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1 Степени на върхове
Задача 1. Години наред се провежда шахматно състезание, в което участват 256 шахматис-
ти, които играят в турнир чрез директни елиминирания и в 8 етапа се определя победителят.

Тази година обаче, по някаква причина участниците са 257 и организаторите променят прави-
лата. Състезанието вече не е турнир с директни елиминирания, защото броят на участниците
не е точна степен на двойката. Новите правила изискват всеки шахматист да играе с точно
21 други участници, точно по веднъж, и от резултатите от тези игри да се оформи крайното
класиране. По колко различни начини може да бъдат избрани двойките шахматисти, които
ще играят един срещу друг?

Решение. По нула начини. Ако моделираме състезанието с граф, чиито върхове са шахма-
тистите, а ребрата са двойките шахматисти, които играят един срещу друг, този граф трябва
да има 257 върха и да е 21-регулярен. Такъв граф обаче не съществува, понеже във всеки
граф, върховете от нечетна степен са четен брой. �

Задача 2. Нека G = (V, E) е граф. Нека |V | е четно, като |V | ≥ 2. Докажете, че в G има поне
два различни върха, които имат четен брой общи съседи.

Решение. Да допуснем противното: всеки два различни върха имат нечетен брой общи
съседи. Първо ще докажем едно помощно твърдение: всеки връх в G е от четна степен.
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Лема 1. Всеки връх в G е от четна степен.

Доказателство: Нека u ∈ V е произволен. Нека H е подграфът на G, индуциран
от N[u]. Да разгледаме произволен a ∈ N(u). Нека

A = {v ∈ N(u) | v и a са съседи в H}

Първото ключово наблюдение е, че A е точно множеството от общите съседи на
u и a, както в H, така и в G. Това, че A е точно множеството от общите съседи
на u и a в H, е очевидно. Това, че A е точно множеството от общите съседи на u
и a в G, може би не е толкова очевидно, но помислете така: върховете от N(u),
по дефиниция, са точно съседите на u в G; ако u и a имаха общ съсед извън A,
то u би имал съсед извън N(u), а това е невъзможно.

И така, A е точно множеството от общите съседи на u и a, както в H, така и
в G. Съгласно допускането за G, |A| е нечетно число. Нека J е подграфът на G,
индуциран от N(u) (тоест, J = H−u). Очевидно A е множеството от съседите на a
в J. Тогава dJ(a) = |A|. Но |A| е нечетно. Тогава dJ(a) е нечетно. Но a е произволен
връх в J. Тогава всеки връх в J е от нечетна степен. Веднага заключаваме, че броят
на върховете на J е четно число, понеже от лекции знаем, че във всеки граф, броят
на върховете от нечетна степен е четно число. Но върховете на J са |N(u)| на брой.
Тогава |N(u)| е четно число; иначе казано, dG(u) е четно число. Но u е произволен
връх в G. Заключаваме, че всеки връх в G е от четна степен. �

Разглеждаме произволен u ∈ V . Нека Pu е множеството от не непременно простите пътища
в G с дължина 2, чиито един край е u.

Да помислим за |Pu|. Всеки път в Pu е от вида 〈u, v,w〉, където (u, v) и (v,w) са ребра
в G. Не е необходимо w 6= u; ако w = u, то 〈u, v,w〉 = 〈u, v, u〉 и в такъв случай пътят се
състои от две “слепени” копия на реброто (u, v). За всеки избор на v има точно d(v) избора
за връх w, като един от тях е u. Ерго, |Pu| =

∑
v∈N(u) d(v). Всяко събираемо е четно, така че

и сумата е четна. Ерго, |Pu| е четно.

Сега ще преброим пътищата от Pu по различен начин. Pu се разбива на

• пътищата от вида 〈u, v, u〉; те са четен брой, защото отговарят биективно на ребрата,
инцидентни с u, а те са четен брой;

• пътищата от вида 〈u, v,w〉, където w 6= u. Съгласно допускането, всеки два различни
върха имат нечетен брой общи съседи. Ерго, за всеки w 6= u съществуват нечетен
брой общи съседи на u и w, които общи съседи задават нечетен брой пътища от вида
〈u, v,w〉.
Съществуват |V |− 1 начина да изберем такъв w. Но |V |− 1 е нечетно число по условие.
Заключаваме, че пътищата от този вид са нечетен брой.

И така, пътищата от първия вид са четен брой, а пътищата от втория вид са нечетен брой.
Ерго, |Pu| е нечетно.

Полученото противоречие показва, че допускането, че всеки два различни върха имат
нечетен брой общи съседи, е погрешно. Ерго, има двойка различни върхове с четен брой
общи съседи. �
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Задача 3. Нека G = (V, E) е k-регулярен граф. Докажете, че ако обиколката на G е 4, то
n ≥ 2k. Докажете, че ако обиколката на G е 5, то n ≥ k2 + 1.

Решение. Първо да допуснем, че обиколката е 4. Разглеждаме произволен връх v ∈ V .
НекаN(v) = {u1, u2, . . . , uk} (помним, че G е k-регулярен). Разглеждаме u1 и неговите съседи.
Връх v е съсед на u1, но G е k-регулярен, така че u1 трябва да има още точно k− 1 съседа.
Да ги наречем x1, x2, . . . , xk−1. И така, N(u1) = {v, x1, x2, . . . , xk−1}.

Ключовото наблюдение е, че {u2, . . . , uk} ∩ {x1, x2, . . . , xk−1} = ∅. Да видим защо. Ако за
поне едно i ∈ {2, 3, . . . , k} е вярно, че ui ∈ {x1, x2, . . . , xk−1}, то в G има 3-цикъл v, u1, ui,
понеже в G има ребра (v, u1) и (v, ui) заради N(v) и ребро (u1, ui) от последното допускане.
Но, ако в G има 3-цикъл, то обиколката на G е 3. Това противоречи на условието.

И така, {u2, . . . , uk}∩ {x1, x2, . . . , xk−1} = ∅. Но v 6∈ {u2, . . . , uk} и v 6∈ {x1, x2, . . . , xk−1}. Освен
това, u1 6∈ {u2, . . . , uk} и u1 6∈ {x1, x2, . . . , xk−1}. Заключаваме, че върховете v, u1, u2, . . . , uk
x1, x2, . . . , xk−1 са два по два различни. Но това са 2k върха. Заключаваме, че |V | ≥ 2k.
Сега да допуснем, че обиколката е 5. Разглеждаме произволен връх v ∈ V . Нека N(v) =
{u1, u2, . . . , uk} (помним, че G е k-регулярен). Всеки два върха от N(v) са несъседи, инак би
имало 3-цикъл в G.

Тъй като графът е k-регулярен, за всяко i ∈ {1, 2, . . . , k}, връх ui е съседен на точно k− 1
други върхове zi,1, zi,2, . . . , zi,k−1 (освен v). Да кажем, че Zi = {zi,1, zi,2, . . . , zi,k−1} за 1 ≤ i ≤ k.
За 1 ≤ i ≤ k, всеки два върха от Zi са несъседи, инак би имало 3-цикъл в G. Освен това, за
1 ≤ i ≤ k, v 6∈ Zi по конструкция.

Ключовите наблюдения са тези:

Zi ′ ∩ Zi ′′ = ∅, за i ′ 6= i ′′

N(v) ∩ Zi = ∅, за i ∈ {1, 2, . . . , k}

Нагледно,

v

u1

z1,1

G

z1,k−1

uk

zk,1 zk,k−1

Z1 Zk

N(v)

Заключаваме, че върховете v, u1, u2, . . . , uk, z1,1, . . . , z1,k−1, . . . , zk,1, . . . , zk,k−1 са два по два
различни. Но това са 1+ k+ k(k− 1) = k2 + 1 върхове. Заключаваме, че |V | ≥ k2 + 1.

Задача 4. Да си припомним една дефиниция: мост в граф е всяко ребро, чието изтрива-
не увеличава (с единица) броя на свързаните компоненти. Нека G е граф, в който всички
върхове са от четна степен. Докажете, че в G няма мост.

Решение. Да допуснем, че в G има мост e = (u, v). Това ребро принадлежи на някоя
свързана компонента G1 на G. Но G1 е граф сам по себе си. По условие, всички негови
върхове са от четна степен. Да изтрием e от G1. Получаваме точно две свързани компоненти.
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Забелязваме, че в едната от тях, връх u е от нечетна степен и няма други върхове от нечетна
степен. Но, съгласно изучаваното на лекции, това е невъзможно, понеже във всеки граф
върховете от нечетна степен са четен брой. Аналогично, в другата от пък v е единственият
връх от нечетна степен, което е невъзможно по същите причини.

Полученото противоречие показва, че в граф с върхове от четна степен не може да има
мост. �

Задача 5. Нека k е цяло положително число, като k ≥ 2. Докажете, че никой двуделен
k-регулярен граф няма мост.

Решение. Да допуснем противното. Нека G = (V, E) е двуделен k-регулярен граф за някое
k ≥ 2, който има мост e ∈ E. БОО, допускаме, че G е свързан, понеже в противен случай
доказателството се прави върху свързаната компонента, съдържаща моста e. Нека e = (u, v).

Нека дяловете на G са U и W. Нека G ′ = G− e. Щом G е свързан и e е мост, G ′ има точно
две свързани компоненти. Да ги наречем H и J. Очевидно V(H)∪ V(J) = V . Забелязваме, че
и H, и J са двуделни графи, като двата дяла на H са V(H) ∩U и V(H) ∩W, а двата дяла на
J са V(J) ∩U и V(J) ∩W. Сега разглеждаме само H.

Нека краят на e, който е връх от H, бъде връх v. БОО, нека v ∈ W. Тогава всеки връх от
V(H)∩U има същата степен в H, каквато има в G, но точно един връх от V(H)∩W, а именно
връх v, има степен k − 1 в H (защото H се получава след изтриването на реброто (u, v)).
Всички останали върхове от V(H) ∩W имат същата степен в H, каквато имат в G.

Нека |V(H) ∩ U| = n1 и |V(H) ∩ W| = n2. Да преброим ребрата на H. От една страна,
|E(H)| = n1k, понеже,

1. единият край на всяко ребро на H се намира в U и

2. всеки връх от V(H) ∩U има степен k в H.

От друга страна, |E(H)| = n2k− 1, понеже,

1. единият край на всяко ребро на H се намира в W и

2. всеки връх от V(H) ∩W с изключение на един има степен k в H, а изключението има
степен k− 1 в H.

Тогава n1k = n2k− 1. Но това е невъзможно, понеже лявата страна е кратна на k, а дясната
не е.

Аргументът не работи при k = 1, но в условието е казано, че k ≥ 2. �

Задача 6. В тази задача нея използваме фигурни скоби за означаване на ребрата на граф.
Примерно, реброто с краища u и v се означава с “{u, v}”, а не с “(u, v)”. Причината за това
изключение е, че в тази задача върховете са наредени двойки, които се записват с кръгли
скоби, примерно “(i, j)”, но не са ребра. За да не се бъркат ребрата с наредените двойки,
ползваме фигурни скоби за ребрата.

За всеки p, q ∈ N+ дефинираме неориентирания граф Hp,q = (Vp,q, Ep,q), където

Vp,q = {(i, j) : 1 ≤ i ≤ p, 1 ≤ j ≤ q}
Ep,q =

{
{(i1, i2), (j1, j2)} : |i1 − i2|+ |j1 − j2| = 1

}
Колко ребра ребра има Hp,q?
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Решение. Ребро между две наредени двойки има тстк в едната от тях абсолютната стой-
ност на разликата между елементите е 0 (тоест, наредена двойка от вида (i, i)), а в другата
от тях абсолютната стойност на разликата между елементите е 1 (тоест, наредената двойка
е от вида (i, i+ 1) или (i+ 1, i)).

Картинно, графът е има следния вид. Да кажем, че p = 8 и q = 5. Върховете изглеждат
така, ако са разположени по естествения за наредени двойки начин:

(1, 1) (2, 1) (3, 1) (4, 1) (5, 1) (6, 1) (7, 1) (8, 1)

(1, 2) (2, 2) (3, 2) (4, 2) (5, 2) (6, 2) (7, 2) (8, 2)

(1, 3) (2, 3) (3, 3) (4, 3) (5, 3) (6, 3) (7, 3) (8, 3)

(1, 4) (2, 4) (3, 4) (4, 4) (5, 4) (6, 4) (7, 4) (8, 4)

(1, 5) (2, 5) (3, 5) (4, 5) (5, 5) (6, 5) (7, 5) (8, 5)

За това дали има ребро между два върха има значение само абсолютната стойност на раз-
ликата между елементите на едната двойка и абсолютната стойност на разликата между
елементите на другата двойка. Ето как изглеждат абсолютните стойности на разликите:

0 1 2 3 4 5 6 7

1 0 1 2 3 4 5 5

2 1 0 1 2 3 4 5

3 2 1 0 1 2 3 4

4 3 2 1 0 1 2 3

Ребро има между всяка нула и всяка единица. Останалите върхове—тези с абсолютна стой-
ност на разликата, по-голяма от 1—са изолирани и можем да ги игнорираме:

0 1

1 0 1

1 0 1

1 0 1

1 0 1
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Това, което остава след изтриването на върховете с абсолютна стойност на разликата, по-
голяма от 1, е пълен двуделен граф. Единият дял са единиците, другият са нулите. Дяловете
са акцентирани съответно със син и червен фон. Броят на ребрата е произведението от
мощностите на дяловете.

Дялът с нулите има мощност min {p, q}. Дялът с единиците има следната мощност:

• ако p = q, то 2p− 2, иначе казано, 2min {p, q}− 2,

• в противен случай, 2min {p, q}− 1.

Нека f(p, q) е дефинирана така:

f(p, q) =

{
2p− 2, ако p = q

2min {p, q}− 1, ако p 6= q

Тогава отговорът е

|Ep,q| = min {p, q}× f(p, q)

Да видим малък пример с p = 2 и q = 3. Ето как изглежда целия H2,3, включително и
изолирания връх (1, 3) с абсолютна стойност 2 на разликата:

(1, 1)

(1, 2)

(1, 3)

(2, 1)

(2, 2)

(2, 3)

Игнорираме изолирания връх и получаваме този пълен двуделен граф K2,3:

(1, 1)

(1, 2)

(2, 1)

(2, 2)

(2, 3)

Броят на ребрата наистина е min {2, 3}× f(2, 3) = 2× (2min {2, 3}− 1) = 2× 3 = 6. �
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2 Пътища, цикли, свързаност, разстояния
Задача 7. Докажете, че за всяко k ∈ N+ съществува (2k+1)-регулярен граф, който съдържа
срязващо ребро (мост).

Решение. Ще направим конструктивно доказателство. Нека G ′ и G ′′ са два графа без
общи върхове, като и двата са пълни двуделни графи K2k,2k. Нека дяловете на G ′ са U ′ иW ′,
а дяловете на G ′′ са U ′′ и W ′′. Очевидно до този момент от конструкцията всеки връх в G ′
и G ′′ има степен 2k.

Нека x и y нови върхове, тоест, не са измежду върховете на G ′ или G ′′. Добавяме x и
y към конструкцията, като правим x съседен на и само на върховете от W ′, а y съседен
на и само на върховете от W ′′. При това върховете от W ′ и W ′′ вече имат степени 2k + 1,
върховете от U ′ и U ′′ остават със степени 2k, а x и y също имат степени 2k.

