхът, към който е “закачена” примката, то i се появява
в собствения си списък; ако i има точно k примки, то i се появява точно k пъти в собствения
си списък.

Фигура 4.9 показва неориентиран мултиграф и списъците му на съседство.

Фигура 4.9 : Списъците на съседство на неориентиран мултиграф.
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Тези списъци не съдържат информация, идентифицираща ребрата. Възможно е елементите
на списъците да съдържат информация за ребрата, както е показано на Фигура 4.10.
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Фигура 4.10 : По-информативни списъци на съседства на графа от Фиг. 4.9.
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Ако става дума за графи с тегла (Секция 3.2), естествено е да записваме теглата на ребрата
в списъците на съседство, като всеки елемент на списък има клетка, в която се записва
числото-тегло на съответното ребро.

В практически приложения може елементите на списъците да са дори още по-информа-
тивни. Ако графът представлява пътна мрежа, елементите на списъците описват някакви
шосета, всяко от които има атрибути като категория, дата на последен ремонт и така нататък.
Ако графът представлява компютърна мрежа, елементите на списъците описват някакви
директни връзки между хостове, като тези директни връзки имат атрибути като капацитет
за пренасяне на информация, вид (усукана двойка, оптика и така нататък), дължина и така
нататък. Възможно е елементите на списъците да са записи с полета, които са подходящи
за съответните атрибути.

Ориентирани мултиграфи с възможни примки. Ориентирани графи или мултигра-
фи, с или без възможни примки, се представят лесно със списъци на съседство: списъкът на
всеки връх съдържа неговите деца в произволен ред. Списъкът на връх е празен тстк този
връх няма деца.

Забележете, че в ориентирания случай на всяко ребро съответства точно един елемент
в списъците, за разлика от неориентирания случай, в който—както казахме горе—на всяко
ребро, което не е примка, съответстват два елемента в списъците.

Фигура 4.11 показва ориентиран мултиграф и списъците му на съседство, като елементите
на списъците съдържат имената на ребрата.
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Фигура 4.11 : Списъците на съседство на ориентиран мултиграф.
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Да разгледаме ориентирания мултиграф, показан на Фигура 4.12, заедно със списъците му
на съседство.

Фигура 4.12 : Списъците на съседство на друг ориентиран мултиграф.
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Списъците на ориентирания мултиграф от Фигура 4.12 съвпадат със списъците на неори-
ентирания мултиграф от Фигура 4.9. Причината е ясна: ориентирания мултиграф от Фи-
гура 4.12 се явява съответният ориентиран граф на неориентирания мултиграф от Фигу-
ра 4.9 (Определение 87). Излиза, че, ако елементите на списъците не съдържат имената на
ребрата—каквито са списъците на Фигура 4.9 и Фигура 4.12—не можем да кажем дали става
дума за неориентиран граф или за ориентиран граф, който се явява съответен.
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В някакъв смисъл, списъците на неориентиран граф, които нямат имена на ребра, всъщ-
ност представят (съответния) ориентиран граф.

4.1.4 Представяния на ограничени класове графи

Коренови дървета и масиви от родителите. Нека е дадено кореново дърво T “ pV,Eq с
корен r. Може да представим T като като антиарборесценция (Определение 99) чрези списъци
на съседство. Знаем, че всеки връх, различен от корена, има точно един родител в кореново
дърво, а коренът няма родител. Следователно, за всеки връх i P V:

• ако i ­“ r, то списъкът на i има един единствен елемент, а именно този, който отговаря
на родителя на i;

• ако i “ r, то списъкът на i е празен.

Щом списъците са с дължини едно или нула, още по-ефикасно от практическа гледна точка
е те да не са свързани списъци, а клетки от масив. Така стигаме до идеята за масив от
родителите. Това е масив Pr1, . . . ,ns, където за всяко i P t1, . . . ,nu:

• ако i ­“ r, то Pris “ j, където j е родителят на i;

• ако i “ r, то Pris “ Nil.

Nil е специална стойност, която индикира, че няма родител.
Със същия успех Prrs можеше да съдържа r, и по този начин коренът би бил единственият

връх, чиято клекта съдържа своя индекс. Двете възможности са еднакво добри на практика,
просто човек трябва да си избере предварително коя от тях да използва.

Фигура 4.13 показва кореново дърво и масивът на родителите, който го представя.

Фигура 4.13 : Кореново дърво и неговият масив от родители.
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На Фигура 4.13 дървото нарочно е показано не като ориентирано, а като обикновено кореново
дърво (вижте разсъжденията за това, дали кореновите дървета са непременно ориентирани
или не, на стр. 124). Масивът го представя като антиарборесценция (Определение 99), но
това е друго нещо! Какво представя масивът и какво е дървото са различни неща. За да се
убедим в това: дървото на обхождането на BFS или DFS (Секция 4.2) е арборесценция, а го
представяме с масив на родителите.
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Интервални графи и множества от интервали. Интервалните графи (Подсекция 2.17.1)
може да се представят с матрици на съседство, матрици на инцидентност или списъци на
съседство. Това е съвсем естествено, понеже те са графи. За някои задачи обаче, като нап-
ример задачата за разполагането на изпитите в залите на стр. 229, това не е ефикасно. Тази
задача има алгоритмично решение, което е с почти линейно бързодействие, ако графът не
се представя със списъци или матрици, а с интервалите. В този смисъл, множеството от
интервалите е графът.

За да докажем някакви свойства на алгоритъма, ние можем да се позоваваме на съот-
ветния интервален граф, но за самия алгоритъм интервалите представляват пълноценно
графа. Всеки опит да построим “истинско” представяне на графа с матрица или списъци и да
използваме това представяне в задачата с изпитите води, в най-лошия случай, до алгоритъм
с квадратична сложност по време. За някои други задачи може да се налага да построим
списъците – примерно, ако искаме да обходим (по някаква причина. . . ) интервалния граф в
ширина (Секция 4.2). Но за задачата за изпитите това не се налага. За да я решим с алго-
ритъм е достатъчно да използваме интервалите – те са напълно адекватно представяне за
целта.
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4.2 Обхождания на графи
Най-базовата задача върху графи е да бъде обходен дадения граф. На английски “да обходя
граф” е to traverse a graph, откъдето името на задачата на английски е graph traversal. В
миналото е бил ползван терминът graph search, откъдето, без съмнение, идват имената “BFS”
и “DFS”, но днес “търсене в граф” (на английски, graph search) означава съвсем друго нещо:
преследване и залавяне на беглец, движещ се в графа:, така че ще ползваме “обхождане”, а
не “търсене/претърсване”.

Когато разглеждаме някоя задача върху графи—която и да е тя—трябва да е кристално
ясно какъв е видът графи, върху който е задачата. Задачата за обхождане на графи е де-
финирана върху ориентирани мултиграфи с възможни примки. Ако я разглеждаме
върху неориентирани граф или мултиграф G, то това е частен случай, в смисъл, че всъщ-
ност, на ниско ниво, решаваме задачата върху ориентирания граф или мултиграф, съответен
на G (Определение 87).

Задачата е, да се обходят ребрата и върховете на даден граф, без да се пропуска нищо и без
да се “зацикля”. Не е коректно да се каже “без да се повтаря” – читателят ще забележи, че при
тези обхождания попадаме много пъти в един и същи връх, а, ако графът е неориентиран,
ребрата се обхождат по два пъти всяко. Ако няма изолирани върхове, достатъчно е да се
обходят ребрата – това гарантира обхождане и на върховете. На доста места в Нета се казва,
че се обхождат върховете. Това не е коректно и некоректността се вижда много лесно, ако
мислим за обхождане на мултиграфи: ако има сноп паралелни ребра, всяко ребро от снопа
трябва да се обходи отделно от другите, което е различно нещо от това да бъдат обходени
само върховете-краища на ребрата от снопа.

Името на задачата идва от нагледното (а не формалното) разбиране за граф като колек-
ция от точки и стрелки или криви: представяме си същество, което живее в графа, и което
го обхожда. Или, по-реалистично, представяме си лабиринт, от който трябва да намерим
изход или да намерим оставено някъде съкровище или да убием Минотавъра, при условие,
че Минотавърът не се движи. За да сме сигурни, че не сме изпуснали нищо, трябва да ми-
нем през целия лабиринт; от друга страна, трябва да не зацикляме. С тази аналогия обаче
трябва да се внимава: в графа имаме възможност да “скачаме” директно от връх в друг
връх (при определени условия), на което в лабиринта съответствието би било да можем да
се телепортираме от място в място (при определени условия), а не само да ходим из него.

Лабиринтът, който имаме предвид, не е точно пещерна система или плетеницата от кори-
дори под двореца на цар Минос. Този лабиринт се състои от добре обособени номерирани стаи
с номерирани врати, водещи към коридори, през които се достига до други стаи (или съща-
та стая, ако са допустими примки). Ако искаме да обхождаме ориентиран граф, коридорите
на съответния лабиринт трябва да са еднопосочни; ако искаме да обхождаме неориентиран
граф, коридорите на съответния лабиринт трябва да са двупосочни.

По отношение на формалното, теоретико-множествено разбиране за графа, никакво об-
хождане не се извършва в истинския смисъл на думата. Алгоритмите, които решават зада-
чата, обработват ребрата изчерпателно, без да пропускат и без да зациклят, и това е всичко.
В базовата версия на алгоритмите BFS и DFS, тази обработка е почти никаква. В някакви
по-изтънчени алгоритми, построени върху BFS или DFS, може да има истинска обработка
на ребрата, особено ако последните съдържат повече информация.

При истинско, физическо обхождане на лабиринт има два начина да сбъркаме:
:Задачата за залавянето на беглеца има много разновидности: графът може да е ориентиран или не,

преследвачите може да виждат беглеца или не, те може да имат способност “скачат” произволно от връх на
връх, или да са ограничени да се “плъзгат” по ребрата, и така нататък.
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1. да пропуснем;

2. да зациклим.

За да избегнем и двете можем да отбелязваме къде вече сме били, и да напредваме по
някакъв систематичен начин в частта, в която още не сме били. Отбелязването на това, къде
вече сме били, във физическия лабиринт най-вероятно би станало с някакво маркиране на
коридорите. Нишката на Ариадна е именно средство за маркиране, само че само на някои
коридори.

В алгоритмичната реализация на обхождането обаче не маркираме коридорите, а само
стаите. Иначе казано, не маркираме ребрата, а само върховете. Причината е проста: за да
пестим памет. За да обходим графа успешно, достатъчно е да ползваме един бит памет за
всеки връх, който бит има смисъл на

• “не сме били в този връх” при стойност 0;

• “вече сме били в този връх” при стойност 1.

И така, за цялото маркиране ни е достатъчен един битов масив с n клетки. Ако искаме да
маркираме ребрата, дори само с един бит на ребро, ще ни трябва масив с m клетки. А,
както знаем, m може да е много по-голямо от n: ако става дума за обикновен граф, m може
да е квадратично по-голямо от n, докато при мултиграф m може да е произволно голямо
спрямо n.

На практика е полезно да различаваме не две, а три състояния на всеки връх. Две със-
тояния са напълно достатъчни, за да решим задачата за обхождането, но ако искаме да
решаваме по-сложни задачи от само обхождане, може да се налага да различаваме три със-
тояния. Какви са точно тези три състояния и какъв смисъл имат, ще видим нататък.

Читателят ще забележи, че алгоритмичните реализации на обхождането, освен масива за
обхождането, ползват още памет, в която отбелязват за всеки връх “докъде сме стигнали”,
тоест, кои излизащи ребра сме ползвали вече и кои, още не. Това е особено важно за DFS.
В аналогията с лабиринта, вратите, водещи навън от дадена стая, са номерирани и ние ги
отваряме в този ред; това означава да имаме по един брояч: за всяка стая. Допускаме, че
броячът иска само константна по големина памет, независимо от това какви числа ще съх-
ранява. Това е стандартно допускане в теорията на алгоритмите. При това допускане е ясно,
че паметта за всички броячи е пропорционална на n и не зависи от m. Като цяло, паметта
за състоянията на върховете плюс паметта за броячите/указателите е пропорционална на n,
тоест, линейна функция на n, и не зависи от m.

Приемаме, че множеството от върховете е t1, 2, . . . ,nu. Досега означавахме върховете с, при-
мерно, u1, u2, v1 и така нататък, но в контекста на графовите алгоритми понякога е по-
смислено върховете да са целите положителни числа от 1 до n, а не променливи с индекси 1
до n. В крайна сметка, в софтуера, който реализира алгоритми върху графи, върховете са
променливи от тип int.

Обхождането винаги започва от един връх, който ще наричаме стартов връх. Този връх
може да е част от входа на алгоритъма, но може да бъде избран от алгоритъма по някакъв
начин: примерно, произволен връх или връх 1 (което е същото, защото идентификаторите
на върховете са раздадени произволно). Да кажем, че стартовият връх е 1.

Общата схема на обхожданията, които ще разгледаме, е следната. Това не е конкретен
алгоритъм, а нещо по-абстрактно: именно схема, по която за изградени няколко алгоритъма.

:Ако графът е представен със списъци на съседство, това не е брояч, а е указател в списъка на дадения
връх. Примери ще видим, когато разгледаме реализациите на BFS и DFS.
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За изход от схемата не говорим; изход имат конкретните алгоритми BFS и DFS, които ще
видим нататък.

Алгоритмична схема 1: Схема за обхождане на графи

Вход: ориентиран мултиграф G.
Променливи: множество от върхове S, връх x, булев масив visitedr1, . . . ,ns.
Инициализирай visited с False.

SÐ t1u, visitedr1s Ð True.

¶ Ако S “ H, прекрати алгоритъма.

· В противен случай, извади елемент от S и го сложи в x.

¸ За всяко ребро px,yq:
À ако visitedrys “ False, то слагаме y в S и правим visitedrys Ð True,
Á иначе, прескачаме y.

¹ Отиваме на ¶.

Ще покажем, че тази алгоритмична схема е коректна в смисъл, че алгоритъм, изграден по
нея, не зацикля и обхожда всичко. Но първо да видим както означава “всичко”.

Разсъждаваме над това, каква част от графа ще обходи алгоритъм, изграден по
Схема 1. Дали непременно ще обходи целия граф? В метафората с лабиринта:
дали ще обходим целия лабиринт, ако тръгнем от стая 1 и само минаваме по
коридори от стая в стая, съблюдавайки посоките на коридорите, и евентуално се
телепортираме обратно в стая, в която вече сме били? Отговорът е: не непремен-
но. Да се върнем на разглеждането на графи. Ако графът G е неориентиран (това
е частен случай), ще го обходим целия, започвайки от връх 1, тстк G е свързан.
В общия случай обаче графът не е свързан и ще обходим само свързаната ком-
понента, в която е връх 1. Ако разглеждаме ориентирани графи, въпросът какво
ще обходим, стартирайки във връх 1, е по-сложен и “според зависи”. Ако графът
е силно свързан, ще го обходим целия задължително. Ако не е силно свързан, със
сигурност ще обходим силно свързаната компонента, в която се намира връх 1, но
може и да излезем извън нея и да обходим и други силно свързани компоненти;
а може да не излезем от нея изобщо. Като пример да разгледаме Фигура 3.9:

• ако обхождането започне във връх u:, ще обходим целия граф, ще “излезем”
от u (и от червената силно свързана компонента) през ребрата e1, e2, e3 и ще
обходим и синята силно свързана компонента; тоест, ще обходим целия граф.

• ако започне в някой от другите върхове, няма да може да излезе от синята
силно свързаната компонента, защото няма да може да прекоси никое от
ребрата e1, e2 или e3 заради посоката, така че обходена ще се окаже само
синята силно свързана компонента.

Със сигурност не може да се прехвърляме от една слабо свързана компонента в
друга поради липсата на ребра от кой да е връх на едната до кой да е връх на
другата.

:С други думи, ако връх 1 е връх u.
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Накратко: ако говорим за неориентиран граф, ще обходим точно свързаната ком-
понента, в която е връх 1; ако говорим за ориентиран граф, ще обходим точно
тази част на графа, която е достижима от връх 1.

Да се върнем на изследването на коректността на алгоритмите, изградени по Схема 1. Ето
доказатество.

Теорема 58: Коректност на алгоритмите по Схема 1

Всеки алгоритъм за обхождане, изграден стриктно по Схема 1, е коректен.

Доказателство: Нека AlgX е произволен алгоритъм, изграден стриктно по Схема 1. Ще
покажем, че AlgX не зацикля и обхожда всичко, което един коректен алгоритъм за обхождане
трябва да обходи.

Това, че зацикляне е невъзможно, е очевидно: в S “влизат” само непосетени върхове и, веднъж
влезли, те стават посетени; освен това е невъзможно посетен връх да стане отново непосетен.
Поради това, при всяко достигане на ред · един връх бива изваден от S и този връх никога
вече няма да влезе в S. Освен това, множеството от върховете е крайно. Ерго, рано или късно
алгоритъмът ще прекрати работата си на ред ¶.

Ще покажем, че алгоритъмът обхожда всичко, което е достижимо от връх 1. Както видяхме,
това “всичко” зависи доста от конкретиката в ориентирания случай, така че за простота на
аргумента ще разгледаме частния случай, в който G е неориентиран. Нещо повече, БОО
допускаме, че G е свързан. Тогава това, което трябва да покажем е, че алгоритъм, изграден
по Схема 1, ще обходи целия граф.

