
Примерни решения на семестриалното контролно по Дискретни Структури,
КН 2 поток, 22.11.2025 г.

Зад. 1 Нека p1, . . . , p11 са прости съждения. Разгледайте следното съставно съждение:

((p1∧p11)∨ ((p2∧p10)∨ ((p3∧p9)∨ ((p4∧p8)∨ ((p5∧p7)∨p6)))))∨ (p7 → (p8 → (p9 → (p10 → (p11 → p11)))))

Какво е това съждение: тавтология, условност или противоречие? Обосновете добре отговорите си.

Решение: Нека

A = ((p1 ∧ p11)∨ ((p2 ∧ p10)∨ ((p3 ∧ p9)∨ ((p4 ∧ p8)∨ ((p5 ∧ p7)∨ p6)))))

B = (p7 → (p8 → (p9 → (p10 → (p11 → p11)))))

Съставното съждение, дадено в условието, изразено чрез A и B, е A∨ B. Твърдим, че B ” T. Наистина,

(p7 → (p8 → (p9 → (p10 → (p11 → p11))))) ” // свойство на импликацията
(p7 → (p8 → (p9 → (p10 → (¬p11 ∨ p11))))) ” // свойство на отрицанието
(p7 → (p8 → (p9 → (p10 → T)))) ” // свойство на импликацията
(p7 → (p8 → (p9 → (¬p10 ∨ T)))) ” // свойство на константите
(p7 → (p8 → (p9 → T))) ” // свойство на импликацията
(p7 → (p8 → (¬p9 ∨ T))) ” // свойство на константите
(p7 → (p8 → T)) ” // свойство на импликацията
(p7 → (¬p8 ∨ T)) ” // свойство на константите
p7 → T ” // свойство на импликацията
¬p7 ∨ T ” // свойство на константите
T

Тогава даденото съставно съждение е еквивалентно на A ∨ T. Но това е еквивалентно на T, съгласно
свойство на константите. Тогава даденото съставно съждение е тавтология.
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Зад. 2 Разгледайте безкрайната редица от реални числа (x1, x2, x3, . . .), дефинирана по следния начин:

x1 = 1

xn+1 =
a

1+ 2xn, за всяко n ě 1

Докажете по индукция, че xn ă 4 за всяко цяло положително n.

Решение: Базата е n = 1. Тогава xn = x1 = 1. Наистина, 1 ă 4, така че в базовия случай твърдението е
вярно.

Индуктивното предположение е, че за някое n ě 1 е в сила xn ă 4.

Ще докажем, че xn+1 ă 4. Наистина,

xn+1 = // по дефиниция

=
a

1+ 2xn // съгласно индуктивното предположение

ă
?
1+ 2 ¨ 4

=
?
9

= 3

И така, xn+1 ă 3. От това следва, че xn+1 ă 4. l
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Зад. 3 Нека X и Y са произволни множества.

А) Докажете или опровергайте, че X \ Y = XX Y.

Б) Докажете или опровергайте, че X \ (X \ Y) = XX Y.

Решение: Условието говори за допълнение на множество. Както знаем от лекции, това допълнение е
по отношение на някакъв универсум U. Той не е даден явно, но неявно присъства заради “Y”.

А) Твърдението е вярно. Ето доказателство. По определение,

X \ Y = {a |a P X∧ a R Y}

По определение, a R Y тстк a P Y. Тогава

X \ Y = {a |a P X∧ a P Y}

Но по определение,

{a |a P X∧ a P Y} = XX Y

Заключаваме, че X \ Y = XX Y.

Б) Твърдението е вярно. Ще го докажем, ползнайки резултата от А).

X \ (X \ Y) = // съгласно А)

X \ (XX Y) = // съгласно А)

XX (XX Y) = // закон на De Morgan

XX
(
XY Y

)
= // закон за двойното отрицание

XX
(
XY Y

)
= // дистрибутивност на сечение спрямо обединение

(XX X)Y (XX Y) = // свойство на допълнението
HY (XX Y) = // свойство на допълнението
XX Y

Което и трябваше да покажем. l
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Зад. 4 Нека n P N+. Разглеждаме произволно множество A, такова че |A| = n. Нека R Ď A ˆ A е
релация на еквивалентност.

