
Примерни решения на семестриалното контролно по Дискретни Структури,
КН 2 поток, 29.11.2025 г.

Зад. 1 Докажете с комбинаторни разсъждения, че за всяко n P N+ е в сила

3n − 2n =
n−1
ÿ

k=0

2k3n−1−k

Решение: Бинарните вектори са векторите над {0, 1}. Да дефинираме, че тернарните вектори са
векторите над {0, 1, 2}. Нека Bn е множеството от бинарните вектори с дължина n, а Tn е множеството от
тернарните вектори с дължина n. От лекцията за комбинаторни структури знаем, че |Bn| = 2n и |Tn| = 3

n.
Предвид това, лявата страна 3n−2n е |Tn\Bn| съгласно принципа на изваждането. А Tn\Bn е множеството
от тернарните вектори с дължина n, имащи поне един елемент 2.

Дясната страна също брои Tn \Bn, но по-подробно. Щом има поне едно 2, можем да направим разбиване
на Tn \ Bn по позицията на най-лявото 2, като тази позиция е елемент на {1, 2, . . . , n}. Нека

Xn,` = {x P Tn \ Bn | най-лявото 2 в x е на позиция `}

Очевидно {Xn,1, Xn,2, . . . , Xn,n} е разбиване на Tn \ Bn, така че, по принципа на разбиването,

|Tn \ Bn| =
n

ÿ

`=1

|Xn,`|

Твърдим, че |Xn,`| = 2
`−13n−`. Наистина, всеки вектор x от Xn,` започва с `− 1 на брой нули или единици,

след това има двойка на позиция ` и след това, на позиции `+1, . . . , n има нули или единици или двойки.
Тъй като двойката на позиция ` е фиксирана, имаме право да кажем, че x е комбинация от един бинарен
вектор с дължина `− 1 и един тернарен вектор с дължина n− `.

Щом |Xn,`| = 2
`−13n−`, в сила е

n
ÿ

`=1

|Xn,`| =
n

ÿ

`=1

2`−13n−`

Да положим k = ` − 1, което е същото като ` = k + 1. Комбинаторно, смисълът на k е дължината на
подвектора преди най-лявата двойка. Алгебрично,

n
ÿ

`=1

2`−13n−` =
n−1
ÿ

k=0

2k3n−(k+1) =
n−1
ÿ

k=0

2k3n−1−k

Заключаваме, че

|Tn \ Bn| =
n−1
ÿ

k=0

2k3n−1−k

Тоест,

3n − 2n =
n−1
ÿ

k=0

2k3n−1−k

Което и трябваше да покажем. l
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Зад. 2 Нека n P N+. Булева матрица n ˆ n е матрица n ˆ n, чиито елементи са от {0, 1}. Нека Mn е
множеството от булевите матрици nˆ n. Нека An е множеството, дефинирано по следния начин:

An = {X PMn | всеки ред на X има поне едно 1 и всяка колона на X има поне едно 1}

А) Колко е |Mn|?

Б) Колко е |An|?

Решение, А): Всяка nˆn матрица има n2 елемента. Щом е булева, за всеки елемент има две възможни
стойности, независимо от останалите елементи. Тогава |Mn| = 2

n2 .

Решение, Б): Нека “нулев ред” означава “ред, състоящ се само от нули” и “нулева колона” означава
“колона, състояща се само от нули”. Във всеки ред да има поне една единица е същото като да няма нулев
ред. Във всяка колона да има поне една единица е същото като да няма нулева колона. Нулев ред или
колона ще наричаме “нарушител”. Искаме да намерим броя на матриците без нарушители. Ще използваме
принципа на включването и изключването.

Нека St е множеството от матриците с поне t нарушители. Очевидно 0 ď t ď 2n и тези граници са
точни. Забележете, че S0 =Mn, защото t = 0 означава, че няма ограничения върху матриците. Съгласно
принципа на включването и изключването,

|An| = |S0|− |S1|+ |S2|− |S3|+ ¨ ¨ ¨+ (−1)2n|S2n|

Накратко,

|An| =
2n
ÿ

t=0

(−1)t|St|

Да въведем още една нотация. Нека Sk,` е множеството от матриците с поне k нарушители-редове и поне
` нарушители-колони, като 0 ď k, ` ď n. Тогава, за всяко t P {0, 1, . . . , 2n},

|St| =
ÿ

k+`=t
0ďk,`ďn

|Sk,`|

Тогава

|An| =
2n
ÿ

t=0

(−1)t
ÿ

k+`=t
0ďk,`ďn

|Sk,`| =
2n
ÿ

t=0

ÿ

k+`=t
0ďk,`ďn

(−1)k+`|Sk,`|

Лесно се вижда, че всяка наредена двойка индекси (k, `) за 0 ď k, ` ď n се появява точно веднъж в
двойната сума, така че изразът вдясно може да се препише като