Да допуснем противното: в края на алгоритъма съществува връх i, който е непосетен в
смисъл, че visitedris “ False. Но очевидно visitedr1s “ True в края на алгоритъма, така че
i ­“ 1. Тъй като G е свързан, то съществува път p между върхове 1 и i. Забележете, че за
всеки връх j P Vppq е вярно, че visitedrjs P tFalse,Trueu: това е вярно за всеки момент от
работата на алгоритъма, а не само за края. Съгласно Наблюдение 10, в края на алгоритъма
в p има ребро pk, `q, такова че visitedrks “ True, а visitedr`s “ False.

В самото начало на алгоритъма всеки връх има visited стойност False. След това, връх
получава visited стойност True тстк влиза в S – това е елементарно да се докаже по индукция
по изпълнението на цикъла на редове ¶–¹. При махане на връх от S, алгоритъмът вкарва
в S всички негови съседи, които не са били в S досега, и присвоява True на техните visited
стойности (редове ¸ и À).

Но в края на алгоритъма множеството S е празно, така че връх k е бил сложен в S и после е
бил изваден от S, като при изваждането му от S всички негови съседи, които са имали visited
стойност False, са получили visited стойност True. Следователно, след изваждането на k
от S и преди да се прави нещо друго, всички съседи на k се оказват с visited стойност True.
Но ` е съсед на k в графа, щом има ребро pk, `q в пътя. Следователно, visitedr`s е True при
изваждането на k от S, и остава True до края на алгоритъма, в противоречие с допускането,
че visitedr`s “ False в края на алгоритъма. 2

4.2.1 BFS

BFS е алгоритъмът за обхождане на графи в ширина. Той е изграден съгласно Схема 1,
като множеството S е реализирано чрез абстрактен тип данни опашка (FIFO). Името идва
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от Breadth-First Search:.

Как работи BFS. Много общо казано, той започва от дадения стартов връх, обхожда
неговите съседи, като при това обхожда ребрата, с които ги достига, после обхожда съседите
на съседите (различни от стартовия връх), и така нататък, обхождайки върховете по нарас-
тване на разстоянията от стартовия връх. Версията на BFS, която ще разгледаме, ползва не
две, а три състояния за всеки връх i:

1. i е непосетен. Всички върхове в началото са непосетени. Условно казваме, че непосете-
ните върхове са бели.

2. i е посетен, но още не сме приключили с него. В метафората с лабиринта, такова е
състоянието на стая, в която вече сме били, но все още не сме използвали всички
врати, водещи навън от нея; с други думи, не сме обходили коридорите, излизащи от
нея. Условно казваме, че върховете в това състояние са сиви.

3. i е посетен и вече сме приключили с него. В метафората с лабиринта, това е стая, в
която сме били и освен това сме обходили всички коридори, излизащи от нея. Условно
казваме, че върховете в това състояние са черни.

И така, BFS, който ще разгледаме, ползва масив colourr1, . . . ,ns, всеки елемент от който има
точно една от стойностите white, grey и black.

Дърво на обхождането на BFS. BFS изгражда и така нареченото дърво на обхождане-
то. Ако графът е неориентиран, това е покриващо дърво за свързаната компонента, съдър-
жаща стартовия връх. То е кореново дърво с корен стартовия връх, а ребро e от графа е в
дървото тстк BFS открива бял връх чрез e. С други думи, дървото на обхождането показва
как BFS е откривал непосетени върхове. Забележете, че това дърво касае само обхождане-
то на върховете! Всяко ребро (от свързаната компонента, съдържаща стартовия връх) бива
обходено от BFS, но не всяко ребро влиза в дървото на обхождането.

Тук се вижда защо за кореновите дървета казахме на стр. 124, че имат неявна ориентация
– хем са ориентирани графи, хем не са. Дървото на обхождането на неориентиран граф G

е подграф на G и като такъв трябва да е от същия вид, тоест, неориентиран граф. Ако все
пак се опитаме да дадем ориентация на ребрата на покриващото дърво, естествено е тя да
е навън от корена, защото това е посоката, в която откриваме нови върхове; с други думи,
дървото на обхождането трябва да е арборесценция. Както ще видим обаче, BFS го изгражда
като ориентиран граф, но с точно обратната ориентация, а именно от листата към корена; с
други думи, BFS строи антиарборесценция.

Ако графът е ориентиран, дървото на обхождането е арборесценция, чийто корен е стар-
товият връх и чиито върхове са точно тези върхове, които са достижими от стартовия връх.
И в този случай, ребро e от графа е в дървото тстк BFS открива бял връх чрез e.

И при неориентираните, и при ориентираните графи, дървото на обхождането е подст-
руктура (на графа), която ни дава някаква възможно най-икономична достижимост; “най-
икономична” в смисъл, че се състои от минимален брой ребра. При неориентираните графи
достижимостта е двупосочна в смисъл, че може да отидем от кой да е връх на свързана-
та компонента, в която е стартовия връх, до който и да е друг връх на тази компонента,
ползвайки само ребра на дървото. При ориентираните графи достижимостта е еднопосочна:

:А не Breadth-First Traversal, което би било коректно, ако говорим за graph traversal. Терминът “search”
се ползва по исторически причини.
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можем да отидем от стартовия връх до кой да е друг връх, достижим от него, ползвайки
само ребра на дървото.

Накратко: независимо от това, дали графът е неориентиран или ориентиран, BFS изграж-
да антиарборесценция чрез масив на родителите πr1, . . . ,ns, която е репрезентация или на
кореново покриващо дърво с корен стартовия връх, ако графът е неориентиран, или на ар-
боресценция с корен стартовия връх, ако графът е ориентиран.

Подробностите по реализацията на BFS. Освен масивите colourr1, . . . ,ns и πr1, . . . ,
ns, BFS попълва и един масив dr1, . . . ,ns. В Теорема 59 доказваме, че в края на алгоритъ-
ма, dr1, . . . ,ns е масив от разстоянията по отношение на избрания начален връх 1. Ако G е
неориентиран, това са разстоянията между връх 1 и останалите върхове, съгласно Определе-
ние 23. Ако G е ориентиран, това са разстоянията от връх 1 до останалите върхове, съгласно
Определение 97.

Масивите colourr1, . . . ,ns, πr1, . . . ,ns и dr1, . . . ,ns са изходът на BFS. Те предоставят полезна
информация за графа и конкретното извършено обхождане. Масивът colourr1, . . . ,ns съдър-
жа информация за достижимостта от връх 1. В края на BFS, точно тези върхове i, за които
colourris “ black, са върховете, които са достижими от връх 1, а за останалите върхове i
е вярно, че colourris “ white. Следователно, ако G е неориентиран, “черните върхове” при
приключване на алгоритъма са върховете на свързаната компонента, на която принадлежи
стартовия връх 1. Ако обаче е известно предварително, че G е неориентиран и свързан, или
ориентиран и силно свързан, би било излишно да връщаме colourr1, . . . ,ns, защото знаем
какво ще съдържа: само стойности black.

Допускаме, че графът-вход G е представен чрез списъци на съседство. Не е невъзможно да
е представен и чрез матрица на съседство, но в примерите за работата на BFS, които ще
видим нататък, ще смятаме, че е представен със списъци. Матрицата на инцидентност не е
подходящо средство за представяне на графа, защото чрез нея не откриваме бързо съседите
на даден връх.

Както ще видим в примерите, конкретиката на списъците на съседство е важна за това,
как именно ще работи BFS върху даден граф. Точната форма на дървото на обхождането
зависи от списъците, тоест, от представянето на ниско ниво. Само от рисунката на графа не
можем да кажем какво е дървото.

Ето описание на BFS чрез така наречения псевдокод. Псевдокод е описание на алгоритъм,
което хем е достатъчно ясно и недвусмислено, така щото да можем да програмираме с лекота
този алгоритъм на някакъв подходящ конкретен език за програмиране, хем не съдържа кон-
кретни особености на някакъв език за програмиране, което ни позволява да се съсредоточим
само върху алгоритъма. В този смисъл, описанието на псевдокод е междинно ниво между
най-общото описание на естествен език и съвсем конкретната програмна реализация на език
като C, Java или Python. Псевдокодът, който авторът на записките предпочита, е близък
до този от учебника по алгоритми на Cormen, Leiserson, Rivest и Stein [16]. Той (стилът на
псевдокода) се отличава с икономичност, яснота и естественост (примерно, броим от 1 като
на Pascal, а не от 0 като на C).

Псевдокодът на BFS ползва променлива Q от тип опашка (FIFO). Q реализира множес-
твото S от Схема 1. Q е абстрактен тип данни, който се характеризира с три примитива
Enqueue, Dequeue и IsEmpty, чиито имена трябва да са достатъчно индикативни за това
какво правят. Имплементацията остава скрита, както човек би очаквал от абстрактен тип
данни; тя не ни интересува в случая. “adjrxs” на ред 10 означава списъка на съседите на x.
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BFS(G “ pV,Eq: ориентиран мултиграф с възможни примки)
1 p˚ V “ t1, . . . ,nu. Стартовият връх е 1. ˚q
2 for i Ð 1 to n

3 colourris Ð white, dris Ð 8, πris Ð Nil
4 colourr1s Ð grey
5 dr1s Ð 0
6 създай празна опашка Q
7 EnqueuepQ, 1q
8 while not IsEmptypQq do
9 x Ð DequeuepQq
10 for y P adjrxs
11 if colourrys “ white
12 colourrys Ð grey
13 drys Ð drxs ` 1
14 πrys Ð x

15 EnqueuepQ,yq
16 colourrxs Ð black
17 return colour, π, d

Пример за работата на BFS. Да разгледаме подробно работата на BFS върху графа от
Фигура 4.14. За простота, графът е неориентиран и свързан. Вдясно са показани списъците
на съседство. Подредбата на върховете във всеки от тях е напълно произволна, но списъците
са важни, за да видим точно как работи BFS; без тях (тоест, само от рисунката на графа)
не може да определим точно дървото на обхождането.

Фигура 4.14 : Графът, върху който илюстрираме BFS.

1

4

6

2

7

5

3

1 : 4, 2
2 : 5, 1, 7, 4
3 : 5, 7
4 : 6, 1, 2, 7
5 : 2, 7, 3
6 : 7, 4
7 : 5, 2, 4, 3, 6

Първо BFS инициализира масивите colour, π и d на редове 2–3. Цветовете на върховете са
бели, също както в предишната фигура, предшествениците са Nil, което е показано чрез
знака за заземяване от електротехниката (в червено) до всеки връх, а d стойностите са 8 (в
синьо).
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1

4

6

2

7

5

3

1 : 4, 2
2 : 5, 1, 7, 4
3 : 5, 7
4 : 6, 1, 2, 7
5 : 2, 7, 3
6 : 7, 4
7 : 5, 2, 4, 3, 6

8

8

8

8

8

8

8

След това BFS променя colour d стойностите на връх 1 на ред 4, създава опашка Q на ред 6
и слага 1 в нея на ред 7.

1

4

6

2

7

5

3

1 : 4, 2
2 : 5, 1, 7, 4
3 : 5, 7
4 : 6, 1, 2, 7
5 : 2, 7, 3
6 : 7, 4
7 : 5, 2, 4, 3, 6

1

0

8

8

8

8

8

8

Q:

На ред 8 булевото условие е истина (опашката не е празна) и тялото на while-цикъла (редове
8–16) се изпълнява. На ред 9 връх 1 “излиза” от опашката (при което тя става празна, но до
следващото достигане на ред 8 в нея ще влязат върхове).

1

4

6

2

7

5

3

1 : 4, 2
2 : 5, 1, 7, 4
3 : 5, 7
4 : 6, 1, 2, 7
5 : 2, 7, 3
6 : 7, 4
7 : 5, 2, 4, 3, 6

x “ 1

0

8

8

8

8

8

8

Q:

Променливата x съдържа 1. Променливата y получава последователно стойностите на съсе-
дите на x, а именно 4 и 2, в този ред. Първо y става 4.
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1

4

6

2

7

5

3

1 : 4, 2
2 : 5, 1, 7, 4
3 : 5, 7
4 : 6, 1, 2, 7
5 : 2, 7, 3
6 : 7, 4
7 : 5, 2, 4, 3, 6

x “ 1 y “ 4

0

8

8

8

8

8

8

Q:

Булевото условие на ред 11 е истина, понеже връх 4 е бял, така че редове 12–15 се изпълняват,
в резултат на което цветът на 4 става сив, d стойността му става 1, предшественикът му става
връх 1, и 4 “влиза” в Q.

1

4

6

2

7

5

3

1 : 4, 2
2 : 5, 1, 7, 4
3 : 5, 7
4 : 6, 1, 2, 7
5 : 2, 7, 3
6 : 7, 4
7 : 5, 2, 4, 3, 6

x “ 1 y “ 4
4

0

1

8

8

8

8

8

Q:

Изпълнението отново е на ред 11 с y “ 2. Булевото условие отново е истина, понеже връх
2 е бял, така че редове 12–15 се изпълняват, в резултат на което цветът на 2 става сив, d
стойността му става 1, предшественикът му става връх 1, и 2 “влиза” в Q.

1

4

6

2

7

5

3

1 : 4, 2
2 : 5, 1, 7, 4
3 : 5, 7
4 : 6, 1, 2, 7
5 : 2, 7, 3
6 : 7, 4
7 : 5, 2, 4, 3, 6

x “ 1 y “ 2
2 4

0

1

8

1

8

8

8

Q:

Изпълнението отива на ред 16, където връх 1 става черен.
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1

4

6

2

7

5

3

1 : 4, 2
2 : 5, 1, 7, 4
3 : 5, 7
4 : 6, 1, 2, 7
5 : 2, 7, 3
6 : 7, 4
7 : 5, 2, 4, 3, 6

x “ 1 y “ 2
2 4

0

1

8

1

8

8

8

Q:

Изпълнението отива на ред 8. Q не е празна, така че тялото на while-цикъла (редове 8–16)
се изпълнява пак. x става 4, като 4 “излиза” от Q.

1

4

6

2

7

5

3

1 : 4, 2
2 : 5, 1, 7, 4
3 : 5, 7
4 : 6, 1, 2, 7
5 : 2, 7, 3
6 : 7, 4
7 : 5, 2, 4, 3, 6

x “ 4
2

0

1

8

1

8

8

8

Q:

Променливата y получава последователно стойностите на съседите на x, а именно 6, 1, 2 и
7, в този ред. Първо y става 6.

1

4

6

2

7

5

3

1 : 4, 2
2 : 5, 1, 7, 4
3 : 5, 7
4 : 6, 1, 2, 7
5 : 2, 7, 3
6 : 7, 4
7 : 5, 2, 4, 3, 6

x “ 4
2

y “ 6

0

1

8

1

8

8

8

Q:

Булевото условие на ред 11 е истина, понеже връх 6 е бял, така че редове 12–15 се изпълняват,
в резултат на което цветът на 6 става сив, d стойността му става 2, предшественикът му става
връх 4, и 6 “влиза” в Q.
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1

4

6

2

7

5

3

1 : 4, 2
2 : 5, 1, 7, 4
3 : 5, 7
4 : 6, 1, 2, 7
5 : 2, 7, 3
6 : 7, 4
7 : 5, 2, 4, 3, 6

x “ 4
6

y “ 6
2

0

1

2

1

8

8

8

Q:

При следващото достигане на ред 11, булевото условие е лъжа, понеже връх 1 не е бял, така
че при y “ 1 тялото на for-цикъла на редове 12–15 не се изпълнява.

1

4

6

2

7

5

3

1 : 4, 2
2 : 5, 1, 7, 4
3 : 5, 7
4 : 6, 1, 2, 7
5 : 2, 7, 3
6 : 7, 4
7 : 5, 2, 4, 3, 6

x “ 4
6

y “ 1
2

0

1

2

1

8

8

8

Q:

При следващото достигане на ред 11, булевото условие е лъжа, понеже връх 2 не е бял, така
че при y “ 2 тялото на for-цикъла на редове 12–15 пак не се изпълнява.

1

4

6

2

7

5

3

1 : 4, 2
2 : 5, 1, 7, 4
3 : 5, 7
4 : 6, 1, 2, 7
5 : 2, 7, 3
6 : 7, 4
7 : 5, 2, 4, 3, 6

x “ 4
6

y “ 2
2

0

1

2

1

8

8

8

Q:

При следващото достигане на ред 11, булевото условие е истина, понеже връх 7 е бял, така
че при y “ 7 тялото на for-цикъла на редове 12–15 се изпълнява.
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1

4

6

2

7

5

3

1 : 4, 2
2 : 5, 1, 7, 4
3 : 5, 7
4 : 6, 1, 2, 7
5 : 2, 7, 3
6 : 7, 4
7 : 5, 2, 4, 3, 6

x “ 4
6

y “ 7
27

0

1

2

1

2

8

8

Q:

След което връх 4 става черен и BFS “приключва” с него.

1

4

6

2

7

5

3

1 : 4, 2
2 : 5, 1, 7, 4
3 : 5, 7
4 : 6, 1, 2, 7
5 : 2, 7, 3
6 : 7, 4
7 : 5, 2, 4, 3, 6

x “ 4
6

y “ 7
27

0

1

2

1

2

8

8

Q:

След това BFS изважда връх 2 от опашката.

