
Примерни решения на Домашно №1

Задача 1: Безкрайната редица (a1, a2, a3, . . .) е дефинирана със следната рекурсивна формула:

an =


2, ако n = 1

4, ако n = 2

2an−1 + 3an−2, ако n ≥ 3

(1)

Докажете по индукция, че

∀n ≥ 4 : an >

(
5

2

)n

(2)

Решение: Първо ще изчислим още няколко стойности на an:

a3 = 2a2 + 3a1 = 2 · 4 + 3 · 2 = 14

a4 = 2a3 + 3a2 = 2 · 14 + 3 · 4 = 40

a5 = 2a4 + 3a3 = 2 · 40 + 3 · 14 = 122

Базата на доказателството е за стойности на аргумента 4 и 5.

Забележете, че не е достатъчно да докажем само за n = 4. Ако вземем за база само n = 4, тази
база ще бъде “прескочена” в следващата част на доказателството, понеже дясната страна на (1)
съдържа и an−1, и an−2. Ако предикатът от (2) е P (n), налага се да доказваме P (n) чрез P (n− 1) и
P (n−2), което е частен случай на силна индукция. И така, P (6) се доказва чрез P (5) и P (4), в което
няма проблеми, но P (5), ако не е част от базата, се доказва чрез P (4) и P (3), което е проблематично.
Забележе, че P (3) дори не е истина, понеже 14 6> 125

8 . Ерго, най-малката стойност на аргумента, от
която можем да се “обръщаме назад”, е 6. И се налага да имаме P (5) и P (4) като базови случаи.

За n = 4, (2) става

a4 >

(
5

2

)4

↔ 40 >
625

16
↔ 640 > 625

което очевидно е истина. За n = 5, (2) става

a5 >

(
5

2

)5

↔ 122 >
3 125

32
↔ 3 904 > 3 125

което очевидно е истина. Доказахме базата. 3

Индуктивното предположение е, че за някое произволно n ≥ 6:

an−2 >

(
5

2

)n−2

an−1 >

(
5

2

)n−1

Ще докажем, че

an >

(
5

2

)n

1



Наистина,

an = 2an−1 + 3an−2 // по условие, щом n ≥ 3

> 2

(
5

2

)n−1
+ 3

(
5

2

)n−2
// от индуктивното предположение

=

(
5

2

)n−2(
2 · 5

2
+ 3

)
=

(
5

2

)n−2(10

2
+

6

2

)
=

16

2

(
5

2

)n−2

=
32

22

(
5

2

)n−2

=
32 · 52

22 · 52

(
5

2

)n−2

=
32

25

(
5

2

)n

>

(
5

2

)n

Което и трябваше да докажем. �
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Задача 2: Разгледайте функцията f : N× N→ N, дефинирана така:

∀a, b ∈ N : f(a, b) = 2a+1b+ 2a − 1

Докажете, че f е биекция.

Решение: Първо ще докажем, че f е инекция. Ще разгледаме две произволни наредени двойки от
естествени числа (a1, b1) и (a2, b2), такива че (a1, b1) 6= (a2, b2) и ще докажем, че f(a1, b1) 6= f(a2, b2).
Да допуснем, че f(a1, b1) = f(a2, b2).

Случай I Да допуснем, че a1 6= a2. БОО, нека a1 > a2. Наистина,

f(a1, b1) = f(a2, b2) ↔
2a1+1b1 + 2a1 − 1 = 2a2+1b2 + 2a2 − 1 ↔

2a1+1b1 + 2a1 = 2a2+1b2 + 2a2 ↔
2a1(2b1 + 1) = 2a2(2b2 + 1) ↔ // лявата и дясната страна са положителни

log2 (2
a1(2b1 + 1)) = log2 (2

a2(2b2 + 1)) ↔
log2 (2

a1) + log2 (2b1 + 1) = log2 (2
a2) + log2 (2b2 + 1) ↔

a1 + log2 (2b1 + 1) = a2 + log2 (2b2 + 1) ↔
a1 − a2 = log2 (2b2 + 1)− log2 (2b1 + 1) ↔

a1 − a2 = log2

(
2b2 + 1

2b1 + 1

)
(3)