А) Нека A1, . . . , Ak са класовете на еквивалентност на R. За всяко i P {1, 2, . . . , k}, Ri се дефинира така:

Ri = {(x, y) P R | x P Ai ∧ y P Ai}

Докажете или опровергайте, че {R1, R2, . . . , Rk} е разбиване на R.

Б) Докажете или опровергайте, че |R| е нечетно тогава и само тогава, когато n е нечетно.

Решение: Нека S = {R1, R2, . . . , Rk}.

А) Твърдението е вярно. Ще докажем, че S е разбиване на R.

• Това, че @i P {1, 2, . . . , k} : Ri Ď R, е очевидно от дефиницията на Ri.
• Ще докажем, че @i P {1, 2, . . . , k} : Ri ­= H. Наистина, всеки клас на еквивалентност Ai е непразен,

както знаем от лекции. За всяко a P Ai, наредената двойка (a, a) е елемент на Ri, понеже R е
рефлексивна. Тогава Ri ­=H, за всяко i P {1, 2, . . . , k}.

• Ще докажем, че
Ťk
i=1 Ri = R. Тоест, че всяка наредена двойка от R е елемент на поне един клас от S.

Да допуснем противното: съществува (a, b) P R, която не е елемент на никой клас от S.

От лекции знаем, че {A1, A2, . . . , Ak} е разбиване на A. Заключаваме, че a е елемент на някой елемент
на {A1, A2, . . . , Ak} и b е елемент на някой елемент на {A1, A2, . . . , Ak}. Щом (a, b) не е елемент на
никой клас от S, трябва a и b да са елементи на различни елементи на {A1, A2, . . . , Ak}. Тогава a P Ai
и b P Aj, за някои i и j, такива че i, j P {1, 2, . . . , k} и i ­= j.

Както знаем от лекции, всеки клас на еквивалентност на R е множеството [z] = {w P A | zRw}, за някое
z P A. Тогава Ai = [x] и Aj = [y], за някои x, y P A. При това x ­= y, инак Ai и Aj биха съвпадали.

Разглеждаме произволно d P Ai. В сила е xRd по определението на [x]. Но тогава dRx, понеже R е
симетрична. В сила е xRa, тъй като a P [x]. Тогава dRa, понеже R е транзитивна. Тогава dRb, понеже
R е транзитивна. Но yRb, понеже b P [y]. Тогава bRy, понеже R е симетрична. Тогава dRy, понеже
R е транзитивна. Тогава yRd, понеже R е симетрична Показахме, че d P [y], тоест, d P Aj. Но d е
произволен елемент на Ai. Тогава Ai Ď Aj.

Аналогично показваме, че Aj Ď Ai. Заключаваме, че Ai = Aj. Това противоречи на допускането, че
Ai и Aj са различни. Оттук следва, че допускането, че съществува наредена двойка (a, b) P R, която
не е елемент на никой клас от S, е невярно. Тогава

Ťk
i=1 Ri = R.

• Ще докажем, че Ri X Rj =H за всички i, j, такива че 1 ď i ă j ď k. Допускаме противното: за някои
i, j, такива че 1 ď i ă j ď k, Ri X Rj ­=H.

Тогава съществува поне една наредена двойка (a, b) P Ri X Rj. От дефинициите на Ri и Rj следва,
че a P Ai и b P Ai, а също така a P Aj и b P Aj. Тогава Ai и Aj имат непразно сечение. Но това е
невъзможно, защото {A1, A2, . . . , Ak} е разбиване на A. Заключаваме, че Ri X Rj = H за всички i, j,
такива че 1 ď i ă j ď k.

Следователно, S е разбиване на R.