До този момент от конструкцията нито два върха от U ′ не са съседи и нито два върха от
U ′′ не са съседи. Нека U ′ = {a1, a2, . . . , a2k} и U ′′ = {b1, b2, . . . , b2k}. Добавяме ребрата (a1, a2),
(a3, a4), . . . , (a2k−1, a2k) и (b1, b2), (b3, b4), . . . , (b2k−1, b2k). Сега върховете от U ′ и U ′′ имат
степени 2k+1, върховете отW ′ иW ′′ остават със степени 2k+1, а x и y остават със степени
2k.

Накрая добавяме ребро e с краища x и y. Сега графът е (2k+ 1)-регулярен и e е мост. �

Задача 8. Нека G = (V, E) е граф и нека n = |V | и m = |E|. Докажете, че в G има поне
m− n+ 1 цикли.

Решение. Нека свързаните компоненти на G са G1 = (V1, E1), G2 = (V2, E2), . . . , Gk =
(Vk, Ek), където k ∈ {1, 2, . . . , n}. Очевидно V се разбива на V1, V2, . . . , Vk, така че, съгласно
принципа на разбиването,

∑k
i=1 |Vi| = n. Аналогично,

∑k
i=1 |Ei| = m.

Известно е, че всеки свързан граф има поне едно покриващо дърво. Нека Ti = (Vi, E
′
i) е

покриващо дърво на Gi, за 1 ≤ i ≤ k. Щом Ti е дърво, в сила е |E ′i | = |Vi| − 1, за 1 ≤ i ≤ k.
Тогава

k∑
i=1

|E ′i | =

k∑
i=1

(|Vi|− 1) =

(
k∑
i=1

|Vi|

)
− k = n− k

И така, покриващите дървета T1, T2, . . . , Tk имат общо n − k ребра. Но ребрата на G са
общо m. Тогава G има точно m−n+k ребра, непринадлежащи на никое от тези покриващи
дървета. Да дефинираме, че Ẽ = E \ (

⋃k
i=1 E

′
i). Тогава |Ẽ| = m− n+ k.

Нека F е гората (
⋃k
i=1 Vi,

⋃k
i=1 E

′
i). Клочовото наблюдение е, че всяко ребро e ∈ Ẽ, когато

бъде добавено към F, образува цикъл ce, в който то участва. Нещо повече, всеки два цикъла,
получени по този начин, са различни, защото всеки има ребро, което не присъства в другия.
Построихме m− n+ k цикъла. Тъй като k ≥ 1, построили сме поне m− n+ 1 цикъла.

Заключаваме, че в G има поне m− n+ 1 цикъла. �

Задача 9. Нека G = (V, E) е свързан граф с диаметър d. Докажете, че G съдържа антиклика
с мощност поне

⌈
d+1
2

⌉
.

Решение. Нека a и b са върхове вG, такива че разстоянието между тях е d. Щом diam(G) =
d, такива върхове съществуват. Нека p е най-къс път между a и b в G. Тогава |p| = d.

Ключовото наблюдение е, че всеки два върха x, y ∈ V(p), които не са съседи в p, не са
и съседи в G. Доказателството на този факт е елементарно: ако (x, y) ∈ E, то в G би имало

7
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път p ′ между a и b, такъв че |p ′| < |p|, като p ′ съдържа (x, y). Но съществуването на такъв
път противоречи на допускането, че p е най-къс път между a и b.

И така, всеки два върха от p, които не са съседи в p, не са съседи и в G. Тогава всяко
множество от върхове от p, нито два от които не са съседи в p, е антиклика в G.

Построяваме следното множество U ⊂ V(p):

U = {v ∈ V(p) | dist(a, v) е четно }

Казано на прост български, слагаме a в U и след това върховете през един в p се слагат в
U. Очевидно |U| =

⌈
d+1
2

⌉
. Нито два върха от U не са съседи в G, така че, съгласно факта,

който вече доказахме, U е анкиклика.

Построихме антиклика в G с мощност
⌈
d+1
2

⌉
. �

Задача 10. Нека G = (V, E) е свързан граф. Докажете или опровергайте, че всеки два
най-дълги пътя в G имат общ връх.

Решение. Твърдението е вярно. Ще го докажем с допускане на противното. НекаG = (V, E)
е свързан граф. БОО, нека G е нетривиален. Нека p и q са два различни най-дълги пътя в
G. Очевидно |p| = |q|. Нека ` = |p|. Да допуснем, че V(p) ∩ V(q) = ∅. Нека краищата на p са
a и b, а краищата на q са c и d.

p

G

q

a b

c d

Разглеждаме произволен u ∈ V(p) и произволен v ∈ V(q). G е свързан, така че в него има
път между u и v. Нека този път е s. Не правим никакви допускания за s, така че той може
да има и други общи върхове както с p, така и с q.

p

G

q

u

v

s
a b

c d

8
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Дефинираме тези три множества от върхове:

• Up = V(s) ∩ V(p),

• Uq = V(s) ∩ V(q),

• U ′ = V(s) \ (Up ∪Uq).

Тъй като единият край на s е връх u ∈ V(p), а другият край на s е връх v ∈ V(q), мно-
жествата Up и Uq са непразни. U ′ може и да е празно. Освен това Up ∩ Uq = ∅, понеже
V(p) ∩ V(q) = ∅.

Очевидно съществуват x ∈ Up и y ∈ Uq, такива че подпътят на s между x и y—да наре-
чем този подпът sx,y—съдържа като вътрешни върхове само върхове от U ′. С други думи,
вътрешните му върхове не са нито от p, нито от q.

p

G

q

u

v

s

x

y

sx,y

a b

c d

sx,y може да няма вътрешни върхове, но дължината му е поне единица, тъй като x и y са
различни върхове.

Нека pa,x е подпътят на p между a и x. Нека pb,x е подпътят на p между b и x. Нека qc,y
е подпътят на q между c и y. Нека qd,y е подпътят на q между d и y.

p

G

q

u

v

x

y

sx,y

a b

c d

pa,x

pb,x

qc,y qd,y

БОО, нека |pa,x| ≥ |p|

2
. На прост български, pa,x е този път измежду pa,x и pb,x, който е не

по-къс от другия. Тогава |pa,x| ≥
⌈
`
2

⌉
. БОО, нека |qc,y| ≥ |q|

2
; тоест, |qc,y| ≥

⌈
`
2

⌉
. Да разгледаме

пътя r = pa,x ∪ qb,y ∪ sx,y.

9
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x

`

≥
⌈
`
2

⌉

≥
⌈
`
2

⌉
y

sx,y

a b

c

d

qc,y

pa,x
r

Очевидно |r| ≥ 2
⌈
`
2

⌉
+ 1. Но тогава |r| ≥ `+ 1, което означава, че r е път, по-дълъг от всеки

най-дълъг път в графа. Което, разбира се, е невъзможно. �

Задача 11. Нека G е свързан граф. Докажете или опровергайте, че съществува връх в G,
който принадлежи на всеки най-дълъг път в G.

Решение. Твърдението е невярно. Нека G е множеството от свързаните графи и нека, за
всеки G ∈ G, L(G) е множеството от най-дългите пътища в G. Това, което се твърди, с езика
на предикатната логика, е

∀G ∈ G ∃v ∈ V ∀p ∈ L(G) : v ∈ V(p)

Негацията на това е

∃G ∈ G ∀v ∈ V ∃p ∈ L(G) : v 6∈ V(p)

Ето такъв граф. Той има 12 върха, което дава горна граница 11 за дължина на най-дълъг
път. Но тази граница не е точна. Дължината на най-дълъг път в този граф е 9, което се
установява на око с няколко проби и грешки.

a

b

c d

f g

h i j k

ts
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Заради симетриите на графа, ще покажем твърдението само за три върха:

• един висящ връх, да кажем s,

• един връх от степен 3, съседен на висящ връх; да кажем h,

• един връх от степен 3, който не е съседен на висящ връй; да кажем d.

Път с дължина 9, който не съдържа нито s, нито h, е

a, b, d, i, j, c, f, g, k, t

Нагледно:

a

b

c d

f g

h i j k

ts

Път с дължина 9, който не съдържа d, е

a, b, c, f, g, k, j, i, h, s

Нагледно:

a

b

c d

f g

h i j k

ts
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Което е краят на доказателството. �

Задача 12. Нека G = ({v1, . . . , vn}, E) е свързан граф. Докажете, че съществува пермута-
ция π : {1, . . . , n} → {1, . . . , n}, такава че ∀i ∈ {1, . . . , n}, подграфът на G, индуциран от
{vπ(1), . . . , vπ(i)}, е свързан.

Решение. Неформално казано, твърди се, че за всеки свързан граф има начин да бъдат
наредени линейно върховете му по такъв начин, че за всяко i ∈ {1, . . . , n}, първите i върха в
наредбата да индуцират свързан граф. Забележете, че (vπ(1), . . . , vπ(n)) е една линейна наредба
на върховете. Примерно, ако n = 6 и π(1) = 4, π(2) = 2, π(3) = 1, π(4) = 6, π(5) = 5 и
π(6) = 3, линейната наредба (vπ(1), . . . , vπ(6)) е (v4, v2, v1, v6, v5, v3).

Ще конструираме пермутацията π със следния алгоритъм.

• В началото, i← 1 и π(i)← 1.

• (*) За i от 2 до n− 1 правим следното.

– Нека Gi е графът G− {vπ(1), . . . , vπ(i)}.

– (**) Нека vj е прозволен връх от Gi, който в G е съсед на поне един връх от
{vπ(1), . . . , vπ(i)}.

– Правим π(i+ 1)← j и i← i+ 1.

Твърдим, че всеки път, когато изпълнението е на ред (*), е вярно, че подграфът на G, инду-
циран от {vπ(1), . . . , vπ(i)}, е свързан. Това ще докажем по индукция по броя на достиганията
на ред (*).

Базата е първото достигане на ред (*). При първото достигане на ред (*), i е 1, π(i) е
също 1, така че {vπ(1), . . . , vπ(i)} всъщност е {v1}. Подграфът на G, индуциран от множеството
от върхове {v1}, е ({v1}, ∅) и той наистина е свързан.

Допускаме, че твърдението е вярно за някое достигане на (*), което не е последното. Щом
не е последното, i ≤ n−1. Тогава съществува връх на G, който не е в {vπ(1), . . . , vπ(i)}, защото
всички върхове на G са n на брой. Щом съществува връх на G, който не е в {vπ(1), . . . , vπ(i)},
задължително съществува връх vj, такъв че vj 6∈ {vπ(1), . . . , vπ(i)} и освен това vj е съсед на
поне един връх от {vπ(1), . . . , vπ(i)}; ако нямаше връх извън {vπ(1), . . . , vπ(i)}, който да е съсед
на връх от {vπ(1), . . . , vπ(i)}, графът G нямеше да е свързан. И така, връх vj, за какъвто се
говори на ред (**), съществува. Ние вече допуснахме, че подграфът на G, индуциран от
{vπ(1), . . . , vπ(i)}, е свързан. Но тогава подграфът на G, индуциран от {vπ(1), . . . , vπ(i), vj}, също
е свързан, защото vj е съсед на поне един от vπ(1), . . . , vπ(i). След като присвоим π(i+ 1)← j

и i ← i + 1, спрямо новата стойност на i отново е вярно, че подграфът на G, индуциран от
{vπ(1), . . . , vπ(i)}, е свързан.

С което доказахме съществуването на търсената пермутация π. �

Задача 13. Нека G = (V, E) е свързан нетривиален граф. Нека k ∈ {1, 2, . . . , |V |}. Казваме, че
G е k-върхово-свързан, ако G− S е свързан за всяко S ⊂ V , такова че |S| < k. Максималното
число k, такова че G е k-върхово-свързан, се нарича върховата свързаност на G, която тук
ще бележим със “cv(G)”.

Казваме, че G е `-реброво-свързан, ако G − F е свързан за всяко F ⊂ E, такова че |F| < `.
Максималното число `, такова че G е `-реброво-свързан, се нарича ребровата свързаност на
G, която тук ще бележим със “ce(G)”.

Намерете върховата и ребровата свързаност на следния граф.

12
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Дайте съвсем кратка обосновка.

Докажете, че за произволен нетривиален свързан граф G е в сила

cv(G) ≤ ce(G) ≤ δ(G)

Решение. Графът от илюстрацията се нарича осмостен (octahedron на английски). Нека
го бележим с O.

Ще покажем, че cv(O) = 4. Приемаме за очевидно, че след изтриването на кои да е три
върха, графът остава свързан. Изтриването на тези четири върха (в червено) обаче води до
несвързан граф.

Ще покажем, че ce(O) = 4. Приемаме за очевидно, че след изтриването на кои да е три
ребра, графът остава свързан. Изтриването на тези четири ребра (в червено) обаче води до
несвързан граф.

Сега ще докажем, че за произволен нетривиален свързан граф G е в сила

cv(G) ≤ ce(G) ≤ δ(G)

Ако G е пълен граф, очевидно cv(G) = ce(G) = δ(G) = |V |−1. БОО, нека G не е пълен граф.

Първо ще докажем ce(G) ≤ δ(G). Наистина, за кой да е връх v ∈ V е вярно, че изтриването
на ребрата, инцидентни с v, води до това, че v става изолиран връх. И тъй като останалите
върхове остават след изтриването на тези ребра, ясно е, че изолираният връх v е една свър-
зана компонента след изтриването. Тогава графът след изтриването не е свързан. Но броят
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на ребрата, инцидентни с v, е степента на v. Тогава минималната степен на връх в графа е
горна граница за ребровата свързаност на графа. Накратко, ce(G) ≤ δ(G).
Сега ще докажем cv(G) ≤ ce(G). Нека F е множество от ребра с минимална мощност, чието
изтриване води до несвързан граф. Такова множество очевидно съществува, понеже върхо-
вете са поне два, така че изтриването на всички ребра би довело до несвързан граф. Тъй
като F е с минимална мощност, |F| = ce(G). Ще докажем, че cv(G) ≤ |F|.

• Първо допускаме, че съществува връх v ∈ V , който не е инцидентен с никое ребро от F.
По конструкция, G−F е несвързан. Нека G ′ е тази свързана компонента на G−F, която
съдържа връх v. Нека U е множеството от тези върхове на G ′, които са инцидентни с
поне едно ребро от F.
Забележете, че няма ребро в F, чиито два края са върхове от G ′. Това следва от мини-
малността на F – ако имаше такова ребро e в F, то F\{e} би било такова, че изтриването
му води до несвързан граф. От това, че няма ребро от F, чиито два края са върхове от
G ′, следва, че |U| ≤ |F|.
Очевидно е, че G−U е несвързан граф. Тогава cv(G) ≤ |U|. Заключаваме, че cv(G) ≤ |F|.