1

4

6

2

7

5

3

1 : 4, 2
2 : 5, 1, 7, 4
3 : 5, 7
4 : 6, 1, 2, 7
5 : 2, 7, 3
6 : 7, 4
7 : 5, 2, 4, 3, 6

x “ 2
67

0

1

2

1

2

8

8

Q:

y взема стойностите 5, 1, 7 и 4, в този ред. Първо y става 5, който е бял връх и for-цикълът
на редове 12–15 се изпълнява.
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1

4

6

2

7

5

3

1 : 4, 2
2 : 5, 1, 7, 4
3 : 5, 7
4 : 6, 1, 2, 7
5 : 2, 7, 3
6 : 7, 4
7 : 5, 2, 4, 3, 6

x “ 2
675

y “ 5

0

1

2

1

2

2

8

Q:

Върховете 1, 7 и 4 не са бели, така че те се прескачат.

1

4

6

2

7

5

3

1 : 4, 2
2 : 5, 1, 7, 4
3 : 5, 7
4 : 6, 1, 2, 7
5 : 2, 7, 3
6 : 7, 4
7 : 5, 2, 4, 3, 6

x “ 2
675

y “ 4

0

1

2

1

2

2

8

Q:

После 2 става черен.

1

4

6

2

7

5

3

1 : 4, 2
2 : 5, 1, 7, 4
3 : 5, 7
4 : 6, 1, 2, 7
5 : 2, 7, 3
6 : 7, 4
7 : 5, 2, 4, 3, 6

x “ 2
675

0

1

2

1

2

2

8

Q:

После while-цикълът се изпълнява с x “ 6.
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1

4

6

2

7

5

3

1 : 4, 2
2 : 5, 1, 7, 4
3 : 5, 7
4 : 6, 1, 2, 7
5 : 2, 7, 3
6 : 7, 4
7 : 5, 2, 4, 3, 6

x “ 6
75

0

1

2

1

2

2

8

Q:

Тъй като и двата съседа на връх 6 не са бели, нищо не става, освен че връх 6 става черен.

1

4

6

2

7

5

3

1 : 4, 2
2 : 5, 1, 7, 4
3 : 5, 7
4 : 6, 1, 2, 7
5 : 2, 7, 3
6 : 7, 4
7 : 5, 2, 4, 3, 6

x “ 6
75

0

1

2

1

2

2

8

Q:

После while-цикълът се изпълнява с x “ 7.

1

4

6

2

7

5

3

1 : 4, 2
2 : 5, 1, 7, 4
3 : 5, 7
4 : 6, 1, 2, 7
5 : 2, 7, 3
6 : 7, 4
7 : 5, 2, 4, 3, 6

x “ 7
5

0

1

2

1

2

2

8

Q:

Съседите на 7 се “обработват” в реда 5, 2, 4, 3 и 6, като само 3 е бял и не се прескача.
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1

4

6

2

7

5

3

1 : 4, 2
2 : 5, 1, 7, 4
3 : 5, 7
4 : 6, 1, 2, 7
5 : 2, 7, 3
6 : 7, 4
7 : 5, 2, 4, 3, 6

x “ 7
3 5

y “ 3

0

1

2

1

2

2

3

Q:

После BFS приключва с връх 7.

1

4

6

2

7

5

3

1 : 4, 2
2 : 5, 1, 7, 4
3 : 5, 7
4 : 6, 1, 2, 7
5 : 2, 7, 3
6 : 7, 4
7 : 5, 2, 4, 3, 6

x “ 7
3 5

y “ 6

0

1

2

1

2

2

3

Q:

После BFS изважда връх 5 от опашката, нищо не става със съседите му, после изважда връх
3, и с неговите съседи не прави нищо, и после опашката е празна и алгоритъмът приключва.

1

4

6

2

7

5

3

1 : 4, 2
2 : 5, 1, 7, 4
3 : 5, 7
4 : 6, 1, 2, 7
5 : 2, 7, 3
6 : 7, 4
7 : 5, 2, 4, 3, 6

0

1

2

1

2

2

3

Q:

Дървото на обхождането T , което масивът π реализира, изглежда така, ако мислим за него
като за подграф::

:Щом е подграф на неориентиран граф, дървото трябва също да е неориентиран граф. Това, че го
представяме като антиарборесценция, е друго нещо.
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1

4

6

2

7

5

3

T

Дървото обаче можеше да бъде следното T1, ако списъкът на връх 1 беше 1 : 2, 4 :

T1

1

4

6

2

7

5

3

Причината е ясна: ако в списъка на 1 връх 2 се появява преди 4, то в опашката 2 щеше да
влезе преди 4, така че и да излезе преди 4, следователно и двата бели съседа: 7 и 5 на 2 щяха
да станат сиви и при това и двете ребра p2, 7q и p2, 5q да влязат в дървото. После, когато x
стане 4, връх 7 вече би бил сив, така че p4, 7q не би влязло в дървото.

И така, точната форма на дървото зависи от конкретиката на списъците, защото е въз-
можно BFS да “тръгне” първо насам или първо натам, което, естествено, се отразява в дър-
вото.

Да разгледаме тези две дървета на обхождането, които са построени от BFS при различни
списъци на съседство, едно до друго:

:Става дума за момента от работата на BFS, в който x “ 2; в този момент и 7, и 5 са бели.
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1

4

6

2

7 5

3

1

4

6

2

7 5

3

T T1

Игнорирайте това, че дърветата са изоморфни и като коренови дървета (вижте Определе-
ние 60), това се е получило случайно, понеже примерът е малък. Същественото е друго:
дърветата са различни, но с една и съща височина. Това вече не е случайно, а следва от
Теорема 59.

Да си представим опашката Q от BFS по друг начин. Както знаем от Теорема 58, BFS
обхожда всички върхове (щом G е неориентиран и свързан), така че всеки връх от VpGq
в някакъв момент влиза в Q и в някакъв следващ момент излиза от Q. Да си представим
редицата от върховете на графа в реда, в който влизат в Q, само че написана отдясно
наляво. За примера на BFS, който разгледахме преди малко, тази редица е

3, 5, 7, 6, 2, 4, 1
Ð−−−−−−−−−− (4.7)

Примерът за работата на BFS, който видяхме преди малко, показваше—това е доста нефор-
мално казано—опашката като тунел, в който движението на върховете е отляво надясно.
От друга страна можем да си представим, че върховете са в неподвижна редица, а тунелът
се движи над тях в посока отдясно наляво; (4.7) илюстрира точно тази представа.

Фигура 4.15 показва опашката, представена чрез зелена правоъгълна кутия, в избрани
моменти от работата на BFS върху графа от Фигура 4.14, като опашката се движи над
върховете отдясно наляво. Под името на всеки връх е написано разстоянието между него
и връх 1 в синьо (Теорема 59 казва, че това разстояние е равно на d стойността на върха
в края на алгоритъма). Цветовете на върховете във всеки момент точно съответстват на
състоянията им:

• в началото всички върхове са бели,

• после белите върхове са тези, които не са били в опашката, сивите са тези в опашката,
а черните са тези, които са излезли от опашката

• в края всички върхове са черни.
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Фигура 4.15 : Опашката по време на BFSpGq, където G е графът от Фиг. 4.14.
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Фигура 4.15 навежда на мисълта, че BFS обработва върховете по нарастващи разстояния от
избрания начален връх. Лема 20 доказва това формално. Трябват ни няколко дефиниции.
Нека входът G е неориентиран и свързан. Нека dmax “ max tdistp1, iq | 1 ď i ď nu. Очевидно
е, че за всяко k P t0, . . . ,dmaxu, в G има поне един връх на разстояние k от връх 1. Тогава
можем да дефинираме разбиване tL0,L1, . . . ,Ldmaxu на VpGq по разстоянията от връх 1 така:

@k P t0, . . . ,dmaxu : Lk “ tj P VpGq |distp1, jq “ ku

Ще казваме, че Lk е k-ият слой по отношение на връх 1. Фигура 4.16 показва слоевете на
графа от Фигура 4.14.

Фигура 4.16 : Слоевете на графа от Фигура 4.14.
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BFS намира разстоянията. Очевидно е, че за всеки връх i, dris се инициализира с 8,
а впоследствие dris получава окончателната си стойност, която е естествено число, или на
ред 4, или на ред 13; веднъж получена, тя не се променя до края на работата на алгоритъма.

Определение 103: Моментите t0, t1, . . . , tk

За всяко k P t0, . . . ,dmaxu, нека tk е първият момент от работата на BFS, при който
всеки връх от Lk е получил своята d стойност и изпълнението е на ред 8.

Ясно е, че t0, t1, . . . , tdmax са добре дефинирани. Също така е ясно, че t0 ă t1 ă ¨ ¨ ¨ ă tdmax ,
но това вече няма да приемаме за очевидно, а ще докажем. Нека T “ tt0, t1, . . . , tdmaxu.

Още дефинираме, че във всеки момент от работата на алгоритъма, VpQq е множеството
от върховете, които се съдържат в Q. Още дефинираме, че Tpπ,kq означава кореновото дърво
с множество от върхове L0 Y ¨ ¨ ¨ Y Lk, което бива реализирано в момент tk от масива π; тъй
като в общия случай L0 Y ¨ ¨ ¨ Y Lk Ă VpGq, става дума само за тези елементи на π, чиито
индекси са върхове от L0 Y ¨ ¨ ¨ Y Lk. Тъй като L0 Y ¨ ¨ ¨ Y Ldmax “ VpGq, вярно е, че Tpπ,dmaxq е
окончателното дърво на обхождането.

Лема 20: За доказателството на Теорема 59

За всяко k P t0, . . . ,dmaxu, в момента tk:

1.
Ť

0ďiďk´1 Li съдържа точно черните върхове, Lk съдържа точно сивите върхове и
Lk “ VpQq, а

Ť

k`1ďiďdmax
Li съдържа точно белите върхове.

2. @i P L0 Y ¨ ¨ ¨ Y Lk : dris “ distGp1, iq “ distTpπ,kqp1, iq.

3. Моментите от T, които са се случили, са t0, t1, . . . , tk, и то в този ред.

Доказателство: Ще докажем твърдението с индукция по k, за k P t0, . . . ,dmaxu. Забеле-
жете, че правим доказателство по индукция върху крайно множество.

База k “ 0. Lk е L0, а очевидно L0 “ t1u. Моментът tk е t0: моментът, в който изпълнението
за пръв път е на ред 8. Очевидно това е единственият момент от T, който се е случил, така
че 3 е вярно.

Ще докажем 1. От една страна, множеството
Ť

0ďiď´1 Li е празното множество, а от друга
страна от псевдокода ясно се вижда, че в този момент черни върхове няма. От една страна,
L0 е t1u, а от друга страна, от псевдокода ясно се вижда, че в този момент единственият сив
връх е 1, а също така VpQq “ t1u. От една страна,

Ť

1ďiďdmax
Li е VpGqzt1u, а от друга страна,

от псевдокода ясно се вижда, че в този момент всички върхове без 1 са бели.
Ще докажем 2. Тъй като L0 Y ¨ ¨ ¨ Y Lk е L0, което е t1u, трябва да се покаже, че dr1s “

distGp1, 1q “ distTpπ,0qp1, 1q. От една страна, dr1s “ 0 заради присвояването на ред 5, а от
друга страна, distGp1, 1q “ 0 (Наблюдение 12); следователно, dr1s “ distGp1, 1q. Да разгледаме
Tpπ, 0q. Това е кореновото дърво с единствен връх 1, който се явява и корен, така че масивът
π го представлява чрез първата си клетка, в която има Nil заради първия for-цикъл (редове
2–3). Вярно е, че distTpπ,0qp1, 1q “ 0 (Наблюдение 12). Базата “излиза”. 3

Индуктивно предположение Да допуснем, че конюнкцията от 1, 2 и 3 е истина за някое
k P t0, . . . ,dmax ´ 1u.

Индуктивна стъпка Ще разгледаме работата на алгоритъма от момента tk нататък. Ще
покажем, че в момент tk`1 твърденията 1, 2 и 3 са верни за стойност на аргумента k ` 1.
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Подробно формално доказателство тук би използвало втора, вложена индукция, за тази цел,
заради вложеността на цикли. Това би направило цялото доказателство прекалено тежко за
четене, така че ще има известна непрецизност в изложението.

Разглеждаме момента tk. Съгласно част 3 от индуктивното предположение, моментите
t0, t1, . . . , tk´1 вече са се случили, а tk`1, tk`2, . . . , tdmax още не са се случили.

Фигура 4.17 илюстрира състоянието на нещата в момента tk. L0, . . . , Lk´1 са точно черните
върхове, Lk са сивите върхове и Lk`1, . . . , Ldmax са белите върхове. Щом k ă dmax, то Lk`1 ­“ H;
ерго, бели върхове има. Върховете в Q са точно върховете от Lk и за удобство са именувани
u1, . . . , ut. Да кажем, че в Q те са наредени именно в този ред, така че първо ще бъде изваден
u1, после u2, и така нататък, после ut.

Tpπ,kq е очертано в червено. Неговите листа не са непременно върховете от Lk, въпреки
че всеки връх от Lk се явява негово листо; може в L0, . . . , Lk´1 да има върхове, които нямат
деца по отношение на Tpπ,kq. На фигурата е показан такъв връх в L1.

Фигура 4.17 : BFS в момента tk.

T
pπ

,k
q

1

L0 L1 Lk “ VpQq Lk`1

u1 “ αp`q

Ldmax

u2

adjru1s X Lk`1

черни

сиви

белиut

`

u3

Първото ключово наблюдение е, че всеки връх от Lk`1 има съсед в Lk, инак не би бил в Lk`1
:.

Заключаваме, че @` P Lk`1 Di P t1, . . . , tu : ` P adjruis.

За всеки връх ` P Lk`1 дефинираме върха αp`q така

αp`q
def
“ umin tiPt1,...,tu | `Padjruisu

Второто ключово наблюдение е, че нито един връх от Lk не е съсед на нито един връх от
Lk`2Y¨ ¨ ¨YLdmax , така че множествата tadjruisXLs | 1 ď i ď tu, за k`2 ď s ď dmax, са празни.

От тези две наблюдения следва, че while-цикълът (редове 8–16), изваждайки върховете u1,
. . . , ut един по един от опашката, слагайки ги в променливата x (ред 9), чрез вложения for-
цикъл (редове 10–15) слага всеки връх ` от Lk`1 (но не и от Lk`2, . . . , Ldmax) в променливата
y (ред 10) в някакъв момент t`, като очевидно tk ă t` ă tk`1. Тъй като ` има бял цвят в
момента t`, условието на ред 11 е истина и тялото на if -а (редове 12–15) се изпълнява. Тогава
в сила са следните твърдения.

:Обратното не е вярно. В Lk може да има върхове, които нямат съседи в Lk`1, като u2 на Фигура 4.17.
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• ` става сив връх на ред 12.

• dr`s става drαp`qs ` 1 на ред 13, но от индуктивното допускане знаем, че drαp`qs “ k,
така че dr`s става k` 1. Но distGp1, `q е именно k` 1, защото ` P Lk`1 по конструкция.

• πp`q става αp`q на ред 14, при което масивът π вече реализира дърво, в което разстоя-
нието между 1 и ` е k` 1, съвпадайки с distGp1, `q.

• ` влиза в опашката на ред 15.

Когато и последният връх от Lk`1 “мине” през y, стане сив и получи d стойност k`1 и родител-
връх от Lk чрез π, изпълнението отива на ред 8 и това е моментът tk`1. Заключаваме, че 3
е изпълнено за аргумент k` 1.

Всички върхове от Lk са черни в tk`1, така че черните върхове са точно върховете от
Ť

0ďiďk Li. Върховете от Lk`1 са точно сивите върхове и те са точно върховете в Q, така
че VpQq “ Lk`1. Белите върхове са точно върховете от

Ť

k`2ďiďdmax
Li. Заключаваме, че 1 е

изпълнено за аргумент k` 1.
И накрая, забелязваме, че @i P Lk`1 : dris “ distGp1, iq “ distTpπ,k`1qp1, iq. Нещо повече,

алгоритъмът не е променил нито d стойността, нито π стойността на връх от L0 Y ¨ ¨ ¨ Y Lk
между моментите tk и tk`1, защото тези върхове не са бели по това време, така че if -ът ги
прескача. Тогава @i P L0Y ¨ ¨ ¨ Y Lk`1 : dris “ distGp1, iq “ distTpπ,k`1qp1, iq. Заключаваме, че 2 е
изпълнено за аргумент k` 1. 2

Следствие 16

При приключване на работата на BFS, в сила е t0 ă t1 ă ¨ ¨ ¨ ă tdmax .

Теорема 59: BFS намира разстоянията в графа

Нека G “ pV,Eq е свързан неориентиран граф. Нека е изпълнен BFSpGq, като T е
дървото на обхождането. След приключване на алгоритъма, за всеки връх i P V е
вярно, че dris “ distGp1, iq и distGp1, iq “ distT p1, iq.

