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Изброителна комбинаторика (Enumerative Combinatorics)

Комбинаториката е дял на дискретната математика, чийто
предмет е изброяването на някакви обекти, наречени
комбинаторни структури или комбинаторни конфигурации.
Какви са тези комбинаторни структури ще стане ясно нататък.

Изброителната комбинаторика търси точни формули за
бройките на тези обекти.
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Принципи на изброителна комбинаторика

Ще разгледаме няколко основни закона на комбинаториката.
Те не са аксиоми: всеки от тях може да бъде доказан.

Ще направим подробно доказателство само на принципа на
включването и изключването.

Оттук нататък всички множества, които разглеждаме, са
крайни, освен ако изрично не е казано, че са безкрайни.
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Принцип на Dirichlet (the pigeonhole principle)

Известен още като принцип на чекмеджетата. На английски е
the pigeonhole principle. Неформално: ако има m ябълки в n
чекмеджета и m ą n, то в поне едно чекмедже съдържа повече
от една ябълка. Формално: ако X и Y са крайни множества и
|X | ą |Y |, то не съществува инекция от X в Y .

Доказва се елементарно: |X | ą |Y | е еквивалентно на
 p|X | ď |Y |q, а |X | ď |Y | тстк има инекция от X в Y .
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Обобщен принцип на Dirichlet

Обобщен принцип на Dirichlet: ако има kn` 1 ябълки в n
чекмеджета, то в поне едно чекмедже има повече от k ябълки.

Алтернативна формулировка на обобщения принцип на
Dirichlet е: ако има m ябълки в n чекмеджета, то в поне едно
чекмежде има поне

P

m
n

T

ябълки.
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Принцип на разбиването (събирането)

Дадено е множество X и разбиване Y “ tY1, . . . ,Yku на X .
Тогава

|X | “ |Y1| ` ¨ ¨ ¨ ` |Yk | (1)

Забележете, че това остава в сила дори някои от множествата
Y1, . . . , Yk да са празни. Съгласно формалната дефиниция,
това не би било разбиване, но (1) остава в сила: мощностите
на празните Yi са нули и те не се отразяват на сумата.

Приемаме този принцип за очевиден и няма да правим
доказателство.
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Принцип на изваждането

Това е тривиално следствие от принципа на разбиването. Нека
е дадено множество A в универсум U. Тогава

|A| “ |U| ´ |A| (2)

Очевидно tA,Au е разбиване на универсума, така че от
принципа на разбиването имаме |U| “ |A| ` |A|.

Не е невъзможно A да е празно, но и тогава (2) остава в сила.
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Принцип на умножението

Нека A и B са множества. Тогава

|Aˆ B| “ |A| ¨ |B|

Приемаме го за очевиден и без доказателство.

Естествено обобщение е следното. Ако A1, . . . , Ak са
множества, то

|A1 ˆ ¨ ¨ ¨ ˆ Ak | “ |A1| ¨ ¨ ¨ ¨ ¨ |Ak |

Написано по по-икономичен начин:
ˇ

ˇ

ˇ

Śk
i“1 Ai

ˇ

ˇ

ˇ
“
śk

i“1 |Ai |
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Принцип на биекцията

Нека A и B са множества. |A| “ |B| тогава и само тогава,
когато съществува биекция f : AÑ B .

Това е тривиален извод от дефиницията на мощност на
множество.

Този принцип е много полезен, когато, за да изброим някакви
обекти, изброяваме други обекти и показваме, че съществува
биекция между двете множества от обекти.
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Принцип на делението

Нека A е множество. Нека R Ď A2 е релация на еквивалентност.
Нека A има k класа на еквивалентност и всеки клас на
еквивалентност има кардиналност m. Тогава

m “
|A|

k
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Принцип на включването и изключването (1)
Въведение

Принципът на включването и изключването се явява
обобщение на принципа на разбиването. При разбиването
намираме кардиналност на множество като сума от
кардиналностите на дяловете на някое негово разбиване. Сега е
дадено покриване на множеството и намираме кардиналността
на множеството, като събираме и изваждаме кардиналностите
на дяловете на покриването, техните сечения по двойки, по
тройки и така нататък.
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Принцип на включването и изключването (2)
Пример (1)

Дадена е група студенти. 10 от тях посещават практикум по
Java, 12 посещават практикум по C и е известно, че всеки
студент посещава поне един практикум. От колко студента се
състои групата?

Нека групата е A. Очевидно 12 ď |A| ď 22, като тези граници
са точни.

Ако обаче е известно, че точно 2-ма студенти посещават и
Java, и C, веднага следва, че |A| “ 20. По-подробно,
|A| “ 10` 12´ 2 “ 20.
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Принцип на включването и изключването (3)
Пример (2)

Java C

I II
III

Сумата 10` 12 “ 22 брои прекалено много (overcounting). Тя
брои райони I и II правилно, по веднъж, но брои район III
неправилно: два пъти.

