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Introduction The problem is intractable! Now what?

Intractability proofs as ends in themselves
When we want to get something done, knowing it contains a provably intractable part is
little consolation

Joseph Felsenstein, a molecular biologist, said in 1997:

About ten years ago some computer scientists came by
and said they heard we have some really cool problems.
They showed that the problems are NP-complete and
went away!
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Introduction Circumventing intractability

Approaches against intractability

1 Heuristics: good ideas with no or insufficient analysis of their
goodness. Genetic algorithms, for instance.

2 Average case complexity . The classical intractability results
are based on considering worst cases only. If those worst cases
occur seldom enough there can exist algorithms that are fast
on most inputs and thus the intractable problem is, in a very
practical sense, tractable. Despite the progress in that
research, no definite breakthrough has come from it.
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Introduction Circumventing intractability

Approaches against intractability

3 Approximation algorithms: an approximate answer with
guaranteed deviation from the optimum one is better than no
answer at all. However, a lot of problems turn out to be
unapproximable.

4 Randomized algorithms: using randomness as a resource. It is
not known whether that can turn intractable problems into
tractable ones, in the probabilstic sense.

5 Quantum computers: utilise Quantum Mechanics to bypass
the limitations of classical computers. So far they are a mere
possibility. Furthermore, it is unclear if they can solve
NP-complete problems efficiently.
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Introduction Circumventing intractability

Approaches against intractability
Restricted easy versions

6 Conisder a restricted easy version of the problem. Every hard
problem has easy restricted versions (just as any easy problem
can be generalized to a hard one). The restricted version
should better be useful, of course.

That is a very old idea. For example:

The O(nB) algorithm for Partition where B is the sum of
the values. The restriction is on the values.
The O(n) algorithms for almost all NP-complete graph
problems on trees or series-parallel graphs. The restriction is
on the graphs.

In some sense, Parameterized Complexity belongs to this
approach.
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Introduction The gist of Parameterized Complexity

Parameterized Complexity Theory

It deals with intractable problems and takes for granted
intractability exists.

Parameterized Complexity considers the structure of
intractable problems in much more detail than classical
Complexity Theory.

According to it, complexity is a function of two variables:

the size of the input
something called parameter; roughly speaking, that is what
makes the problem intractable.
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Vertex Cover Formal defintion and complexity

The Vertex Cover problem

In the classical complexity theory, every decision problem is defined
by two components: a generic instance and a Yes/No question.

Definition of Vertex Cover:

An ordered pair of an undirected graph G = (V ,E ) and a
natural number k .

Does G have vertex cover of size ≤ k?

Vertex cover of G = (V ,E ) is every subset U ⊆ V such that

∀(x , y) ∈ E : x ∈ U ∨ y ∈ U
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Vertex Cover Formal defintion and complexity

Complexity of Vertex Cover

Vertex Cover is one of the “original” 21 NP-complete
problems of Karp from 1972 . Under the assumption that
P 6= NP, the problem is intractable.

In the worst case its solution reduces to testing all subsets of sizes
2, 3, . . . , k . Their number imposes a lower bound

∑k
j=2

(n
j

)
on the

complexity of the brutal force approach.∑k
j=2

(n
j

)
is a very fast growing function. If k ≈ n then∑k

j=2

(n
j

)
≈ 2n. The middle binomial coefficient alone is such that( n

bn/2c
)

= Θ(2n/
√
n).
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Vertex Cover Formal defintion and complexity

Complexity of Vertex Cover
On the complexity of the brutal force approach

To claim that
∑k

j=2

(n
j

)
= Θ(nk) is wrong, unless k is a constant.

If that were true then it would be the case that
∑n

j=2

(n
j

)
= Θ(nn),

which is patently not true. The claim
∑k

j=2

(n
j

)
= O(nk) is true

but unconvincing because we discuss lower bounds. Finding a good
asymptotic estimation for

∑k
j=2

(n
j

)
is hard .

It is known that

αn∑
j=0

(
n

j

)
= 2nH(α)− 1

2
lg n+O(1)

where α is a constant such that 0 < α < 1
2 and

H(α) = α lg 1
α + (1− α) lg

(
1

1−α

)
is (binary entropy).
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Vertex Cover Formal defintion and complexity

An improvement over nk

The nk function describes adequately the complexity of the brute
force when k is small and n is very big. In numerous appearances
of Vertex Cover in practice, n is certainly huge, for example in
Computational Biology .