• Сега допускаме, че всеки връх от V е инцидентен с поне едно ребро от F. Нека v е
произволен връх от графа. Нека G ′ е тази свързана компонента на G−F, която съдържа
връх v. Ще докажем, че dG(v) ≤ |F|.
Нека N е множеството от съседите на u в G. Ясно е, че всеки връх w ∈ N, такъв че
реброто (v,w) не е в F, е връх на G ′. Нека

U = {w ∈ N | (v,w) 6∈ F}

Както вече отбелязахме, U ⊂ V(G ′).
Но всеки връх на G е инцидентен с ребро от F при текущите допускания, така че всеки
връх от U е инцидентен с ребро от F. Нека

FU = {e ∈ F | единият край на e е връх от U}

Също както в предния подслучай, няма ребро в F, чиито два края са върхове от G ′; в
частност, няма ребро в F, чиито два края са върхове от U. Тогава |U| ≤ |FU|.
Върховете w ∈ N, такива че (v,w) ∈ F, не са върхове на G ′, понеже няма ребро в F,
чиито два края са върхове от G ′. Нека

W = {w ∈ N | (v,w) ∈ F}

Нека

FW = {(v,w) ∈ F |w ∈W}

Ясно е, че |W| = |FW |.
Забелязваме, че N се разбива на U и W, така че |N| = |U|+ |W|. Но вече знаем, че

|U| ≤ |FU|

|W| = |FW |

Очевидно е, че FU ∩ FW = ∅, така че |FU| + |FW | ≤ |F|. Тогава |N| ≤ |F|. Но |N| = dG(v).
Доказахме, че dG(v) ≤ |F|.
И така, dG(v) ≤ ce(G). Сега забелязваме, че dG(v) е горна граница за cv(G): тъй като
G не е пълен граф, може да изберем v така, че N 6= V \ {v}, така че G−N е несвързан
граф. Но тогава cv(G) ≤ |N|, тоест, cv(G) ≤ dG(v). Следователно, cv(G) ≤ ce(G). �
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Задача 14. Нека p, q ∈ N+. Намерете диаметъра и радиуса на Kp,q.

Решение. Ако p = q = 1, всеки от двата върха има ексцентрицитет 1, така че diam(K1,1) =
rad(K1,1) = 1.

Ако p = 1 и q > 1, нека v е върхът от дяла със само един връх. Тогава ексцентрицитетът на
v е 1, а останалите върхове имат ексцентрицитет 2. Тогава diam(K1,q) = 2, а rad(K1,q) = 1.

Ако p > 1 и q > 1, всеки връх има ексцентрицитет 2, така че diam(Kp,q) = rad(Kp,q) = 2. �

Задача 15. Нека G = (V, E) е граф, такъв че n ≥ 4. Нека ∆(G) =
⌈
n
2

⌉
и δ(G) =

⌊
n
2

⌋
− 1.

Докажете, че G е свързан.

Решение. Нека u е връх от максимална степен в G. Тогава N(u) =
⌈
n
2

⌉
. За да докажем, че

G е свързан, достатъчно е да докажем, че всеки връх v, такъв че v 6∈ N(u), има общ съсед
с u.

Нека v ∈ V и v 6∈ N(u). Очевидно N(v) ≥
⌊
n
2

⌋
− 1. Тъй като u и v не са съседи и в графа

няма примки, в сила е

N(u) ⊆ V \ {u, v}

N(v) ⊆ V \ {u, v}

Тогава

|N(u) ∩N(v)| ≤ n− 2

което е същото като

−|N(u) ∩N(v)| ≥ −(n− 2)

Съгласно принципа на включването и изключването, в сила е

|N(u) ∪N(v)| = |N(u)|+ |N(v)|− |N(u) ∩N(v)|

Тогава

|N(u) ∩N(v)| = |N(u)|+ |N(v)|− |N(u) ∪N(v)|

Но |N(u)| =
⌈
n
2

⌉
, N(v) ≥

⌊
n
2

⌋
− 1 и −|N(u) ∩N(v)| ≥ −(n− 2). Тогава

|N(u) ∩N(v)| ≥
⌈n
2

⌉
+
⌊n
2

⌋
− 1− (n− 2)

Забелязваме, че
⌈
n
2

⌉
+
⌊
n
2

⌋
= n за всяко n; това се доказва тривиално с разглеждане на

случаите n е четно и n е нечетно. Тогава

|N(u) ∩N(v)| ≥ n− 1− (n− 2) = n− 1− n+ 2 = 1

Доказахме, че u и v имат общ съсед. �

Задача 16. Нека G е обикновен граф, такъв че δ(G) = 3. Докажете, че G има цикъл с четна
дължина.
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Решение. Нека p е произволен най-дълъг път в G. Нека краищата на p са u и v. Очевидно
u 6= v. Да разгледаме връх u. Връх u има поне три съседа в графа по условие.

Твърдим, че всички съседи на u се намират в p. Обратното веднага води до противоречие,
понеже, ако u има съсед x извън p, то x, p е път, по-дълъг от p.

И така, u има поне три съседа в p. Да ги наречем u1, u2 и u3. Нека в p те се намират в този
ред от u към v. Представяме си p така:

p = u, . . . , u1, . . . , u2, . . . , u3, . . . , v

като u3 потенциално може да съвпада с v. Знаем, че има ребра (u, u1), (u, u2) и (u, u3).

Да разгледаме следните три пътя в G:

• p1, който е подпътят на p между u и u2,

• p2, състоящ се от u, реброто между u и u2, и u2,

• p3, състоящ се от u, реброто между u и u3 и подпътя на p между u3 и u2,

Ето рисунка, илюстрираща p1, p2 и p3:

u u1 u2 u3 v

p1

p2

p3

Ключово наблюдение е, че за всяко {i, j} ⊂ {1, 2, 3}, pi и pj имат краища u и u2, но нямат
общи вътрешни върхове, откъдето следва, че pi ∪pj е прост цикъл, да го наречем ci,j. Второ
ключово наблюдение е, че |ci,j| = |p1|+ |p2|.

По принципа на Dirichlet, за поне два пътя измежду p1, p2 и p3 е вярно, че дължините им
имат една и съща четност. БОО, нека |p1| и |p2| са с една и съща четност. Тогава |c1,2| е четно
число. �

Задача 17. Нека x, y ∈ N+, като x ≥ y. Дадени са x града, които се намират върху y
острова. Върху всеки остров има поне един град. Какъв е максималният брой шосета, които
може да има между тези градове, ако всяко шосе свързва два различни града, а между два
града може да има най-много едно шосе? Две шосетата може да се пресичат или да не се
пресичат – това няма значение за тази задача; ако се пресичат, допуснете, че във всяко място
на пресичане едното шосе минава с мост над другото. Допуснете, че шосета между различни
острови не може да има (островите са прекалено далече един от друг).

Решение. Задачата естествено се моделира с неориентиран граф, чиито върхове са градо-
вете. Ако съобразим, че броят на шосетата се максимизира тстк на всеки остров всеки граф е
свързан с всеки друг чрез шосе, става ясно, че графът има точно y свързани компоненти: по
една за всеки остров. Пита се, колко ребра най-много има граф с x върха, който има точно
y свързани компоненти, където y ≤ x.
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Нека свързаните компоненти са G1, . . . , Gy, и Gi има ni върха за 1 ≤ i ≤ y. Тъй като
компонентите имат поне по един връх, очевидно 1 ≤ ni ≤ x − y + 1 за всяко i. Освен това,∑y

i=1 ni = x. При дадени n1, . . . , ny, броят на ребрата се максимизира, когато всеки Gi е
пълен граф – това е очевидно.

Сега ще докажем, че броят на ребрата в G е максимален, когато една свързана компо-
нента съдържа x − y + 1 върха, което означава, че тя съдържа

(
x−y+1
2

)
ребра, а останалите

компоненти имат по един връх, което означава, че имат по нула ребра. Това следва лесно от
факта, че функцията-брой на ребрата е квадратична в броя на върховете, но ще извършим
доказателството подробно. Да си представим алгоритъм, който получава свързаните компо-
ненти G1, . . . , Gy със съответно n1, . . . , ny върха и прави следното: докато не е вярно, че
всички свързани компоненти без една имат по точно един връх, разглежда две компоненти
Gi и Gj със съответно ni и nj върха (където ni > 1 и nj > 1) и прехвърля по един връх от
едната от тях в другата съгласно следното правило:

• ако Gi и Gj имат еднакъв брой върхове, прехвърляме връх от коя да е от тях в другата,

• в противен случай прехвърляме от тази с по-малко върхове в другата.

докато една от тях не остане само с един връх. След всяко прехвърляне на връх, компонен-
тата, която получава връх, става пак пълен граф (с добавяне на всички необходими за целта
ребра), а тази, от която се вади връх, остава пълен граф, но на върхове с един по-малко от
преди.

Без ограничение на общността, нека ni ≥ nj и нека прехвърлим един връх от Gj в Gi. Да
видим как това се отразява на броя на ребрата след добавяне и махане на необходимите
бройки ребра. Преди прехвърлянето на връх, в тези компоненти е имало

(
ni

2

)
+
(
nj

2

)
ребра.

След прехвърлянето и добавянето и махането на ребра, така че Gi и Gj пак да са пълни
графи е вярно, че Gi вече има

(
ni+1
2

)
ребра, а Gj, само

(
nj−i
2

)
ребра. Тогава общият брой ребра

на G нараства с
(
ni + 1

2

)
+

(
ni − 1

2

)
︸ ︷︷ ︸

брой ребра в Gi и Gj след прехвърлянето

−


(
ni

2

)
+

(
nj

2

)
︸ ︷︷ ︸

брой ребра в Gi и Gj преди прехвърлянето


тъй като в останалите свързани компоненти не се мени нищо. Но(

ni + 1

2

)
+

(
nj − 1

2

)
−

(
ni

2

)
−

(
nj

2

)
=

1

2
((ni + 1)ni + (nj − 1)(nj − 2) − ni(ni − 1) − nj(nj − 1)) =

1

2
(n2i + ni + n

2
j − 3nj + 2− n

2
i + ni − n

2
j + nj) =

1

2
(2ni − 2nj + 2) = ni − nj + 1

Излиза, че дори да започнем да прехвърляме при равен брой върхове в двете компоненти
пак “печелим” едно ребро, а ако прехвърляме от по-малка като брой върхове компонента в
по-голяма, “печалбата” е дори по-голяма.

Лесно се вижда, че всяка итерация на този алгоритъм увеличава с поне единица броя на
ребрата в графа, и крайният брой ребра, независимо от поредицата избори от коя в коя
компонента да прехвърляме, е

(
x−y+1
2

)
. Това е абсолютният максимум за броя на ребрата

при y свързани компоненти. Както стана ясно от доказателството, тази горна граница е
достижима. �
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3 Подграфи

Задача 18. “Триъгълник в граф” означава подграф с три върха, който е пълен граф. Нека
G е граф. Нека (u, v) е ребро в G. Докажете, че за всяко k ∈ {0, 1, . . . , n− 2} е вярно, че ако
d(u) + d(v) = n+ k, то (u, v) е ребро в поне k различни триъгълника.

Решение. Иска се да се покаже, че u и v имат поне k общи съседи. Нека A е множеството
от съседите на u. Нека B е множеството от съседите на v.

Да разгледаме |A ∪ B|. Съгласно комбинаторният принцип на включването и изключва-
нето, в сила е

|A ∪ B| = |A|+ |B|− |A ∩ B|

Но d(u) = |A|, d(v) = |B|, така че |A|+ |B| = n+ k. Тогава

|A ∪ B| = n+ k− |A ∩ B|

Забелязваме, че |A ∪ B| ≤ n, защото множеството A ∪ B е подмножество на V . Тогава

n+ k− |A ∩ B| ≤ n ↔ k− |A ∩ B| ≤ 0 ↔ |A ∩ B| ≥ k

Доказахме, че общите съседи на u и v са поне k на брой. �

Задача 19. Даден е граф G = (V, E). Докажете, че G е двуделен тстк във всеки подграф H

на G съществува множество върхове XH ⊆ V(H), такова че XH е антиклика в H и |XH| ≥ |V(H)|
2

.

Решение. В едната посока, нека G е двуделен, като дяловете са V1 и V2. Нека H е произ-
волен подграф на G. Нека U1 = V(H) ∩ V1 и U2 = V(H) ∩ V2. Очевидно {U1, U2} е разбиване
на V(H); оттук, |U1| + |U2| = |V(H)|. Щом V1 и V2 са антиклики в G, U1 и U2 са анкикли-
ки в H. БОО, нека |U1| ≥ |U2|. Абсолютно очевидно е, че |U1| ≥ |V(H)|

2
. И така, търсеното

множество–антиклика XH може да е U1. 3

В другата посока, нека е вярно, че всеки подграф на G съдържа антиклика, чиято мощност
е поне половината от броя на върховете на този подграф. Ще докажем, че G е двуделен.
Да допуснем противното. Тогава G не е двуделен. Тогава G има поне един нечетен цикъл,
съгласно теоремата, казваща, че G е двуделен тстк няма нечетни цикли. Нека c е нечетен
цикъл в G. Да мислим за c като за подграф на G. Нека t = |c|, като t е нечетно число.
Тогава t = 2k+1 за някое цяло положително k. По допускане, c като подграф на G съдържа
антиклика с поне 2k+1

2
върхове; тъй като 2k+1

2
е дробно число, c съдържа антиклика с поне

k+ 1 върхове.
Ключовото наблюдение, че мощността на всяка антиклика в c е ограничена отгоре от k.

Тривиално се доказва, че за всяко X ⊂ V(c), такова че |X| = k+ 1, върховете от X индуцират
непразен подграф. Полученото противоречие показва, че допускането, че G не е двуделен, е
погрешно. �

4 Допълнения на графи

Задача 20. Даден е граф G. Докажете, че поне единият от G и G е свързан.
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Решение. Да допуснем, че G не е свързан. Очевидно |V(G)| ≥ 2. Ще докажем, че G
е свързан. Разглеждаме произволни u, v ∈ V(G). Следните две възможности са взаимно
изключващи се и изчерпателни.

• u и v не са съседи в G. Тогава те са съседи в G, така че (u, v) ∈ E(G), така че има път
между тях в G.

• u и v са съседи в G. Тогава те са върхове от една и съща свързана компонента G1 на G.
Тъй като G не е свързан по конструкция, той има поне още една свързана компонента
G2. Нека x е произволен връх от G2. В G, нито върховете u и x са съседи, нито върховете
v и x са съседи. Тогава (u, x) ∈ E(G) и (v, x) ∈ E(G). Тогава в G съществува път между
u и v, а именно пътят u, x, v.

Доказахме, че за произволни u, v ∈ V(G) е вярно, че в G има път между тях. Но V(G) = V(G)
по дефиниция. Тогава за произволни u, v ∈ V(G) е вярно, че в G има път между тях. Тогава
G е свързан. �

Задача 21. Нека G = (V, E) е граф и u ∈ V . Докажете, че G− u = G− u.

Решение. За краткост дефинираме Vu = V \ {u}, I(u) = {e ∈ E |u ∈ e}, V = {X ⊆ V : |X| =
2}, E = V \ E, I(u) = {e ∈ E |u ∈ e} и Vu = {X ⊆ Vu : |X| = 2}. По определение,

G− u =
(
Vu, E \ I(u)

)
G =

(
V, E

)
G− u =

(
Vu,Vu \ (E \ I(u))

)
G− u =

(
Vu, E \ I(u)

)
За да докажем, че G− u = G− u, трябва да докажем, че(

Vu,Vu \ (E \ I(u))
)
=
(
Vu, E \ I(u)

)
(1)

Съгласно изучаваното по Дискретни Скруктури свойство на наредените двойки

(a, b) = (c, d) ↔ a = b∧ c = d

Ерго, за да докажем (1), достатъчно е да докажем

Vu \ (E \ I(u)) = E \ I(u) (2)

Първо забелязваме, че Vu \ (E\I(u)) = Vu \E, понеже Vu е множеството от двуелементните
подмножества върхове, които не съдържат u, така че дали

• от Vu няма да вземем тези двуелементни подмножество върхове, които са ребра в G,
които не съдържат върха u, или

• от Vu няма да вземем всички двуелементни подмножество върхове, които са ребра в
G,

води до един и същи резултат. Тогава това, което се иска да докажем, е

Vu \ E = E \ I(u) (3)

Множеството вляво се състои от всички двуелементни подмножества върхове, които не съ-
държат u и не са ребра в G. Множеството вдясно се състои от всички двуелементни подм-
ножества върхове, които не са ребра в G, без не-ребрата, които съдържат u. Очевидно това
е едно и също множество. �
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5 Изоморфизъм на графи
Задача 22. Нека G е граф, който е изоморфен на своето допълнение G. Докажете, че G има
срязващ връх тогава и само тогава, когато G има висящ връх.