Доказателство: Ползваме Лема 20. Разглеждаме момента tdmax . Съгласно нея, в този
момент е вярно, че @i P L0 Y ¨ ¨ ¨ Y Ldmax е вярно, че dris “ distGp1, iq и distGp1, iq “ distT p1, iq.
Но L0 Y ¨ ¨ ¨ Y Ldmax “ V. 2

Допълнение 28: Алтернативно д-во, че BFS намира разстоянията

Теорема 59 има дълго и тромаво доказателство, което освен тове не е особено прецизно,
понеже взема доста факти за очевидни. В това допълнение ще видим друго доказа-
телство на факта, че BFS намира разстоянията. То е взето от учебника на Cormen,
Leiserson и Rivest [16, стр. 598–600]. По същество, това е доказателство с допускане на
противното. То е очевидно по-просто, елегантно и прецизно. От друга страна, доказа-
телството с (нещо като) инвариант на цикъла, което вече видяхме, по-добре разкрива
същността на BFS.

Лема 21

Всеки път, когато изпълнението е на ред 8, @v P V : drvs ě distp1, vq.
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Доказателство: Ще докажем лемата по индукция по броя на достиганията на ред 8.

База. При първото достигане на ред 8 разглеждаме връх 1 отделно от останалите
върхове.

• Да разгледаме връх 1. Тъй като dr1s “ 0 (ред 5) и distp1, 1q “ 0, неравенството
dr1s ě distp1, 1q е в сила. 3

• Да разгледаме Vzt1u. За всеки v P Vzt1u е вярно, че drvs “ 8 заради присвоява-
нето на ред 3. Тогава drvs ě distp1, vq независимо от това дали v е достижим от 1
или не; с други думи, дали distp1, vq е различно от или равно на 8.

Поддръжка. Да допуснем, че твърдението е в сила в даден момент, в който изпълне-
нието е на ред 8 и while ще бъде изпълнен поне още веднъж. Последното влече, че Q
не е празна. На ред 9 изваждаме връх x от непразната опашка Q. Ефектът от работата
на алгоритъма на редове 10–16 е следният:

• всяко бяло дете y на x бива “обработено” на редове 12–15. drys получава стойност
drxs ` 1 на ред 13. По допускане, в този момент е вярно, че

drxs ě distp1, xq

Оттук

drxs ` 1 ě distp1, xq ` 1

което е същото като

drys ě distp1, xq ` 1

Но qdistp1, xq ` 1 ě distp1,yq, понеже, щом има път p от 1 до x, има и път от 1 до
y с дължина |p| ` 1. Тогава

drys ě distp1,yq

Доказахме, че за всеки връх y, който е бил “обработен” при изпълнение на теку-
щата итерация, drys ě distp1,yq.

• Сивите и черните деца на x не биват “обработвани” и техните d-стойности не биват
променяни в тялото на цикъла (редове 12–15), така че за тях неравенството остава
в сила. 2

Лема 22 казва, че във всеки момент от изпълнението на BFS, в опашката има върхове
или с една и съща d-стойност, или с точно две различни, но съседни по големина,
d-стойности, като по-малките предшестват по-големите в опашката. С други думи,
опашката “обработва” върховете по d-стойности. Което, както ще видим в Теорема 60,
е същото като да “обработва” върховете по ориентираните разстояния от 1.
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Лема 22: (Lemma 22.3 в [16, стр. 599])

Нека в произволен момент t от работата на BFS, опашката Q съдържа редицата
от върхове xu1,u2, . . . ,uky, като u1 е най-отдавна сложеният връх, а uk е най-
скоро сложеният връх. Тогава

dru1s ď dru2s ď ¨ ¨ ¨ ď druks ď dru1s ` 1

Доказателство: Както в Лема 21, и тук доказателството е по индукция по броя на
достиганията на ред 8.

Базата на индукцията е първото достигане на ред 8. В този момент опашката съдържа
само връх 1 и твърдението със сигурност е вярно. 3

Разглеждаме произволно достигане на ред 8, което не е последното. Нека това е в
момент t от изпълнението на BFS. Нека t 1 е моментът на следващото достигане на
ред 8. Очевидно опашката Q не е празна в момент t. Да кажем, че в момент t опашката
Q съдържа редицата на върхове xu1,u2, . . . ,uky. Индуктивното допускане е, че в този
момент е изпълнено

dru1s ď dru2s ď ¨ ¨ ¨ ď druks ď dru1s ` 1

На ред 9 връх u1 бива изваден от Q и сложен в променливата x. Вече опашката съ-
държа редицата xu2,u3, . . . ,uky, така че неравенствата по отношение на върховете в
опашката стават

dru2s ď ¨ ¨ ¨ ď druks ď dru1s ` 1

Имайки предвид това, че dru1s ď dru2s, имаме dru1s ` 1 ď dru2s ` 1, откъдето следва,
че

dru2s ď ¨ ¨ ¨ ď druks ď dru2s ` 1

Ерго, твърдението остава в сила веднага след изваждането на връх от опашката.
Да се убедим, че твърдението е в сила и в момента t 1. Ясно е, че всички изпълнения на
вътрешния цикъл (редове 10–15) вкарват нула или повече върхове в опашката Q. Това
са точно върховете от adjru1s, които са бели в момента t. Да кажем, че в опашката
влизат върхове z1, . . . , zb, и то в този ред, за някакво b ě 0. Тогава в момента t 1,
опашката съдържа следната редица от върхове

xu2,u3, . . . ,uk, z1, . . . , zby

Очевидно е, че drzis “ dru1s ` 1 за 1 ď i ď b, понеже при всяко достигане на ред 13,
за което говорим тук, x съдържа u1, а y съдържа някой от z1, . . . , zb. Имаме право да
кажем, че

dru2s ď ¨ ¨ ¨ ď druks ď drz1s “ drz2s “ ¨ ¨ ¨ “ drzbs “ dru1s ` 1

Това може да напишем и така

dru2s ď ¨ ¨ ¨ ď druks ď drz1s ď drz2s ď ¨ ¨ ¨ ď drzbs ď dru1s ` 1
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Както вече отбелязахме, dru1s ` 1 ď dru2s ` 1. В крайна сметка,

dru2s ď ¨ ¨ ¨ ď druks ď drz1s ď drz2s ď ¨ ¨ ¨ ď drzbs ď dru2s ` 1 2

Следствие 17

За всеки два различни върха u и v, ако по време на работата на BFS u влиза в
Q преди v, то drus ď drvs.

Доказателство: Следва веднага от Лема 22 и очевидния факт, че никой връх не
влиза в опашката повече от веднъж. 2

Теорема 60 и Теорема 61 са Theorem 22.5 в [16, стр. 599].
Теорема 60: Коректността на BFS за разстоянията

В момента на терминирането на BFS е вярно, че @v P V : drvs “ distp1, vq.

Доказателство: Да допуснем, че съществува връх v P V, такъв че drvs ­“ distp1, vq
при терминирането на BFS. БОО, нека v е такъв връх с минимална distp1, vq стойност;
с други думи, за всеки u P V, такъв че distp1,uq ă distp1, vq е вярно, че drus “ distp1,uq.
Очевидно v ­“ 1. Съгласно Лема 21, drvs ě distp1, vq. От това и допускането, че drvs ­“
distp1, vq следва, че drvs ą distp1, vq.
Щом v P V и v ­“ 1, съществува път p от 1 до v с дължина поне единица. БОО, нека p
е път от 1 до v с минимална дължина. Тогава |p| “ distp1, vq. Нека w е родителят на v
в p. Нека подпътят на p от 1 до w се казва q. Забележете, че |p| “ |q| ` 1.
Очевидно е, че най-къс път се състои от най-къси подпътища. Тогава q е най-къс път
от 1 до w, така че |q| “ distp1,wq. От това следва, че distp1, vq “ distp1,wq ` 1.
Но distp1, vq ą distp1,wq и v е избран като връх-нарушител с минимална dist-стойност.
Тогава w не е “нарушител”; тоест, drws “ distp1,wq. Изведените дотук факти изглеждат
така на един ред:

drvs ą distp1, vq “ distp1,wq ` 1 “ drws ` 1 (4.8)

Нека t е моментът от работата на BFS, в който w бива изваден от опашката (ред 9).
С други думи, променливата x получава съдържание w в момент t. Следните възмож-
ности за цвета на v в момент t са изчерпателни.

colorrvs “ white Тогава при изпълнението на foreach-цикъла (редове 10–15) в даден
момент pt ą t, променливата y ще получи съдържание v. При присвояването на ред 13
с y “ v е изпълнено drvs “ drws ` 1. Но това е в противоречие с (4.8). 

colorrvs “ gray В такъв случай v е бил оцветен в сиво на някоя предишна итерация
на while-цикъла, когато върхът в променливата x е бил някой a P V, като v е бил
y и е получил d-стойността си като drvs Ð dras ` 1. Но този a влиза в опашката
преди w, от което следва, съгласно Следствие 17, че dras ď drws, което е същото като
dras ` 1 ď drws ` 1. Тогава drvs ď drws ` 1, в противоречие с (4.8). 

colorrvs “ black Щом v е черен, той вече е бил вQ и е бил изваден оттам. Тогава v бива
изваден от Q преди w, което влече, че v влиза в Q преди w. Съгласно Следствие 17,
drvs ď drws, в противоречие с (4.8).  2
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Теорема 61: Коректността на BFS за дървото

След терминирането на BFS е вярно, че πr1, . . . ,ns реализира дърво на най-къси
пътища за G с корен 1.

Доказателство: За да докажем това, достатъчно е да докажем, че при терминира-
нето на алгоритъма, за всеки връх v ­“ 1 съществува най-къс път от 1 до v, в който
πrvs е предпоследният връх. Очевидно е, че за всеки връх v ­“ 1, стойността се πrvs се
присвоява на ред 14 и, веднъж присвоена, тя не се променя повече, достатъчно е да
докажем, че за всеки връх v ­“ 1, в момента, в който y съдържа v и ред 14 току-що е
бил изпълнен, πrvs е предпоследният връх в някой най-къс път от 1 до v.
Това ще докажем по индукция по разстоянията от 1. БОО, нека |V| ą 1. Нека hmax “

max tdistp1, vq | v P Vu. Нека Lh “ tv P V |distp1, vq “ hu. Ще докажем, че за всяко h P t1
, . . . ,hmaxu, за всеки връх v P Lh, в итерацията на foreach-цикъла, в която y съдържа v,
след изпълнението на ред 14 е вярно, че πrvs е предпоследният връх по някой най-къс
път от 1 до v.

Базата е h “ 1. Веднага виждаме, че L1 се състои точно от децата на 1 в G; с други
думи, L1 “ adjr1s. Наистина, при първото изпълнение на while-цикъла (редове 8–16),
променливата x съдържа 1, всички върхове от adjr1s са бели, така че биват “обработени”
от foreach-цикъла (редове 10–15), като за всеки v P L1, πrvs получава стойност 1. Но
реброто p1, vq е най-къс път от 1 до v, така че наистина 1 е предшественик на v по
някой най-къс път от 1 до v. 3

Индуктивното предположение е, че твърдението е вярно за някое h P t1, . . . ,hmax ´ 1u.

В индуктивната стъпка ще докажем твърдението за стойност на аргумента h ` 1.
Разглеждаме произволен v P Lh`1. Такъв съществува, защото h ` 1 ď hmax. Щом
distp1, vq “ h ` 1, съгласно Теорема 60, в края на алгоритъма drvs “ h ` 1. Тогава
очевидно стойността, която се присвоява на drvs на ред 13 по време на итерацията на
foreach-цикъла, в която y съдържа v, е h` 1.
Разглеждаме въпросната итерация на foreach-цикъла. Променливата x съдържа няка-
къв връх u. Очевидно drus “ h, щом drus`1 на ред 13 е h`1. От Теорема 60 и факта,
че d-стойностите не се менят след присвояването им на ред 13 следва, че distp1,uq “ h,
така че u P Lh. Прилагаме индуктивното предположение и заключаваме, че по време
на итерацията на foreach-цикъла, в която y съдържа v, πrus съдържа предпоследния
връх в най-къс път p от 1 до u; очевидно |p| “ h. От това и факта, че y P Lh`1,
заключаваме, че пътят p 1 “ p, v, чиято дължина е h ` 1, е най-къс от 1 до v; нещо
повече, връх u е предпоследният връх по него. Но по време на въпросната итерация
на foreach-цикъла, на ред 14, на πrvs се присвоява именно u. 2

4.2.2 DFS

DFS е алгоритъмът за обхождане на графи в дълбочина. Името идва от Depth-First Search.
За разлика от BFS, който е построен директно върху Схема 1 с реализация на множеството
S чрез опашка, DFS не се получава от Схема 1 директно – факт, който обосноваваме на
стр. 316. Въпреки че DFS не се получава директно от Схема 1, ние ще ползваме нейното
доказателство за коректност и за него.
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DFS наистина е свързан със стекова структура (LIFO), но имплементацията, която ще
разгледаме, е рекурсивен алгоритъм, който ползва неявно системния стек.

Интуитивно казано, DFS обхожда графа по начин, обратен на BFS. BFS e “предпазливо-
то” обхождане, при което обхождаме слой по слой навън от избрания начален връх. DFS е
“смелото” обхождане, при което—ако ползваме аналогията с лабиринта—попадайки в коя да
е стая,

• излизаме през първата неползвана врата, ако има такава, и отиваме в стая, в която или
не сме били, или вече сме били:

˛ ако не сме били, маркираме я като посетена и продължаваме по същия начин,

˛ а ако сме били, се връщаме обратно

• ако вече няма неизползвана врата, се връщаме колкото е възможно по-малко и опит-
ваме същото нещо, ако е възможно; когато сме отново в началната стая и вече няма
неизползвани врати, прекратяваме алгоритъма.

Реализацията на DFS, която ще разгледаме, ползва масив от цветове за върховете със същия
смисъл като при BFS и също изгражда дърво на обхождането. За разлика от BFS, DFS не
изчислява разстояния в графа; напълно възможно е да въведем и при него някакви слоеве от
върхове, но те не биха били от равноотдалечени от началния връх върхове, за разлика от BFS.
По правило, върху един и същи граф, BFS и DFS изграждат различни дървета, като това
на BFS е по-разклонено и ниско. Нещо повече. Ако графът е представен със списъци, DFS е
по-чувствителен към разликите в наредбите на върховете в списъците, като е възможно при
различни такива наредби получените дървета да имат различни височини (което при BFS е
невъзможно).

На въпроса, каква част от графа обхожда DFS, отговорът е точно същият като за BFS.

В общия случай, входът на DFS е ориентиран мултиграф с възможни примки, също като
BFS.

DFS(G “ pV,Eq)
1 p˚ V “ t1, . . . ,nu. ˚q
2 p˚ Стартовият връх е 1. ˚q
3 for i Ð 1 to n

4 colourris Ð white
5 πris Ð Nil
6 DFS-VISIT(G, 1)
7 return colour, π

DFS-VISIT(G “ pV,Eq, x P V)
1 colourrxs Ð grey
2 foreach y P adjrxs
3 if colourrys “ white
4 πrys Ð x

5 DFS-VISIT(G,y)
6 colourrxs Ð black

Ще разгледаме подробно работата на DFS върху графа от Фигура 4.14, за да направим
съпоставка с BFS. Трябва да имаме предвид, че алгоритъмът е рекурсивен, така че промен-
ливите x и y на функцията DFS-VISIT, която може да вика себе си, в различните нива́ на
рекурсията имат различни стойности. Резултатът от инициализацията изглежда по следния
начин (подобен на инициализацията на BFS, но без d стойностите):
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1

4

6

2

7

5

3

1 : 4, 2
2 : 5, 1, 7, 4
3 : 5, 7
4 : 6, 1, 2, 7
5 : 2, 7, 3
6 : 7, 4
7 : 5, 2, 4, 3, 6

Следва първото викане на рекурсивната функция, при което променливата x съдържа 1.
Връх 1 става сив:

1

4

6

2

7

5

3

1 : 4, 2
2 : 5, 1, 7, 4
3 : 5, 7
4 : 6, 1, 2, 7
5 : 2, 7, 3
6 : 7, 4
7 : 5, 2, 4, 3, 6

x “ 1

Съседите на x са 4 и 2, в този ред в списъка. Първо y става 4:

1

4

6

2

7

5

3

1 : 4, 2
2 : 5, 1, 7, 4
3 : 5, 7
4 : 6, 1, 2, 7
5 : 2, 7, 3
6 : 7, 4
7 : 5, 2, 4, 3, 6

x “ 1 y “ 4

Тъй като цветът на y е бял, изпълнението продължава с промяна на родителя на y на връх 1
на ред 3 на DFS-VISIT:
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1

4

6

2

7

5

3

1 : 4, 2
2 : 5, 1, 7, 4
3 : 5, 7
4 : 6, 1, 2, 7
5 : 2, 7, 3
6 : 7, 4
7 : 5, 2, 4, 3, 6

x “ 1 y “ 4

После DFS-VISIT вика себе си на ред 6, този път с втори аргумент връх 4. Ерго, във второто
викане x “ 4, но първото викане още не е приключило, така че x съществува едновременно
в две различни инкарнации, а именно x “ 1 в първото викане и x “ 4 във второто викане:

1

4

6

2

7

5

3

1 : 4, 2
2 : 5, 1, 7, 4
3 : 5, 7
4 : 6, 1, 2, 7
5 : 2, 7, 3
6 : 7, 4
7 : 5, 2, 4, 3, 6

x “ 1 y “ 4

x “ 4

На ред 1 цветът на 4 става сив:

