
Примерни решения на Домашно №2

Задача 1: Докажете по два начина, че за всяко цяло положително n е в сила

n∑
k=1

k2k−1 = (n− 1)2n + 1 (1)

А) Докажете тъждеството с комбинаторни разсъждения.

Б) Докажете тъждеството с решаване на рекурентно уравнение.

Решение: А) Доказателство с комбинаторни разсъждения може да се направи така. Нека n е
произволно цяло положително число. Нека A = {1, 2, . . . , n}. Дефинираме множествата S и T така:

S = {(B, k) : B ⊆ A ∧ k ∈ A} (2)
T = S \ {(B, k) ∈ S : B ∩ {k, k + 1, . . . , n} = ∅} (3)

На прост български, T е множеството от всички наредени двойки от подмножество на A и число от A,
такива че в подмножеството се среща елемент, по-голям или равен на числото. Щом в подмножеството
има някакъв елемент, то то е непразно.

Ще докажем, че лявата страна на (1) е равна на |T |. Нека {T1, T2, . . . , Tn} е следното разбиване на T :

∀k ∈ A : Tk = {(B, i) ∈ T | maxB = k}

На прост български: T е колекция от наредени двойки (непразно множество, число) и ние разбиваме по
максималния елемент на множеството.

Да видим колко е |Tk|, за произволно k ∈ A.

• Първите елементи на елементите на Tk са подмножества с максимален елемент k. Има точно 2k−1

начина да изберем останалите елементи, защото те съставляват произволно, може дори и празно,
подмножество на {1, 2, . . . , k − 1}.

• Вторите елементи на елементите на Tk са числа. За всяко такова число има k възможности.

Заключаваме, че |Tk| = k2k−1. Като малък пример, нека n = 4. Да разгледаме Tk за k ∈ {1, 2, 3, 4}:

T1 =
{
({1}, 1)

}
T2 =

{
({2}, 1), ({1, 2}, 1), ({2}, 2), ({1, 2}, 2)

}
T3 =

{
({3}, 1), ({1, 3}, 1), ({2, 3}, 1), ({1, 2, 3}, 1),
({3}, 2), ({1, 3}, 2), ({2, 3}, 2), ({1, 2, 3}, 2),
({3}, 3), ({1, 3}, 3), ({2, 3}, 3), ({1, 2, 3}, 3)

}
T4 =

{
({4}, 1), ({1, 4}, 1), ({2, 4}, 1), ({3, 4}, 1), ({1, 2, 4}, 1), ({1, 3, 4}, 1), ({2, 3, 4}, 1), ({1, 2, 3, 4}, 1),
({4}, 2), ({1, 4}, 2), ({2, 4}, 2), ({3, 4}, 2), ({1, 2, 4}, 2), ({1, 3, 4}, 2), ({2, 3, 4}, 2), ({1, 2, 3, 4}, 2),
({4}, 3), ({1, 4}, 3), ({2, 4}, 3), ({3, 4}, 3), ({1, 2, 4}, 3), ({1, 3, 4}, 3), ({2, 3, 4}, 3), ({1, 2, 3, 4}, 3),
({4}, 4), ({1, 4}, 4), ({2, 4}, 4), ({3, 4}, 4), ({1, 2, 4}, 4), ({1, 3, 4}, 4), ({2, 3, 4}, 4), ({1, 2, 3, 4}, 4)

}
Наистина, |T1| = 1 · 21−1 = 1, |T2| = 2 · 22−1 = 4, |T3| = 3 · 23−1 = 12 и |T4| = 4 · 24−1 = 32. Както се
вижда от примера, Tk не зависи от n, стига да е изпълнено n ≥ k.
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Съгласно комбинаторния принцип на разбиването,

|T | =
n∑

k=1

|Tk| =
n∑

k=1

k2k−1 (4)

Наистина, |T | е лявата страна на (1).

