
Лекция 3: Релации

Минко Марков
minkom@fmi.uni-sofia.bg

Факултет по Математика и Информатика
Софийски Университет "Свети Климент Охридски"

10 ноември 2025 г.

Минко Марков minkom@fmi.uni-sofia.bg Лекция 3: Релации (кратка)



Определение на “бинарна релация”

Определение 1
Нека A1 и A2 са множества, наречени съответно първи домейн
и втори домейн. Бинарна релация с първи домейн A1 и втори
домейн A2 се нарича всяко множество

R Ď A1 ˆ A2

Ако A1 “ A2, казваме, че R е хомогенна. Нека A “ A1 “ A2.
Може да кажем, че R е над Декартовия квадрат A2.

Алтернативно, A1 се нарича “дефиниционна област”, а A2 се
нарича “област от стойностите”.

Ако е изпълнено @x P A1 Dy P A2 : px , yq P R , то R е тотална.

Ако кажем “R е релация” без повече уточнения, подразбираме,
че R е хомогенна.
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Примери за релации

ă, ď, ą, ě и “ са релации над Декартовия квадрат R2.
Съгласно определението, всяка от тях е множество от наредени
двойки от реални числа. Вярно е, че p1, 2q Pă, p1, 2q Pď,
p1, 1q Pď, p1, 1q Ră, и така нататък.

Нека S е множество. Дефинираме релацията ĎS над
Декартовия квадрат 2S ˆ 2S така:

@a, b P 2S
`

pa, bq P ĎS
def
Ø a Ď b

˘

Примерно, нека S “ ta, bu. Вярно, че ptau, ta, buq P ĎS ,
pta, bu, tauq R ĎS , и така нататък.
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Инфиксен запис при релации

Нека R Ď A1 ˆ A2. Наместо да пишем “px , yq P R”, където
x P A1 и y P A2, пишем много по-прегледното “x R y ”. Това е
инфиксен запис: символът на релацията се записва между
елементите.

Това е записът, познат ни от училище. Примерно, “1 ă 2”
вместо “p1, 2q Pă”, “2 ­ă 1” вместо “p2, 1q Ră”, и така нататък.
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За теоретико-множествената дефиниция на “релация”

Релация означава отношение. Това не може да е дефиниция: а
какво е отношение?

Не искаме да въвеждаме ново първично понятие, ако можем да
го избегнем. Вече сме въвели “множество” като първично
понятие. Всяко друго понятие изграждаме чрез “множество” и
естествени езикови конструкции.

Формалната теоретико-множествена дефиниция е смислена: за
да определим дадена релация, казваме кои наредени двойки от
елементи участват в нея. Като пример да разгледаме
бинарната релация на приятелство над някакво множество от
хора. Първо, приемаме, че приятелството е или-или; няма
степени на приятелство. Второ, от формална гледна точка,
приятелството се определя от двойките хора, които са
приятели и това е всичко.
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Композиция на релации

Нека R Ď Aˆ B и Q Ď B ˆ C са релации. Композицията на Q
върху R е релацията Q ˝ R Ď Aˆ C , дефинирана така:

Q ˝ R
def
“

 

px , zq P Aˆ C | Dy P Bppx , yq P R ^ py , zq P Qq
(

Примерно, ако A “ ta, b, c , du, B “ t1, 2, 3, 4u, C “ tα,β,γu
R “ tpa, 1q, pa, 3q, pb, 1q, pb, 3q, pd , 4qu и
Q “ tp1,αq, p2,βq, p3,αq, p3,γq, p4,γqu, то

Q ˝ R “
 

pa,αq, pa,γq, pb,αq, pb,γq, pd ,γq
(

(1)

Композицията не е комутативна! В общия случай,
Q ˝R ­“ R ˝Q. Това обяснява израза “композицията на Q върху
R”.
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Обратната релация.

Нека R Ď Aˆ B е релация. Нейната обратна релация, която
бележим с “R´1”, се дефинира така:

R´1
def
“ tpx , yq | py , xq P Ru

Примерно, ако A “ ta, b, c, du и B “ t1, 2, 3, 4u и
R “ tpa, 1q, pa, 3q, pb, 1q, pb, 3q, pd , 4qu, то
R´1 “ tp1, aq, p1, bq, p3, aq, p3, bq, p4, dqu.