řn
k=0

řn
`=0(−1)

k+`|Sk,`|. Тогава

|An| =
n

ÿ

k=0

n
ÿ

`=0

(−1)k+`|Sk,`|

Да намерим |Sk,`|. За всеки избор на k редове-нарушители и ` колони-нарушители, остават (n− k)(n− `)
клетки на матрицата извън тези нарушители и има точно 2(n−k)(n−`) начина тези клетки да се запълнят с
нули или единици. Има

(
n
k

)
начина да бъдат избрани редовете-нарушители и

(
n
`

)
начина да бъдат избрани

колоните-нарушители. И така,

|Sk,`| =

(
n

k

)(
n

`

)
2(n−k)(n−`)

Тогава

|An| =
n

ÿ

k=0

n
ÿ

`=0

(−1)k+`
(
n

k

)(
n

`

)
2(n−k)(n−`) (1)
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Бърза проверка на ръка показва, че |A1| = 1 и |A2| = 7, а за n = 1 и n = 2, дясната страна на (1) дава

1
ÿ

k=0

1
ÿ

`=0

(−1)k+`
(
1

k

)(
1

`

)
2(1−k)(1−`) =

(−1)0+0
(
1

0

)(
1

0

)
2(1−0)(1−0) + (−1)0+1

(
1

0

)(
1

1

)
2(1−0)(1−1)+

(−1)1+0
(
1

1

)(
1

0

)
2(1−1)(1−0) + (−1)1+1

(
1

1

)(
1

1

)
2(1−1)(1−1) =

2− 1− 1+ 1 = 1

и

2
ÿ

k=0

2
ÿ

`=0

(−1)k+`
(
2

k

)(
2

`

)
2(2−k)(2−`) =

(−1)0+0
(
2

0

)(
2

0

)
2(2−0)(2−0) + (−1)0+1

(
2

0

)(
2

1

)
2(2−0)(2−1) + (−1)0+2

(
2

0

)(
2

2

)
2(2−0)(2−2)+

(−1)1+0
(
2

1

)(
2

0

)
2(2−1)(2−0) + (−1)1+1

(
2

1

)(
2

1

)
2(2−1)(2−1) + (−1)1+2

(
2

1

)(
2

2

)
2(2−1)(2−2)+

(−1)2+0
(
2

2

)(
2

0

)
2(2−2)(2−0) + (−1)2+1

(
2

2

)(
2

1

)
2(2−2)(2−1) + (−1)2+2

(
2

2

)(
2

2

)
2(2−2)(2−2) =

16− 8+ 1− 8+ 8− 2+ 1− 2+ 1 = 7

(1) може да се опрости така:

n
ÿ

k=0

n
ÿ

`=0

(−1)k+`
(
n

k

)(
n

`

)
2(n−k)(n−`) =

n
ÿ

k=0

n
ÿ

`=0

(−1)k
(
n

k

)
︸ ︷︷ ︸
не зависи от `

(−1)`
(
n

`

)
2(n−k)(n−`) =

n
ÿ

k=0

(−1)k
(
n

k

) n
ÿ

`=0

(−1)`
(
n

`

)
2(n−k)(n−`) =

n
ÿ

k=0

(−1)k
(
n

k

) n
ÿ

`=0

(
n

`

)
(−1)`

(
2(n−k)

)(n−`)
= // съгласно (x+ y)n =

n
ÿ

`=0

x`yn−` с x = −1 и y = 2n−k

n
ÿ

k=0

(−1)k
(
n

k

)
(2n−k − 1)n (2)

Изразът (2) може да се получи и със следните комбинаторни разсъждения, но те са по-сложни от раз-
съжденията за (1). Ние получихме (1), третирайки редовете и колоните еднакво. Сега третираме редовете
и колоните различно.