От друга страна, съгласно (3) и комбинаторния принцип на изваждането,

|T | = |S| − |{(B, k) ∈ S : B ∩ {k, k + 1, . . . , n} = ∅}|

Да изчислим |{(B, k) ∈ S : B ∩ {k, k + 1, . . . , n} = ∅}|. За всяко фиксирано k ∈ A, броят на наредените
двойки (B, k), в които B няма елементи от {k, k + 1, . . . , n} (с други думи, елементите са само от
{1, 2, . . . , k − 1}), е 2k−1. Сумирайки по всички k от 1 до n, получаваме

|{(B, k) ∈ S : B ∩ {k, k + 1, . . . , n} = ∅}| = 20 + 21 + · · ·+ 2n−1 = 2n − 1

Очевидно е, че |S| = n2n. Това следва веднага от (2) и принципа на умножението. Тогава

|T | = n2n − (2n − 1) = (n− 1)2n + 1 (5)

От (4) и (5) веднага получаваме (1). �

Б) Сега да докажем (1), решавайки рекурентно уравнение. Нека, за n ≥ 1,

X(n) =

n∑
k=1

k2k−1

Ако n ≥ 2, имаме право да кажем, че

X(n− 1) =
n−1∑
k=1

k2k−1

Тогава

X(n)−X(n− 1) = n2n−1

което е същото като

X(n) = X(n− 1) +
n

2
2n (6)

Това е рекурентно уравнение, което е податливо на решаване с метода с характеристичното уравнение.
Началното условие е

X(1) = 1 · 20 = 1

Характеристичното уравнение е

x− 1 = 0

с мултимножество от корените {1}M . От нехомогенната част имаме мултимножество {2, 2}M , тъй ка-
то полиномът 1

2n е от първа степен. Обединението на мултимножествата е {1, 2, 2}M . Оттук общото
решение е

X(n) = C11
n + C22

n + C3n2
n = C1 + C22

n + C3n2
n
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за някакви константи C1, C2, C3. Трябват ни още две начални условия, които са

X(2) = X(1) +
2

2
22 = 1 + 1 · 4 = 5

X(3) = X(2) +
3

2
23 = 5 + 3 · 4 = 17

Тогава

1 = C1 + C2 · 21 + C3 · 1 · 21 = C1 + 2C2 + 2C3

5 = C1 + C2 · 22 + C3 · 2 · 22 = C1 + 4C2 + 8C3

17 = C1 + C2 · 23 + C3 · 3 · 23 = C1 + 8C2 + 24C3

Решението на системата от линейни уравнения е (C1, C2, C3) = (1,−1, 1), откъдето

X(n) = 1− 2n + n2n = (n− 1)2n + 1

Което и трябваше да покажем. �
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Задача 2: Разгледайте рисунките на графите G1, G2 и G3. Кои измежду G1, G2 и G3 са изоморфни
и кои не са? Обосновете добре отговорите си.

G1 G2 G3

Решение: G1 и G3 са изоморфни. Да дадем имена на техните върхове ето така:

1

a

7

g

5

e

3

c
h

2

8

d

6

4

1
2

3

c

4

d

5

6

6

7

g

8

h

fb

a

b

e

f

G1 G3

Изоморфизъм е биекцията V (G1) → V (G3), която изобразява връх на G1 във връх на G3 със същото
име. Очевидно е, че 1, a, 2, b, 3, c, 4, d, 5, e, 6, f, 7, g, 8, h, 1 е Хамилтонов цикъл и в G1, и в G3:

1

a

7

g

5

e

3

c
h

2

8

d

6

4

1
2

3

c

4

d

5

6

6

7

g

8

h

fb

a

b

e

f

G1 G3

И в G1, и в G3, хордите на въпросния Хамилтонов цикъл са осемте ребра (1, c), (7, a), (3, e), (5, g),
(4, f), (2, d), (b, 8) и (6, h). Което доказва, че G1 и G3 са изоморфни.

От друга страна, G2 не е изоморфен нито на G1, нито на G3. За да се убедим в това, да забележим, че
G1 и G3 са двуделни върхове: единият дял са буквите, а другият, числата. А G2 не е двуделен, понеже
има 7-цикъл:
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G2

�
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Задача 3: Нека m ∈ N+. Разгледайте безкрайната редица a0, a1, a2, . . ., дефинирана така:

an =

{
0, ако n = 0
√
m+ an−1, ако n ≥ 1

Докажете по индукция, че редицата е строго растяща. Докажете по индукция, че редицата е огра-
ничена отгоре.