Лявата страна на (3) е цяло положително число. Да допуснем, че дясната страна на (3) е цяло поло-
жително число. Тогава дробта в логаритъма е точна степен на двойката с цял положителен степенен
показател. А именно,

2b2 + 1

2b1 + 1
= 2k, за някое k ∈ N+

Но тогава, за някое цяло положително k:

2b2 + 1 = 2k(2b1 + 1) (4)

Това обаче е невъзможно, защото лявата страна на (4) е нечетно число, а дясната е четно число.
Заключаваме, че равенство (3) е лъжа, откъдето следва, че допускането, че f(a1, b1) = f(a2, b2) и
a1 6= a2, е лъжа.

Случай II Да допуснем, че a1 = a2. Нека a = a1 = a2. Веднага следва, че b1 6= b2, инак наредените
двойки биха били равни. По допускане имаме

f(a1, b1) = f(a2, b2) ↔
f(a, b1) = f(a, b2) ↔

2a(2b1 + 1)− 1 = 2a(2b2 + 1)− 1

2a(2b1 + 1) = 2a(2b2 + 1)

2b1 + 1 = 2b2 + 1

2b1 = 2b2

b1 = b2

Но това е невъзможно, така че допускането, че че f(a1, b1) = f(a2, b2) и a1 = a2, е лъжа. Доказахме,
че f е инекция.
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Сега ще докажем, че f е сюрекция. Това е същото като да докажем, че всяко естествено число се явява
образ на поне една наредена двойка по отношение на f . Веднага забелязваме, че наредените двойки от
вида (0, b) имат образи

f(0, b) = 20+1b+ 20 − 1 = 2b+ 1− 1 = 2b

С други думи, техните образи са точно четните числа, като всяко четно число 2b, където b ∈ N, се
явява образа на наредената двойка (0, b).

За да довършим доказателството, трябва да докажем, че всяко нечетно число се явява образа на някоя
наредена двойка (a, b), където a ∈ N+ и b ∈ N. Да направим малко числени експерименти за f(a, b),
резултатите от които ще запишем в Таблица 1. Приемаме, че таблицата е безкрайна надясно и надолу,
а ние сме запълнили само показания отрязък.

b

a
1 2 3 4 5

0 1 3 7 15 31

1 5 11 23 47 95

2 9 19 39 79 159

3 13 27 55 111 223

4 17 35 71 143 287

5 21 43 87 175 351

Таблица 1: f(a, b) за a ∈ {1, 2, . . . , 5} и b ∈ {0, 1, . . . , 5}.

Лема 1 За всяко b ∈ N, ред b на Таблица 1 започва с 4b+ 1.

Доказателство: Твърди се, че редовете започват с нечетните числа 1, 5, 9, 13 и така нататък. Тоест,
започвайки от 1, през едно. Това се доказва елементарно. В колона 1 са образите на наредените двойки
(1, b), където b ∈ N. Наистина, 21+1b+21− 1 = 4b+1, така че става дума за нечетните числа 1, 5, 9, 13
и така нататък. �

Лема 2 За всяко b ∈ N, в ред b на Таблица 1, всяко следващо число отляво надясно се получава от
предишното с умножение по 2 и добавяне на единица.

Доказателство: И това се доказва елементарно:

f(a+ 1, b) = 2a+2b+ 2a+1 − 1 = 2a+2b+ 2a+1 − 2 + 1 = 2(2a+1b+ 2a − 1) + 1 = 2f(a, b) + 1 �

Това, което не е очевидно, е, че всяко нечетно число се появява накъде в тази—безкрайна надясно
и надолу—таблица. Тук не се притесняваме за това, дали някое нечетно може да се появи повече от
веднъж. Ние вече доказахме, че f е инекция, така че това е невъзможно.