Пак мислим за булевите матрици nˆn. Колко са възможните запълвания на първия ред, в които има
поне една единица? Очевидно те са 2n−1, защото от всички 2n възможни запълвания махаме запълването
само с нули, а то е едно единствено. И изобщо, за ред i, където 1 ď i ď n, възможните запълвания на
i-ия ред, в които има поне една единица, са 2n − 1. Тогава възможните запълвания на матрица nˆ n, в
които всеки ред има поне една единица, са (2n − 1)n. Нека множеството от тези матрици е наречено Rn.
Видяхме, че |Rn| = (2n − 1)n.

Но някои матрици от Rn имат нулеви колони, така че |An| ­= |Rn|. Ще премахнем от (2n − 1)n броя на
матриците с нулеви колони съгласно принципа на включването и изключването. За всяко S Ď {1, 2, . . . , n},
нека φ(S) е броят на матриците от Rn, в които, ако i P S, то колона i е нулева, за всяко i P {1, 2, . . . , n}.

Очевидно φ(H) = (2n − 1)n, защото S = H не налага никакви ограничения за задължително нулеви
колони, така че множеството от матриците е Rn.

Да разгледаме възможността S = {1}. Ограничението е, първата колона да нулева. Тогава φ(S) е броят
на матриците от Rn, в които първата колона е само от нули. Но това означава, че има 2n−1−1 възможности
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за всеки ред. Тогава φ(S) = (2n−1−1)n. Ако S = {2}, пак φ(S) = (2n−1−1)n. И изобщо, за всяко конкретно
едноелементно S е вярно, че φ(S) = (2n−1 − 1)n.

Продължаваме по същия начин. Ако |S| = 2, то φ(S) = (2n−2 − 1)n. Ако |S| = 3, то φ(S) = (2n−3 − 1)n.
И изобщо, ако |S| = k, то φ(S) = (2n−k − 1)n, като k се мени от 0 до n и тези граници са точни.

Съгласно принципа на включването и изключването,

|An| = φ(H) −
ÿ

|S|=1

φ(S) +
ÿ

|S|=2

φ(S) −
ÿ

|S|=3

φ(S) + ¨ ¨ ¨+ (−1)n
ÿ

|S|=n

φ(S)

Накратко,

|An| =
ÿ

|S|=k

(−1)kφ(S)

Предвид тези два факта:

• ако |S| = k, то φ(S) = (2n−k − 1)n,

• има
(
n
k

)
начина да изберем кои k колони да са нулеви,

имаме право да кажем, че

|An| =
n

ÿ

k=0

(−1)k
(
n

k

)
(2n−k − 1)n

Но това е точно (2).

И една финална забележка. Ако k = n, то (2n−k − 1)n = (2n−n − 1)n = (20 − 1)n = (1− 1)n = 0n = 0. Ерго,
последното събираемо в (2) е нула, така че спокойно можем да сложим горна граница n−1 за индексната
променлива:

|An| =
n−1
ÿ

k=0

(−1)k
(
n

k

)
(2n−k − 1)n

Този израз дава (маргинално) по-бърз алгоритъм за пресмятането на |An|, но (2) е по-удобен за възприе-
мане от човек.
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Зад. 3 Нека A, B и C са множества. Докажете или опровергайте следните твърдения.

А) A Ď B∧A Ď C→ A Ď BX C.

Б) 2AYB Ď 2A Y 2B.

В) 2AXB = 2A X 2B.

Г) A Ď B→ 2A Ď 2B.

Решение: А) е вярно. Ако A е празното множество, то A е подмножество на всяко множество и имп-
ликацията е тривиално вярна. Нека A е непразно. Разглеждаме произволен x P A. Ако A Ď B ∧ A Ď C,
то x P B∧ x P C. По дефиниция, това е същото като x P BX C.

Б) не е вярно. Ето контрапример. Нека A = {a, b} и B = {1, 2}. Тогава A Y B = {a, b, 1, 2}. Веднага се
вижда, че 2AYB съдържа като елемент множеството {a, b, 1, 2}. От друга страна, 2A = {H, {a}, {b}, {a, b}} и
2B = {H, {1}, {2}, {1, 2}}, така че 2A Y 2B = {H, {a}, {b}, {a, b}, {1}, {2}, {1, 2}}. Виждаме, че {a, b, 1, 2} е елемент
на 2AYB, но не е елемент на 2A Y 2B. Заключаваме, че 2AYB Ę 2A Y 2B.