Очевидно R´1 Ď B ˆ A.
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Представяния на релации с диаграми

Нека A “ ta1, a2, . . . , anu, B “ tb1, b2, . . . , bmu и R Ď Aˆ B .
Представяме R чрез диаграма от точки и стрелки, като точките
отговарят на е-тите на A и B , а стрелка от ai към bj има тстк
aiRbj . Точките, съотв. на е-нтите на A, са в елипса вляво, а
точките, съотв. на е-нтите на B , са в елипса вдясно. Нека
A “ ta, b, c , du, B “ t1, 2, 3, 4u и R “ tpa, 1q, pa, 3q, pb, 1q, pb, 3q, pd , 4qu.

a

b

c

d

A

1

2

3

4

B

R
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Илюстрация на композиция на релации с диагр.

Нека A “ ta, b, c , du, B “ t1, 2, 3, 4u, C “ tα,β,γu
R “ tpa, 1q, pa, 3q, pb, 1q, pb, 3q, pd , 4qu и
Q “ tp1,αq, p2,βq, p3,αq, p3,γq, p4,γqu. Q ˝ R се илюстрира така:

a

b

c

d

A

1

2

3

4

B

R

α

β

γ

C

Q

Q ˝̋̋ R
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Илюстрация на обратната релация с диаграма.

Нека A “ ta, b, c , du и B “ t1, 2, 3, 4u и
R “ tpa, 1q, pa, 3q, pb, 1q, pb, 3q, pd , 4qu. Както знаем,
R´1 “ tp1, aq, p1, bq, p3, aq, p3, bq, p4, dqu.

a

b

c

d
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Минко Марков minkom@fmi.uni-sofia.bg Лекция 3: Релации (кратка)



Композицията на релации е асоциативна
Въведение в доказателството (1)

Теорема 1

P ˝ pQ ˝ Rq “ pP ˝Qq ˝ R

Доказателство: Неявно, има общо четири домейна. Да ги
наречем A, B , C и D. Да определим кой е първият и кой е
вторият домейн на всяка от P , Q, R .

Приемаме именуването от Слайд 6 за Q и R : R Ď Aˆ B и

Q Ď B ˆ C , така че Q ˝ R Ď Aˆ C : A B C
R Q

.

Нека S “ Q ˝ R . Тогава S Ď Aˆ C : A C
S

и P ˝ pQ ˝ Rq е
P ˝ S . Първият домейн на P ˝ S е първият домейн на S , т.е., A.
Вторият домейн на P ˝ S е вторият домейн на P , който трябва

да е D: A C D
S P

. Очевидно P Ď C ˆD.
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Композицията на релации е асоциативна
Въведение в доказателството (2)

Разглеждаме P ˝Q. Както знаем, Q Ď B ˆ C и P Ď C ˆD,

така че P ˝Q Ď B ˆD: B C D
Q P

.

Нека T “ P ˝Q. Тогава T Ď B ˆD: B D
T

и pP ˝Qq ˝ R е
T ˝ R . Първият домейн на T ˝ R е първият домейн на R , тоест
A. Вторият домейн на T ˝ R е вторият домейн на T , тоест D:

A B D
R T

.

Ще докажем, че P ˝ S “ T ˝ R . Забелязваме, че P ˝ S Ď AˆD
и T ˝ S Ď AˆD, тоест, първият и вторият домейн и на двете
релации са равни. Ще покажем, че

@px , zq P AˆD
`

px , zq P P ˝ S Ø px , zq P T ˝ R
˘

(2)