1

4

6

2

7

5

3

1 : 4, 2
2 : 5, 1, 7, 4
3 : 5, 7
4 : 6, 1, 2, 7
5 : 2, 7, 3
6 : 7, 4
7 : 5, 2, 4, 3, 6

x “ 1 y “ 4

x “ 4

Пръв в списъка на връх 4 е връх 6. y става 6:
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1

4

6

2

7

5

3

1 : 4, 2
2 : 5, 1, 7, 4
3 : 5, 7
4 : 6, 1, 2, 7
5 : 2, 7, 3
6 : 7, 4
7 : 5, 2, 4, 3, 6

x “ 1 y “ 4

x “ 4 y “ 6

Тъй като 6 е бял, DFS-VISIT слага 4 в πr6s и вика себе си с втори аргумент 6:

1

4

6

2

7

5

3

1 : 4, 2
2 : 5, 1, 7, 4
3 : 5, 7
4 : 6, 1, 2, 7
5 : 2, 7, 3
6 : 7, 4
7 : 5, 2, 4, 3, 6

x “ 1 y “ 4

x “ 4 y “ 6

x “ 6

Вече x съществува в три инкарнации. Връх 6 става сив:

1

4

6

2

7

5

3

1 : 4, 2
2 : 5, 1, 7, 4
3 : 5, 7
4 : 6, 1, 2, 7
5 : 2, 7, 3
6 : 7, 4
7 : 5, 2, 4, 3, 6

x “ 1 y “ 4

x “ 4 y “ 6

x “ 6

y става 7:
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1

4

6

2

7

5

3

1 : 4, 2
2 : 5, 1, 7, 4
3 : 5, 7
4 : 6, 1, 2, 7
5 : 2, 7, 3
6 : 7, 4
7 : 5, 2, 4, 3, 6

x “ 1 y “ 4

x “ 4 y “ 6

x “ 6 y “ 7

Тъй като 7 е бял, DFS-VISIT слага 6 в πr7s и вика себе си с втори аргумент 7:

1

4

6

2

7

5

3

1 : 4, 2
2 : 5, 1, 7, 4
3 : 5, 7
4 : 6, 1, 2, 7
5 : 2, 7, 3
6 : 7, 4
7 : 5, 2, 4, 3, 6

x “ 1 y “ 4

x “ 4 y “ 6

x “ 6 y “ 7

x “ 7

y става 5:

1

4

6

2

7

5

3

1 : 4, 2
2 : 5, 1, 7, 4
3 : 5, 7
4 : 6, 1, 2, 7
5 : 2, 7, 3
6 : 7, 4
7 : 5, 2, 4, 3, 6

x “ 1 y “ 4

x “ 4 y “ 6

x “ 6 y “ 7

x “ 7 y “ 5

Тъй като 5 е бял, DFS-VISIT слага 7 в πr5s и вика себе си с втори аргумент 5:
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1

4

6

2

7

5

3

1 : 4, 2
2 : 5, 1, 7, 4
3 : 5, 7
4 : 6, 1, 2, 7
5 : 2, 7, 3
6 : 7, 4
7 : 5, 2, 4, 3, 6

x “ 1 y “ 4

x “ 4 y “ 6

x “ 6 y “ 7

x “ 7 y “ 5

x “ 5

y става 2:

1

4

6

2

7

5

3

1 : 4, 2
2 : 5, 1, 7, 4
3 : 5, 7
4 : 6, 1, 2, 7
5 : 2, 7, 3
6 : 7, 4
7 : 5, 2, 4, 3, 6

x “ 1 y “ 4

x “ 4 y “ 6

x “ 6 y “ 7

x “ 7 y “ 5

x “ 5 y “ 2

Тъй като 2 е бял, DFS-VISIT слага 5 в πr2s и вика себе си с втори аргумент 2:

1

4

6

2

7

5

3

1 : 4, 2
2 : 5, 1, 7, 4
3 : 5, 7
4 : 6, 1, 2, 7
5 : 2, 7, 3
6 : 7, 4
7 : 5, 2, 4, 3, 6

x “ 1 y “ 4

x “ 4 y “ 6

x “ 6 y “ 7

x “ 7 y “ 5

x “ 5 y “ 2

x “ 2

y става 5:
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1

4

6

2

7

5

3

1 : 4, 2
2 : 5, 1, 7, 4
3 : 5, 7
4 : 6, 1, 2, 7
5 : 2, 7, 3
6 : 7, 4
7 : 5, 2, 4, 3, 6

x “ 1 y “ 4

x “ 4 y “ 6

x “ 6 y “ 7

x “ 7 y “ 5

x “ 5 y “ 2

x “ 2 y “ 5

Обаче 5 е сив и условието на if -а на ред 3 е лъжа, така че тялото на if -а не се изпълнява.
След това y става 1:

1

4

6

2

7

5

3

1 : 4, 2
2 : 5, 1, 7, 4
3 : 5, 7
4 : 6, 1, 2, 7
5 : 2, 7, 3
6 : 7, 4
7 : 5, 2, 4, 3, 6

x “ 1 y “ 4

x “ 4 y “ 6

x “ 6 y “ 7

x “ 7 y “ 5

x “ 5 y “ 2

x “ 2 y “ 1

Но 1 също е сив, така че тялото на if -а пак не се изпълнява. След това y става 7:

1

4

6

2

7

5

3

1 : 4, 2
2 : 5, 1, 7, 4
3 : 5, 7
4 : 6, 1, 2, 7
5 : 2, 7, 3
6 : 7, 4
7 : 5, 2, 4, 3, 6

x “ 1 y “ 4

x “ 4 y “ 6

x “ 6 y “ 7

x “ 7 y “ 5

x “ 5 y “ 2

x “ 2 y “ 7

Но 7 също е сив, така че тялото на if -а пак не се изпълнява. След това y става 4:
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1

4

6

2

7

5

3

1 : 4, 2
2 : 5, 1, 7, 4
3 : 5, 7
4 : 6, 1, 2, 7
5 : 2, 7, 3
6 : 7, 4
7 : 5, 2, 4, 3, 6

x “ 1 y “ 4

x “ 4 y “ 6

x “ 6 y “ 7

x “ 7 y “ 5

x “ 5 y “ 2

x “ 2 y “ 4

Но 4 също е сив, така че тялото на if -а пак не се изпълнява. for-цикълът приключва и
изпълнението отива на ред 6, където 2 става черен:

1

4

6

2

7

5

3

1 : 4, 2
2 : 5, 1, 7, 4
3 : 5, 7
4 : 6, 1, 2, 7
5 : 2, 7, 3
6 : 7, 4
7 : 5, 2, 4, 3, 6

x “ 1 y “ 4

x “ 4 y “ 6

x “ 6 y “ 7

x “ 7 y “ 5

x “ 5 y “ 2

x “ 2

Забележете, че при DFS първият връх, който става черен, е последният връх, който е бил
направен сив!

След това DFS-VISIT излиза от текущото ниво на рекурсията и се връща на предното
ниво. Отново x “ 5, но сега y “ 7:

1

4

6

2

7

5

3

1 : 4, 2
2 : 5, 1, 7, 4
3 : 5, 7
4 : 6, 1, 2, 7
5 : 2, 7, 3
6 : 7, 4
7 : 5, 2, 4, 3, 6

x “ 1 y “ 4

x “ 4 y “ 6

x “ 6 y “ 7

x “ 7 y “ 5

x “ 5 y “ 7

7 е сив, DFS-VISIT го прескача и y става 3. Но 3 е бял, така че тялото на if -а се изпълнява.
πr3s става 5 и имаме ново рекурсивно викане на DFS-VISIT с x “ 3:
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1

4

6

2

7

5

3

1 : 4, 2
2 : 5, 1, 7, 4
3 : 5, 7
4 : 6, 1, 2, 7
5 : 2, 7, 3
6 : 7, 4
7 : 5, 2, 4, 3, 6

x “ 1 y “ 4

x “ 4 y “ 6

x “ 6 y “ 7

x “ 7 y “ 5

x “ 5 y “ 2

x “ 3

Тъй като и двата съседа на 3 са сиви, DFS-VISIT ги прескача, 3 става черен и текущото
рекурсивно викане приключва. Отново x “ 5, но сега вече y “ 7:

1

4

6

2

7

5

3

1 : 4, 2
2 : 5, 1, 7, 4
3 : 5, 7
4 : 6, 1, 2, 7
5 : 2, 7, 3
6 : 7, 4
7 : 5, 2, 4, 3, 6

x “ 1 y “ 4

x “ 4 y “ 6

x “ 6 y “ 7

x “ 7 y “ 5

x “ 5 y “ 7

DFS-VISIT прескача и 7, и 3, и връх 5 става черен:

1

4

6

2

7

5

3

1 : 4, 2
2 : 5, 1, 7, 4
3 : 5, 7
4 : 6, 1, 2, 7
5 : 2, 7, 3
6 : 7, 4
7 : 5, 2, 4, 3, 6

x “ 1 y “ 4

x “ 4 y “ 6

x “ 6 y “ 7

x “ 7 y “ 5

x “ 5

После DFS-VISIT излиза и от това ниво на рекурсията и отново x “ 7, като сега y “ 2:
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1

4

6

2

7

5

3

1 : 4, 2
2 : 5, 1, 7, 4
3 : 5, 7
4 : 6, 1, 2, 7
5 : 2, 7, 3
6 : 7, 4
7 : 5, 2, 4, 3, 6

x “ 1 y “ 4

x “ 4 y “ 6

x “ 6 y “ 7

x “ 7 y “ 2

2 се прескача, после 4, 3 и 6 се прескачат и 7 става черен:

1

4

6

2

7

5

3

1 : 4, 2
2 : 5, 1, 7, 4
3 : 5, 7
4 : 6, 1, 2, 7
5 : 2, 7, 3
6 : 7, 4
7 : 5, 2, 4, 3, 6

x “ 1 y “ 4

x “ 4 y “ 6

x “ 6 y “ 7

x “ 7

Лесно се вижда, че нататък DFS-VISIT само прескача y-ите, на всички нива́ на рекурсията,
и връща нагоре, докато накрая прави връх 1 черен:

1

4

6

2

7

5

3

1 : 4, 2
2 : 5, 1, 7, 4
3 : 5, 7
4 : 6, 1, 2, 7
5 : 2, 7, 3
6 : 7, 4
7 : 5, 2, 4, 3, 6

x “ 1

След това изпълнението се връща в основния алгоритъм DFS, който приключва работата,
връщайки π и colour на ред 7.

И накрая да се убедим, че DFS не се получава от BFS при замяна на опашката със стек
(което влече и замяна на Enqueue и Dequeue съответно с Push и Pop). Да разгледаме графа,
върху който илюстрирахме и BFS, и DFS. Нека началният връх пак е 1. Да си представим

316



ГЛАВА 4. ИЗЧИСЛИТЕЛНИ ЗАДАЧИ И АЛГОРИТМИ ВЪРХУ ГРАФИ © Минко Марков, 2025г.

работата на алгоритъм, получен от замяна на опашката със стек в BFS върху този граф,
започвайки от връх 1. На първата итерация на while-цикълът върхове 2 и 4 влизат в стека,
като родителят и на двата става връх 1:

1

4

6

2

7

5

3

Това се случва независимо от реда на върховете в списъка на 1. Е, ясно е, че след това
начало никога не може да се получи дървото на обхождането, което получихме с DFS. Нещо
повече: убедете се сами, се дървото на DFS, което получихме при симулирането на DFS
върху този граф, започвайки от връх 1, не може да е такова, че родителят и на 2, и на 4 да
е връх 1.
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4.3 Минимални покриващи дървета

4.3.1 Въведение и дефиниции

Разглеждаме неориентирани свързани тегловни графи. Наличие на примки или паралелни
ребра не променя нищо по отношение на задачата, която разглеждаме, така че допускаме,
че няма примки и няма паралелни ребра.

Нека G “ pV,Eq е неориентиран свързан тегловен граф, като тегловната функция е w :

EÑ R. Нека T е множеството от покриващите дървета на G. От Теорема 33 знаем, че, щом
G е свързан, то T ­“ H. За всяко T P T дефинираме теглото на T като

wpTq “
ÿ

ePEpTq

wpeq

В тази секция ще разглеждаме примери върху графа, показан на Фигура 4.18. Теглата на
ребрата са в червено.

Фигура 4.18 : Неориентиран свързан тегловен граф.

1

4

6

2

7

5

3

e1

e2

e3

e4

e5

e6

e8

e9

e10

e7 e11

5

1

7

7

9

12

42

3

1

7

Фигура 4.19 показва две различни покриващи дървета на този граф: T1 и T2 с тегла съответно
33 и 31.

Фигура 4.19 : Различни покриващи дървета на графа от Фигура 4.18.
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3

1

7

wpT1q “ 33

T21

4

6

2

7

5

3

5

1

7

7

9

12

42

3

1

7

wpT2q “ 31
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Определение 104: Минимално покриващо дърво (МПД)

Нека G “ pV,Eq е неориентиран свързан тегловен граф, като тегловната функция е
w : EÑ R. Нека T е множеството от покриващите дървета на G. Минимално покриващо
дърво на G е всяко T P T, такова че

wpTq “ min twpDq |D P Tu

На английски терминът е Minimum Spanning Tree, накратко MST.
Очевидно има поне едно МПД, но може да има няколко МПД-та. В екстремния случай,
в който всички ребра са с еднакви тегла, всяко покриващо дърво е МПД. Примерно, гра-
фът от Фигура 4.18 има две (различни) МПД-та, всяко с тегло 19, което е илюстрирано на
Фигура 4.20.

Фигура 4.20 : Двете МПД-та на графа от Фигура 4.18.

1
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wpT 1q “ 19

1

4

6
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7
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3

T 2

5
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7

7
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12

42

3

1

7

wpT 2q “ 19

Графът от Фигура 4.18 обаче има няколко ребра с тегло 7. Ако теглата на ребрата са уни-
кални, минималното покриващо дърво е само едно, както става ясно от Теорема 62.

Теорема 62: Ако теглата са уникални, МПД е само едно

Нека G “ pV,Eq неориентиран свързан тегловен граф с тегловна функция w : E Ñ R.
Ако w е инекция, то G има само едно минимално покриващо дърво.

Доказателство: Това, че G има поне едно МПД, е очевидно: щом G е свързан, той има
поне едно покриващо дърво (Теорема 33), а щом има поне едно покриващо дърво, той има
поне едно минимално покриващо дърво. Трябва да се докаже, че уникалността на теглата
влече наличието на точно едно МПД.

Ще докажем контрапозитивното твърдение: ако G има повече от едно МПД, то има повто-
рение на тегла. Да допуснем, че G има поне две различни МПД-та T1 “ pV,E1q и T2 “ pV,E2q.
Очевидно E1 ­“ E2, инак това би било едно и също МПД. Знаем, че |E1| “ |E2|. От тези два
факта следва, че E1zE2 ­“ H и E2zE1 ­“ H. Нека e1 е ребро с минимално тегло от E1zE2 и нека
e2 е ребро с минимално тегло от E2zE1. БОО, нека wpe1q ď wpe2q.

Добавяме e1 към T2, с което получаваме уницикличен граф U (Теорема 28). Нека един-
ственият цикъл на U се казва c. Знаем, че e1 е ребро в c. Нека e 1 е произволно ребро в c,
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което не е в E1. Забележете, че такова ребро задължително съществува, понеже T1 е дърво;
щом е дърво, не е възможно цикълът c да е негов подграф, следователно поне едно ребро
от c не е от E1. Възможно е e 1 “ e2 или e 1 ­“ e2 – това е без значение за доказателството.
Съществено е, че e2 P E2zE1 и e 1 P E2zE1. Освен това, e2 е ребро с минимално тегло от E2zE1.
Следователно,

wpe1q ď wpe2q ď wpe
1q (4.9)

Разглеждаме U ´ e 1. Това е дърво, понеже e 1 по конструкция е ребро от цикъла на U.
Нещо повече: това е покриващо дърво, понеже множеството от върховете му е V. Да кажем,
че U´ e 1 се казва T 1. Да сравним теглата на T1 и T 1. В сила е

wpT 1q “ wpT1q `wpe1q ´wpe
1q

Но от (4.9) знаем, че wpe1q ď wpe
1q. Заключаваме, че wpT 1q ď wpT1q. Но T1 е МПД. Тогава T 1

също е МПД и wpT 1q “ wpT1q. За да е вярно това, трябва wpe1q “ wpe
1q. 2

Разглеждаме алгоритмичната задача, при дадени G и w да се построи МПД. Ако графът
не беше тегловен, задачата би била да се построи покриващо дърво на граф, което може да
направим ефикасно с BFS или DFS. Ако теглата на ребрата са едни и същи, отново BFS или
DFS дава ефикасно решение. Но в общия случай алгоритмите за обхождане не решават
задачата за построяване на МПД и се налага да използваме специализирани алгоритми.

В подсекции 4.3.3 и 4.3.4 ще разгледаме два алгоритъма за построяване на МПД. Те
са лесни за разбиране и за реализиране, но коректността им не е съвсем очевидна и и ще
докажем чрез Теорема 63.

4.3.2 МПД теоремата

Първо да си припомним какво е “срез в граф”, “срез-множество”, “страни на среза” и “ребро,
прекосяващо среза”: вижте Определение 33 и Фигура 2.31 за илюстрация. Да въведем озна-
чения за краткост. Ако графът е G “ pV,Eq и срезът е tU,Wu, то с “EU,W” ще означаваме
срез-множеството, а с “Emin

U,W” ще означаваме подмножеството на EU,W от ребрата с мини-
мално тегло. Очевидно, EU,W и Emin

U,W са непразни, щом G е свързан и страните на среза са
непразни.