Решение. Граф, който е изоморфен на допълнението си, се нарича самодопълнителен,
на английски self complementary. Нека G е самодопълнителен. Първо забелязваме, че G е
свързан и G е свързан. Ето защо. От Задача 20 знаем, че поне единият от G и G е свързан.
Ако G не е свързан, то G задължително е свързан и тогава G и G не са изоморфни. С
аналогичен аргумент показваме, че G също е свързан.

ü В едната посока на доказателството, нека G има връх u от степен 1. Нека реброто,
инцидентно с u, е e = (u, v). Ще докажем, че d(v) 6= 1. Да допуснем, че d(v) = 1. Тогава G =
({u, v}, {e}) или една от свързаните компоненти на G е ({u, v}, {e}). Но, както вече забелязахме,
G е свързан, така че има само една свързана компонента. Тогава G = ({u, v}, {e}). Но този
граф не е самодопълнителен, понеже допълнението му е ({u, v}, ∅). Тогава d(v) 6= 1. Тогава
d(v) ≥ 2, така че v има поне още един съсед освен u. Тогава v е срязващ връх.

üВ другата посока на доказателството, нека G има срязващ връх u. Разглеждаме G−u и
G− u. Щом u е срязващ връх, G−u има k свързани компоненти G1, . . . , Gk за някое k ≥ 2.
Тогава за всеки x ∈ V(G1) и всеки y ∈ V(G2) ∪ · · · ∪ V(Gk) е вярно, че x и y не са съседи в
G−u. Тогава за всеки x ∈ V(G1) и всеки y ∈ V(G2)∪ · · · ∪V(Gk) е вярно, че x и y са съседи
в G− u.

За краткост на записа дефинираме, че биклика е пълен двуделен граф; за такъв на лекции
използвахме означението “Kp,q”. Току-що показахме, че G− u има покриваща биклика, като
дяловете са, примерно, V(G1) и V(G2) ∪ · · · ∪ V(Gk). Съгласно Задача 21, G− u = G − u.
Тогава G − u има покриваща биклика. Тъй като G е самодопълнителен, G трябва да има
връх v, такъв че G− v има покриваща биклика. Нека покриващата биклика на G− v е Kp,q
с дялове V ′ и V ′′, където p = |V ′| и q = |V ′′|. Очевидно V ′ ∪ V ′′ = V \ {v} и V ′ ∩ V ′′ = ∅, така
че p+ q = |V |− 1.
Kp,q е свързан граф, понеже е биклика: за всеки x, y ∈ V ′ ∪ V ′′, ако x и y са от различни

дялове, те са съседи по дефиниция, а ако са от един и същи дял, БОО от V ′, x е съсед на
някой z от V ′′ и y е съсед на същия z, така че има път x, z, y между x и y.

Забелязваме, че u 6= v, защото G − u не е свързан по конструкция, а G − v е свързан,
понеже има покриващ свързан граф Kp,q.

Нека w е връх на G, различен и от u, и от v (такъв съществува). Щом w 6= v, със сигурност
w ∈ V ′ ∪ V ′′. БОО, нека w ∈ V ′.
Помним, че връх u е срязващ връх и свързаните компоненти на G− u са G1, . . . , Gk. БОО,
нека w ∈ V(G1). Ще докажем, че всеки връх s на G− u, различен и от w, и от v, е връх от
V ′.

• Да допуснем, че s 6∈ V(G1). Тогава в G − u няма ребро (s,w), понеже s и w са от
различни свързани компоненти на G−u. Но тогава в G също няма ребро (s,w), понеже
изтриването на u не би засегнало това хипотетично ребро.

Знаем, че V ′ и V ′′ са дяловете на покриваща биклика на на G− v. Ако s беше във V ′′,
щеше да има ребро (s,w) в G − v, така че щеше да има ребро (s,w) и в G. Но, както
вече видяхме, ребро (s,w) в G няма. Ерго, s 6∈ V ′′.
Тогава s ∈ V ′. Заключаваме, че всеки връх на G− u, който не е в G1 (където е w) и е
различен от v, се намира във V ′.
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• Да допуснем, че s ∈ V(G1). Разглеждаме произволен връх t от G− u, който не е в G1.

В G − u няма ребро (s, t), понеже s и t са върхове от различни свързани компоненти
на G− u. Очевидно нито един от s и t не е връх u, така че в G също няма ребро (s, t).

Но тогава в G− v също няма ребро (s, t): такова не може да се появи с изтриването на
връх v. Ерго, s и t са върхове от един и същи дял измежду V ′ и V ′′. Но t не може да се
намира във V ′′; ако t беше във V ′′, щеше да има ребро (w, t), понеже Kp,q е покриваща
биклика. Ребро (w, t) обаче няма, понеже w е връх в G1, а t е връх от друга свързана
компонента. Щом t не е във V ′′, трябва t да е във V ′. Но тогава и s е във V ′.

Доказахме, че всеки връх на G−u, който не е нитоw, нито v, се намира във V ′. По допускане,
w ∈ V ′, така че w 6∈ V ′′. По конструкция, v 6∈ V ′′. Но V ′′ е непразно. Единственият връх на
G− v, който може да бъде във V ′′, е връх u. Заключаваме, че V ′′ = {u}, а V ′ = V \ {u, v}.

Но тогава u е съсед на всеки връх от V ′, понеже V ′ и V ′′ са дяловете на биклика. Тогава
степента на u в G е поне n − 2. Тогава степента на u в G е най-много 1. Забележете, че тя
не може да е 0, понеже тогава G би имал изолиран връх и не би бил свързан, а, както вече
видяхме, G е свързан. Тогава степента на u в G е точно 1. Тъй като G е самодопълнителен,
в G също има връх от степен 1, и неговият съсед е срязващ връх. Което и трябваше да
покажем. �

Задача 23. Граф, който е изоморфен на допълнението си, се нарича самодопълнителен.
Докажете, че ако G е самодопълнителен граф, то n ≡ 0 (mod 4) или n ≡ 1 (mod 4).

Решение. Нека G = (V, E) е самодопълнителен граф. Нека G = (V, E). Нека

E∗ = {{u, v} |u, v ∈ V ∧ u 6= v}

Знаем, че |E∗| = n(n−1)
2

и {E, E} е разбиване на E∗. Нещо повече, |E| = |E|, тъй като G е
изоморфен на G. Веднага следва, че |E| = n(n−1)

4
. Но тогава n(n−1)

4
е цяло число. Тогава

n(n−1) се дели на 4. Тоест, n(n−1) ≡ 0 (mod 4). Заключаваме, че n ≡ 0 (mod 4) или n ≡ 1
(mod 4). �

Задача 24. Докажете или опровергайте, че тези два графа са изоморфни:

Решение. Тези графи не са изоморфни. И двата имат 12 върха, 18 ребра и са 3-регулярни†.
Тогава редиците от степените им са

3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3

†Броят на ребрата следва веднага от броя на върховете и 3-регулярността: 12× 3 = 2m → m = 18.

21



Задачи с решения по теория на графите, ФМИ-СУ, 2016-2025 г. c© Минко Марков

Броят на биекциите между множествата от върховете е 12! = 479 001 600, което прави про-
веряване с пълно изчерпване безнадеждно, ако се работи на ръка. Ще докажем, че няма
изоморфизъм, разглеждайки най-късите цикли в двата графа. Лесно се вижда, че графът
вляво има точно един 3-цикъл:

Графът вдясно също има точно един 3-цикъл, което също е очевидно:

Дотук нямаме опровержение на хипотезата, че са изоморфни. За да бъдат изоморфни обаче,
трябва изоморфизмът да изобразява трите върха на единия 3-цикъл в трите върха на другия
3-цикъл. Това са вече само 3! = 6 възможности. Ние обаче ще си спестим усилието дори за
тези шест изчерпателни проверки, правейки наблюдението, че точно едно ребро от 3-цикъла
в графа вдясно е и ребро от 4-цикъл:

Може да гледаме на обединението на тези два цикъла (в графа вдясно) като на един 5-цикъл
плюс ребро, което не е от 5-цикъла, но чиито краища са в него. Такова ребро се нарича хорда.
Ключово наблюдение е, че графът вляво няма подграф с такава форма, а именно 5-цикъл
с хорда. За да се убедим в това, достатъчно е да разгледаме всяко от ребрата на 3-цикъла
вляво и да отбележим, че то не е ребро от 4-цикъл. �
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Задача 25. Докажете или опровергайте, че графите G и H, нарисувани тук, са изоморфни.

1

5

7

3

0 64 2

G
1

5

7

3

0 64 2

H

Решение. Тези два графа не са изоморфни. Лесно се вижда, че G е двуделен граф:

1

5

7

3

0 64 2

G

Единият дял е {1, 3, 4, 6} (червените върхове), а другият е {0, 2, 5, 7} (сините върхове).

От друга страна, H не е двуделен, понеже има нечетен цикъл, примерно 1, 0, 3, 7, 6, 1:

1

5

7

3

0 64 2

H

А от лекции знаем, че граф е двуделен тстк няма нечетни цикли. �

Задача 26. Нека H1, H2, H3 и H4 са графи с едно и също множество от върхове V . Докажете
или опровергайте, че ако H1 ' H2 и H3 ' H4, то H1 ∪H3 ' H2 ∪H4.

Решение. Твърдението не е вярно. Нека V = {a, b, c, d}. Нека H1 = (V, {(a, b)}), H2 =
(V, {(a, c)}), H3 = (V, {(a, b)}) и H4 = (V, {(b, d)}). Вярно е, че H1 и H3 са изоморфни, защото
съвпадат, а всеки граф е изоморфен на себе си. Вярно е и, че H2 и H4 са изоморфни, понеже
и двата имат по едно ребро и два изолирани върха.

Но H1 ∪ H3 = (V, {(a, b)}), докато H2 ∪ H4 = (V, {(a, c), (b, d)}). Тези два графа няма как
да са изоморфни, имайки различен брой ребра. �
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6 Двуделност. Оцветявания на графи.
Задача 27. Нека G = (V, E) е граф.

• Докажете, че ако G е двуделен граф с дялове V1 и V2, то
∑
u∈V1

d(u) =
∑
u∈V2

d(u).

• Докажете, че ако следните две условия са изпълнени:

– ∃p ∈ N : |V | = 2p+ 1,

– ∃p ∈ N+ ∀u ∈ V : d(u) = p,

то G не е двуделен.

Решение. Ще решим първата подзадача. Нека графът има m ребра. Знаем, че степента на
връх е броят на ребрата, инцидентни с него. Тогава сумата всички степени на върхове от V1 е
равна на броя на всички ребра, инцидентни с някой връх от V1. От дефиницията на “двуделен
граф” знаем, че на всяко ребро единият край е във V1. Тогава ребрата, инцидентни с някой
връх от V1, всъщност са всички ребра на графа. Тогаваm =

∑
u∈V1 d(u). С напълно аналогич-

на аргументация извеждаме, че m =
∑

u∈V2 d(u). Следователно,
∑

u∈V1 d(u) =
∑

u∈V2 d(u).

Ще решим втората подзадача. Двете условия казват, че броят на върховете е нечетен и че
всички върхове са от една и съща степен.

Сега ще докажем едно помощно твърдение: ако в двуделен граф всички върхове са
от една и съща степен, то дяловете имат една и съща мощност. Нека дяловете са
V1 и V2. Ще използваме вече изведеното равенство

∑
u∈V1 d(u) =

∑
u∈V2 d(u). Нека

всички върхове са от една и съща степен p. Тогава
∑

u∈V1 d(u) = p|V1|. Но също така∑
u∈V1 d(u) = p|V2|. Следователно, p|V1| = p|V2|, откъдето следва, че |V1| = |V2|.

И така, ако даденият граф е двуделен и всички върхове имат една и съща степен, то дяловете
са с еднаква мощност. Тогава броят на върховете е четно число. Но това противоречи на
условието, че броят на върховете е нечетен. Следователно, графът не е двуделен. �

Задача 28. В някакъв град има три училища. Всяко от тях има точно n ученици. Знае се,
че всеки ученик от всяко училище се познава с поне n+ 1 ученици от другите две училища.
Докажете, че съществуват поне трима ученици, нито двама от които не са от едно и също
училище, които се познават взаимно. За целите на задачата, допуснете, че познанството е
симетрична релация.

Решение. Да моделираме задачата с неориентиран граф: учениците са върховете, а познан-
ствата са ребрата. Това, че множеството от общо 3n ученици се разбива на три подмножества
(трите училища), и познанствата, за които става дума, са само между ученици от различни
училища, на езика на графите се превежда така: множеството от върховете V се разбива на
V1, V2 и V3 и за всяко ребро (u, v) е вярно, че u ∈ Vi и v ∈ Vj, за някои i, j ∈ {1, 2, 3}, такива
че i 6= j. Тогава графът е 3-оцветим, като върховете от първия цвят са V1, тези от втория
цвят са V2, а тези от третия цвят са V3. От условието става ясно, че |V1| = |V2| = |V3| = n.

Забележете, че не се казва, че между учениците от едно и също училище няма познанства,
но такива познанства са нерелевантни за тази задача, така че те не задават ребра.

Твърдението, което трябва да се докаже, е, че в конструирания триделен граф има 3-
клика. Ако има 3-клика, непременно нейните върхове са по един от всеки всеки цвят.
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Тъй като дяловете са с мощност n, а всеки връх има поне n+ 1 съседи по условие, всеки
връх от Vi има поне един съсед във Vj и поне един съсед във Vk, където i, j, k е пермутация на
{1, 2, 3}. Нека ` е минималният брой съседи от един и същи дял на връх в графа. Забележете,
че ` ≥ 1. Разглеждаме произволен връх u, който има точно ` съседи от един и същи цвят.
БОО, нека u ∈ V1 и u има точно ` съседи от V2. Тогава u има поне n + 1 − ` съседи от V3.
Разглеждаме произволен w ∈ V2, който е съсед на u. Такъв w съществува, понеже, както
вече отбелязахме, ` ≥ 1.

Ключовото наблюдение е, че w има поне ` съседи във V3, защото ` е дефиниран така.
Нека множеството от съседите на u във V3 е U и множеството от съседите на v във V3 е W.
Вече знаем, че |U| ≥ n + 1 − ` и |W| ≥ `. Предвид това, че U ⊆ V3 и W ⊆ V3 и |V3| = n,
заключаваме, че U ∩W 6= ∅. Разглеждаме произволен v ∈ U ∩W и веднага виждаме, че
{u, v,w} е 3-клика в графа. �

Задача 29. Докажете, че за всеки граф G е вярно, че χ(G) ≤ 1
2
+
√
2m+ 1

4
.

Решение. Оцветяването на върховете на граф с k цвята е същото като разбиването на
множеството от върховете му на k антиклики. Нека графът е G = (V, E). Нека χ(G) = k.
Тогава съществува разбиване на V на k антиклики, да го наречем V = {S1, S2, . . . Sk}, където
k ∈ {1, 2, . . . , n}, и не съществува разбиване на V на k − 1 антиклики. Съобразяваме, че за
всеки Si, Sj, такива че 1 ≤ i < j ≤ k, съществува връх u ∈ Si и съществува връх v ∈ Sj, такива
че u и v са съседи – ако такива върхове няма, можем да обединим Si и Sj в една антиклика,
като по този начин конструираме разбиване на V на k − 1 антиклики, в противоречие с
извода, че такова разбиване не съществува.