От това следва, че P ˝ S “ T ˝ R .
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Композицията на релации е асоциативна
Формалното доказателство

px , zq P P ˝ pQ ˝ Rq Ø Dw P C : px ,wq P Q ˝ R ^ pw , zq P P Ø

Dw P C :
`

Dy P B : px , yq P R ^ py ,wq P Q
˘

^ pw , zq P P Ø

Dw P C Dy P B : px , yq P R ^ py ,wq P Q ^ pw , zq P P Ø

Dy P B Dw P C : px , yq P R ^ py ,wq P Q ^ pw , zq P P Ø

Dy P B Dw P C : px , yq P R ^
`

py ,wq P Q ^ pw , zq P P
˘

Ø

Dy P B : px , yq P R ^
`

Dw P C : py ,wq P Q ^ pw , zq P P
˘

Ø

Dy P B : px , yq P R ^ py , zq P P ˝Q Ø

px , zq P pP ˝Qq ˝ R

Което и трябваше да покажем. l
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Обратната релация на композиция на релации

Теорема 2

pQ ˝ Rq´1 “ R´1 ˝Q´1

Доказателство: Нека R Ď Aˆ B и Q Ď B ˆ C . Тогава
Q ˝ R Ď Aˆ C , така че pQ ˝ Rq´1 Ď C ˆ A.

px , zq P pQ ˝ Rq´1 Ø pz , xq P Q ˝ R Ø

Dy P B : pz , yq P R ^ py , xq P Q Ø

Dy P B : py , zq P R´1 ^ px , yq P Q´1 Ø

Dy P B : px , yq P Q´1 ^ py , zq P R´1 Ø

px , zq P R´1 ˝Q´1

Което и трябваше да покажем. l
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Представяния на хомогенни релации с матрици

Нека A “ ta1, a2, . . . , anu. Нека R Ď A2. Можем да представим
R чрез булева матрица nˆ n, в която клетката на ред i и
колона j е

1, ако aiRaj ,
0, в противен случай.

Например, нека A “ ta, b, c, du и R “ tpa, aq, pa, bq, pa, cq, pb, dq,
pc , aq, pc , cq, pd , bq, pd , cqu. Тогава R се представя със следната
матрица:

a b c d

d

c

b

a

0 1 1 0
1 0 1 0
0 0 0 1
1 1 1 0
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Представяния на хомогенни релации с диаграми

Нека A “ ta1, a2, . . . , anu. Нека R Ď A2. Можем да представим
R чрез диаграма от точки и стрелки, в която на всяко ai
съответства отделна точка, наречена връх, а стрелка от върха,
съответен на ai до върха, съответен на aj , се поставя тогава и
само тогава, когато aiRaj .

Нека A “ ta, b, c , du и R “ tpa, aq, pa, bq, pa, cq, pb, dq, pc, aq,
pc , cq, pd , bq, pd , cqu. Тогава R се представя така:

a b

cd
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Свойства на хомогенните релации

Само за хомогенните релации дефинираме следните шест
стойства.

рефлексивност
антирефлексивност
симетричност
антисиметричност
силна антисиметричност
транзитивност
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Свойства на релациите
Рефлексивност

Нека R Ď A2. R е рефлексивна тстк @a P A : aRa.

В матрично представяне, по
главния диагонал има само
единици.

a b c d

d

c

b

a

0 1 1 1
1 0 1 0
0 1 0 1
1 1 1 0

В представяне с диаграми,
всеки връх има примка.

a b

cd
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Свойства на релациите
Антирефлексивност

Нека R Ď A2. R е антирефлексивна тстк @a P A :  aRa.

В матрично представяне, по
главния диагонал има само
нули.

a b c d

d

c

b

a

0 1 1 0
1 0 0 0
0 0 0 1
0 1 1 0

В представяне с диаграми,
нито един връх няма примка.

a b

cd
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Свойства на релациите
Симетричност

Нека R Ď A2. R е симетрична тстк @a, b P A, a ­“ b : aRbÑ bRa.

В матрично представяне,
матрицата е симетрична
спрямо главния диагонал.
Съдържанието на главния
диагонал е без значение.

a b c d

d

c

b

a

0 1 1 0
1 0 0 1
1 0 0 1
1 1 1 0

В представяне с диаграми,
за всеки два различни върха,
или има и двете стрелки от
единия до другия, или няма
нито едната стрелка от еди-
ния до другия.

a b

cd
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Свойства на релациите
Антисиметричност

Нека R Ď A2. R е антисиметрична тстк
@a, b P A, a ­“ b : aRbÑ bRa.