Да препишем в Таблица 2 числата от Таблица 1, добавяйки и запис в двоична позиционна бройна
система с удебелени червени цифри.
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b

a
1 2 3 4 5

0
1
1

3
11

7
111

15
1111

31
11111

1
5

101
11

1011
23

10111
47

101111
95

1011111

2
9

1001
19

10011
39

100111
79

1001111
159

10011111

3
13

1101
27

11011
55

110111
111

1101111
223

11011111

4
17

10001
35

100011
71

1000111
143

10001111
287

100011111

5
21

10101
43

101011
87

1010111
175

10101111
351

101011111

Таблица 2: Числата от Таблица 1 с добавен запис в двоична бройна система.

Шаблоните са очевидни. За всяко b, за ред b са в сила следните твърдения.

• Първият елемент съдържа стринг, завършващ на 1. Ако b > 0, стрингът завършва на 01.

Както знаем от Лема 1, първият елемент на ред b е 4b+1. Това е нечетно число, така че двоичният
му запис наистина завършва на 1.

А ако b > 0, то 4b завършва на 00, поради което 4b + 1 завършва на 01. Числото b е двоичният
запис на стринга, който се получава след изтриването на суфикса 01.

• Всеки следващ елемент се получава от предишния с конкатенация на 1 вдясно. Наистина, в
двоична бройна система, конкатенация на единица вдясно има смисъл на умножение по две,
последвано от добавяне на единица, а съгласно Лема 2, числата във всеки ред се получават
отляво надясно точно по този начин.

Сега лесно можем да докажем, че всяко нечетно число се появява някъде в таблицата.

• Числата от най-горния ред на таблицата (тоест, b = 0) са точно числата от вида точна степен на
двойката минус 1. Наистина, f(a, 0) = 2a+10 + 2a − 1 = 2a − 1, за a ≥ 1. Това са точно числата,
чиито записи в двоична бройна система не съдържат нули.

• Да разгледаме произволно нечетно число n, което не е от вида точна степен на двойката минус 1.
Нека s е записът на n в двоична бройна система. Очевидно s съдържа поне една цифра 0. Сле-
дователно, s е конкатенация на два непразни стринга s1 и s2, тоест, s = s1s2, където s1 започва
с 1 и завършва с 0, а s2 се състои само от 1 (s1 е максималният префикс, завършващ с 0).

Нека s′1 е непразният стринг, който се получава от s1 с премахване на последната цифра (пос-
ледната цифра е 0). Нека n1 е числото, чийто двоичен запис е s′1. Тогава n се явява образа, по
отношение на f , на наредената двойка (|s2|, n1).

Като пример да вземем 55. Двоичният му запис е 110111. При това положение, s1 = 110 и
s2 = 111, а s′1 = 11. Тогава n1 = 3, а |s2| = 3. Ерго, 55 = f(3, 3).
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Задача 3: Нека A е множество и R ⊆ A × A е релация над него. Нека Rn, за всяко n ∈ N+, се
дефинира така:

Rn =

{
R, ако n = 1

R ◦Rn−1, ако n ≥ 2

А) Нека S0, S1, S2, . . . са релации над A, тоест, ∀i ∈ N : Si ⊆ A × A. Докажете, че ако за всяко
естествено i релацията Si е симетрична, то

⋃
i∈N Si също е симетрична. С други думи, обединението

запазва симетричността.

Б) Докажете, че транзитивното затваряне на R е равно на
⋃

n∈N+ Rn.

В) Докажете, че транзитивното затваряне на симетричното затваряне на рефлексивното затваряне на
R е минималната по включване релация на еквивалентност, съдържаща R.

Г) Ще се промени ли нещо, ако във В) разменим реда, в който прилагаме затварянията?

Решение:

А) Първо да уточним, че
⋃

i∈N Si ⊆ A × A. Нека за някои a, b ∈ A, такива че a 6= b : (a, b) ∈
⋃

i∈N Si.
Тогава ∃i : (a, b) ∈ Si. Но Si е симетрична, така че (b, a) ∈ Si. Следователно, (b, a) ∈

⋃
i∈N Si. Симет-

ричността на
⋃

i∈N Si следва по дефиниция. 3

Б) Нека означим R′ =
⋃

n∈N+ Rn. Първо ще докажем, че R′ е надмножество на R. По дефиниция
R1 = R. Но R1 ⊆