Следователно, в E съдържа поне едно ребро за всеки i, j, такива че 1 ≤ i < j ≤ k. Тогава
m ≥

(
k
2

)
, откъдето

m ≥ k(k− 1)
2

↔
2m ≥ k2 − k↔

k2 − k− 2m ≤ 0↔(
k−

1+
√
1+ 8m

2

)(
k−

1−
√
1+ 8m

2

)
≤ 0↔(

k−

(
1

2
+

√
1

4
+ 2m

))(
k−

(
1

2
−

√
1

4
+ 2m

))
≤ 0

Оттук веднага следва, че

k ≤ 1
2
+

√
2m+

1

4

И тъй като χ(G) = k, получаваме

χ(G) ≤ 1
2
+

√
2m+

1

4
�

Задача 30. Казваме, че граф G е k-хроматичен, ако χ(G) = k. Казваме, че G е критично
k-хроматичен, ако е k-хроматичен, но за всеки връх v от G е вярно, че χ(G − v) = k − 1.
Докажете, че ако G е критично k-хроматичен, то за всеки връх v в G, степента на v е поне
k− 1.
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Решение. Допускаме противното. Тогава съществува критично k-хроматичен граф G =
(V, E), в който съществува връх v от степен не повече от k− 2. Разглеждаме G− v. Тъй като
G е критично k-хроматичен, то, по дефиниция, χ(G− v) = k− 1. Да разгледаме произволно
оцветяване на G − v в k − 1 цвята. Нека U ⊆ V означава множеството от съседите на v в
G. Очевидно, върховете от U присъстват и в G − v. Освен това, по допускане |U| ≤ k − 2.
Но тогава върховете от U са оцветени в най-много k− 2 цвята. Да върнем изтрития връх v
заедно с ребрата към върховете от U. Веднага се вижда, че този граф също може да бъде
оцветен в k− 1 цвята, защото за v можем да изберем такъв цвят измежду k− 1 цвята, който
не се ползва за никой връх от U.

По този начин построихме оцветяване на G с k − 1 цвята, в противоречие с по-рано
направеното допускане, че G е k-хроматичен. Следователно, допускането, че съществува
връх от степен, по-малка от k− 1, е невярно. �

Задача 31. За всеки граф G, ω(G) е кликовото число на G, а χ(G) е хроматичното число
на G. Намерете малък пример за граф G, такъв че ω(G) = 2 и χ(G) = 4. Нарисувайте графа
ясно и прегледно и докажете формално и прецизно, че χ(G) = 4. Това, че кликовото число
е две, би трябвало да е очевидно от рисунката, но за хроматичното число нещата никога не
са очевидни.

Решение. Разгледайте този граф G:

a

bf

cd

u

v

wx

y
z

G

Твърдим, че ω(G) = 2 и χ(G) = 4. Това, че ω(G) = 2, е очевидно от рисунката на графа:
няма три върха, всеки две от които са съседи. Ще докажем, че χ(G) = 4. Да допуснем, че
χ(G) < 4.

Да разгледаме цикъла a, b, c, d, f, a. Той е нечетен цикъл, следователно, съгласно изуча-
ваното на лекции, не може да бъде оцветен с два цвята. Заключаваме, че χ(G) = 3. БОО, нека
цветовете са червен, зелен и син. Ето едно възможно оцветяване на цикъла в тези цветове:
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a

bf

cd

Възможни са и други оцветявания, но за всяко оцветяване в три цвята на този цикъл е вярно,
че единият цвят се ползва точно веднъж, а всеки от други два се ползва точно два пъти –
ако допуснем, че някой цвят се ползва поне три пъти, ще има ребро с двата края в един цвят,
което не е разрешено. БОО, нека цветът, който се ползва точно веднъж, е червеният и нека
a е червеният връх. Връх b е или зелен, или син. Ако b е зелен, единственото възможно
оцветяване е това, което е показано. Ако b е син, оцветяването може да бъде довършено по
единствен начин, а именно c е зелен, d е син и f е зелен. И така, щом цветът, който се ползва
веднъж, е червеният и a е червен, върху останалите четири върха синият и зеленият цвят
се редуват. БОО, разглеждаме само показаното оцветяване (b е зелен и т. н.).

Има точно пет двойки върхове измежду a, . . . , f, които не са съседи върху цикъла: {a, c},
{b, d}, {c, f}, {a, d} и {b, f}. За три от тези двойки е вярно, че цветовете на двата върха в
двойката са различни, а именно {a, c}, {a, d} и {b, f}:

a

bf

cd

Да разгледаме избраното оцветяване на цикъла в контекста на целия граф:
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a

bf

cd

u

v

wx

y
z

G

Щом ползваме само трите цвята червен, зелен и син, при това положение се налага y да е
син, u да е червен и v да е зелен:

a

bf

cd

u

v

wx

y
z

G

Но тогава z не може да е нито червен, нито зелен, нито син, бивайки съсед и на u, и на v, и
на y. Полученото противоречие показва, че допускането χ(G) < 4 е грешно.

От друга страна, G е 4-оцветим, както се вижда от следната рисунка, така че χ(G) = 4.
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a

bf

cd

u

v

wx

y
z

G

�

Задача 32. Добре известно е, че всяко върхово оцветяване на граф в k цвята по същество е
разбиване на множеството от върховете на k антиклики, като върховете от един цвят са една
антиклика. Разгледайте следният алчен алгоритъм, който разбива множеството от върховете
на антиклики.

Алгоритъм 1: Алгоритъм за разбиване на антиклики

Вход: граф G = (V, E).
Изход: Разбиване на V на антиклики.

U е променлива от тип фамилия над V .

¶ U ← ∅.
· Намери в G антиклика S ⊆ V с максимална мощност.

¸ U ← U ∪ {S}.

¹ G← G− S.

º Ако V(G) = ∅, върни U и прекрати алгоритъма; в противен случай, иди на ред ·.

Професор Дълбоков твърди, че този алгоритъм винаги намира оптимално върхово оцветя-
ване на входния граф. Опровергайте професора. Обосновете добре аргумента си.

Решение. За да опровергаем професора, достатъчно е да намерим един контрапример.
Следният граф е контрапример:
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a1

G

a2 a3 a4 a5

b

a6 a7 a8 a9 a10

c

На първата итерация алгоритъмът намира S = {a1, a2, . . . , a10} на ред ·, защото това е
максималната антиклика в графа. След това U става {{a1, a2, . . . , a10}} на ред ¸. След това
алгоритъмът изтрива върховете от {a1, a2, . . . , a10} на ред ¹ и графът става този:

G

b

c

Следва проверката на ред º. Тъй като все още има върхове, изпълнението отива отново на
ред ·. В текущия граф максимална антиклика е всяко от {b}, {c}. Да кажем, че S = {b}.
Тогава U става {{a1, a2, . . . , a10}, {b}}. После връх b бива изтрит. После алгоритимът итерира
цикъла си още веднъж, след което всички върхове се оказват изтрити и алгоритъмът връща
U = {{a1, a2, . . . , a10}, {b}, {c}}.

Но това разбиване на антиклики е върхово оцветяване в три цвята, защото |U | = 3. А всъщ-
ност входният граф е 2-оцветим, понеже е дърво; всяко дърво е 2-оцветимо, понеже е ацик-
личен граф, така че не съдържа нечетни цикли. Заключаваме, че посоченият алгоритъм не
винаги намира оптимално върхово оцветяване. �

7 Хамилтоновост

Задача 33. Нека G = (V, E) е Хамилтонов 3-регулярен граф. Докажете, че χ ′(G) ≤ 3, къдено
χ ′ е хроматичният индекс.

Решение. Първо забелязваме, че щом G е 3-регулярен, в сила е
∑

v∈V d(v) = 3|V |. Но знаем,
че
∑

v∈V d(v) = 2|E|. Тогава 3|V | е четно число. Заключаваме, че |V | е четно число.
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Нека C е Хамилтонов цикъл в G. Щом G е Хамилтонов, такъв съществува. Дължината
на C е |V |. Но тогава |C| е четно число. Тогава можем да оцветим ребрата от C със само два
цвята, да кажем червен и син, като цветовете алтернират върху C. Дотук няма инцидентни
ребра в един и същи цвят.

Нека E ′ са ребрата наG, които не са в C. Такива трябва да има, инакG би бил 2-регулярен.
Забелязваме, че никои две ребра от E ′ не са инцидентни: ако допуснем, че има e1, e2 ∈ E ′,
които са инцидентни, то нека общият им връх е u и тогава d(u) ≥ 4, понеже u е инцидентен
както с e1 и e2, така и с точно две ребра на C. Но d(u) = 3, щом G е 3-регулярен. Полученото
противоречие показва, че никои две ребра от E ′ не са инцидентни.

Щом никои две ребра от E ′ не са инцидентни, можем да оцветим ребрата от E ′ в трети
цвят, да кажем зелен, и така получаваме оцветяване на ребрата на G в три цвята, такова че
никои две инцидентни ребра не са в един и същи цвят. �

Задача 34. Нека G е граф, в който има поне два различни Хамилтонови цикъла. Докажете,
че m ≥ n+ 2 и че тази горна граница е точна.

Решение. Да си припомним, че можем да мислим за Хамилтонов граф G = (V, E) като за
един Хамилтонов цикъл C плюс можество от хорди.

Ако m = n, то E = E(C). Но в този случай множеството от хорди е празно и втори Хамил-
тонов цикъл няма, което е невъзможно по условие. Ерго, отхвърляме възможностте m = n.

Да разгледаме възможността m = n+ 1. В този случай C има точно една хорда. Веднага са
вижда, че в G има точно три цикъла, единият от които е C, а другите два, да ги наречем C1
и C2, не са Хамилтонови:

C

G

C1 C2

Ерго, отхвърляме възможносттеm = n+1. Дотук доказахме, чеm ≥ n+2. Сега ще докажем,
че тази горна граница е точна.

Да разгледаме възможността m = n + 2. В този случай C има точно две хорди. Съществу-
ването на две хорди не гарантира съществуване на два различни Хамилтонови цикъла, но
позволява съществуване на два различни Хамилтонови цикъла, а именно C и още един, да
го наречем C ′, който съдържа въпросните две хорди:

C

G

C ′

�

31



Задачи с решения по теория на графите, ФМИ-СУ, 2016-2025 г. c© Минко Марков

Определение 1. Нека G = (V, E) е граф. Линейният граф на G е графът G ′ = (E, E ′),
където

E ′ = {(e1, e2) | e1, e2 ∈ E и e1 и e2 са инцидентни в G}

Пишем G ′ = L(G).

Задача 35. а) Нарисувайте L(K4).

б) Дайте пример за граф H, такъв че H и L(H) са изоморфни.

в) Докажете, че ако G е Хамилтонов, то и L(G) е Хамилтонов.

Решение. а) Ето K4 в черно с анонимни върхове и L(K4) в червено върху същата рисунка.

б) Всеки цикъл може да служи за пример. Да кажем, K3.

в) Нека G = (V, E). Нека V = {v1, v2, . . . , vn} и E = {e1, e2, . . . , em}. Нека G има Хамилтонов
цикъл

c = v1, ei1 , v2, ei2 , . . . , ein−2
, vn−1ein−1

, vn, einv1

където ei1 , ei2 , . . . , ein са n на брой, две по две различни ребра на G.
Забележете, че цикълът c ′ = ei1 , ei2 , . . . , ein , ei1 в L(G) не е непременно Хамилтонов†,

защото G може да има още ребра—ein+1
, . . . , eim—които се явяват върхове в L(G) и трябва

да са във всеки Хамилтонов цикъл в L(G).
Конструираме Хамилтонов цикъл в L(G) по следния начин. Започваме с c ′ и го разши-

ряваме, докато не стане Хамилтонов. За всяка хорда e ′ на c, избираме единия край на e ′, да
кажем връх vk. В цикъла c, vk е “ограден” от две ребра, да ги наречем e ′′ и e ′′′. В цикъла
c ′ вмъкваме e ′ между e ′′ и e ′′′. Ако няколко ребра от G са хорди на c с общ край върха
vk и за всяко от тях сме избрали върха vk, то вмъкваме всички тях в c ′ между e ′′ и e ′′′ в
произволен ред. Очевидно тази конструкция ще добави всички хорди на c към цикъла c ′;
тоест, тази конкструкция ще сложи всички ребра на G в c ′, което означава, че тя ще сложи
всички върхове на L(G) в c ′. Очевидно при тези вмъквания c ′ остава прост цикъл. Тогава c ′
е Хамилтонов цикъл в L(G). �

†В L(G), ei1 , ei2 и така нататък са върхове, така че сме посочили само имената на върховете на c ′.
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Задача 36. За всеки p, q ∈ N+, дефинираме графа-межа p× q така:(
{1, . . . , p}× {1, . . . , q},

{
{(i, j), (k, `)} ⊆ Ip × Iq : |i− k|+ |j− `| = 1

} )
Неформално казано, върховете са наредените двойки от {1, . . . , p} × {1, . . . , q}, като между
две наредени двойки има ребро тогава и само тогава, когато те се различават само в едната
позиция, и то само на единица.

На английски е p× q grid graph.

Като пример, ето графа-мрежа 3× 5. Трябва да е ясно откъде идва името “grid graph”.

(1, 1) (1, 2) (1, 3) (1, 4) (1, 5)

(2, 1) (2, 2) (2, 3) (2, 4) (2, 5)

(3, 1) (3, 2) (3, 3) (3, 4) (3, 5)

Докажете, че графът-мрежа p×q е Хамилтонов тстк p, q > 1 и поне едното от p и q е четно.

Решение. За простота ще рисуваме тези графи без да записваме наредените двойки във
върховете. Примерно, графът-мрежа 3× 5 изглежда така:

Очевидно е, че ако p = 1 или q = 1, графът-мрежа p×q се изражда в път. Ето как изглежда
той при p = 1:

Веднага се вижда, че графът-мрежа p × q не е Хамилтонов, ако p = 1 или q = 1. Оттук
насетне приемаме БОО, че p > 1 и q > 1.

В едната посока, нека едното от p и q е четно. БОО, нека q е четно. Ето визуална аргу-
ментация, че графът-мрежа p × q е Хамилтонов. Това не е формално доказателство, но би
трябвало да е очевидно, че “работи” за всяко p ≥ 2. Ако q = 2, Хамилтонов цикъл има (в
този пример p = 5, но това няма значение, важното е p ≥ 2):
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Ако q = 4, Хамилтонов цикъл има:

Ако q = 6, Хамилтонов цикъл има:

И така нататък. Би трябвало да е очевидно, че тази конструкция може да се обобщи за
всяко четно q и за всяко p, стига и двете да са по-големи от единица. Говорейки образно,
Хамилтоновият цикъл прилича на гребен, чийто “гръб” е в четната дименсия q и броят на
“зъбците” е q

2
, а самите “зъбци” сочат в дименсията p, като дължината им е p− 2.