В матрично представяне,
матрицата няма симетрична
спрямо главния диагонал
двойка единици. Съдържа-
нието на главния диагонал е
без значение.

a b c d

d

c

b

a

0 1 1 0
1 0 0 0
1 0 0 0
1 0 0 0

В представяне с диаграми,
няма два различни върха, та-
кива че има стрелка от пър-
вия до втория и от втория до
първия.

a b

cd
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Свойства на релациите
Антисиметричност (2)

Симетричността и антисиметричността не са взаимно
изключващи се съгласно формалните дефиниции. Може
релация R Ď A2 да е симетрична и антисиметрична.

В матрично представяне, из-
вън главния диагонал са само
нули. Съдържанието на глав-
ния диагонал е без значение.

a b c d

d

c

b

a

0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0

В представяне с диаграми,
за всеки два различни вър-
ха, и двете стрелки отсъстват.
Примките са без значение.

a b

cd
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Свойства на релациите
Антисиметричност (3)

Следните дефиниции са еквивалентни:

@a, b P A : a ­“ bÑ paRbÑ bRaq

@a, b P A : aRb ^ bRaÑ a “ b

Дефинираме прости съждения p, q, r така: aRb е p, bRa е q,
a “ b е r . Твърди се, че

 r Ñ pp Ñ qq ” p ^ q Ñ r

Наистина,

p ^ q Ñ r ”  pp ^ qq _ r ”  p _ q _ r ”

  r _ p _ q ”  r Ñ p p _ qq ”  r Ñ pp Ñ qq
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Свойства на релациите
Силна антисиметричност

Нека R Ď A2. R е силно антисиметрична тстк
@a, b P A, a ­“ b : aRb ‘ bRa.

В матрично представяне, вся-
ка двойка клетки, симетрични
спрямо главния диагонал, съ-
държа протипоположни стой-
ности. Съдържанието на глав-
ния диагонал е без значение.

a b c d

d

c

b

a

0 1 1 0
1 0 0 0
1 0 1 0
1 0 0 1

В представяне с диаграми,
за всеки два различни върха,
точно едната стрелка е налич-
на. Примките са без значение.

a b

cd
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Свойства на релациите
Транзитивност

Нека R Ď A2. R е транзитивна тстк
@a, b, c P A : aRb ^ bRc Ñ aRc . Нищо не налага a, b и c да са
различни!

В матрично представяне
транзитивността се описва
тромаво, що се отнася до
разчитане от човек.

В представяне с диаграми,
типичното описание на тран-
зитивността е следното.

a b c
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Свойства на релациите
Транзитивност (2)

Това описание на транзитивността a b c е смислено
само при a ­“ b ­“ c ­“ a (неравенството не е транзитивно!).

Ако a “ b “ c , дали този елемент има примка или няма е
без значение за транзитивността: 3 или 3.
Ако a “ b ­“ c :

ако поне едната стрелка от единия до другия липсва, тази

двойка “не пречи” на транзитивността: 3,

3, 3, 3.
ако и двете стрелки между тях са налице, ако поне единият
няма примка, тази двойка “пречи” на транзитивността,

иначе “не пречи”: 7, 3.
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Затваряния на релации (closures)

Нека R Ď A2. Рефлексивното затваряне на R е минималното
множество R 1 Ď A2, такова че R 1 Ě R и R 1 е рефлексивна
релация.

“R 1 е минималното множество” означава, че за всяко R 2 Ď A2,
такова че R 2 Ě R и R 2 е рефлексивна, е вярно, че R 2 Ě R 1.

Симетричното затваряне на R и транзитивното затваряне на R
се дефинират напълно аналогично: заменяме “рефлексивна”
със “симетрична” и “транзитивна”.