In 1987 Mike Fellows and Michael Langston in their
Nonconstructive advances in polynomial-time complexity
(Nonconstructive Tools for Proving Polynomial-Time Decidability
is free for download) prove the existence of an O(n3) algorithm for
Vertex Cover, in case k is fixed .

Ostensilbly, n3 is a tremendous progress in comparison with nk .

But note the term “nonconstructive”.
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Vertex Cover Formal defintion and complexity

On the n3 algorithm of Fellows and Langston

In fact, the expression of the complexity is O(f (k)n3). The
function f (k) grows extremely fast. It is “tower” of exponents

2
22·
··

2

whose height is described by a tower of exponent whose
height is described by a tower of exponents and so on, a fixed
number of times, whose height is a function of k . That is
completely impractical even for k = 1.

The existence proof is nonconstructive. No one knows what
the algorithm is. In fact, the algorithms, since for every k
there is a different algorithm.

The existence proof follows from the theory of Robertson and
Seymour.

Minko Markov minkom@fmi.uni-sofia.bg Parameterized Complexity



Vertex Cover Formal defintion and complexity

On the n3 algorithm of Fellows and Langston

In fact, the expression of the complexity is O(f (k)n3). The
function f (k) grows extremely fast. It is “tower” of exponents

2
22·
··

2

whose height is described by a tower of exponent whose
height is described by a tower of exponents and so on, a fixed
number of times, whose height is a function of k . That is
completely impractical even for k = 1.

The existence proof is nonconstructive. No one knows what
the algorithm is. In fact, the algorithms, since for every k
there is a different algorithm.

The existence proof follows from the theory of Robertson and
Seymour.

Minko Markov minkom@fmi.uni-sofia.bg Parameterized Complexity



Vertex Cover Formal defintion and complexity

On the n3 algorithm of Fellows and Langston

In fact, the expression of the complexity is O(f (k)n3). The
function f (k) grows extremely fast. It is “tower” of exponents

2
22·
··

2

whose height is described by a tower of exponent whose
height is described by a tower of exponents and so on, a fixed
number of times, whose height is a function of k . That is
completely impractical even for k = 1.

The existence proof is nonconstructive. No one knows what
the algorithm is. In fact, the algorithms, since for every k
there is a different algorithm.

The existence proof follows from the theory of Robertson and
Seymour.

Minko Markov minkom@fmi.uni-sofia.bg Parameterized Complexity



Vertex Cover Formal defintion and complexity

On the n3 algorithm of Fellows and Langston

In fact, the expression of the complexity is O(f (k)n3). The
function f (k) grows extremely fast. It is “tower” of exponents

2
22·
··

2

whose height is described by a tower of exponent whose
height is described by a tower of exponents and so on, a fixed
number of times, whose height is a function of k . That is
completely impractical even for k = 1.

The existence proof is nonconstructive. No one knows what
the algorithm is. In fact, the algorithms, since for every k
there is a different algorithm.

The existence proof follows from the theory of Robertson and
Seymour.

Minko Markov minkom@fmi.uni-sofia.bg Parameterized Complexity



The theory of Robertson of Seymour

Neil Robertson Paul Seymour
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The theory of Robertson of Seymour

The pivotal theory of Robertson and Seymour

Altogether 23 articles named “Graph minors . . . ” published
between 1983 and 2012 in Journal of Combinatorial Theory,
Series B and Journal of Algorithms on 765 pages totally.

The first 20 papers are basically the proof of what was previously
known as Wagner’s conjecture, now Theorem of
Robertson-Seymour .
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The theory of Robertson of Seymour

The main result of Robertson and Seymour

Theorem (former Wagner’s conjecture)

In every infinite set F of graphs there is a graph that is isomorphic
to a minor of another graph from F .