Теорема 63: МПД теорема

Нека G “ pV,Eq е неориентиран свързан тегловен граф, като тегловната функция е
w : E Ñ R. Нека tU,Wu е произволен срез в G. Тогава, за всяко e P Emin

U,W съществува
МПД, което съдържа e.

Доказателство: Разглеждаме произволно e P Emin
U,W . Да допуснем, че не съществува МПД,

което съдържа e. Но G е свързан и поне едно МПД има. Нека T е произволно МПД на G.
По допускане, e R EpTq.

Нека H “ T ` e. H е уницикличен граф (вижте Определение 48). Нека c е името на цикъла
в H. Очевидно e P Epcq. Всеки връх на c е или в U, или в W, като поне един връх на c е
в U и поне един връх на c е в W. Съгласно Наблюдение 10, съществуват две различни
e 1, e2 P Epcq, такива че единият край на всяко от тях е в U, а другият е в W. Тези две ребра
може да имат или да нямат общ край, това няма значение. Поне едно от тях е различно от e.
БОО, нека e 1 ­“ e.
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Нека T 1 “ H ´ e 1. T 1 е дърво, защото се получава от уницикличен граф чрез изтриване на
ребро от цикъла; очевидно H ´ e 1 е ацикличен и е свързан. Нещо повече, T 1 е покриващо
дърво на G, защото VpT 1q “ V. Нещо повече, e P EpT 1q. Да сравним теглата на T и T 1. Тъй
като T 1 “ T ` e´ e 1, в сила е

wpT 1q “ wpTq `wpeq ´wpe 1q

Но по конструкция e е ребро с минимално тегло измежду ребрата, прекосяващи среза. Ерго,
wpe 1q ě wpeq, така че wpeq ´wpe 1q ď 0. Но тогава

wpT 1q ď wpTq

Първо да допуснем, че wpT 1q ă wpTq. Но това е невъзможно, защото T е МПД на G по
конструкция. Остава възможността wpT 1q “ wpTq. Но тогава T 1 също е МПД. Нещо повече,
T 1 е МПД, което съдържа реброто e, в противоречие с допускането, че нито едно МПД не
съдържа e. 2

Теорема 64: Срезът, генериран от изтриване на ребро от МПД

Нека G “ pV,Eq е неориентиран свързан тегловен граф, като тегловната функция е
w : E Ñ R. Нека T е МПД на G. Нека e е произволно ребро от EpTq. Очевидно T ´ e е
гора от точно две дървета, да ги наречем T 1 и T 2. Нека U “ VpT 1q и W “ VpT 2q. Тогава
e P Emin

U,W .

Доказателство: Да допуснем, че e R Emin
U,W . Но Emin

U,W ­“ H. Нека e 1 е произволно ребро от
Emin
U,W . Очевидно e ­“ e 1.
Нека x и y са краищата на e 1. Очевидно единият от x,y е от U, а другият е от W. Нека p

е уникалният x-y път в T (Теорема 27). Тъй като единият край на p е връх в T 1, а другият,
връх в T 2, трябва да е вярно, че e е ребро в p.

Нека H “ T ` e 1. H е уницикличен граф (Определение 48). Нека c е името на цикъла в H.
Забележете, че c “ p` e 1, така че e 1 P Epcq и e P Epcq, Нека T 1 “ H´ e “ T ` e 1´ e. Очевидно,
T 1 е дърво, като

wpT 1q “ wpTq `wpe 1q ´wpeq

Ключовото наблюдение е, че wpe 1q ă wpeq, понеже e P EU,W и e R Emin
U,W , докато e 1 P Emin

U,W .
Тогава wpe 1q `wpeq ă 0, откъдето wpT 1q ă wpTq. Но T е МПД на G по условие.

Полученото противоречие показва, че допускането, че e R Emin
U,W е грешно. Тогава e P Emin

U,W . 2

4.3.3 Алгоритъм на Prim

Този алгоритъм е откриван повече от веднъж, от различни хора или групи хора, отдалечени
във времето, без да знаят за вече извършената работа. Първоначално алгоритъмът е бил
открит от чешките математици Jarǹık и Bor̊uvka, като оригиналната статия от 1930 г. на
чешки може да бъде свалена от сайта на Czech Digital Mathematics Library . През 50-те години
на 20 век алгоритъмът е преоткрит от американския математик Robert Prim [49]. Тук ще го
наричаме “алгоритъм на Prim”, защото е добил популярност под това име.

Алгоритъмът на Prim за намиране на МПД на свързан неориентиран тегловен граф G

далечно прилича на обхождане. Той
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• започва от един стартов връх, да кажем връх 1, намира най-леко ребро e1 “ p1, iq
(очевидно e1 е инцидентно с връх 1) и слага e1 в дървото,

• после намира най-леко ребро e2 “ pj,kq, такова че точно единият от j,k е от t1, iu (което
означава, че другият е от VpGqzt1, iu) и слага e2 в дървото,

• и така нататък, докато не сложи точно n´ 1 ребра в дървото, след което приключва и
връща построеното дърво.

Накратко, МПД-то започва като един единствен връх (стартовият връх) и след това нараства
итеративно, като на всяка итерация се сдобива с нов връх и ново ребро, докато не покрие
целия граф. Същественото е, че по време на работата на алгоритъма, частта от МПД-то,
която е построена до момента, е едно дърво; то става покриващо чак накрая, но във всеки
момент е едно дърво, а не колекция от дървета, за разлика от алгоритъма на Kruskal на
стр. 325.

Алгоритъм 9: Алгоритъм на Prim

Вход: неориентиран свързан граф G “ pV,Eq с тегловна функция w : EÑ R.
Изход: МПД D на G.

¶ Конструирай D “ pt1u,Hq.

· Ако VpDq “ V, върни D и край.

¸ В противен случай, нека E 1 е срез-множеството на среза tVpDq,VzVpDqu. Нека E 1min
се състои от ребрата с минимално тегло в E 1. Нека e “ pu, vq е произволно ребро от
E 1min, като u P VpDq, което влече v R VpDq.
Направи VpDq Ð VpDq Y tvu, EpDq Ð EpDq Y teu и отиди на ·.

Ще покажем, че алгоритъмът е коректен. Първо ще покажем, че е добре дефиниран: мно-
жеството E 1 в ¸ е непразно, иначе G не би бил свързан, така че и E 1min е непразно, откъдето
следва, че реброто e е добре дефинирано.

Това, че алгоритъмът строи покриващ подграф D, е очевидно от условието за край в ·.
Това, че D е дърво, се доказва тривиално по индукция по броя на достиганията на ·.

• Базата е първото достигане, при което D, построено в ¶, очевидно е дърво.

• Допускаме, че достигаме · с дърво D. Ако изпълнението продължи на ¸, към това
дърво се добавят точно един нов връх и реброто между него и някой прежде добавен
връх, и резултатът пак е дърво. Практически същата конструкция имахме в Опреде-
ление 46, като в Теорема 26 показахме, че тя строи (само) дървета.

И така, алгоритъмът връща покриващо дърво.
Накрая ще покажем, че върнатото F е минимално покриващо дърво. Но това следва

веднага от Теорема 63, приложена към избраното e във всяко изпълнение на ¸: срезът е
tVpDq,VzVpDqu, срез-можеството е E 1, най-леките ребра от срез-множеството са точно еле-
ментите на E 1min, а Теорема 63 казва, че всяко от тях е елемент на някое МПД, така че не
може да сбъркаме, което и от тях да вземем.

Ето симулация на алгоритъма на Prim въхру графа от Фигура 4.18. В началото частично
построеното МПД се състои само от връх 1, което задава среза tt1u, t2, 3, 4, 5, 6, 7uu. Срез-
множеството е нарисувано удебелено.
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Срез-множеството се състои от p1, 2q с тегло 7 и p1, 4q с тегло 5. Избираме p1, 4q, като добавяме
връх 4 към VpTq и p1, 4q към A. Нещата изглеждат така:
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Сега срезът е tt1, 4u, t2, 3, 5, 6, 7uu. Най-леко ребро, прекосяващо среза, е p4, 6q с тегло 1. Връх
6 се добавя към VpTq, а p4, 6q се добавя към A. Нещата изглеждат така:
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Сега има две най-леки ребра, прекосяващи среза. Измежду тях избираме произволно p1, 2q.
Връх 2 се добавя към VpTq, а p1, 2q се добавя към A. Нещата изглеждат така:
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Сега най-лекото ребро, прекосяващо среза, е p2, 7q с тегло 2. Връх 7 се добавя към VpTq, а
p2, 7q се добавя към A. Нещата изглеждат така:
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Сега най-лекото ребро, прекосяващо среза, е p3, 7q с тегло 1. Връх 3 се добавя към VpTq, а
p3, 7q се добавя към A. Нещата изглеждат така:
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Сега най-лекото ребро, прекосяващо среза, е p2, 5q с тегло 3. Връх 5 се добавя към VpTq, а
p2, 5q се добавя към A. Нещата изглеждат така:
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Алгоритъмът приключва.

4.3.4 Алгоритъм на Kruskal

Алгоритъмът на Kruskal е ефикасен алгоритъм за конструиране на МПД, който е основан
на съвсем различна идея от тази на алгоритъма на Prim.

Алгоритъм 10: Алгоритъм на Kruskal

Вход: неориентиран свързан граф G “ pV,Eq с тегловна функция w : EÑ R.
Изход: МПД F на G.

¶ Конструирай покриваща гораа F “ pV,Hq на G.

· Ако F има точно една свързана компонента, върни F и край.

¸ В противен случай, нека E 1 Ď E са точно тези ребра, чиито краища са от различни
свързани компоненти (дървета) на F. Нека E 1min се състои от ребрата с минимално тегло
в E 1. Нека e “ pu, vq е произволно ребро от E 1min. Нека T 1 и T 2 са тези дървета в F, за
които u P VpT 1q и v P VpT 2q.
Конструирай дървото D “ pVpT 1qYVpT 2q,EpT 1qYEpT 2qYteuq. Във F, замени дърветата
T 1 и T 2 с D и отиди на ·.

аПокриващ подграф на G е всеки подграф на G със същото множество върхове като G. Вижте
Определение 10. Покриващият подграф не е непременно дърво. В ¶ е колекция от дървета, тоест,
гора, и то такава, която няма ребра.

Ще покажем, че алгоритъмът е коректен. Първо ще покажем, че е добре дефиниран: мно-
жеството E 1 в ¸ е непразно, иначе G не би бил свързан, така че и E 1min е непразно, откъдето
следва, че реброто e е добре дефинирано.

След това ще покажем, че F, което алгоритъмът връща, е покриващо дърво. Но това се
доказва тривиално по индукция по броя на достиганията на ·.

• Базата е първото достигане, при което F е покриваща гора с n дървета от ¶.

• Допускайки, че достигаме · с гора F, която има k дървета, като k ą 1, веднага виждаме,
че D от ¸ е дърво (свързан граф без цикли, което следва от това, че T 1 и T 2 са свързани
графи без цикли, “залепени” едно за друго чрез единствено ребро e, което не е от нито
едно от тях) и че при следващото достигане на ·, F е покриваща гора с k´ 1 дървета.
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И така, алгоритъмът връща покриваща гора с 1 дърво, тоест, покриващо дърво.
Накрая ще покажем, че върнатото F е минимално покриващо дърво. Но това следва

веднага от Теорема 63, приложена към избраното e във всяко изпълнение на ¸: срезът
е tVpT 1q,VzVpT 1qu:, срез-можеството е E 1, най-леките ребра от срез-множеството са точно
елементите на E 1min, а Теорема 63 казва, че всяко от тях е елемент на някое МПД, така че не
може да сбъркаме, което и от тях да вземем.

Ефикасна реализацията на алгоритъма на Kruskal се постига, като първо се сортират ребрата
по тегло и после в ненамаляващия ред на теглата се слагат първите n´ 1 ребра, за всяко
от които, в този ред, е вярно, че не образува цикъл с вече сложените ребра. Очевидно
първите две ребра винаги “влизат”, защото две ребра не могат да образуват цикъл, но от
третото ребро трябва да се проверява дали образува цикъл с вече сложените ребра.

Ето пример за работата на алгоритъма на Kruskal върху графа от Фигура 4.18. В началото
сортираме единадесетте ребра по тегло и правим покриваща гора, която е празният граф;
тоест, има седем изолирани върхове.
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След това започваме да разглеждаме ребрата в сортираната редица, като всяко ребро или
“влиза”, или се прескача. Първо е e10.

1

4

6

2

7

5

3

e1

e2

e3

e4

e5

e6

e8

e9

e10

e7 e11

5

1

7

7

9

12

42

3

1

7

e10
1
e2
1
e7
2
e8
3
e9
4
e1
5
e3
7
e4
7
e11
7
e5
9
e6
12

e10 влиза, защото краищата му, а именно 7 и 3, са в различни дървета на гората. Сливаме
тези дървета плюс реброто e10 в едно единствено дърво. Така гората вече има само шест
дървета.

:Изборът на T 1 е произволен. Със същия успех можеше да вземем среза tVpT 1q,VzVpT 1qu.
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После е e2.
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e2 влиза. Краищата му, а именно 4 и 6, са в различни дървета, които сливаме заедно с него
и получаваме гора със само пет дървета.
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После е e7.

327



ГЛАВА 4. ИЗЧИСЛИТЕЛНИ ЗАДАЧИ И АЛГОРИТМИ ВЪРХУ ГРАФИ © Минко Марков, 2025г.

1

4

6

2

7

5

3

e1

e2

e3

e4

e5

e6

e8

e9

e10

e7 e11

5

1

7

7

9

12

42

3

1

7

e10
1
e2
1
e7
2
e8
3
e9
4
e1
5
e3
7
e4
7
e11
7
e5
9
e6
12

e7 влиза, защото краищата му са в различни дървета. Сливаме ги заедно с него и получаваме
гора със само четири дървета.
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После е e8.
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e8 влиза, защото краищата му са в различни дървета. Сливаме ги заедно с него и получаваме
гора със само три дървета.
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После е e9.
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Неговите краища са в едно и също дърво, поради което e9 се прескача. После е e1.
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e1 влиза, защото краищата му са в различни дървета. Сливаме ги заедно с него и получаваме
гора със само две дървета.
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После е e3.
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e3 влиза, защото краищата му са в различни дървета. Сливаме ги заедно с него и получаваме
гора със само едно дърво, която е и покриващо дърво за графа.
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Няма смисъл да продължаваме да разглеждаме ребра в сортираната редица: знаем, че гра-
фът има седем върха, знаем, че шест ребра вече са влезли, откъдето следва, че покриващата
гора вече е (покриващо) дърво. Ако разглеждаме сортираната редица от ребра до края, ще
се натъкваме само на ребра (e4, e11, e5 и e6, в този ред), чиито краища са в едно и също
дърво, и ще ги прескачаме. Така че това е краят на алгоритъма. Построихме МПД.
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4.4 Най-къси пътища в графи

4.4.1 Фундамент

Разглеждаме по подразбиране ориентирани тегловни графи. Ако в даден момент разглеж-
даме неориентирани графи, това ще се каже изрично. Наличието на примки не променя с
нищо най-късите пътища – ако теглото на примката е положително, никой най-къс път няма
да мине през нея, ако е отрицателно, то тя е отрицателен цикъл (вижте Определение 106),
който обезсмисля задачата за намиране на най-къси пътища съгласно Наблюдение 35. Също
така, наличието на снопове от паралелни ребра не променя нищо – ако има сноп с повече
от едно ребро, то всеки най-къс път, ако изобщо ползва ребро от този сноп, ще ползва само
най-лекото ребро. Така че разглеждаме обикновени ориентирани графи, без примки и без
паралелни ребра. По отношение на свързността, графите са произволни; както ще видим,
ако има върхове, недостижими от даден начален връх, това се индикира чрез специални
стойности и в края на алгоритъма е ясно кои върхове не са достижими.

По подразбиране G “ pV,Eq е ориентиран тегловен граф с тегловна функция w : EÑ R.

Конвенция 13

В Подсекция 4.4, казвайки “път”, имаме предвид път, който не е непременно прост.

Нотация 7

Нека u, v P V. Нотацията “u ù v” е кратък запис за “ориентиран път от u до v”.
Нотацията “u p

ùv” е кратък запис за “p е ориентиран път от u до v”.

Определение 105: Тегло на път

Теглото на пътя p е wppq “
ř

ePEppqwpeq.

Определение 106: Отрицателен цикъл

Нека G е тегловен граф. Ако G е ориентиран, отрицателен цикъл е всеки прост ци-
къл в G, който има отрицателна сума от теглата на ребрата. Ако G е неориентиран,
отрицателен цикъл е всеки прост цикъл в G, който има отрицателна сума от теглата
на ребрата, както и всяко ребро с отрицателно тегло.

Наблюдение 35: Проблем при отрицателните цикли.