Релация е рефлексивна тстк съвпада с рефлексивното си
затваряне. Аналогично за симетричното и транзитивното
затваряне.
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Конструиране на затваряния на релации

Нека A е крайно и релациите са представени с матрици.
Рефлексивното затваряне се получава с едно сканиране на
главния диагонал и обръщане на всяка нула в единица.
Симетричното затваряне се получава чрез сканиране за
двойки p0, 1q или p1, 0q, които са симетрични спрямо
главния диагонал, и обръщане на нулата от двойката в
единица.
Транзитивното затваряне се получава по-сложно (нещо
като умножение на матрицата със себе си n´ 1 пъти).
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Релации на еквивалентност

Релация е релация на еквивалентност тстк е рефлексивна,
симетрична и транзитивна.

От разгледаните досега релации над реалните числа само “ е
релация на еквивалентност.
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Релации на еквивалентност – пример

Ще разгледаме друга релация на еквивалентност. Нека S е
множеството от всички булеви стрингове с дължина четири.

S “ t0000, 0001, . . . , 1110, 1111u

Да въведем релация R Ď S2 така: за всеки a, b P S , aRb тогава
и само тогава, когато b е ротация на a. b е ротация на a тстк
съществуват булеви стрингове b1, b2 със сумарна дължина
четири (тоест, |b1| ` |b2| “ 4; b1 или b2 може да е празният
стринг, тоест, може |b1| “ 0 или |b2| “ 0), такива че b “ b1b2 и
a “ b2b1.

Примерно, 0001 е ротация на 0100 с b1 “ 00 и b2 “ 01, 0101 е
ротация на 1010, и така нататък.

R е релация на еквивалентност.
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Релации на еквивалентност – пример (2)

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

0000 1111 0101 1010

0001

0010

0100

1000

0011

0110

1100

1001

0111

1110

1101

1011
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Класове на еквивалентност

Нека R Ď A2 е релация на еквивалентност. За всеки a P A

дефинираме множеството ras def“ tb P A | aRbu.

В примера от миналия слайд:

r0000s “ t0000u
r0001s “ t0001, 0010, 0100, 1000u
r0010s “ t0001, 0010, 0100, 1000u
r0011s “ t0011, 0110, 1100, 1001u
r0100s “ t0001, 0010, 0100, 1000u
r0101s “ t0101, 1010u
r0110s “ t0011, 0110, 1100, 1001u
r0111s “ t0111, 1110, 1101, 1011u
r1000s “ t0001, 0010, 0100, 1000u

¨ ¨ ¨

r1111s “ t1111u
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Класове на еквивалентност (2)

Теорема 3

Нека R Ď A2 е релация на еквивалентност. Тогава фамилията
tras | a P Au е разбиване на A.

В примера със стрингове, те са 16 на брой, но фамилията
tras | a P Au има само шест елемента:
 

t0000u, t1111u, t0001, 0010, 0100, 1000u,
t0101, 1010u, t0011, 0110, 1100, 1001u, t0111, 1110, 1101, 1011u

(

Очевидно тази фамилия е разбиване на S .
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Класове на еквивалентност (3)

Доказателство на Теорема 3:
@Y P tras | a P Au : Y Ď A. Това е очевидно. 3

@Y P tras | a P Au : Y ­“ H, тъй като R е рефлексивна. 3
Ť

tras | a P Au “ A. Това е очевидно. 3

Всеки два различни елемента на фамилията tras | a P Au
имат празно сечение. Това е неочевидно.
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Класове на еквивалентност (4)
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Класове на еквивалентност (5)

Нека R Ď A2 е релация на еквивалентност. Съгласно Теорема 3,
фамилията tras | a P Au е разбиване на A. Елементите на тази
фамилия се наричат класовете на еквивалентност на R .

Щом научим или установим, че дадена релация е релация на
еквивалентност, първо трябва да съобразим кои са нейните
класове на еквивалентност. Те характеризират релацията
напълно, тоест, първичната дефиниция на релация на
еквивалентност може да стане чрез класовете на
еквивалентност.
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Частична наредба (partial order)

Релация е частична наредба тстк е рефлексивна,
антисиметрична и транзитивна.

От разгледаните релации върху реалните числа, “, ď и ě са
частични наредби. ĎS също е частична наредба.