В другата посока, ще докажем, че ако има Хамилтонов цикъл, поне едното от p, q е четно.
Ще докажем контрапозитивното: ако p е нечетно и q е нечетно, то Хамилтонов цикъл няма.
Нека p е нечетно и q е нечетно. Да допуснем, че има Хамилтонов цикъл C. Веднага се вижда,
че |C| = p ·q. Тогава |C| е нечетно число, така че C е нечетен цикъл. Ключовото наблюдение
е, че всеки граф-мрежа е двуделен граф: единият дял са наредените двойки с четна сума
от елементите, другият дял са наредените двойки с нечетна сума от елементите. Примерно,
3× 5 графът-мрежа има разбиване на дялове, както следва от това оцветяване в червено и
синьо (няма ребро, чиито краища са в един и същи цвят):
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(1, 1) (1, 2) (1, 3) (1, 4) (1, 5)

(2, 1) (2, 2) (2, 3) (2, 4) (2, 5)

(3, 1) (3, 2) (3, 3) (3, 4) (3, 5)

Щом графът е двуделен, той не може да има нечетен цикъл съгласно изучаваното на лекции.
В частност, не може да има нечетен Хамилтонов цикъл. �

8 Дървета и покриващи дървета
В Задача 11 опровергахме, че във всеки свързан граф има връх, който е общ за всички най-
дълги пътища. Но ако се ограничим до дърветата, това твърдение е вярно: във всяко дърво,
всички най-дълги пътища имат общ връх. Което ще покажем в следната задача.

Задача 37. Нека G е дърво. Докажете или опровергайте, че съществува връх в G, който
принадлежи на всеки най-дълъг път в G.

Решение. Твърдението е вярно. БОО, нека V(G) > 2. Нека p е най-дълъг път в G. Нека
p има краища a и b. Знаем, че a и b са висящи върхове, инак p не би бил най-дълъг път.
Нещо повече, p има поне един вътрешен връх, тъй като V(G) > 2. Нека |p| = `.

• Нека ` е четно число. Нека средният връх на p е уникалният връх u, такъв че подпътят
на p между a и u има дължина `

2
(което влече, че подпътят на p между b и u също

има дължина `
2
). Твърдим, че u е връх във всеки най-дълъг път в G.

Да допуснем противното: в G има друг най-дълъг път q, такъв че u не е връх в q. Но
съгласно Задача 10, p и q имат поне един общ връх x. БОО, нека x е вътрешен връх
на подпътя на p между a и u (x не може да съвпада с a, понеже a е висящ връх). Да
кажем, че краищата на q са c и d. Нещата изглеждат така:

p

`

≥
⌈
`
2

⌉
≥
⌈
`
2

⌉

q

a bux

Очевидно е, че обединението на тези два пътя:

– подпътят на p между b и x и
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– този от двата подпътя на q по отношение на x, който е не по-къс от другия

има дължина, по-голяма от `. Което, разбира се, е невъзможно.

• Нека ` е нечетно число. Тогава p има два съседни средни върха. Да ги наречем u1 и
u2. По-точно казано, u1 и u2 са уникалните върхове, такива че подпътят на p между a
и u1 има дължина

⌊
`
2

⌋
, подпътят на p между b и u2 има дължина

⌊
`
2

⌋
, а подпътят на

p между u1 и u2 има дължина 1 (u1 и u2 са съседи в p).

Твърдим, че всеки друг най-дълъг път q в G съдържа както u1, така и u2. Дока-
зателството може да се направи с допускане на противното по начин, аналогичен на
доказателството за случая, в който ` е четно. �

Задача 38. Дадено е множество от върхове V = {v1, v2, v3, v4, v5}.

а) Колко графа G = (V, E) има?

б) Нека D е множеството от графите G = (V, E), такива че |E| = 4. Намерете |D|.

в) Колко графа от D не са дървета?

д) Колко дървета с пет върха има? Става дума за именувани графи.

Решение. От лекции знаем, че броят на именуваните графи с n върха е 2(
n
2). Тогава броят

на графите, чието множество от върхове е V , е 2(
5
2) = 210 = 1 024, понеже |V | = 5.

Броят на графите с множество от върхове V и 4 ребра е
(
10
4

)
= 210, защото броят на дву-

елементните подмножества на V е
(
5
2

)
= 10, а всеки граф от D се определя еднозначно от

избора на 4 двуелементни подмножества на V , които са краищата на четирите ребра.

Да преброим графите в D, които не са дървета. Всеки граф, който не е дърво, не е свързан
или има цикъл. Но тъй като всеки граф в D има точно 4 ребра, граф от D не е свързан тстк
има цикъл. Следователно, достатъчно е да преброим графите в D, които не са свързани.
Всеки от тях има повече от една свързана компонента. Но тъй като ребрата на такъв граф
са точно 4, той може да има само две свързани компоненти. За да се убедим в последното:
ако има три свързани компоненти, те са или K1, K1 и K3 с общо три ребра, или K1, K2 и K2
с общо две ребра, ако има четири свързани компоненти, те са K1, K1, K1 и K2 с общо едно
ребро, а ако има пет свързани компоненти, те са пет на брой K1 с общо нула ребра. И така,
всеки граф в D, който не е дърво, има точно две свързани компоненти.

• Едната свързана компонента е K1. Тогава другата има 4 върха и за нея има две въз-
можности.

– Тя е 4-цикъл:
Тази възможност отговаря на 15 графа, понеже има 5 възможности за изолирания
връх, а за всяка от тях, цикълът може да се построи по 4!

2×4 = 3 неизоморфни
начина; 5× 3 = 15.

– Тя се получава от 3-цикъл с добавяне на още един връх, който става съсед на

точно един връх от цикъла:
Тази възможност отговаря на 60 графа, понеже има 5 възможности за изолирания
връх, за всяка от тях върхът от степен три може да се избере по 4 начина, за всеки
от които висящият връх може да се избере по 3 начина; 5× 4× 3 = 60.
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• Едната свързана компонента е K2. Тогава другата задължително е K3:

Тази възможност отговаря на 10 графа, понеже по
(
5
2

)
= 10 начина можем да изберем

двата върха на K2.

Общо, графите са 15+ 60+ 10 = 85.

Щом графите в D са 210 и 85 от тях не са дървета, броят на дърветата в D е 210− 85 = 125.
Това е и броят на именуваните дървета с 5 върха. �

Забележка: броят на дърветата с 5 върха се получава лесно от формулата на Cayley nn−2.
Ако n = 5, тя дава 53 = 125. Този теоретичен резултат обаче не е изучаван на лекции и
не може да се ползва, освен ако не бъде доказан подробно от първи принципи.

Задача 39. Нека G = (V, E) е граф. Докажете, че акоm < n, то G има свързана компонента,
която е дърво.

Решение. Нека свързаните компоненти на G са G1 = (V1, E1), G2 = (V2, E2), . . . , Gk =
(Vk, Ek), където 1 ≤ k ≤ n. Очевидно

n =

k∑
i=1

|Vi|

m =

k∑
i=1

|Ei|

Тогава съществува свързана компонента Gj = (Vj, Ej), такава че |Ej| < |Vj|; ако допуснем
обратното, веднага получаваме противоречие с факта, че m < n.

Но свързан граф, ребрата на който са по-малко от върховете, е дърво. Тогава Gj е дърво. �

Задача 40. Нека {a1, a2, . . .} е изброимо безкрайно множество от върхове. Нека c също е
връх. За всяко n ∈ N+, нека Dn е графът

Dn = ({a1, . . . , an, c}, {(a1, a2), (a2, a3), . . . , (an−1, an), (a1, c), (a2, c), . . . , (an, c)})

1. Нарисувайте D1, D2 и D3.

2. Предложете индуктивна дефиниция за множеството D =
⋃
n∈N+{Dn}. Няма нужда да

доказвате еквивалентността на двете дефиниции.

3. Нарисувайте всички покриващи дървета на D1, на D2 и на D3. За да е напълно ясна
рисунката, първо намерете колко покриващи дървета (като именувани графи!) има
всеки от D1, D2 и D3, после нарисувайте толкова негови копия и след върху всяко
копие с цветно нарисувайте съответното покриващо дърво.

4. Нека Sn е броят на покриващите дървета на Dn. Намерете хомогенно линейно рекурен-
тно уравнение с константни коефициенти от втори ред за Sn.

5. Решете това уравнение.

Решение. Ето D1, D2 и D3:
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a1

c

D1

a1

c

D2

a2 a1

c

D3

a3a2

Индуктивна дефиниция може да е следната. Базовото множество се състои от едно единст-
вено ребро f = (a, b). Графът ({a, b}, {f}) е в D. Казваме, че f е важното ребро в този граф
и връх a е важният връх в този граф.

Нека е даден произволен граф H ∈ D, като важното ребро на H е реброто e = (u, v) и
важният връх на H е u. Нека w е връх, който не е връх в H. Тогава графът

H ′ = (V(H) ∪ {w}, E(H) ∪ {(u,w), (v,w)})

е от D, като важното ребро на H ′ е (u,w) и важният връх на H ′ е u.

Да нарисуваме покриващите дървета. D1 има точно едно покриващо дърво:

a1

c

D2 има точно три покриващи дървета (точно едно ребро на D2 не участва):

a1

c

a2a1

c

a2 a1

c

a2

D3 има точно осем покриващи дървета, но е добре да ги генерираме систематично, за да сме
сигурни, че не сме изпуснали. Съгласно индуктивната дефиниция, можем да мислим за D3

като състоящо се от D2 с важно ребро (a2, c) и важен връх c, с добавяне на нов връх a3,
нови ребро (a2, a3) и (a3, c), като важният връх продължава да е c, а важното ребро става
(a3, c). Разбиваме покриващите дървета на D3 на следните три множества.

• Първо, покриващите дървета на D3, които се състоят от едно покриващо дърво на D2

и реброто (a2, a3):
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a1

c

a3a2a1

c

a3a2a1

c

a3a2

• Второ, покриващите дървета на D3, които се състоят от едно покриващо дърво на D2

и реброто (a3, c):

a1

c

a3a2a1

c

a3a2a1

c

a3a2

• Трето, покриващите дървета на D3, които съдържат както реброто (a2, a3), така и реб-
рото (a3, c). Но щом тези две ребра присъстват, останалите ребра не може да образуват
покриващо дърво на D2, защото би имало цикъл. Като първи подслучай разглеждаме
покриващото дърво, което се състои от (a2, a3), (a3, c) и покриващото дърво на D1.
Като втори подслучай разглеждаме покриващото дърво, което се състои от (a2, a3),
(a3, c) и (a1, a2):

a1

c

a3a2a1

c

a3a2

Можем да обобщим тези резултати така. Множеството от покриващите дървета на Dn се
разбива на следните множества.

• Покриващите дървета на Dn−1 плюс реброто (an−1, an). Мощността на това множество
е Sn−1.

• Покриващите дървета на Dn−1 плюс реброто (an, c). Мощността на това множество е
Sn−1.

• Покриващите дървета на Dn−2 плюс ребрата (an−1, an) и (an, c). Мощността на това
множество е Sn−2.

• Покриващите дървета на Dn−3 плюс ребрата (an−2, an−1), (an−1, an) и (an, c). Мощност-
та на това множество е Sn−3.
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• И така нататък.

• Покриващите дървета на D1 плюс ребрата (a2, a3), (a3, a4), . . . , (an−1, an) и (an, c).
Мощността на това множество е S1.

• Покриващото дърво, състоящо се от ребрата (a2, a3), (a2, a3), (a3, a4), . . . , (an−1, an) и
(an, c). То е само едно.

Оттук заключаваме, че

Sn =

{
1, ако n = 1

2Sn−1 + Sn−2 + Sn−3 + · · ·+ S1 + 1, ако n ≥ 2
(4)

Рекурентното уравнение (4) обаче не е от втори ред и дори не е с крайна история, така
че не може да го решим с метода, изучаван на лекции. Но можем да го преобразуваме в
еквивалентно уравнение от втори ред така. За всяко достатъчно голямо n е в сила

Sn = 2Sn−1 + Sn−2 + Sn−3 + · · ·+ S1 + 1
Sn−1 = 2Sn−2 + Sn−3 + Sn−4 + · · ·+ S1 + 1

Изваждаме второто от първото и получаваме

Sn − Sn−1 = 2Sn−1 + Sn−2 − 2Sn−2

Всичко друго се съкращава. Това преписваме така

Sn = 3Sn−1 − Sn−2

За да стане “истинско” рекурентно уравнение, трябва да му дадем и начални условия. Те са
S1 = 1 и S2 = 3. И така,

Sn =


1, ако n = 1

3, ако n = 2

3Sn−1 − Sn−2, ако n ≥ 3
(5)

Уравнение (5) е от втори ред и може да бъде решено с метода с характеристичното уравнение.

Ето решение на (5). Характеристичното уравнение е

x2 − 3x+ 1 = 0

Корените са 1
2
(3+

√
5) и 1

2
(3−

√
5). Оттук общото решение е

Sn = A

(
1

2
(3+

√
5)

)n
+ B

(
1

2
(3−

√
5)

)n
за някакви константи A и B. Да намерим A и B от началните условия.

S1 = 1 = A

(
1

2
(3+

√
5)

)
+ B

(
1

2
(3−

√
5)

)
S2 = 3 = A

(
1

2
(3+

√
5)

)2
+ B

(
1

2
(3−

√
5)

)2
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Оттук намираме A = 1√
5
, B = − 1√

5
, таке че

Sn =
1√
5

(
3+
√
5

2

)n
−
1√
5

(
3−
√
5

2

)n
Въпреки радикалите, Sn е цяло число за всяко n ∈ N+. Първите десет стойности са 1, 3, 8,
21, 55, 144, 377, 987, 2 584 и 6 765. Това са числа на Фибоначи, в което няма нищо странно,
понеже Sn = F2n за всяко n ∈ N+, факт, който лесно може да се докаже по индукция. �

Задача 41. Докажете, че за всяко дърво G = (V, E) е вярно, че |V | = |E|+ 1. Не е разрешено
да се ползва индуктивната дефиниция на “дърво”. Използвайте не-индуктивната дефиниция
на “дърво” и силна индукция по броя на върховете.

Решение. Ще използваме не-индуктивната дефиниция Дърво е всеки свързан ацикличен
граф и силна индукция по броя на върховете.

Базата е n = 1, така че става дума за тривиалния граф. Тривиалният граф има един връх
и нула ребра. Твърдението |V | = |E|+ 1 е очевидно вярно. 3

Индуктивното предположение е това: нека n ≥ 1 и за всяко дърво T = (V, E) с k върха,
където k ∈ {1, 2, . . . , n− 1} е вярно, че |V | = |E|+ 1.

Разглеждаме произволно дърво T = (V, E) с n върха. Нека броят на ребрата е m. Ще дока-
жем, че n = m+ 1. Нека u е произволен връх на T . Разглеждаме T − u. Този граф има ` на
брой свързани компоненти T1, . . . , T`, за някое ` ∈ {1, 2, . . . , n− 1}. Ключовото наблюдение е,
че всяка от тези компоненти е дърво, понеже е свързана по дефиниция, а изтриването на u
от T не може да породи цикли в нея.