Definition (graph minor)

Let G and H are undirected (finite) graphs. H is a minor of G iff
H can be obtained from G as the result of a sequence of edge
removals (the endpoints stay), vertex deletions (the incident edges
are removed) and edge contractions. We write H � G .
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The theory of Robertson of Seymour Graph Minors

An example of edge removals, edge contractions, and
minor: W4 � Q3

edge removal

Minko Markov minkom@fmi.uni-sofia.bg Parameterized Complexity



The theory of Robertson of Seymour Graph Minors

An example of edge removals, edge contractions, and
minor: W4 � Q3

edge removal

Minko Markov minkom@fmi.uni-sofia.bg Parameterized Complexity



The theory of Robertson of Seymour Graph Minors

An example of edge removals, edge contractions, and
minor: W4 � Q3

Minko Markov minkom@fmi.uni-sofia.bg Parameterized Complexity



The theory of Robertson of Seymour Graph Minors

An example of edge removals, edge contractions, and
minor: W4 � Q3

edge contraction

Minko Markov minkom@fmi.uni-sofia.bg Parameterized Complexity



The theory of Robertson of Seymour Graph Minors

An example of edge removals, edge contractions, and
minor: W4 � Q3

Minko Markov minkom@fmi.uni-sofia.bg Parameterized Complexity



The theory of Robertson of Seymour Graph Minors

An example of edge removals, edge contractions, and
minor: W4 � Q3

edge contraction

Minko Markov minkom@fmi.uni-sofia.bg Parameterized Complexity



The theory of Robertson of Seymour Graph Minors

An example of edge removals, edge contractions, and
minor: W4 � Q3

Minko Markov minkom@fmi.uni-sofia.bg Parameterized Complexity



The theory of Robertson of Seymour Graph Minors

An example of edge removals, edge contractions, and
minor: W4 � Q3

edge contraction

Minko Markov minkom@fmi.uni-sofia.bg Parameterized Complexity



The theory of Robertson of Seymour Graph Minors

An example of edge removals, edge contractions, and
minor: W4 � Q3

Minko Markov minkom@fmi.uni-sofia.bg Parameterized Complexity



The theory of Robertson of Seymour Graph Minors

An example of edge removals, edge contractions, and
minor: W4 � Q3

Minko Markov minkom@fmi.uni-sofia.bg Parameterized Complexity



The theory of Robertson of Seymour Graph Minors

Properties of minors

Edge contraction may lead to multiple edges or loops. We
simply ignore them.

“Minor” is a generalisation of “subgraph” and “subgraph
homeomorphic to”. For example, Q3 has no subgraph
homeomorphic to W4 since Q3 has no degree 4 vertex.

Even if H has less vertices and less edges than G and the
degree sequence of H is “comparable” to that of G , it can be
the case that H 6� G . For example, K3,3 6� Q3 (K3,3 is not
planar while Q3 is planar).

Roughly speaking, H � G means G contains an H-like
substructure, though in a weaker sense than subgraph.
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The theory of Robertson of Seymour Graph Minors

Properties of minors
K3,3 6� Q3 because Q3 is planar and K3,3 is not
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The theory of Robertson of Seymour Graph Minors

The � relation is preorder (quasi-order)

The � relation on the set of all finite non-isomorphic graphs is
a partial order: it is obviously reflexive and transitive, and any
two graphs are minors of each other whenever they are
isomorphic, therefore it is antisymmetric as well.

The relation � on the set of all finite graphs with labeled
vertices is not a partial order. Such a relation—reflexive and
transitive but not necessarily antisymmetric—is preorder
(alternatively, quasi-order).

An example of a preorder, not on graphs though, is the
relation R on the finite subsets of an enumerable set A:

∀x ∀y : xRy ↔ |x | ≤ |y |
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The theory of Robertson of Seymour WQO

WQO: Well Quasi Ordering

Definition

A quasi-order that has no infinite (strictly) decreasing chains and
has no infinite antichains is called Well Quasi Ordering (WQO).
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The theory of Robertson of Seymour WQO

Filter and Ideal

Let 〈S ,≤〉 be a quasi-order and X ⊆ S .

X is a filter iff it is upward closed with respect to ≤.

X is an ideal iff it is downward closed with respect to ≤.