Релация е строга частична наредба (strict partial order) тстк е
антирефлексивна, антисиметрична и транзитивна. От
разгледаните релации върху реалните числа, ă и ą са строги
частични наредби.

Ако R Ď Aˆ A е (строга) частична наредба, казваме, че
наредената двойка pA,Rq е (строго) частично наредено
множество, на английски poset.
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Частично наредени множества pA,ďq и pA,ăq

Буквите “ď” и “ă” се използват често за означаване на
частични наредби и строги частични наредби, без да се има
предвид непременно познатите ни релации върху реалните
числа. По този начин, “ď” може да означава произволна
частична наредба, а “ă” да означава произволна строга
частична наредба. В такъв случай, “ď” и “ă” са просто букви,
които сме избрали за означаване на релациите.

Ако е дадено частично наредено множество pA,ďq и “ă” не е
дефинирана, по подразбиране “ă” означава следната релация:
ă“ď ztpa, aq | a P Au. Очевидно тази релация е
антирефлексивна (също като познатата ни ăĂ Rˆ R). Също
така, тя е антисиметрична и транзитивна, което я прави строга
частична наредба. Казваме ă е строгата частична наредба,
асоциирана с ď.
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Частични наредби в практиката

Частични наредби се появяват, например, при класиране по два
или повече критерии, които са еднакво важни, ако няма
еднакви оценки. Оценките са не числа, а наредени двойки!

Нека класираме програмисти по C и Java, с оценка px , yq,
където x е оценката по C , а y , по Java. Ясно ли е как да
класираме?

Не непременно. Ако Aлбена има p6, 6q, Борис има p5, 5q, Владо
има p4, 4q и Гергана има p3, 3q, нещата са ясни. Но ако Борис
има p5, 4q, а Владо има p4, 5q, те двамата стават несравними.

При частичните наредби може (но не непременно!) да има
несравними елементи. a и b са несравними, ако  aRb и  bRa.
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Примери с диаграми

Г

БВ

А

Частична наредба R .

Г

БВ

А

Строгата частична наредба,
асоциирана с R .
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Релации на линейна наредба (linear order)

Релация е линейна наредба тстк е рефлексивна, силно
антисиметрична и транзитивна, и е строга линейна наредба,
ако е антирефлексивна, силно антисиметрична и транзитивна.

Не може да има несравними двойки елементи заради силната
антисиметричност.

A “ ta1, . . . , anu. Ако R Ď A2 е линейна наредба, то R има
точно npn`1q

2 елемента. Ако R Ď A2 е строга линейна наредба,
то R има точно npn´1q

2 елемента.

Линейните наредби са частен случай на частичните наредби –
всяка линейна е частична, но обратното не е вярно.
Аналогично, строгите линейни наредби са частен случай на
строгите частични наредби.
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Диаграмите на линейните наредби

Всяка линейна наредба над краен Декартов квадрат има
диаграма, която е от този вид, или поне може да се нарисува
по следния начин. Да кажем, че домейнът има шест елемента.
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Влагане на частична в линейна наредба (linear extension)

Ако R Ď A2 е частична наредба, R 1 Ď A2 е линейна наредба и
R Ď R 1, казваме, че R се влага в R 1. Алтернативно, казваме, че
R 1 е линейно разширение на R .

При A “ ta1, . . . , anu, броят на линейните разширения варира
много: от 1 (самата R е линейна наредба) до n! (няма
сравними елементи в R).
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Линейно разширение: пример

Релацията от Слайд 40 е частична наредба, но не е линейна
наредба. Тя има точно две линейни разширения (има две
възможности за отношението между Б и В).

А Б В Г

А В Б Г
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Минимален и максимален елемент в частична наредба

Нека R Ď A2 е частична наредба. За всеки a P A, казваме, че a
е минимален по отношение на R , ако  Db P Aztau : bRa.
Съгласно правилата на предикатната логика, това е
еквивалентно на @b P Aztau :  bRa. На английски е minimal.
Ако R е строга, дефиницията е просто @a P A  Db P A : bRa.

Аналогично, a е максимален по отношение на R , ако
 Db P Aztau : aRb. Съгласно правилата на предикатната логика,
това е еквивалентно на @b P Aztau :  aRb. На английски е
minimal.