Нека Ti има ni върха и mi ребра, за 1 ≤ i ≤ `. Очевидно 1 ≤ ni ≤ n − 1, така че, съгласно
индуктивното предположение, ni = mi + 1, за 1 ≤ i ≤ `. Тогава

n1 = n1 + 1

n2 = m2 + 1

. . .

n` = m` + 1

Събирайки равенствата, получаваме

n1 + n2 + · · ·+ n` = m1 +m2 + · · ·+m` + ` (6)

Забелязваме, че в T има точно ` ребра, инцидентни с u: ако за някое i ∈ {1, 2, . . . , `} има
повече от едно ребро с един край u и друг край-връх от Ti, в T би имало цикъл. Тези `
ребра “изчезват” при изтриването на u, тоест, не са ребра в никоя от получените свързани
компоненти. Тогава

m1 +m2 + · · ·+m` + ` = m (7)

След това забелязваме, че

n1 + n2 + · · ·+ n` = n− 1 (8)

понеже върховете на T се разбиват на {u} и
⋃`
i=1 V(Ti).
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Заместваме левите страни на (7) и (8) в (6) и получаваме

n− 1 = m

което е същото като

n = m+ 1

Което и трябваше да покажем. �

Задача 42. Да се докаже, че в произволно дърво с поне два върха, броят на върховете от
степен, по-малка от 3, е поне с 2 по-голям от броят на върховете от степен поне 3.

Решение. Нека T = (V, E) е произволно дърво с поне два върха. Знаем, че m = n − 1,
понеже T е дърво. Знаем, че

∑
v∈V d(v) = 2m. Тогава∑

v∈V

d(v) = 2n− 2

Нека x е броят на върховете от степен, по-малка от 3, а y, на тези от степен поне 3. Очевидно
x+ y = n. От друга страна,∑

v∈V

d(v) ≥ x+ 3y

понеже няма изолирани върхове; щом няма изолирани върхове, всеки връх е от степен поне
единица, така че има “принос” поне единица за сумата. Тогава

x+ 3y ≤ 2n− 2 = 2(x+ y) − 2 = 2x+ 2y− 2 → x ≥ y+ 2

Което и трябваше да покажем. �

Задача 43. Предложете индуктивна дефиниция на множеството от дърветата, всяко от
които има поне три върха и няма върхове от степен две.

Решение. Дървета с точно три върха без върхове от степен две няма, защото всяко дърво
с три върха е изоморфно на . Следователно, става дума за дървета с четири или
повече върха, които нямат върхове от степен две. За краткост, да наречем множеството от
тези дървета “S”. Една възможност за индуктивна дефиниция на S е тази.

База За всяко k ≥ 3, всеки граф, изоморфен на
(
{a, b1, b2 . . . , bk}, {(a, b1), (a, b2), . . . , (a, bk)}

)
,

принадлежи на S.

Индуктивно предположение Нека T е произволен елемент на S и нека y е произволен
висящ връх в T .

Индуктивна стъпка За произволно t ≥ 2, нека w1, w2, . . . , wt са нови върхове. Тогава
графът(

V(T) ∪ {w1, w2, . . . , wt}, E(T) ∪ {(y,w1), (y,w2), . . . , (y,wt)}
)

принадлежи на S.

Заключение В S няма други елементи освен тези, добавени от горепосочените стъпки. �
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9 Планарност на графи
Следната задача има елегантно решение, основано на теоремата на Ойлер, според която за
всяко планарно вписване на граф е в сила n −m + f = 0, където n е броят на планарните
върхове, m е броят на планарните ребра, а f е броят на лицата.

Задача 44. Нека D е кръг и C е неговата ограждаща окръжност. Нека n ∈ N+. Нека
P = {p1, p2, . . . , pn} е множество от произволни точки от C. Нека si,j е отсечката с краища pi
и pj, за 1 ≤ i < j ≤ n. Какъв е максималният брой r(n) на районите, на които може да бъде
разделен (“нарязан”) кръгът D от отсечките si,j, за 1 ≤ i < j ≤ n?

Решение. Да започнем с малки примери. Разглеждаме случаите n = 1, 2, 3, 4, 5, в които
точките са върху върховете на правилен n-ъгълник.

n = 1

r(1) = 1

n = 2

r(2) = 2

n = 3

r(3) = 4

n = 4

r(4) = 8

n = 5

r(5) = 16

От тези примери може да предположим, че r(n) = 2n−1 и че може да разполагаме точките
като върхове на правилен многоъгълник, за да максимизираме броя на районите. Нито едно
от тези предположения не е вярно! Както се вижда от следния пример за n = 6, r(6) = 31,
а регулярното разполагането на точките (върху върховете на правилен шестоъгълник) води
до наличие на само 30 района.

n = 6,
регулярно разположени точки,
има 30 района, но това не е макс.
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n = 6,
нерегулярно разположени точки,
има 31 района и това е макс.

1

2 3 4 5

6

7 8

10

9

11

12

13

14

15

16

17

18

19

20

21

22

23
24

25

26 27 28 29

30

31

За целите на тази задача приемаме за очевидно, че броят на районите се максимизира тстк
няма три отсечки с обща вътрешна точка и че съществува (нерегулярно) разполагане на
точките върху окръжността, при което няма три отсечки с обща вътрешна точка.

Нека S = {si,j | 1 ≤ i < j ≤ n}. Да разгледаме планарното вписване G = (V, E) със следните
планарни върхове и планарни ребра.
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• V е множеството от всички пресечни точки на двойки отсечки от S. А именно, това са
дадените точки p1, . . . , pn, както и всички вътрешни пресечни точки на отсечки.

• E е множеството от

– дъгите на окръжността спрямо p1, . . . , pn и

– отсечките, които се получават от елементите на S чрез “раздробяването” от вът-
решните точки на пресичане. Формално, става дума за максималните подотсечки
(на отсечките от S), несъдържащи точки на пресичане.

Очевидно G е планарно вписване и Ойлеровата формула

|V |− |E |+ f = 2

е в сила, където f е броят на лицата. Има една особеност: в задачата се търси броят на
районите, на които отсечките разделят кръга, а въпросното планарно вписване съдържа и
външното лице, което не принадлежи на кръга. Така че търсим f− 1, а не f. Очевидно

f− 1 = |E |− |V |+ 1

Да намерим броя на отсечките, тоест, да намерим |S|. Всеки две различни точки от P задават
точно една отсечка и обратно, така че |S| =

(
n
2

)
. В примера с n = 6, отсечките наистина са(

6
2

)
= 15.

Да намерим броя на точките на вътрешно пресичане на отсечките. Този брой не е
((n2)
2

)
,

защото не е вярно, че всеки две различни отсечки дават вътрешна точка на пресичане: някои
отсечки се пресичат върху точки от P, а други не се пресичат изобщо. Това е илюстрирано
добре от примера с n = 6 в пояснението към условието. Ключово наблюдение е, че всеки
четири различни точки от P задават точно една вътрешна пресечна точка и обратно, така че
броят на вътрешните пресечни точки е

(
n
4

)
. В примера с n = 6, вътрешните пресечни точки

наистина са
(
6
4

)
= 15.

Сега да намерим |V |. V се разбива на P и множеството от вътрешните точки на пресичане.
Тогава |V | = n+

(
n
4

)
.

Сега да намерим |E |. Ключово наблюдение е, че по отношение на отсечките от S, всяка
вътрешна точка на пресичане на две отсечки поражда две нови планарни ребра (които не
присъстват в S), така че при x точки на пресичане, планарните ребра, които биват породени,
са |S| + 2x на брой. Вече знаем, че |S| =

(
n
2

)
, а вътрешните точки на пресичане са

(
n
4

)
, така

че отсечките от S пораждат
(
n
2

)
+ 2
(
n
4

)
планарни ребра. В примера с n = 6, наистина има(

6
2

)
+ 2
(
6
4

)
= 45 планарни ребра. Нека читателят се убеди, че наистина в илюстрацията в

условието с нерегулярно разположените шест точки е вярно, че петнадесетте сини отсечки
пораждат точно четиридесет и пет планарни ребра.

Но това не е мощността на E . Елементи на E са и дъгите на окръжността спрямо точките
от P. Тези дъги са n на брой. И така, |E | = n+

(
n
2

)
+ 2
(
n
4

)
.

Тогава крайният отговор е

r(n) = f− 1 = n+

(
n

2

)
+ 2

(
n

4

)
−

(
n+

(
n

4

))
+ 1 = 1+

(
n

2

)
+

(
n

4

)
При n = 6, това наистина е r(6) = 1+

(
6
2

)
+
(
6
4

)
= 31. �
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Задача 45. Нека G е планарен Хамилтонов мултиграф. Нека G е планарно вписване на
G. Нека C е Хамилтонов цикъл в G. Нека C е образът на C при планарното вписване; C е
обединението от планарните върхове и планарните ребра, съответстващи на C.

Планарният цикъл C разделя равнината на вътрешна част I и външна част O. Нека ik е
броят на лицата от степен k, които са в I. Нека ok е броят на лицата от степен k, които са
в O. Докажете, че∑

k∈N

(k− 2)(ik − ok) = 0

Решение. Ще докажем по-силно твърдение: ако n е броят на върховете в графа, то∑
k∈N

(k− 2)ik =
∑
k∈N

(k− 2)ok = n− 2

БОО, ще докажем само
∑

k∈N(k−2)ik = n−2. Доказателството за външната част е напълно
аналогично.

И така, доказваме, че∑
k∈N

(k− 2)ik = n− 2 (9)

Формално, индексната променлива k взема стойности от безкрайното множество на естест-
вените числа, но забележете, че ik = 0 за k = 0, понеже лица от степен 0 няма, и ik = 0 за
k > n, понеже всички планарни върхове са в C, така че лица от степен, по-голяма от n, няма.
Поради това може да мислим, че индексната променлива k взема стойности от {1, 2, . . . , n}†.
Лявата страна на 9 е

∑
k(k− 2)ik, което е същото като (

∑
k k · ik) − 2

∑
ik. Нека L е множес-

твото от планарните ребра, които се намират вътре в I; планарните ребра, които са от C, не
са в L. Нека ` = |L|.

• Твърдим, че
∑

k k · ik = n+ 2`. Наистина, в сумата
∑

k k · ik, всяко планарно ребро от C
участва веднъж, а всяко планарно ребро от L участва два пъти, понеже се явява общо
ребро за две различни лица, намиращи се в I.

• Твърдим, че
∑

k ik = `+ 1. Това може да се докаже лесно по индукция по `, ако имаме
предвид, че

∑
k ik всъщност е броят на всички лица от вътрешността.

Базовият случай е ` = 0, което означава, че има точно едно вътрешно лице, което се
отражда от I. Тогава

∑
k ik = 1. От друга страна, `+1 = 1. Доказахме базовия случай.

Да допуснем, че твърдението е вярно за някое `, което е по-голямо от нула. Тогава L е
непразно. Изтриваме произволно планарно ребро e ∈ L, с което |L| намалява с единица,
но и броят на лицата намалява с единица, защото тези две лица, за които e беше общо
планарно ребро, се сливат в едно лице. Тогава от индуктивното предположение имаме
(
∑

k ik)−1 = `. Връщаме изтритото ребро e, с което добавяме по една единица от двете
страни на равенството и виждаме, че наистина

∑
k ik = `+ 1.

Отново разглеждаме лявата страна на (9), която е (
∑

k k · ik) − 2
∑
ik. Вече доказахме, че∑

k k · ik = n+ 2` и
∑

k ik = `+ 1. Тогава имаме право да напишем лявата страна на (9) като
n+ 2`− 2(`+ 1), което е n− 2. Доказахме (9). �

†Забележете, че i1 > 0 тстк в графа има примки, а i2 > 0 тстк графът е “истински” мултиграф, тоест,
има поне един сноп с поне две паралелни ребра, поради което има лица от степен 2.
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Задача 46. За всяко цяло положително k, нека Dk е безкрайното множество от графи,
дефинирани чрез следната индуктивна дефиниция.

• База: всяка (k+ 1)-клика принадлежи на Dk.

• Индуктивна стъпка: ако G = (V, E) приналежи на Dk и U е k-клика в G и w е връх,
който не е в G, то G ′ = (V ∪ {w}, E ∪ E ′) е в Dk, където E ′ =

⋃
a∈U{(a,w)}.

Ето задачата.

а) D1 кой клас графи е?

б) Колко ребра има всеки граф G ∈ D2 като функция на броя на върховете?

в) Докажете, че всеки G ∈ D2 е планарен.

г) Колко ребра има всеки граф G ∈ D3 като функция на броя на върховете?

д) Опровергайте, че всеки G ∈ D3 е планарен.

е) За всяко цяло положително k, намерете min {χ(G) |G ∈ Dk} и max {χ(G) |G ∈ Dk}.

Решение. a): D1 са дърветата без тривиалния граф. Посочената индуктивна дефиниция
е почти същата като изучаваната на лекции индуктивна дефиниция на дърво, с малката
разлика, че в горната дефиниция базата е (1 + 1)-клика, тоест 2-клика, тоест ребро, докато
в дефиницията от лекции базата е връх. Изключвайки тази дребна разлика, индуктивната
стъпка е същата и в двете дефиниции: добавя се нов връх w и w се прави съсед на точно
един връх от графа, за който сме допуснали, че е в множеството. Забележете, че k-клика
при k = 1 е един единствен връх.

б): Всеки граф от D2 има точно 2n−3 ребра, където n е броят на върховете му. Доказател-
ството е със структурна индукция по индуктивната дефиниция за k = 2. В базовия случай
имаме (2+1)-клика, което е K3, граф с точно 3 ребра. Наистина, 2 ·3−3 = 3. С което базата е
доказана. Да допуснем, че графът G в индуктивната стъпка има точно 2n−3 ребра. Очевид-
но ребрата на новопостроения G ′ са с 2 повече от ребрата на G, понеже новодобавеният връх
става съсед на точно два върха от G. Тогава броят на ребрата на G ′ е 2n−3+2 = 2n−1. Но
2n− 1 може да се представи като 2(n+ 1) − 3. Но n+ 1 е броят на върховете на G ′. Тогава
броят на ребрата на G ′ е два пъти броят на върховете на G ′ минус три. С което доказахме
желаното твърдение.

в): Ще докажем, че всеки граф G ∈ D2 е планарен със структурна индукция. По-точно,
ще докажем, че всеки G ∈ D2 има планарно вписване. Очевидно графът K3 от базата има
планарно вписване. Допускаме, че графът G от индуктивната стъпка има планарно вписва-
не. Както знаем от лекции, планарно вписване се дефинира чрез лицата си. Очевидно всяко
планарно ребро е в точно две лица на планарното вписване. 2-кликата U е едно ребро в G.
Съответното му планарно ребро е в точно две лица на вписването. Можем да добавим нов
планарен връх, съответен на w, и да го сложим във вътрешността на кое да е от тези две
лица и после да го свържем чрез две нови планарни ребра с планарните върхове, съответ-
ни на върховете от U по такъв начин, че тези две нови планарни ребра да лежат изцяло
във вътрешността на въпросното лице, с изключение на крайните си точки. Конструирахме
планарно вписване на G ′.

г): Всеки граф от D3 има точно 3n−6 ребра, където n е броят на върховете му. Доказател-
ството е със структурна индукция по индуктивната дефиниция за k = 3. В базовия случай
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имаме (3+1)-клика, което е K4, граф с точно 6 ребра. Наистина, 3 ·4−6 = 6. С което базата е
доказана. Да допуснем, че графът G в индуктивната стъпка има точно 3n−6 ребра. Очевид-
но ребрата на новопостроения G ′ са с 3 повече от ребрата на G, понеже новодобавеният връх
става съсед на точно три върха от G. Тогава броят на ребрата на G ′ е 3n−6+3 = 3n−3. Но
3n− 3 може да се представи като 3(n+ 1) − 6. Но n+ 1 е броят на върховете на G ′. Тогава
броят на ребрата на G ′ е три пъти броят на върховете на G ′ минус шест. С което доказахме
желаното твърдение.