Сумата 10` 12´ 2 “ 20 брои всеки район точно веднъж.
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Принцип на включването и изключването (4)
По-сложен пример (1)

Дадена е група студенти. 20 посещават практикум по Java, 19
по C и 17 по PHP. 8 посещават Java и C, 7 посещават Java и
PHP, 8 посещават C и PHP. 3 посещават и трите практикума.
Групата се състои от 46 студенти. Колко студенти не посещават
нито един от трите практикума?
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Принцип на включването и изключването (5)
По-сложен пример (2)

Отговорът е

46´ p20` 19` 17q ` p8` 7` 8q ´ 3 “ 46´ 56` 23´ 3 “ 10

p20` 19` 17q ´ p8` 7` 8q ` 3 “ 36 е броят на студентите в
поне един практикум. Да видим защо.
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Принцип на включването и изключването (6)
По-сложен пример (3). Диаграма на Venn на практикумите.

Java

C

PHP

I II

III

IV

V VI

VII

VIII

Търсим кардиналност-
та на обединението на
Java, C и PHP.

I, . . . , VIII са районите.
I са тези, които ходят
само на Java, V са само
на Java и C, и т.н. Ние
не знаем кардиналнос-
тите на районите, ос-
вен на VII. Ако ги знаех-
ме, задачата щеше да е
много лесна.
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Принцип на включването и изключването (7)
По-сложен пример (4). 20` 19` 17 “ 56 е прекалено много.

Java

C

PHP

I II

III

IV

V VI

VII

1 1

1

2

2 23

Сумата 20 ` 19 ` 17 брои I, II

и III по един път, но IV, V и VI

биват броени по два пъти, а
тримата студенти от VII биват
броени три пъти от тази сума.

Заради това 56 е повече от
кардиналността на обедине-
нието.
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Принцип на включването и изключването (8)
По-сложен пример (5)
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Принцип на включването и изключването (9)
Обща формулировка

Теорема 1

За всяко n ě 1, за всеки n множества A1, A2, . . . , An:

|A1 Y ¨ ¨ ¨ YAn| “
ÿ

1ďiďn

|Ai | ´
ÿ

1ďiăjďn

|Ai XAj | ` ¨ ¨ ¨ ` p´1qn´1|A1 X ¨ ¨ ¨ XAn| (3)

Доказателството е със силна индукция по n. Базата е n “ 1.
(3) става |A1| “ |A1|. 3 Индукционното предположение е, че за
всяко k P t1, . . . , n´ 1u, за всеки k множества B1, . . . , Bk :

|B1 Y ¨ ¨ ¨ YBk | “
ÿ

1ďiďk

|Bi | ´
ÿ

1ďiăjďk

|Bi XBj | ´ ¨ ¨ ¨ ` p´1qk´1|B1 X ¨ ¨ ¨ XBk | (4)

В частност, при k “ n´ 1 и мн-ва A1, . . . , An´1, предп. става:
|A1Y¨ ¨ ¨YAn´1| “

ÿ

1ďiďn´1
|Ai |´

ÿ

1ďiăjďn´1
|Ai XAj |´¨ ¨ ¨`p´1qn´2|A1X¨ ¨ ¨XAn´1|

(5)
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Принцип на включването и изключването (10)
Индукционната стъпка от доказателството

Индукционната стъпка е за стойност на аргумента n. В сила е

|A1 Y ¨ ¨ ¨ Y An´1 Y An| “ | pA1 Y ¨ ¨ ¨ Y An´1q
loooooooooomoooooooooon

X

Y An
loomoon

Y

| “

|A1 Y ¨ ¨ ¨ Y An´1
loooooooomoooooooon

X

| ` | An
loomoon

Y

| ´ | pA1 Y ¨ ¨ ¨ Y An´1q
loooooooooomoooooooooon

X

X An
loomoon

Y

| (6)

тъй като |X Y Y | “ |X | ` |Y | ´ |X X Y | (от (4) при k “ 2).

Знаем колко е |A1 Y ¨ ¨ ¨ Y An´1| от (5). Да разгледаме
|pA1 Y ¨ ¨ ¨ Y An´1q X An|.
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Принцип на включването и изключването (11)
Разглеждаме |pA1 Y ¨ ¨ ¨ Y An´1q X An| (1)

В сила е

pA1 Y ¨ ¨ ¨ Y An´1q X An “ pA1 X Anq Y ¨ ¨ ¨ Y pAn´1 X Anq (7)

заради дистрибутивността на сечението спрямо обединението.