Ако теглата са само положителни, “най-къс път от u до v” е добре дефинирано понятие.
Обаче за всеки отрицателен цикъл c, за всеки път p, който съдържа c, съществува път
p 1, такъв че wpp 1q ă wppq, като p 1 съдържа c повече пъти от p. Ерго, ако поне един път
от връх u до връх v съдържа поне един отрицателен цикъл, не можем да дефинираме
“най-къс път от u до v”.
Ако няма отрицателни цикли, този проблем не съществува дори при наличие на отри-
цателни тегла.

Като пример, да разгледаме следния граф:

331



ГЛАВА 4. ИЗЧИСЛИТЕЛНИ ЗАДАЧИ И АЛГОРИТМИ ВЪРХУ ГРАФИ © Минко Марков, 2025г.

u
v

w

x
y1

1 1

´5 1

Ако разглеждаме само прости пътища, най-късият път (той е и единствен) uùy е пътят
u, v,w,y с тегло 4. Ако обаче разглеждаме пътища, които не са непременно прости, най-къс
път uù y няма, защото всяко минаване през цикъла v,w, x, v добавя 1 ` 1 ´ 5 “ ´3 към
теглото на пътя:

u, v,w, x, v,w, x,y има тегло 1
u, v,w, x, v,w, x, v,w, x,y има тегло ´ 2
u, v,w, x, v,w, x, v,w, x, v,w, x,y има тегло ´ 5
и така нататък

Наблюдение 36: Когато няма отрицателни цикли.

При липса на отрицателни цикли, за всеки два върха u и v, всеки най-къс път от u до
v задължително е прост път.

Определение 107: Теглото на най-къс път

Теглото на най-къс път от u до v ще бележим с “δpu, vq”, като δpu, vq P RY t´8,8u.
Ако няма нито един път от u до v, то δpu, vq “ 8. Ако има поне един път от u до v, то

• ако поне един път от u до v има общ връх с отрицателен цикъл, то δpu, vq “ ´8,

• в противен случай, δpu, vq “ min twppq |u p
ùvu.

Има леко терминологично несъответствие: щом говорим за “тегло на път”, би трябвало да
казваме “най-лек път” за път с минимално телго, а не “най-къс път”. Но както “тегло на път”,
така и “най-къс път” (в тегловния смисъл) вече са широко приети както на български, така и
на английски, като съответно се казва “weight of path” и “shortest path weight”, така че в тези
лекции ще се съобразим с това. И така, ще се придържаме към следната езикова конвенция.

Конвенция 14

В контекста на задачата, която разглеждаме, “най-къс път” е синоним на “път с най-
малко тегло”. Ако имаме предвид броя на ребрата в пътя, ще го кажем експлицитно.

Конвенция 15

Тегловните функции, които ще разглеждаме, или имат кодомейн R`, или имат кодо-
мейн R, но в G няма отрицателни цикли. Поради това никъде няма да дефинираме
пътищата като прости пътища. Те ще се оказват прости вследствие на отсъствието на
отрицателни цикли, предвид Наблюдение 36.
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4.4.2 Приложения

Задачата за най-къси пътища в графи има грамадни приложения. Ако няма тегла, задачата
се решава ефикасно с BFS, но наличието на тегла прави задачата интересна и изисква подход,
много по-изтънчен от този за решаването на BFS. Както се казва в [1, стр. 6]:

The shortest path problem is perhaps the simplest of all network flow problems.

Ето само някои примерни приложения на задачата за най-къси пътища в тегловни графи,
някои от които са общоизвестни, а други са взети от [1], [55] и [16].

• В пътуванията от място А до място Б през междинни места, каквито пътувания хората
са правили от незапомнени времена. Теглата са дължините на пътищата, свързващи
директно двойки места.

• В географските информационни системи (GIS): същата задача, но сега се решава с
компютър.

• В маршрутизацията в компютърните мрежи – искаме да намерим маршрут за комуни-
кация между дадени агенти в дадена мрежа, по който маршрут закъснението е мини-
мално. Или искаме да намерим максималното минимално закъснение при комуникация
между кои да е два агента (това е задачата за диаметъра на графа, но в тегловен ва-
риант). Теглата са времена.

• В транспортни задачи като намиране на най-евтин полет с прекачвания от дадено ле-
тище до дадено друго летище, като цените на директните полети са известни. Теглата
са цени.

• В урбанистика при изследване на трафика – стандартно допускане е, че хората обик-
новено се придвижват по най-късия маршрут. Задачата за оптимизиране на трафика в
града съдържа като подзадача задачата за намиране на най-къси пътища, в множество
инстанциации за различни двойки локации в града.

• Всеки човек, и изобщо всяко достатъчно сложно живо същество, има вградена предс-
тава за отсечката като най-къс път от едно място А до друго място Б във физическия
свят, при липса на препятствия между тези места. При наличие на препятствия движе-
ние по отсечка може да е невъзможно, но дори тогава хората имат вградена представа
за най-ефикасния начин за придвижване от А до Б като придвижване по най-къс път.
В този смисъл, движението по най-къс път е най-естественото движение, ако целта
е максимум ефикасност. Оттук и приложението на задачата за най-късите пътища в
областта на планиране на движението (motion planning): намирането на редица от
пространствени конфигурации, която “придвижва” даден обект от А до Б. Планиране
на движението има в компютърната геометрия, компютърната анимация, роботиката и
компютърните игри. Във всяка от тези области, алгоритмите за най-къси пътища имат
приложение.

• В производственото планиране, например т. нар. inventory planning [1, стр. 749] или
dynamic facility location [1, стр. 764].

• При оптимизиране на производството, примерно на стоманени греди [1, стр. 11].
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• В типографията – примерно, типографската система TEX използва задачата за най-
къси пътища като подзадача при изчисляването на оптималното (по критерии, които са
фиксирани от създателя на TEX Donald Knuth) разбиване на текста на дълъг параграф
на отделни редове [1, стр. 21].

• При апроксимиране на функция, която е линейна по части [1, стр. 98]. Търси се друга
функция, също линейна по части, но с по-малко breakpoints, като се иска приемлив
компромис между размера на представянето и точността на апроксимацията.

• В оптимизационни задачи като задачата за раницата (Knapsack Problem) [1, стр. 100].
Задачата може да се формулира като задача за най-дълъг път и оттам да се трансфор-
мира в задача за най-къс път. Както се казва в [1, стр. 100]:

This application illustrates an intimate connection between dynamic programming and
shortest path problems on acyclic networks. By making the appropriate identification
between the stages and “states” of any dynamic program and the nodes of a network, we
can formulate essentially all deterministic dynamic programming problems as equivalent
shortest path problems.

И още [1, стр. 102]:

“(deterministic) dynamic programming is a special case of the shortest path problem.”

• Системи от диференчни ограничения (Systems of difference constraints) [1, стр. 103]. Ста-
ва дума за линейно оптимизиране, при което ограниченията са от определен вид, на тях
съответства някакъв ориентиран граф, и съвкупността от ограниченията е удовлетво-
рима тстк в съответния граф няма отрицателен цикъл. Задачата за установяване или
отхвърляне на съществуване на отрицателен цикъл се решава с алгоритъм за най-къси
пътища.

• Намиране на транзитивно затваряне на релация [55, стр. 212].

• Разпознаване на естествена реч или автоматизирано намиране на правописни грешки
[55, стр. 212].

• Арбитраж (Arbitrage) при търговия с валути [16, стр. 679].

4.4.3 Разновидности на задачата

Задачата за най-къс път е известна в няколко варианта. По отношение на началото и края
на най-къс път вариантите на задачата са следните.

1. При дадени върхове s, t P V, да се намери най-къс път sùt.

2. При даден връх s, да се намери най-къс път sùu за всеки u P V.

3. При даден връх t, да се намери най-къс път uùt за всеки u P V.

4. Да се намери най-къс път uùv, за всеки u, v P V.

Първият вариант на задачата, а именно от даден връх s до даден връх t, изглежда алгорит-
мично най-лесен. Както ще се убедим обаче, в най-лошия случай, за да изчислим теглото на
най-лек път sù t, се налага да изчислим и теглото на най-лек път sùu, за всеки u P V.
Ерго, в най-лошия случай, първият вариант е труден колкото втория.
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Ние ще разгледаме подробро втория вариант на задачата.
Третият вариант има алгоритмичната трудност на втория, защото третият вариант се

превръща във втория при обръщане на посоките на ребрата; тоест, на транспониране на
графа.

Четвъртият вариант ще бъде разгледан в курса по алгоритми.

Ще разгледаме и друга класификация на задачата за най-къси пътища по това, какво искаме
за най-къс път uùv.

• Може да искаме само дължината, а не самия път. Това не е много полезно на практика.

• Може да искаме дължината плюс самия път, което в реални приложения е много по-
полезно и информативно.

• Може да искаме броя на най-късите пътища uùv.

• Може да искаме множеството от всички най-къси пътища uùv.

Ние ще разглеждаме алгоритми, които връщат дължината на най-къс път плюс самия път.

Допълнение 29: Генерирането на всички най-къси пътища е неефикасно

В реални приложения може да е много полезно да бъдат получени всички най-къси
пътища от връх до друг връх. Имайки всички най-къси пътища, може да изберем от
тях път по някакъв друг критерий. За съжаление, в най-лошия случай, броят на най-
късите пътища uùv може да е експоненциален в n, в което може да се убедим с този
прост пример (приемете, че теглата са единици):

u v

k

Виждаме k на брой подграфи, да ги наречем ромбовете, като всеки ромб е . Ромбо-
вете са “слепени” в редица. Очевидно на фигурата има 2k пътя от u до v, всеки от тях с
дължина 2k, защото за всеки ромб, може да минем “отгоре” или “отдолу”. И тъй като е
възможно k — n, в графа може да има от порядъка на 2n пътя от u до v. Следователно,
няма ефикасен алгоритъм, който строи всички пътища, защото, в най-лошия случай,
само записването им отнема време, което е експоненциално в размера на графа.
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4.4.4 Същностни характеристики на най-късите пътища

Теорема 65: Най-къс път се състои от най-къси подпътища

Нека G е ориентиран тегловен граф, s и t са върхове в него и p е най-къс път от s
до t. Нека u, v P Vppq, като u предхожда v от s към t в p, ако u и v са различниа. Нека
подпътят на p от u до v се казва q:

p “ sù u
q

ùvù t
loooooooooomoooooooooon

p

Тогава q е най-къс път от u до v.
аНе е необходимо s, t, u и v да са четири различни върха; в най-екстремния вариант, може s “ t “

u “ v и пак остава вярно, че най-къс път се състои от най-къси подпътища.

Доказателство: Ако допуснем, че има път q 1, такъв че u q
ù v и wpq 1q ă wpqq, веднага

заключаваме, че p не е най-къс път от s до t, понеже замяната на q с q 1 в p намалява wppq
с wpqq ´wpq 1q. 2

В доказателството на Теорема 65 се възползваме от това, че пътищата не са непременно
прости. Ако настоявахме пътищата да са прости, то вмъкването на q 1 на мястото на q може
да е проблематично, понеже няма гаранции, че q 1 и p нямат други общи върхове освен u и v;
ерго, след вмъкването целият път може да не е прост. Ако теглата са положителни, можем
“да изрежем” общите части на p и q 1 и да получим път p2, който е с дори още по-малко
тегло, което пак ни дава желаното противоречие. Обаче при отрицателни тегла и по-точно
при наличието на отрицателни цикли, това “изрязване” може да увеличи теглото на пътя,
което е проблем за доказателството.

Дърво на най-късите пътища. Ако искаме да изчислим най-къс път sù t, паметта,
която е необходима за записването на пътя, има около n клетки в най-лошия случай, защото,
в най-лошия случай, дължината на пътя е n´1 и не можем да избегнем записването на всеки
връх от него. На пръв поглед, ако искаме да запишем по един най-къс път sùv за всеки
v P V, ще ни трябват около n2 клетки памет.

Всъщност, можем “да минем” само с около n клетки памет за всички пътища, защото
можем да ги представим с ориентирано кореново дърво-арборесценция, която може да се
представи с масив на предшествията πr1, . . . ,ns, също както при BFS и DFS. Ще покажем,
че най-къси пътища от s могат да се представят с една арборесценция с корен s. Нека p
и q са най-къси пътища от s съответно до u и v, където u и v са различни върхове. Ако
единственият общ връх на p и q е s, няма какво да се показва. Нека p и q имат поне един
общ връх освен s. Нека z е най-отдалеченият в p и в q връх от s, който е общ за p и q.
Очевидно не може z “ u “ v, понеже u и v са различни. Ако z “ u ­“ v или z “ v ­“ u, няма
какво повече да показваме; това е случаите, в който съответно p е част от q или q е част от
p. Остава да разгледаме случая, в който z ­“ u и z ­“ v. Нека подпътят на p от s до z е p 1, а
подпътят на q от s до z е q 1:
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s

z

u

v

p

q

p2

q2q 1

p 1

Твърдим, че wpp 1q “ wpq 1q. Да допуснем противното. БОО, нека wpp 1q ă wpq 1q. Тогава в q
подменяме q 1 с p 1:

s

z

u

v

pq q2

и получаваме път pq от s до v, такъв че wppqq ă wpqq, в противоречие с допускането, че q е
най-къс път от s до v.

Щом wpp 1q “ wpq 1q, може и в p, и в q да използваме само единият от тях, да кажем p 1;
по този начин, получаваме най-къси пътища от s до u и от s до v, които се състоят от един
общ подпът от s до z, след което се “разделят” и повече не се събират:

s

z

u

v

p 1

Ако си направим същото нещо за всеки два върха, достижими от s, ще получим арборесцен-
ция с корен s, което е дървото на най-късите пътища от s.

Задачата за най-късите пътища и задачата за МПД са различни. Естествено, те
са задачи върху различни видове графи, като МПД е върху неориентирани тегловни графи,
а най-късите пътища са върху ориентирани тегловни графи, но съществената разлика не е
в това. Дори да решаваме задачата за най-късите пътища върху неориентирани тегловни
графи, тя остава принципно различна от задачата за МПД. Ето малък пример:

s t

u v z

2

1 1

1 1
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Най-късият път между s и t е реброто ps, tq с тегло 2 (в червено). Но МПД-то (то е само
едно) се състои от четирите сини ребра, всяко с тегло 1. Ако си представим работата на
алгоритъма на Kruskal върху този граф, сортирайки ребрата, той ще постави в началото
четирите ребра с тегло 1 и след това реброто с тегло 2. Когато започне да слага ребра, той
ще сложи четирите ребра с тегло 1 и ще спре, без да достигне до реброто с тегло 2, което
реализира най-късия път.

Наблюдение 37

Задачите за намиране на МПД и намиране на дърво на най-късите пътища върху
неориентирани тегловни графи са принципно различни. Всяко МПД, за всеки два върха
s и t, дава (уникален) път p между s и t, но в общия случай p не е най-къс път в графа
между s и t.

При най-късите пътища не може да се “отървем” от отрицателните тегла. Друга
важна разлика между задачите за намиране на МПД и на най-къси пътища е възможността
да се “отървем” от отрицателни тегла. Когато дефинирахме задачата за МПД, дефинирахме
теглата като реални числа, оставяйки възможността те да са отрицателни. Наистина, нищо
не пречи теглата да са отрицателни в Теорема 63 или в алгоритмите на Prim и Kruskal. Ако
обаче по някаква причина не искаме отрицателни тегла там, лесно може да се отървем от
тях, като намерим най-малкото отрицателно тегло x и после добавим |x| ` 1 към теглата на
всички ребра. Те ще станат положителни, а МПД-тата на графа ще останат същите.

Този трик не работи при най-късите пътища. Ако “повдигнем” теглата достатъчно, така
че всички те да станат положителни, дървото на най-късите пътища може да се промени.
Ето малък пример за това, този път с ориентиран граф:

s t

u v z
a

5

1 1

1 1

´1000

Очевидно най-късият път от s до t се състои от червените ребра и има тегло 4. Ако обаче
добавим 1001 към теглото на всяко ребро, така че теглата да станат само положителни:

s t

u v z
a

1006

1002 1002

1002 1002

1

пътят от червените ребра става с тегло 4008, а този със синьото ребро, само 1006, така че
сега той е най-късият път от s до t.
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Наблюдение 38

Нека G тегловен неориентиран граф с тегловна функция w : EÑ R. Нека w 1 : EÑ R е
друга тегловна функция, като @e P E : w 1peq “ wpeq ` c, където c е произволна реална
константа. МПД-тата на G по отношение на w и по отношение на w 1 са едни и същи.
Ако обаче G тегловен ориентиран граф с тегловна функция w : E Ñ R и w 1 : E Ñ R е
друга тегловна функция, като @e P E : w 1peq “ wpeq ` c, където c е произволна реална
константа, дървото на най-късите пътища по отношение на произволен s P VpGq може
да бъде различно за w и за w 1.

Следствие от това е фактът, че задачата за намиране на минимално покриващо дърво е
алгоритмично същата като задачата за намиране на максимално покриващо дърво:

• ако в Алгоритъм 9 заменим E 1min с E 1max—множеството от ребрата с максимално тегло
в E 1—ще получим алгоритъм, който намира максимално покриващо дърво;

• ако в Алгоритъм 10 заменим E 1min с E 1max—множеството от ребрата с максимално тегло
в E 1—също ще получим алгоритъм, който намира максимално покриващо дърво.