д): Ще покажем, че в D3 има граф, който не е планарен. Да разгледаме следния граф:

a b

cd

x

y

Този граф може да бъде генериран от индуктивната дефиниция: примерно, K4 в базовия
случай е подграфът, индуциран от {a, b, c, d}, след което в индукнтивната стъпка се добавя
нов връх x и се прави съсед на върховете от 3-кликата {a, b, c} и се добавя нов връх y
и се прави съсед на върховете от 3-кликата {a, b, c}. Ще покажем, че този граф съдържа
подграф, изоморфен на K3,3. Забелязваме, че всеки от върховете a, b, c се явява съсед на
всеки от върховете d, x, y:

a b

cd

x

y

Ако изтрием ребрата между върховете a, b, c, подграфът K3,3 със своите девет ребра се вижда
ясно:
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a b

cd

x

y

Щом граф съдържа подграф, изоморфен на K3,3, той не е планарен съгласно изучаваното на
лекции.

е): Ще докажем, че за всяко k ∈ N+, min {χ(G) |G ∈ Dk} = max {χ(G) |G ∈ Dk} = k + 1.
Ще докажем дори нещо по-силно: за фиксирано k, за всеки G ∈ Dk е вярно, че χ(G) =
k + 1. Доказателството е със структурна индукция. В базовия случай графът е Kk+1, който
очевидно има хроматично число k+ 1. Да допустнем, че графът G от индуктивната стъпка
има хроматично число k + 1. Нека функцията f : V(G) → {1, . . . , k + 1} реализира върхово
оцветяване на G в k+1 цветове. Да разгледаме множествотоU. Тъй като |U| = k, по принципа
на Дирихле съществува поне един цвят j ∈ {1, . . . , k + 1}, такъв че никой връх на U не е
оцветен в j. Сега да разгледаме функцията g : V(G ′)→ {1, . . . , k+ 1}, дефинирана така:

∀z ∈ V(G ′) : ако z ∈ V, то g(z) = f(z), в противен случай g(z) = j

Лесно се вижда, че z да не е от V е същото като z = w. Но g реализира върхово оцветяване
на G ′ в k+ 1 цветове, защото

• за всяко ребро, инцидентно с w е вярно, че двата края са в различни цветове, понеже
g(w) = j, а никой връх от U не е в цвят j;

• за останалите ребра е вярно, че двата края са в различни цветове от индуктивното
допускане.

Тогава χ(G ′) ≤ k+1. Но тъй като χ(G) = k+1 иG е подграф наG ′, вярно е, че χ(G ′) = k+1.�

10 Минимални Покриващи Дървета
Задача 47. Нека G = (V, E) е свързан тегловен граф с тегловна функция w : E → R.
Докажете, че ако w е инекция, то G има точно едно МПД.

Решение. Това, че G има поне едно МПД следва директно от факта, че G е свързан. Ще
покажем, че МПД-то е уникално, щом няма различни ребра с едно и също тегло.

Да допуснем, че G има поне две различни МПД-та T1 и T2, въпреки че w е инекция. Тогава
в поне едното от тях има ребро, което не се съдържа в другото (дори по-силно твърдение е
вярно: тъй като броят на ребрата им е еднакъв, всяко от тях има ребро, което не се съдържа
в другото). Нека e ′ е реброто с минимално тегло, което се съдържа в точно едно от T1 и T2.
БОО, нека e ′ е ребро от T1. Щом w е инекция, e ′ е добре дефинирано.
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Да разгледаме графаU = (V, E(T2)∪{e ′}) с теглоw(U) = w(T2)+w(e ′). Както знаем от лекции,
той е уницикличен граф. Да кажем, че цикълът е c. Очевидно c съдържа ребро e ′′ ∈ E(T2),
такова че e ′′ 6= e ′ и e ′′ 6∈ T1. Но тогава е вярно, че w(e ′) < w(e ′′); да си припомним как
дефинирахме e ′.

Както знаем от лекции, U − e ′′ е дърво, и то покриващо дърво. Неговото тегло е w(T2) +
w(e ′) − w(e ′′). Но w(e ′) − w(e ′′) < 0. Тогава това е покриващо дърво с тегло, по-малко от
w(T2), в противоречие с прежде направеното допускане, че T2 е МПД. �

Задача 48. Нека G = (V, E) е свързан цикличен тегловен граф с тегловна функция w :
E → R, която е инекция. Нека c е произволен цикъл в G. Нека e ′ е най-тежкото ребро в c.
Докажете, че e ′ не е ребро от никое МПД на G.

Решение. Съгласно Задача 47, G има точно едно МПД. Нека това МПД е T . Ще докажем,
че e ′ не е ребро в T . Да допуснем противното. Тогава e ′ е ребро в T . Тогава T − e ′ е гора с
точно две дървета, които ще наречем T1 и T2.

Очевидно единият край на e ′ е връх в T1, а другият, в T2. Но в c има ребро e ′′, различно
от e ′, такова че единият край на e ′′ е връх в T1, а другият, в T2. Тогава графът D = (V, (E \

{e ′}) ∪ {e ′′}) е покриващо дърво на G. Нещо повече, w(D) < w(T), понеже w(e ′) > w(e ′′),
понеже по условие e ′ е най-тежкото ребро в c. Но не е възможно да имаме w(D) < w(T),
понеже T е МПД. Тогава допускането е грешно и e ′ не е ребро в T . �

Задача 49. Нека G = (V, E) е свързан неориентиран тегловен граф с тегловна функция
w : E → R. Нека H е множеството от всички покриващи дървета на G. Тясно Покриващо
Дърво, накратко ТПД, ще наричаме всяко D ∈ H, такова че

∀T ∈ H : max {w(e) | e ∈ E(D)} ≤ max {w(e) | e ∈ T }

Нека J е множеството от всички МПД на G и K е множеството от всички ТПД на G. Кое от
следните твърдения е вярно:

А) J ⊆ K

Б) K ⊆ J

В) нито едно от двете.

Обосновете отговорите си.

Решение. Такова покриващо дърво на английски се нарича Minimum bottleneck spanning
tree, накратко MBST. Казано на прост разговорен език, ТПД минимизира теглото на най-
тежкото ребро, докато МПД минимизира сумата от теглата на ребрата. ТПД-теглото на
покриващо дърво T се бележи с “b(T)” (идва от bottleneck weight) и се дефинира като теглото
на най-тежко ребро в T . Накратко,

w(T) =
∑
e∈E(T)

w(e) // “нормалната” деф. на тегло на дърво; ползва се за МПД

b(T) = max
e∈E(T)

w(e) // ТПД-тегло на дърво; ползва се за ТПД

Първо ще докажем, че всяко МПД е ТПД. Разглеждаме произволно T ∈ J и произволно
T ′ ∈ K. Нека e е ребро от E(T) с максимално тегло. Такова очевидно съществува, макар и не
е непременно уникално (не е казано, че w е инекция).
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Разглеждаме T − e. Това е гора от две дървета. Да ги наречем T1 и T2. Нека U1 = V(T1) и
U2 = V(T2). Очевидно {U1, U2} е разбиване на V . Тогава {U1, U2} е срез в G. Нека EU1,U2

е
срез-множеството на {U1, U2}. Съгласно теорема от лекциите по графи (Срезът, генериран
от изтриване на ребро от МПД), e е най-леко ребро от EU1,U2

.

Нека Ẽ = EU1,U2
∩ E(T ′). Очевидно, Ẽ 6= ∅ и ∀e ′ ∈ Ẽ : w(e ′) ≥ w(e). Но b(T) = w(e) по

конструкция, така че, за всяко e ′ ∈ Ẽ : b(T) ≤ w(e ′). Но, за всяко e ′ ∈ Ẽ : w(e ′) ≤ b(T ′).
Тогава b(T) ≤ b(T ′).
По определение, b(T ′) ≤ b(T ′′) за всяко ПД T ′′ на G. Но T e ПД на G. Оттук, b(T ′) ≤ b(T).
Щом b(T) ≤ b(T ′) и b(T ′) ≤ b(T), в сила е b(T) = b(T ′). Веднага следва, че T ∈ K. Доказахме
А): J ⊆ K.
Ще опровергаем Б). Нека G = ({a, b, c}, {(a, b), (b, c), (a, c)}). Нека w((a, b)) = 1, w((b, c)) =
2 и w((a, c)) = 2. Нека T1 = ({{a, b, c}, {(a, b), (b, c)}), T2 = ({{a, b, c}, {(a, b), (a, c)}), и T3 =
({{a, b, c}, {(b, c), (a, c)}). Тогава w(T1) = w(T2) = 3 и w(T3) = 4, а b(T1) = b(T2) = b(T3) = 2.
Виждаме, че T1 е МПД на G и T2 е МПД на G, но T3 не е МПД на G. От друга страна, всяко
от T1, T2 и T3 e ТПД на G. И така, има ТПД, което не е МПД. Ерго, Б) не е вярно. �

Задача 50. Какво ще кажете за следното доказателство на МПД-теоремата?

Нека G = (U,V) е произволен свързан неориентиран граф и нека w : E → R е
произволна тегловна функция върху него. Нека {U,W} е произволен срез в G. Да
разгледаме произволно най-леко ребро e, прекосяващо този срез. Да допуснем, че e
не се съдържа в нито едно МПД.

Но G е свързан, така че поне едно ребро прекосява среза {U,W}. Нека e ′ ∈ E е
произволно ребро на графа, прекосяващо среза. Да добавим e към произволно МПД
T . Тогава T плюс реброто e е уницикличен граф, като e е реброто от цикъла му c.
Да изтрием e ′ от c. Това дава покриващо дърво T ′. Да сравним теглата на T и T ′.
Очевидно w(T ′) = w(T) +w(e) −w(e ′). Тъй като e е най-леко ребро, прекосяващо
среза, то w(e) −w(e ′) ≤ 0.
Ако допуснем, че w(e) −w(e ′) < 0, излиза, че w(T ′) < w(T), което е невъзможно,
тъй като T е МПД. Ако допуснем, че w(e) − w(e ′) = 0, излиза, че w(T ′) = w(T),
тоест, T ′ също е МПД. Но T ′ съдържа e, в противоречие с допускането, че нито едно
МПД не съдържа e.

Показахме, че допускането е невярно. Тогава e се съдържа в поне едно МПД.

Решение. Доказателството е невалидно, тъй като e ′ е произволно ребро от графа и никъде
не се казва, че e ′ е ребро от МПД-то T , което разглеждаме. Да, наистина добавянето на e
към T дава уницикличен граф, но e ′ може да не е негово (на уницикличния) ребро, така
че “Да изтрием e ′ от c”, където c е името на цикъла, е безсмислица. Операцията изтриване
на ребро има смисъл ако реброто, което трием, е ребро на графа, от който трием. В случая
“Да изтрием e ′ от c” реферира към недефинирана операция. Ерго, заключението “Това дава
покриващо дърво T ′” е невярно. �

11 Ориентирани графи
Определение 2. Турнир се нарича всеки ориентиран граф G = (V, E), такъв че за всеки
два различни върха u, v ∈ V е вярно, че или (u, v) ∈ E, или (v, u) ∈ E. Цикличен турнир е
турнир, в който има поне един цикъл. Ацикличен турнир е турнир, в който няма нито един
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цикъл. Тъй като турнирите са ориентирани графи, като казваме “цикъл”, имаме предвид
“ориентиран цикъл”.

Задача 51. Нарисувайте ацикличен турнир с 6 върха. Нарисувайте цикличен турнир с 6
върха. Докажете, че във всеки цикличен турнир има прост цикъл с дължина 3.

Решение. Ето ацикличен турнир с 6 върха:

Ето цикличен турнир с 6 върха:

Ще докажем, че във всеки цикличен турнир има прост цикъл с дължина 3. Да разгледаме
произволен цикличен турнир и произволен най-къс цикъл c в него. Нека k = |c|. Забелязваме,
че k ≥ 3: ако k = 1, то c би бил примка, а примки не са разрешени (за да има примки, трябва
експлицитно да е казано това); ако k = 2, то би имало два различни върха с ребро от единия
към другия и от другия към първия, а това не е разрешено при турнирите.

Ако k = 3, няма какво повече да доказваме. Нека допуснем, че k > 3. Припомняме си, че c
по конструкция е най-къс цикъл в графа. Нека

c = v1, v2, v3, . . . , vk, v1

Тъй като графът е турнир, точно едно от (v1, v3) и (v3, v1) е ребро в него. Ако (v1, v3) ∈ E,
то v1, v3, . . . , vk, v1 е цикъл, по-къс от c, а такъв не може да има. Ако (v3, v1) ∈ E, веднага
виждаме цикъл с дължина 3, какъвто по допускане няма. Следователно, допускането, че
k > 3, е грешно. �

Задача 52. Докажете, че във всеки турнир съществува (ориентиран) Хамилтонов път.
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Решение. Със силна индукция по броя на върховете. Ако графът има точно един връх,
твърдението е тривиално вярно. 3

Нека твърдението е вярно за всеки турнир с не повече от n върха, за някое n ≥ 1. Да
разгледаме произволен турнир G = (V, E) с n + 1 върха. Да фиксираме произволен връх
u. По дефиниция, за всеки друг връх v, или има ребро (v, u), или има ребро (u, v). Тогава
V \ {u} се разбива на Vo и Vi, където Vi се състои от точно тези върхове, от които има ребро
към u, а Vo са останалите†.

• Да допуснем, че Vi = ∅. Това влече Vo 6= ∅. Нека G ′ = G−u. Очевидно G ′ е турнир с n
върха и, съгласно индуктивното предположение, в него има Хамилтонов път p. Нека
началният връх на p е a, а крайният връх на p е z. С други думи, p = a, . . . , z. Но в G
има ребро e = (z, u) по дефиницията на Vo. Тогава p, e, u е Хамилтонов път в G.

• Напълно аналогично доказваме съществуването на Хамилтонов път, когато Vo = ∅.

• Остава да разгледаме случая Vi 6= ∅ и Vo 6= ∅. Нека G ′ и G ′′ са подграфите на G − u,
индуцирани съответно от Vi и Vo. Всеки от тях има поне един връх и по-малко от
n върха, така че индуктивното предположение е в сила и за двата. Тогава в G ′ има
Хамилтонов път p ′ = a ′, . . . , z ′ и в G ′′ има Хамилтонов път p ′′ = a ′′, . . . , z ′′. Но в G има
ребро e1 = (z ′′, u) и има ребро (u, a ′). Тогава p ′′, e1, u, e2, p ′ е Хамилтонов път в G. �

Задача 53. Нека G = (V, E) е ориентиран ацикличен граф с n върха. Нека M е неговата
матрица на съседство. Нека Mn е матрицата M, повдигната на степен n. Професор Дъл-
боков твърди, че сумата от елементите на Mn е задължително по-малка от

√
n. Прав ли е

професорът? Обосновете отговорите си.

Решение. Професорът е прав. От лекции знаем, че Mk[i, j], за всеки i, j, съдържа броя на
ориентираните пътища от връх i до бръх j с дължина точно k. Но G е даг, а в даг с n върха,
всеки път е с дължина най-много n − 1; в противен случай би имало цикъл. Оттук веднага
следва, че всички елементи на Mn са нули, така че сумата от елементите е нула, което със
сигурност е по-малко от

√
n, тъй като n ≥ 1. �

†Разбиването {Vi, Vo} може да не отговаря на формалната дефиниция за разбиване, понеже тя иска всеки
от дяловете да е непразен, а в случая е възможно всяко от Vo и Vi да е празно (но не и двете), но това не е
съществено.
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