В) е вярно. Първо ще покажем, че 2AXB Ď 2A X 2B. Разглеждаме произволен елемент X P 2AXB. Ще
покажем, че X P 2A X 2B. Щом X P 2AXB, X е подмножество на A X B. Тогава всеки е елемент на X е
елемент на AX B. Тогава всеки елемент на X е елемент на A и всеки елемент на X е елемент на B. Ерго,
X Ď A и X Ď B. Това е същото като X P 2A и X P 2B. По дефиницията на сечение, X P 2A X 2B.

Сега ще покажем, че 2A X 2B Ď 2AXB. Разглеждаме произволен елемент X P 2A X 2B. Ще покажем, че
X P 2AXB. Щом X P 2A X 2B, X P 2A и X P 2B. Тогава X Ď A и X Ď B. Тогава всеки елемент на X е елемент
и на A, и на B. Тогава X Ď AX B. Следователно, X P 2AXB.

Г) е вярно. Разглеждаме произволен елемент X P 2A. Но това е същото като X Ď A. Тъй като A Ď B, в
сила е X Ď B, откъдето X P 2B. Заключаваме, че 2A Ď 2B.
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Зад. 4 Даден е квадрат 3ˆ 3, разбит на девет квадратчета 1ˆ 1 ето така:

Във всяко от деветте квадратчета е записано точно едно число от {−1, 0, 1}. Разгледайте сумите по редове,
сумите по колони и сумите по големите диагонали. Докажете, че поне две от тези суми са равни.

Решение: Тъй като всеки от обектите ред, колона, голям диагонал има три квадратчета, възможните
стойности за неговата сума са от {−3,−2,−1, 0, 1, 2, 3}. Но това множество има седем елемента, а обектите
са осем. По принципа на Дирихле, има два обекта с една и съща сума. l
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Зад. 5 Нека A, B и C са множества. Нека R3 Ď Aˆ B, R1 Ď Bˆ C и R2 Ď Bˆ C са релации. Докажете
или опровергайте, че

(R1 Y R2) ˝ R3 = (R1 ˝ R3)Y (R2 ˝ R3)

Решение: Твърдението е вярно. Ще докажем, че

@(x, z) P Aˆ C : (x, z) P (R1 Y R2) ˝ R3 ↔ (x, z) P (R1 ˝ R3)Y (R2 ˝ R3)

Наистина,

(x, z) P (R1 Y R2) ˝ R3 ↔ // дефиниция на композиция на релации
Dy P B

(
(x, y) P R3 ∧ (y, z) P (R1 Y R2)

) ↔ // дефиниция на обединение на множества
Dy P B

(
(x, y) P R3 ∧ ((y, z) P R1 ∨ (y, z) P R2))

) ↔ // дистрибутивност на конюнкция върху дизюнкция
Dy P B

(
((x, y) P R3 ∧ (y, z) P R1)∨ ((x, y) P R3 ∧ (y, z) P R2))

) ↔ // екзист. квантор дистр. върху диз.
Dy P B

(
((x, y) P R3 ∧ (y, z) P R1)

)
∨ Dy P B

(
((x, y) P R3 ∧ (y, z) P R2))

) ↔ // деф. на композиция
(x, z) P R1 ˝ R3 ∨ (x, z) P R2 ˝ R3 // дефиниция на обединение на множества
(x, z) P (R1 ˝ R3)Y (R2 ˝ R3)

Което и трябваше да покажем. l
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Зад. 6 На лекции разгледахме числата на Стирлинг от втори род. Числото на Стирлинг от втори род{
n
k

}
е броят на начините да бъде разбито n-елементно множество на точно k дяла.

А) Докажете с комбинаторни разсъждения, че ако n, k P N+, то{
n

k

}
= k

{
n− 1

k

}
+

{
n− 1

k− 1

}
Б) Нека x е реална променлива. Докажете по индукция, че за всяко n P N+:

xn =
n

ÿ

k=1

{
n

k

}
xk

където нотацията xk е кратък запис за x(x− 1)(x− 2) ¨ ¨ ¨ (x− k+ 1).

Решение на А): Нека A е непразно множество и |A| = n. Фиксираме произволен a P A.

• Да преброим разбиванията на A на k дяла, такива че има дял {a}. Очевидно, тези разбивания
съответстват биективно на разбиванията на A \ {a} на точно k − 1 дяла. Последните са

{
n−1
k−1

}
, така

че разбивания на A на k дяла, такива че има дял {a}, са
{
n−1
k−1

}
.