Дясната страна на (7) е обединение на n´ 1 множества и (4) е
приложимо с k “ n´ 1 и B1 “ A1 X An, . . . , Bn´1 “ An´1 X An.
Съгласно (4):

|pA1 XAnq Y ¨ ¨ ¨ Y pAn´1 XAnq| “ `
ÿ

1ďiďn´1
|Ai XAn|

´
ÿ

1ďiăjďn´1
|pAi XAnq X pAj XAnq|`

`
ÿ

1ďiăjăkďn´1
|pAi XAnq X pAj XAnq X pAk XAnq|

¨ ¨ ¨

` p´1qn´2|pA1 XAnq X ¨ ¨ ¨ X pAn´1 XAnq| (8)
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Принцип на включването и изключването (12)
Разглеждаме |pA1 Y ¨ ¨ ¨ Y An´1q X An| (2)

Опростявайки дясната страна на (8) и предвид (7), получаваме

|pA1 Y ¨ ¨ ¨ YAn´1q XAn| “ `
ÿ

1ďiďn´1
|Ai XAn|

´
ÿ

1ďiăjďn´1
|Ai XAj XAn|`

`
ÿ

1ďiăjăkďn´1
|Ai XAj XAk XAn|

¨ ¨ ¨

` p´1qn´2|A1 XA2 X ¨ ¨ ¨ XAn´1 XAn| (9)
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Принцип на включването и изключването (13)

В дясната страна на (6) заместваме съгласно (5) и (9) и
получаваме

|A1 Y ¨ ¨ ¨ YAn´1 YAn| “
˜

ÿ

1ďiďn´1
|Ai | ´

ÿ

1ďiăjďn´1
|Ai XAj | ` ¨ ¨ ¨ ` p´1qn´2|A1 X ¨ ¨ ¨ XAn´1|

¸

` |An|

´

˜

ÿ

1ďiďn´1
|Ai XAn| ´ ¨ ¨ ¨ ` p´1qn´2|A1 XA2 X ¨ ¨ ¨ XAn´1 XAn|

¸

“

ÿ

1ďiďn

|Ai | ´
ÿ

1ďiăjďn´1
|Ai XAj | ` ¨ ¨ ¨ ` p´1qn´2|A1 X ¨ ¨ ¨ XAn´1|

´
ÿ

1ďiďn´1
|Ai XAn| ` ¨ ¨ ¨ ` p´1qn´1|A1 XA2 X ¨ ¨ ¨ XAn´1 XAn| (10)
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Принцип на включването и изключването (14)

В дясната страна на (10) групираме събираемите от горния и
долния ред по подходящ начин:

ÿ

1ďi
ďn

|Ai |´
ÿ

1ďi
ăjď
n´1

|AiXAj |`
ÿ

1ďi
ăj
ăkď
n´1

|AiXAjXAk | ` ¨ ¨ ¨ ` p´1qn´2|A1X¨ ¨ ¨XAn´1|

´
ÿ

1ďi
ď

n´1

|AiXAn|`
ÿ

1ďi
ăjď
n´1

|AiXAjXAn| ´ ¨ ¨ ¨ ` p´1qn´2 ÿ

1ďi1
ă¨¨¨ă
in´2
ďn´1

|Ai1X¨ ¨ ¨XAin´2XAn| ` p´1qn´1|A1X¨ ¨ ¨XAn| “

ÿ

1ďi
ďn

|Ai |´
ÿ

1ďi
ăjď
n

|AiXAj |`
ÿ

1ďi
ăj
ăkď

n

|AiXAjXAk | ` ¨ ¨ ¨ ` p´1qn´2 ÿ

1ďi1
ă¨¨¨ă
in´1
ďn

|Ai1X¨ ¨ ¨XAin´1 | ` p´1qn´1|A1X¨ ¨ ¨XAn|

Получихме дясната страна на (3). l
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Принцип на включването и изключването (15)

Символно, групирания и опростявания в дясната страна на (10)
са следните

ÿ

1ďiďn

|Ai | не се групира с нищо;

´
ÿ

1ďiăjďn´1
|Ai XAj | ´

ÿ

1ďiďn´1
|Ai XAn| “ ´

ÿ

1ďiăjďn

|Ai XAj |;

ÿ

1ďiăjăkďn´1
|Ai XAj XAk | `

ÿ

1ďiăjďn´1
|Ai XAj XAn| “

ÿ

1ďiăjăkďn

|Ai XAj XAk |;

¨ ¨ ¨

p´1qn´2|A1 X ¨ ¨ ¨ XAn´1| се групира с p´1qn´2
ÿ

1ďi1ă¨¨¨ăin´2ďn´1
|Ai1 X ¨ ¨ ¨ XAin´2 XAn|;

p´1qn´1|A1 XA2 X ¨ ¨ ¨ XAn´1 XAn| не се групира с нищо.
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Принцип на включването и изключването (16)

Това е лесно следствие от Теорема 1.

Следствие 1
За всяко n ě 1, за всеки n множества A1, A2, . . . , An,
намиращи се в произволен универсум U:

|A1X¨ ¨ ¨XAn| “ |U|´
ÿ

1ďiďn

|Ai |`
ÿ

1ďiăjďn

|Ai XAj |´ ¨ ¨ ¨`p´1qn|A1X¨ ¨ ¨XAn| (11)

Доказателство: Имаме

|A1 Y ¨ ¨ ¨ Y An| “ |U| ´ |A1 Y ¨ ¨ ¨ Y An| (12)

от принципа на изваждането.

Лявата страна на (12) е |A1 X ¨ ¨ ¨ X An| по обобщения закон на
De Morgan, а в дясната му страна заместваме |A1 Y ¨ ¨ ¨ Y An| с
израза от (3). Получаваме (11). l
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КРАЙ
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