Б) Твърдението е вярно и сега ще го докажем. Вече доказахме в А), че {R1, R2, . . . , Rk} е разбиване на R.
Тогава |R| = |R1|+ |R2|+ ¨ ¨ ¨+ |Rk|. Нека |Ai| = ni, за i P {1, 2, . . . , k}. Тогава n1 + n2 + ¨ ¨ ¨+ nk = n.

От лекции знаем, че за всеки клас на еквивалентност Ai, всеки елемент от Ai е в релация с всеки елемент
на Ai, включително и със себе си. Веднага следва, че Ri = A2i . Тогава |Ri| = n

2
i , откъдето

|R| = n21 + n
2
2 + ¨ ¨ ¨+ n

2
k

Твърдим, че n и |R| имат една и съща четност. Както е добре известно,

(n1 + n2 + ¨ ¨ ¨+ nk︸ ︷︷ ︸
n

)2 = n21 + n
2
2 + ¨ ¨ ¨+ n

2
k︸ ︷︷ ︸

|R|

+ 2n1n2 + ¨ ¨ ¨+ 2nk−1nk︸ ︷︷ ︸
четно число

Тъй като n1 + n2 + ¨ ¨ ¨ + nk = n, заключаваме, че n2 е равно на |R| плюс някакво четно число. От това
следва, че |R| е нечетно тстк n2 е нечетно. Но n2 е нечетно тстк n е нечетно. Заключаваме, че |R| е нечетно
тстк n е нечетно. Което и трябваше ва покажем. l
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Зад. 5 Нека A, B и C са произволни крайни непразни множества. Дадени са някакви функции f : A→ B

и g : B→ C.

А) Докажете или опровергайте, че ако f и g са инекции, то g ˝ f е инекция.

Б) Докажете или опровергайте, че ако g ˝ f е биекция, то f е биекция или g е биекциия,

Решение:

А) Твърдението е вярно. Първо ще покажем, че g ˝ f е функция. По дефиниция,

g ˝ f = {(a, c) P Aˆ C | Db P B : (a, b) P f∧ (b, c) P g}

Изразено чрез типичната за функциите нотация, това става

g ˝ f = {(a, c) P Aˆ C | Db P B : f(a) = b∧ g(b) = c}

Искаме да покажем, че

@a P A D!c P C : g ˝ f(a) = c (1)

Разглеждаме произволен елемент a 1 P A. Знаем, че f е функция от A в B. Тогава съществува единствен
b 1 P B, такъв че f(a 1) = b 1. Знаем, че g е функция от B в C. Тогава съществува единствен c 1 P C, такъв
че g(b 1) = c 1. Тогава g ˝ f(a 1) = c 1. Тъй като a 1 е произволен, (1) следва веднага.

Ще покажем, че g ˝ f е инекция. Да разгледаме произволни a 1, a2 P A, такива че a 1 ­= a2. Да кажем, че
f(a 1) = b 1 и f(a2) = b2, където b 1, b2 P B. Тъй като f е инекция, b 1 ­= b2. Да кажем, че g(b 1) = c 1 и
g(b2) = c2, където c 1, c2 P C. Тъй като g е инекция, c 1 ­= c2. Остава да отбележим, че g ˝ f(a 1) = c 1 и
g ˝ f(a2) = c2.

Тъй като a 1 и a2 са произволни, доказахме, че всеки два различни елемента от домейна на g ˝ f се
изобразяват в различни елементи от кодомейна на g ˝ f. Тогава g ˝ f е инекция.

Б) Твърдението не е вярно. Ето контрапример. Нека A = {1, 2}, B = {a, b, c} и C = {α,β}. Нека f е тази
функция от A в B: f(1) = a, f(2) = c. Нека g е тази функция от B в C: g(a) = α, g(b) = β, g(c) = β.
Очевидно g ˝ f е тази функция от A в C: g ˝ f(1) = α, g ˝ f(2) = β. Виждаме, че g ˝ f наистина е биекция
от A в C. Но нито f е биекция, нито g е биекция! f не е сюрекция, а g не е инекция.
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