• Да преброим разбиванията на A на k дяла, такива че няма дял {a}, тоест, a е в дял с други елементи.
Всяко такова разбиване се получава от едно разбиване на A \ {a} на точно k дяла, последвано от
добавяне на a в някой от дяловете. Тези разбивания на A\{a} са

{
n−1
k

}
. Тъй като има k възможности

за поставяне на a в дял, разбиванията на A на k дяла, такива че няма дял {a}, са k
{
n−1
k

}
.

Следва, че броят на разбиванията на A на k дяла е k
{
n−1
k

}
+
{
n−1
k−1

}
. Това е и краят на доказателството

на тъждеството в А).

Решение на Б): Твърди се, че за всяко n P N+ е в сила

xn =
n

ÿ

k=1

{
n

k

}
xk (3)

Ще го докажем по индукция по n. Базовият случай е n = 1. Лявата страна е x1 = x. Дясната страна е{
1
1

}
x1. Очевидно

{
1
1

}
= 1, а x1 = x, така че и дясната страна е x. 3

Индуктивното предположение е, че за някое цяло положително n− 1:

xn−1 =
n−1
ÿ

k=1

{
n− 1

k

}
xk

В индуктивната стъпка ще докажем (3). Наистина

xn = x ¨ xn−1 = // съгласно индуктивното предположение

x
n−1
ÿ

k=1

{
n− 1

k

}
xk =

n−1
ÿ

k=1

{
n− 1

k

}
x ¨ xk =

n−1
ÿ

k=1

{
n− 1

k

}
(x− k+ k) ¨ xk =

n−1
ÿ

k=1

({
n− 1

k

}
(x− k) ¨ xk +

{
n− 1

k

}
k ¨ xk

)
=

n−1
ÿ

k=1

{
n− 1

k

}
x(x− 1)(x− 2) ¨ ¨ ¨ (x− k+ 1)(x− k) +

n−1
ÿ

k=1

k

{
n− 1

k

}
¨ xk =

n−1
ÿ

k=1

{
n− 1

k

}
xk+1︸ ︷︷ ︸

A

+
n−1
ÿ

k=1

k

{
n− 1

k

}
¨ xk︸ ︷︷ ︸

B

(4)
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Да разгледаме поотделно двете суми A и B в (4). Първо ще разгледаме A:

A =
n−1
ÿ

k=1

{
n− 1

k

}
xk+1 =

n
ÿ

k+1=2

{
n− 1

k+ 1− 1

}
xk+1 =

n
ÿ

k=2

{
n− 1

k− 1

}
xk = 0+

n
ÿ

k=2

{
n− 1

k− 1

}
xk

Според текущите допускания, n − 1 е положително. При това положение, очевидно
{
n−1
0

}
= 0, понеже

има нула начина да разбием непразно множество на нула дяла. Това ни дава право да напишем

A =

{
n− 1

0

}
+

n
ÿ

k=2

{
n− 1

k− 1

}
xk =

{
n− 1

1− 1

}
+

n
ÿ

k=2

{
n− 1

k− 1

}
xk =

n
ÿ

k=1

{
n− 1

k− 1

}
xk

Сега да разгледаме B:

B =
n−1
ÿ

k=1

k

{
n− 1

k

}
¨ xk = 0+

n−1
ÿ

k=1

k

{
n− 1

k

}
¨ xk

Очевидно
{
n−1
n

}
= 0, понеже има нула начина да разбием (n− 1)-елементно множество на n дяла. Тогава{

n−1
n

}
xn = 0. Това ни дава право да напишем

B =

{
n− 1

n

}
xn +

n−1
ÿ

k=1

k

{
n− 1

k

}
¨ xk =

n
ÿ

k=1

k

{
n− 1

k

}
¨ xk

Заместваме A и B в (4) и получаваме

xn =
n

ÿ

k=1

{
n− 1

k− 1

}
xk +

n
ÿ

k=1

k

{
n− 1

k

}
¨ xk =

n
ÿ

k=1

({
n− 1

k− 1

}
xk + k

{
n− 1

k

}
¨ xk

)
=

=
n

ÿ

k=1

({
n− 1

k− 1

}
+ k

{
n− 1

k

})
xk = // съгласно тъждеството от А)

=
n

ÿ

k=1

{
n

k

}
xk

Но това е точно (3). l

9