Решение: Ще докажем, че редицата е строго растяща. Нека, за k ≥ 0, предикатът P (k) е ak+1 > ak .
Ще докажем ∀k ≥ 0 : P (k), по индукция по k.

Базата е k = 0. Твърдението става a1 > a0. Но a0 = 0 по дефиниция, а a1 =
√
m+ a0 =

√
m. Дали√

m > 0? Със сигурност да, понеже m е цяло положително. Тогава a1 > a0. 3

Индуктивното предположение е P (k) за някое k ≥ 0. Това е същото като ak+1 > ak.

Ще докажем P (k + 1). Тоест, че ak+2 > ak+1. Наистина, лявата страна е ak+2, а ak+2 =
√
m+ ak+1 по

дефиниция, щом k + 2 ≥ 1. Но
√
m+ ak+1 >

√
m+ ak, което следва от индуктивното предположение

ak+1 > ak и добре известния факт, че функцията корен втори е строго растяща. Тогава ak+2 >
√
m+ ak.

Но
√
m+ ak е точно ak+1 по дефиниция, щом k + 1 ≥ 1. Заключаваме, че ak+2 > ak+1. 3

Ще докажем, че редицата е ограничена отгоре. Това е същото като да докажем, че съществува число
L, такова че ∀k ≥ 0 : ak ≤ L. Избираме L = 2m. Ще докажем по индукция дори по-силно твърдение:
∀k ≥ 0 : ak < 2m.

Базата е k = 0. По дефиниция, a0 = 0. Наистина, 0 < 2m, понеже m е цяло положително. 3

Индуктивното предположение е, че за някое естествено k е изпълнено ak < 2m.

Ще докажем, че ak+1 < 2m. От индуктивното предположение знаем, че ak < 2m. Тогава ak +m < 3m.
Тогава

√
ak +m <

√
3m. Но ak+1 =

√
ak +m по дефиниция, щом k + 1 ≥ 1. Тогава ak+1 <

√
3m. Но√

3m <
√
4m, понеже функцията корен втори е строго растяща. Тогава ak+1 <

√
4m, което е същото

като ak+1 < 2
√
m. Но 2

√
m < 2m, понеже функцията корен втори е строго растяща. Тогава ak+1 < 2m.

Което и трябваше да покажем. �
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Задача 4: Докажете, че за всеки 16 на брой, две по две различни цели положителни числа, по-малки
от 101, съществуват четири от тях, да ги наречем x, y, w, z, такива че x+ y = w + z.

Решение: Естествено е да опитаме да приложим принципа на Дирихле. При фиксирани 16 числа
има общо

(
16
2

)
= 16·15

2 = 120 суми, не непременно различни, на двойки числа от шестнадесетте. При
положение, че сумандите са различни, най-малката възможна сума е 1+2 = 3, а най-голямата възможна
сума е 99 + 100 = 199. Оттук имаме 120 ябълки (суми) в 199− 3 + 1 = 197 чекмеджета. Не можем да
приложим принципа на Дирихле по този начин.

Задачата ще бъде решена с принципа на Дирихле, но прилагането му е триково (неочевидно). Нека
числата са x1, . . . , x16. БОО, нека x1 < x2 < · · · < x16. Ще разглеждаме наредени двойки (xi, xj),
където i, j ∈ {1, 2, . . . , 16} и i 6= j. За удобство допускаме, че за всяка наредена двойка (xi, xj) е в сила
i > j. Това ни позволява да смятаме, че разликата xi − xj е положителна.

Минималната положителна разлика на ляв минус десен елемент на наредена двойка е 1, а мак-
сималната е 99. При положение, че двойките (xi, xj) са

(
16
2

)
= 120, дали имаме директно решение с

принципа на Дирихле, понеже наредените двойки са повече от разликите? Отговорът е “не”, поне не
директно.

По-подробно: да допуснем, че съществуват две различни наредени двойки (xi, xj) и (xk, x`), такива
че

xi − xj = xk − x` (7)

Дали xi, xj , xk и x` са решение, понеже (7) е същото като xi+x` = xj+xk? Не непременно! В условието
се иска четирите числа да са две по две различни, а (7) позволява следните ситуации.