За да де убедим в това, достатъчно е да разгледаме Теорема 63. В нея да заменим Emin
U,W с

Emax
U,W : подмножеството на EU,W от ребрата с максимално тегло. Получаваме твърдението

“за всяко e P Emax
U,W съществува максимално покриващо дърво D, което съдържа e”, което е

вярно и се доказва напълно аналогично на Теорема 63.
От друга страна, никой алгоритъм за най-къси пътища върху общи графи: не става

алгоритъм за най-дълги пътища при замяна на min с max. Причината е обяснена в До-
пълнение 30: при най-дългите пътища не е вярно, че оптималната структура се състои от
оптимални подструктури.

4.4.5 Пак за отрицателните тегла

Както се убедихме, отрицателните тегла представляват значителен проблем за задачата за
най-късите пътища (за разлика от задачата за МПД, където те нямат никакво значение).
При наличие на отрицателни тегла ние може дори да не сме в състояние да дефинираме
“най-къс път от s до t”, ако поне един път от s до t съдържа отрицателен цикъл.

Това се дължи на факта, че разглеждаме пътища, които не са непременно прости, което
влече, че всяко “завъртане” през отрицателен цикъл дава още по-къс път. Не може ли да
постулираме, че разглеждаме само прости пътища, и по този начин да няма възможност
да се “въртим” в циклите поначало? Отговорът е, че теоретично можем да го направим, но
алгоритмично не можем да го имплементираме по ефикасен начин. Алгоритмите за най-къси
пътища, примерно този на Dijkstra, не правят проверка дали изградените пътища са прости
или не. Те се оказват прости (вижте Наблюдение 36; в алгоритъма на Dijkstra се иска теглата
да са положителни).

Силна улика за това, че не може да решим проблема с отрицателните цикли с елемен-
тарни средства—примерно, постулиране, че не разглеждаме други пътища освен прости—е
фактът, че задачата за най-къси пътища е същата като задачата за най-дълги пътища при
обръщане на знака на теглата. Иначе казано, ако G е ориентиран тегловен граф, върху който
са дефинирани тегловни функции w,w 1 : EÑ R, като @e P EpGq : wpeq “ ´w 1peq, то, за всеки
s, t P VpGq, p е най-къс път sù t по отношение на w тстк p е най-дълъг път sù t по

:Има алгоритми за най-къси пътища върху ограничени класове графи, примерно дагове, които ал-
горитми стават алгоритми за най-дълги пътища при замяна на min с max.
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отношжение на w 1. Задачата за най-дълги пътища е NP-пълна, което означава, че почти
сигурно за нея няма ефикасен алгоритъм.

Допълнение 30: За структурата на най-дългите пътища

За задачата за най-дългите пътища не е вярно, че оптималната структура се състои от
оптимални подструктури (сравнете с Теорема 65). Това обяснява драстичната разлика
между ефикасността на най-добрите известни алгоритми за най-къси пътища и за най-
дълги пътища.
Преди всичко, за да дефинираме смислено задачата за най-дългите пътища, трябва да
постулираме, че разглеждаме само прости пътища. Иначе, дори в не-тегловния вариант,
задачата е лошо дефинирана, понеже съществуването на цикъл в ориентиран граф или
на ребро в неориентиран граф влече съществуването на неограничено дълги, като брой
ребра, пътища, които не са прости. И така, ако дефинираме задачата за най-дълги
пътища по очевидния начин, настоявайки пътищата да са прости, е лесно да намерим
пример, в който най-дългият път не се състои от най-дълги подпътища (допускаме, че
теглата са единици):

s t

a b c d

u v z

Най-дългият път между s и t е с дължина 8 и е нарисуван с червено. В него има подпът
между s и a с дължина 1. Но най-дългият път между s и a е с дължина 8, както се
вижда на следната фигура (в синьо):

s t

a b c d

u v z

Очевидно не е вярно, че най-дългите пътища се състоят от най-дълги подпътища.

След всички изложени проблеми, които възникват при отрицателни тегла на ребрата, въз-
никва въпроса, а защо не се откажем от отрицателни тегла поначало? Наистина, ако теглата
моделират някакви физически величини, които по природа да положителни, примерно за-
къснения във времето или разстояния в реалния свят, няма как да се появят отрицателни
тегла; отрицателно закъснение, например, означава пътуване назад във времето. Обаче има
важни практически задачи, в които е удобно да се работи с абстракцията на отрицателните
числа. Примерно, ако моделираме някакви потоци от стоки или пари, можем да кажем, че
от сметката на X са прехвърлени 100 лева в сметката на Y, като кажем, че от сметката на
Y са прехвърлени ´100 лева в сметката на X.
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Наблюдение 39

Ако се откажем от отрицателни тегла изобщо, графите ни ще станат със строго по-
малка моделираща мощ.

Вярно е, че алгоритъмът на Dijkstra, който е единственият алгоритъм за най-къси пъти-
ща, който ще разгледаме в този курс, работи само при положителни тегла. Но има други
алгоритми за най-къси пътища, не толкова ефикасни колкото алгоритъма на Dijkstra, кои-
то работят при произволни тегла, стига да няма отрицателни цикли. Такъв алгоритъм ще
разгледаме в курса по алгоритми.

4.4.6 Алгоритъм на Dijkstra

Ако теглата на ребрата са неотрицателни, можем да използваме следния прост и елегантен
алгоритъм за решаване на задачата за най-късите пътища във варианта от един връх до
всички останали, като генерираме и самите пътища като дърво на най-късите пътища. Ал-
горитъмът е открит от великия компютърен учен Edsger Wybe Dijkstra [19]. Този човек е
открил много алгоритми, всеки от които може да бъде наречен “Алгоритъм на Dijkstra”, така
че за избягване на двусмислие може да се казва “Алгоритъм на Dijkstra за най-късите пъти-
ща”. В този курс не разглеждаме други алгоритми на Dijkstra, така че краткото “Алгоритъм
на Dijkstra” е прецизно наименование.

Въпреки че алгоритъмът е прост за възприемане и програмиране, доказателството на
коректността му съвсем не е просто и ще го отложим за курса по алгоритми. Тук само ще
видим кода, ще направим малък коментар върху него и ще го симулираме върху малък граф.

Алгоритъм 11: Алгоритъм на Dijkstra

Вход: ориентиран граф G “ pV,Eq с тегловна функция w : EÑ R`, връх s от V.
Изход: масив от дължините на най-късите пътища d, масив π, реализиращ кореново
дърво на най-късите пътища с корен s.

¶ За всеки връх v P V: drvs Ð 8, πrvs Ð Nil

· drss Ð 0

¸ SÐH

¹ Ако във VzS няма връх u, такъв че drus ă 8, върни d и π и край.

º В противен случай, избери x P VzS, такъв че drxs е минимално

» SÐ SY txu

¼ За всеки y P adjrxs:

À Ако drys ą drxs `wpx,yq, то

Á drys Ð drxs `wpx,yq, πrys Ð x

½ отиди на ¹

Масивите d и π по време на работата на алгоритъма имат следния смисъл. За всеки v P V:
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• drvs е най-точната апроксимация на дължината на най-къс път s p
ùv, която можем

да направим въз основа на информацията до момента,

• а πrvs е родителят на v в p.

Както лесно се вижда от кода, това апроксимиране е само отгоре и никога отдолу; тоест, drvs
не може да нараства, а само намалява. Вярно е, че в края на алгоритъма, d съдържа точните
стойности, а не апроксимации, но това трябва да се докаже прецизно, което доказателство
ще отложим за курса по алгоритми.
¶ и · са инициализацията на алгоритъма. Наистина, drvs има смисъл на най-добра апрок-
симация на дължината на най-къс sù v въз основа на това, което е известно до момента:
ако v “ s, очевидно тази дължина е нула, а ако v ­“ s, не можем да кажем нищо за нея, което
е същото като да кажем, че тя (най-добрата апроксимация) е безкрайност.
S е множеството от върховете, за които знаем точната стойност; с други думи, в него са
всички върхове v, такива че drvs е точно дължината на най-къс път sùv.

Човек би казал, че трябва да инициализираме S с tsu, а не с празното множество, как-
то правим в ¸. Това е напълно възможно, но в такъв случай трябва да променим и d и
π-стойностите на децата на s като част от инициализацията. За да бъде кодът прост и еле-
гантен, инициализираме S именно с празното множество. При първата итерация на while-а,
променливата x задължително ще съдържа s, така че при въпросната първа итерация всяко
дете на s ще “влезе” в y и ще получи правилни d и π-стойности.
Да разгледаме следния тегловен граф. За простота, графът е неориентиран и свързан. Тег-
лата са написани с червено до ребрата.
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Нека s “ 3. След ¶, · и ¸ имаме
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Във VzS има връх, а именно 3, чиято d-стойност не е безкрайност, така че изпълнението
отива на ». S става t3u. На рисунката на графа ще отбелязваме със син цвят на върховете
от S:

8 8 0 8 8 8 8d:

S “ t3u
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После във for-цикъла, y взема последователно стойностите на съседите на 3. Списъците на
съседство не са дадени, така че да кажем, че първо y става 1. Булевото условие

drys ą drxs `wpx,yq

всъщност е

8 ą 0` 3

което е истина, така че изпълнението отива на Á. Там dr1s става 3, а πr1s става 3.
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for-цикълът продължава да се изпълнява. y става 4. Булевото условие

drys ą drxs `wpx,yq

всъщност е

8 ą 0` 2

което е истина, така че изпълнението отива на Á. Там dr4s става 2, а πr4s става 3.
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3 8 0 2 8 8 8d:

S “ t3u
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for-цикълът престава да се изпълнява и отново сме на ¹. Има два върха извън S, чиято
d-стойност не е безкрайност, така че отиваме на º, където x става 4. S става t3, 4u:

3 8 0 2 8 8 8d:

S “ t3, 4u
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После y става 3 и 5, да кажем в този ред. Когато y е 3, булевото условие

drys ą drxs `wpx,yq

всъщност е

0 ą 2` 2

което е лъжа и Á не се изпълнява. После y става 5 и булевото условие

drys ą drxs `wpx,yq

всъщност е

8 ą 2` 200

което е истина, така че изпълнението отива на Á. Там dr5s става 202, а πr5s става 4:
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3 8 0 2 202 8 8d:

S “ t3, 4u
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for-цикълът престава да се изпълнява и отново сме на ¹. Има два върха извън S, чиято
d-стойност не е безкрайност, така че отиваме на º, където x става 1. S става t1, 3, 4u:

3 8 0 2 202 8 8d:

S “ t1, 3, 4u
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Връх 1 има три съседа: 3, 5 и 7. Да кажем, че първо y става 3. Това е опит за “връщане
назад”, но условието на À е лъжа и Á не се изпълнява. Да кажем, че после y става 5. Булевото
условие

drys ą drxs `wpx,yq

всъщност е

202 ą 3` 100

което е истина, така че изпълнението отива на Á. Там dr5s става 103, а πr5s става 1:

3 8 0 2 103 8 8d:

S “ t1, 3, 4u
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Както виждаме, тази апроксимация на дължината на най-къс път 3ù5 е по-добра (тоест,
по-малка) от предишната, но все още не е истинската стойност.

После y става 7. Булевото условие

drys ą drxs `wpx,yq

всъщност е

8 ą 3` 4

което е истина, така че изпълнението отива на Á. Там dr7s става 7, а πr7s става 1:

3 8 0 2 103 8 7d:

S “ t1, 3, 4u
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for-цикълът престава да се изпълнява и отново сме на ¹. Има два върха извън S, чиято
d-стойност не е безкрайност, така че отиваме на º, където x става 7. S става t1, 3, 4, 7u:

3 8 0 2 103 8 7d:

S “ t1, 3, 4, 7u
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Връх 7 има три съседа: 1, 2 и 5. Да кажем, че първо y става 1. Това е опит за “връщане
назад”, но условието на À е лъжа и Á не се изпълнява. Да кажем, че после y става 5. Булевото
условие

drys ą drxs `wpx,yq

всъщност е

103 ą 7` 50

което е истина, така че изпълнението отива на Á. Там dr5s става 57, а πr5s става 7:
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3 8 0 2 57 8 7d:

S “ t1, 3, 4, 7u
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После y става 2. Булевото условие

drys ą drxs `wpx,yq

всъщност е

8 ą 7` 5

което е истина, така че изпълнението отива на Á. Там dr2s става 12, а πr2s става 7:

3 12 0 2 57 8 7d:

S “ t1, 3, 4, 7u
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for-цикълът престава да се изпълнява и отново сме на ¹. Има два върха извън S, чиято
d-стойност не е безкрайност, така че отиваме на º, където x става 2. S става t1, 2, 3, 4, 7u:

3 12 0 2 57 8 7d:

S “ t1, 2, 3, 4, 7u
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Връх 2 има три съседа: 5, 6 и 7. Да кажем, че първо y става 7. Това е опит за “връщане
назад”, но условието на À е лъжа и Á не се изпълнява. Да кажем, че после y става 5. Булевото
условие

drys ą drxs `wpx,yq

всъщност е

57 ą 20` 12

което е истина, така че изпълнението отива на Á. Там dr5s става 32, а πr5s става 2:

3 12 0 2 32 8 7d:

S “ t1, 2, 3, 4, 7u
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После y става 6. Булевото условие

drys ą drxs `wpx,yq

всъщност е

8 ą 12` 6

което е истина, така че изпълнението отива на Á. Там dr6s става 18, а πr6s става 2:

3 12 0 2 32 18 7d:

S “ t1, 2, 3, 4, 7u
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for-цикълът престава да се изпълнява и отново сме на ¹. Има два върха извън S, чиято
d-стойност не е безкрайност, така че отиваме на º, където x става 6. S става t1, 2, 3, 4, 6, 7u:
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3 12 0 2 32 18 7d:

S “ t1, 2, 3, 4, 6, 7u
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Връх 6 има две съседа: 2 и 5. Да кажем, че първо y става 2. Това е опит за “връщане назад”,
но условието на À е лъжа и Á не се изпълнява. После y става 5. Булевото условие

drys ą drxs `wpx,yq

всъщност е

32 ą 18` 10

което е истина, така че изпълнението отива на Á. Там dr5s става 28, а πr5s става 6:

3 12 0 2 28 18 7d:

S “ t1, 2, 3, 4, 6, 7u
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for-цикълът престава да се изпълнява и отново сме на ¹. Има един връх извън S, чиято
d-стойност не е безкрайност, така че отиваме на º, където x става 5. S става t1, 2, 3, 4, 5, 6, 7u:

3 12 0 2 28 18 7d:

S “ t1, 2, 3, 4, 5, 6, 7u
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Връх 5 има пет съседа: 1, 2, 4, 6 и 7. За всеки от тях, когато “влезе” в y, булевото условие

drys ą drxs `wpx,yq

е лъжа, така че for-цикълът не променя нищо. Изпълнението отива на ¹, но сега V “ S,
така че VzS “ H, така че алгоритъмът връща d и π и спира.

Да се върнем на това, че в алгоритъма на Dijkstra теглата не може да са отрицателни. Дори да
няма отрицателни цикли, алгоритъмът на Dijkstra не работи коректно, в общия случай, при
наличие на отрицателни тегла. Ето малък пример за това. Примерът е с ориентирани графи,
защото при неориентираните графи всяко ребро с отрицателно тегло би било третирано като
отрицателен цикъл.

И така, ето фрагмент от ориентиран тегловен граф. Това не е целият граф, а само
началният връх s и трите му деца u, v и w:

s

10

w

v

u

30

20

Както вече знаем, алгоритъмът първо слага s в S, като drss “ 0 и после слага u в S, като
drus “ 10 и πrus става s.

s

10

w

v

u

30

20

Оттук насетне, алгоритъмът няма да промени никакъв атрибут на връх u: нито drus ще
се промени, нито πrus ще се промени. Това е очевидно от кода на Алгоритъм 11: на ред ¹

върховете от S се игнорират, така че няма как променливата x да стане u втори път, след
като веднъж вече u е влязъл в S. С други думи, алгоритъмът смята, че със слагането на u
в S, за u вече имаме точната информация, а не апроксимация – няма път от s до u с тегло,
по-малко от 10.

Ако теглата са положителни, това е точно така. Път от s до u може да “напусне” s само
през едно показаните три ребра. Ако такъв път ползва някое от ребрата ps, vq или ps,wq,
неговото тегло ще стане поне 20 или 30, което значи, че теглото му надхвърля 10. Ако такъв
път ползва реброто ps,uq, но съдържа и други ребра, пак теглото му ще надхвърля 10.

Ако обаче има отрицателни тегла, възможно е да има път от s до u с тегло, по-малко от
10. Ето как:
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s

10

w

v

u

30

20 ´24

Сега има път от s до u с тегло 6, който минава през w. Алгоритъмът обаче няма как да знае
за него, когато x съдържа s и y взема стойностите на съседите на x “ s.

И така, при наличие на отрицателни тегла, убедеността, че няма по-къс до даден връх,
която убеденост е основанието този връх да влезе в S, се получава по-трудно и по-бавно, в
общия случай. Има алгоритми за най-къси пътища, които работят и при отрицателни тегла,
стига да няма отрицателни цикли, но те са по-неефикасни от алгоритъма на Dijkstra.
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4.5 Потоци в графи
Изложението в тази секция следва изложението на материала за потоци в графи във фун-
даменталната книга на Cormen, Leiserson, Rivest и Stein Introduction to Algorithms [16, глава
26, стр. 708].
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