⋃
n∈N+ Rn = R′. Тогава R′ ⊇ R. 3

Сега ще докажем, че R′ е транзитивна. Нека (x, y) ∈ R′ ∧ (y, z) ∈ R′ са произволни. Щом (x, y) ∈ R′,
то ∃k ∈ N+ : (x, y) ∈ Rk. Аналогично, (y, z) ∈ R′ влече ∃m ∈ N+ : (y, z) ∈ Rm. Тогава получаваме, по
дефиницията на композиция, че (x, z) ∈ Rm ◦Rk. От асоциативността на композицията пък следва, че

Rm ◦Rk = (R ◦R ◦ · · · ◦R︸ ︷︷ ︸
m

) ◦ (R ◦R ◦ · · · ◦R︸ ︷︷ ︸
k

) = R ◦R ◦ · · · ◦R︸ ︷︷ ︸
k+m

= Rk+m

Следователно, (x, z) ∈ Rk+m. Но Rk+m ⊆
⋃

n∈N+ Rn = R′. Тогава (x, z) ∈ R′. 3

С това доказахме, че R′ е надмножество на R и R′ е транзитивна.

Остава да покажем, че R′ е минимална по включване с тези свойства. Тоест, за произволна релация R′′,
която е надмножество на R и е транзитивна, е в сила R′ ⊆ R′′. За целта е достатъчно е да се уверим,
че ∀n ∈ N+ : Rn ⊆ R′′, което ще направим с индукция по n.

База: Нека n = 1. Тогава Rn = R1 = R, а по допускане R ⊆ R′′. Следователно, R1 ⊆ R′′. 3

Индуктивно предположение: Нека за някое n ∈ N+ е изпълнено, че Rn ⊆ R′′.

Индуктивна стъпка: Ще докажем, че Rn+1 ⊆ R′′. Нека (x, z) ∈ Rn+1 е произволна наредена двойка.
Но Rn+1 = Rn ◦ R. Тогава ∃y ∈ A : (x, y) ∈ Rn ∧ (y, z) ∈ R. Съгласно индуктивното предположение,
Rn ⊆ R′′, тоест (x, y) ∈ R′′. Също така (y, z) ∈ R, а R ⊆ R′′. Щом R′′ е транзитивна и (x, y) ∈ R′′ и
(y, z) ∈ R′′, то (x, z) ∈ R′′. Но (x, z) е произволна наредена двойка от Rn+1. Тогава Rn+1 ⊆ R′′. 3

Така доказахме, че ∀n ∈ N+ : Rn ⊆ R′′. Тогава е вярно, че R′ =
⋃

n∈N+ Rn ⊆ R′′. Следователно,
R′ е минималната по включване релация, която е транзитивна и е надмножество на R. Тоест, R′ е
транзитивното затваряне на R. 3
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В) За произволна релация P ще бележим транзитивното, симетричното и рефлексивното затваряне
на релация P съответно с “trans(P )”, “sym(P )” и “ref(P )”.

По отношение на релацията R, дефинираме

R1 := ref(R)

R2 := sym(R1)

R3 := trans(R2)

Тоест, R3 = trans(sym(ref(R))).

Първо ще докажем, че R3 е релация на еквивалентност.

• Щом R3 = trans(R2) е транзитивно затваряне, R3 е транзитивна. 3

• От дефиницията на затваряне следва, че R ⊆ R1 ⊆ R2 ⊆ R3. Заради рефлексивността на R1 =
ref(P ) е в сила ∀a ∈ A : aR1a. Но R1 ⊆ R3. Тогава ∀a ∈ A : aR3a. Тоест, R3 е рефлексивна. 3

• Остава да покажем, че R3 е симетрична. Първо ще докажем едно помощно твърдение.

Лема 3 Нека S е симетрична релация върху крайно множество. Тогава ∀n ∈ N+ :
Sn е симетрична.

Доказателство: Ще докажем с индукция по n.

База: Базовият случай е n = 1. Твърдението става “Ако S е симетрична, то S1 е симет-
рична”, което очевидно е изпълнено.

ИП: Нека за някое n ∈ N+ е изпълнено, че Sn е симетрична.