• xj = xk. В такъв случай xi, xj , xk и x` не са решение. Примерно, нека xi = 48, xj = 44, xk = 44
и x` = 40. Вярно е, че xi − xj = xk − x`, понеже 48 − 44 = 44 − 40, но нямаме решение заради
повтарянето на 44.

• xi = x`. Тази ситуация е практически същата като горната, със същия извод: xi, xj , xk и x` не са
решение.

Забележете, че е невъзможно хем xi = x`, хем xj = xk, понеже тогава (7) става xi−xj = xj−xi, което е
невъзможно. Също така е невъзможно xi = xk, защото тогава (xi, xj) и (xk, x`) биха били една и съща
наредена двойка, предвид (7). По същата причина е невъзможно xj = x`.

И така, по отношение на (7), единствените възможности за равенство на числа измeжду xi, xj ,
xk и x` са тези: или xj = xk, или xi = x`. По същество, те са едно и също нещо: положителният
суманд от едната страна е равен по абсолютна стойност на отрицателния суманд от другата страна.
Дефинираме, че числото xj е неблагоприятно за наредените двойки (xi, xj) и (xj , xk). Това е същото
като xi − xj = xj − xk, което е същото като 2xj = xi + xk. Дефинираме, че наредените двойки (xi, xj)
и (xj , xk) са лоши една за друга.

Ключовото наблюдение е, че ако xj е неблагоприятно за две различни двойки от наредени двойки,
то имаме решение. По-подробно, ако има две лоши една за друга наредени двойки (xi, xj) и (xj , xk)
и още две лоши една за друга наредени двойки (xt, xj) и (xj , xs), такива че i, k, s и t са два по два
различни индекси, то

2xj = xi + xk

2xj = xt + xs

откъдето xi + xj = xt + xs, където събираемите са две по две различни. И това е решение.

Да разгледаме ситуацията, в която всяко xi, 1 ≤ i ≤ 16, е неблагоприятно за най-много една двойка
от различни наредени двойки. Във всяка от тези двойки от наредени двойки, игнорираме едната от
тях. Остават поне 120 − 16 = 104 наредени двойки, като във всяка от тях разликата е между 1 и 99.
По принципа на Дирихле, има две наредени двойки с една и съща разлика. Нито две от тези наредени
двойки не са лоши една за друга. Заключаваме, че всяка двойка от наредени двойки с една и съща
разлика дава решение. �
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Задача 5: Граф, който е изоморфен на допълнението си, се нарича самодопълнителен. Докажете, че
ако G = (V,E) е самодопълнителен и |V | е нечетно, то в G има връх от степен n−1

2 .

Решение: Нека G = (V,E) е самодопълнителен и n е нечетно. Нека V = {v1, v2, . . . , vn}. БОО, нека
d(v1) ≤ d(v2) ≤ · · · ≤ d(vn). Помним, че редицата от степените на граф е редицата от степените на
неговите върхове в ненамаляващ ред. Тогава редицата от степените на G е

d(v1), d(v2), . . . , d(vn) (8)

Нека d(vi) е степента на vi в G, за 1 ≤ i ≤ n. Лесно се вижда, че d(vi) = n− 1− d(vi), за 1 ≤ i ≤ n.

Да разгледаме редицата от степените на G. Тя също е в ненамаляващ ред, така че е

d(vn), d(vn−1), . . . , d(v1) = n− 1− d(vn), n− 1− d(vn−1), . . . , n− 1− d(v1) (9)

Ключовото наблюдение е, че редиците от степените на изоморфни графи са едни и същи. Но G и G са
изоморфни по конструкция. Тогава редиците (8) и (9) са едни и същи. По условие, n е нечетно. Нека
n = 2k+1. И в двете редици има един среден елемент, а именно d(vk+1) в (8) и d(vk+1) = n−1−d(vk+1)
в (9). Тъй като редиците съвпадат, в сила е d(vk+1) = n−1−d(vk+1). Тогава 2d(vk+1) = n−1, откъдето
d(vk+1) =

n−1
2 . �
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