Може да има повече от един минимален и повече от един
максимален елемент. Може да няма минимален или
максимален елемент.
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Минимален и максимален елемент – примери

a

bc

d e

a е минималният, d и e са
максималните.

1 2 3

Всеки елемент е и минима-
лен, и максимален.
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Най-голям и най-малък елемент

Нека R Ď A2 е частична наредба. За всеки a P A, казваме, че a
е най-малък по отношение на R , ако @b P A : aRb. На английски
е minimum. Дуално, a е най-голям по отношение на R , ако
@b P A : bRa. На английски е maximum.

Елементарно се доказва, че ако има най-малък елемент, той е
уникален: нека a е най-малък и нека c е най-малък, но тогава
aRc и cRa, откъдето заключаваме, че a “ c , понеже R е
антисиметрична. Аналогично, ако има най-голям елемент, той
е уникален.
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Най-голям и най-малък елемент – примери

a

bc

d e

a е най-малък, най-голям няма.

Г

БВ

А

A е най-голям, Г е най-малък.

Минко Марков minkom@fmi.uni-sofia.bg Лекция 3: Релации (кратка)



Минимален/максимален; най-малък/най-голям елемент

Ако елемент е най-малък, той е минимален. Конверсното не е
вярно. Ако елемент е най-голям, той е максимален.
Конверсното не е вярно. Ако наредбата е линейна, “минимален”
(“максимален”) и “най-малък” (“най-голям”) съвпадат.

Ако R е линейна наредба над краен домейн, има точно един
най-малък и точно един най-голям елемент (които съвпадат
тстк множеството има точно един елемент). Конверсното не е
вярно: може да има точно един най-малък и точно един
най-голям елемент, но наредбата да не е линейна – вижте
примерите на Слайд 40.

Ако A е безкрайно, може да няма минимален или максимален
елемент (което влече съответно, че няма най-малък или
най-голям). Например, ď няма максимален елемент върху
естествените числа, но има минимален елемент, който е и
най-малък – нулата. Върху целите числа тя няма нито
минимален, нито максимален елемент.
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Фундирани наредби

Частична наредба ď Ď Aˆ A е фундирана (well-founded), ако
всяко непразно множество на A има минимален елемент.
Внимание: не става дума непременно за релацията “по-малко
или равно” върху числа!

Без доказателство приемаме тази теорема: ď е фундирана тстк
не съществува безкрайна редица pa0, a1, a2, . . .q от елементи на
A, такава че

a0 ą a1 ą a2 ą ¨ ¨ ¨

където ą е релацията ă´1, където ă е строгата наредба,
асоциирана с ď.

На прост български, наредба е фундирана тстк всяко непразно
подмножество има начални елементи.
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Добри наредби

Частична наредба ď Ď Aˆ A е добра наредба (well-ordered),
ако всяко непразно множество на A има най-малък елемент.
Внимание: и тук не става дума непременно за релацията
“по-малко или равно” върху числа!

Без доказателство приемаме тази теорема: ď е добра наредба
тстк ď е линейна фундирана наредба.

На прост български, наредба е добра тстк всяко непразно
подмножество има единствено начало.
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За разликата между фундираните и добрите наредби

Нека ĺ Ă N2 ˆN2 е дефинирана така: px1, y1q ĺ px2, y2q тстк
x1 ď x1 и x2 ď y2, където ď е познатата ни релация върху
естествените числа.

ĺ е фундирана. Ето защо. Нека S Ď N2 е непразно. Нека
S1 “ ta P N | Dpx , yq P S : a “ xu. Нека m1 “ minS1. Такъв
съществува. Нека S2 “ ta P N| Dpx , yq P S : y “ m1u. Нека
m2 “ minS2. Такъв съществува. Очевидно pm1,m2q е елемент
на S и е минимален за S .

Но ĺ не е добра наредба. Тя може да има несравними
елементи, примерно p1, 0q и p0, 1q. Ако S “ tp1, 0q, p0, 1qu, то S
няма най-малък елемент по отношение на ĺ.
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