ИС: Ще докажем, че Sn+1 е симетрична. Нека (x, y) ∈ Sn+1. По дефиниция, Sn+1 = Sn◦S.
Тогава ∃a ∈ A : (x, a) ∈ S ∧ (a, y) ∈ Sn. Релацията S е симетрична и щом (x, a) ∈ S, то
(a, x) ∈ S. Съгласно индуктивното предположение, Sn също е симетрична. Тогава, щом
(a, y) ∈ Sn, то (y, a) ∈ Sn. Понеже (y, a) ∈ Sn и (a, x) ∈ S, следва, че (y, x) ∈ Sn ◦ S. Но
Sn ◦ S = Sn+1. Тогава (y, x) ∈ Sn+1. Следователно, Sn+1 е симетрична. 3

Съгласно Б),
⋃

n∈N+ Rn
2 е trans(R2). Но trans(R2) е R3. Тогава

⋃
n∈N+ Rn

2 е R3.
Съгласно Лема 3, ∀n ∈ N+ : (R2)

n е симетрична. От А) знаем, че обединението запазва симет-
ричността на релациите. Заключаваме, че

⋃
n∈N+ Rn

2 е симетрична.
⋃

n∈N+ Rn
2 е R3. Заключаваме,

че R3 симетрична. 3

Щом R3 е транзитивна, рефлексивна и симетрична, R3 е релация на еквивалентност,

Това, че R3 е надмножество на R, следва веднага от R ⊆ R1 ⊆ R2 ⊆ R3 и транзитивността на съ-
държането като подмножество. И така, R3 е релация на еквивалентност, която е надмножество на
R.

Остава да покажем, че R3 е най-малката с тези свойства по отношение на включването. За целта
разглеждаме произволна релация на еквивалентност Q, която е надмножество на R. Ясно е, че такава
съществува, понеже A2 ⊇ R е такава.

Първо ще покажем, че R2 ⊆ Q. Нека (x, y) ∈ R2. Следните три случая са изчерпателни.

Случай 1: x = y. Тогава(x, y) ∈ Q, защото Q е релация на еквивалентност, тоест, е и рефлексивна.

Случай 2: x 6= y и (x, y) ∈ R. Но R ⊆ Q. Тогава (x, y) ∈ Q.

Случай 3: x 6= y и (x, y) /∈ R. Тогава (x, y) ∈ R2\R. Но R2 = sym(R1) = sym(ref(R)). Понеже x 6= y и
R1 = ref(R) = R ∪ {(a, a)|a ∈ A}, в сила е (x, y) ∈ R2 ⇔ (y, x) ∈ R ⊆ Q. Тогава (y, x) ∈ Q. Но Q е
симетрична. Следователно, (x, y) ∈ Q.
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С това доказахме, че R2 ⊆ Q.

НоQ е транзитивна и от това следва, че транзитивното затваряне на R2 също трябва да се съдържа вQ.
ТоестR3 = trans(R2) ⊆ Q. НоQ е произволна релация на еквивалентност, съдържащаR. Следователно,
R3 е най-малката по включване релация на еквивалентност, надмножество на R.

Г) Редът, в който правим затварянията, има значение. Ако вземем симетричното затваряне на тран-
зитивното затваряне на рефлексивното затваряне на R, невинаги ще получаваме релация на еквива-
лентност.

Ето пример. Нека A = {x, y, z} и нека R = {(x, y), (x, z)}. Дефинираме R1 := ref(R), R2 := trans(R1)
и R3 := sym(R2), т.е. R3 = sym(trans(ref(R))). Тогава R1 = {(x, x), (y, y), (z, z), (x, y), (x, z)}, R2 =
{(x, x), (y, y), (z, z), (x, y), (x, z)} и R3 = {(x, x), (y, y), (z, z), (x, y), (y, x), (x, z), (z, x)}. Забелязваме, че
R3 не е транзитивна, защото (z, x) ∈ R3 и (x, y) ∈ R3, но (z, y) 6∈ R3. Тогава не можем и да твърдим,
че R3 е релация на еквивалентност. �

8