The filter generated by X is

F (X ) = {z ∈ S | ∃a ∈ X (a ≤ z)}

The ideal generated by X is

I (X ) = {z ∈ S | ∃a ∈ X (z ≤ a)}

The filter (ideal) generated by a finite subset of its called
basis, is a finitely generated filter (ideal).
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The theory of Robertson of Seymour WQO

Alternative characterisation of WQO: Theorem 7.3 from
Parameterized Complexity of Fellows and Downey

Theorem (folklore; quoted from Downey and Fellows, 1999)

〈S ,≤〉 is a WQO iff for every subset X ⊆ S , F (X ) is finitely
generated.
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The theory of Robertson of Seymour WQO

WQO principle: statement using “filters”

Proposition

Let 〈S ,≤〉 be a WQO. Assume we can compute in polynomial time
whether x ≤ y for any x , y ∈ S . Then for every filter F of 〈S ,≤〉
and any z ∈ S there is a polynomial time algorithm computing
whether z ∈ F .

To make sure z is in the filter it suffices to check that x ≤ z for all
x of some finite basis.

That principle is better known under the dual formulation using
“ideals”. Note that I is an ideal iff S \ I is a filter.
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The theory of Robertson of Seymour WQO

WQO principle: statement using “ideals”

Definition

Let 〈S ,≤〉 be a WQO and I is an ideal of it. Any subset O ⊆ S is
called an obstruction set for I if

∀x : x ∈ I ↔ ∀y y∈O (y 6≤ x)

WQO principle (statement using ideals)

Let 〈S ,≤〉 be a WQO. For every ideal I in 〈S ,≤〉 there is a finite
obstruction set. Furthermore, if we can compute in polynomial
time whether x ≤ y for any x , y ∈ S then we can test membership
in the ideal in polynomial time.
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The theory of Robertson of Seymour

Pivotal results of Robertson and Seymour

Theorem (Robertson and Seymour, Graph Minors. XX.)

Wagner’s conjecture is true: the set of all finite graphs is well quasi
ordered by the minor order �.

Theorem (Robertson and Seymour, Graph Minors. XIII.)

The test whether H � G for a fixed graph H can be accomplished
in time O(|V (G )|3).
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The theory of Robertson of Seymour Planarity

Classical results on planarity

Theorem (Kuratowski, 1930)

A graph is planar iff it has no subgraph homeomorphic to K5 or
K3,3.

Petersen’s graph is not
planar because it has a
subgraph homeomorphic
to K3,3.
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The theory of Robertson of Seymour Planarity

Classical results on planarity

Theorem (Wagner, 1937)

A graph is planar iff it contains neither K5 nor K3,3 as a minor.

Petersen’s graph is not
planar because it con-
tains K5 as a minor.
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The theory of Robertson of Seymour Planarity

Planarity in the light of the Theory of Robertson and
Seymour

Consider the following facts:

Any graph is either planar or non-planar (obvious).

All graphs are well quasi ordered by � (extremely hard to
prove part of the Theory of R. & S.).

The planar graphs are an ideal with respect to �: if a graph is
planar then every graph that is its minor is planar, too
(obvious).

Dually, the non-planar graphs are a filter with respect to �: if
a graph is not planar then every graph to which it is minor, is
not planar either.

The question whether a graph is planar is equivalent to the
question whether it is an element of the ideal of planar graphs.
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The theory of Robertson of Seymour Planarity

Planarity in the light of the Theory of R. & S.

There exists a finite set of obstructions to planarity (follows
trivially from the equivalent definition of WQO).

The dual statement is: the filter of all non-planar graphs is
finitely generated (follows trivially from the definitions).
From the theorems of Kuratowski and Wagner we even know
the obstruction set: {K5,K3,3}.

In O(n3) we can answer whether a graph G is planar or not by
checking whether K5 � G or K3,3 � G (hard to prove part of
the Theory of R. & S.; non-constructive result).
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The theory of Robertson of Seymour Planarity

Planarity in the light of the Theory of R. & S.

And so the Theory of Robertson and Seymour proves that
Planarity ∈ P.

Indeed, a practical linear time algorithm for planarity testing has
been known since 1974 but the Theory of Robertson and Seymour
is a tool that can be used to prove the membership in P of a huge
number of problems.
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The theory of Robertson of Seymour Applications of the Theory of R. & S.

Membership in P via the Theory of R. & S.
Definition of genus of a surface

Every compact closed orientable surface is topologically equivalent
to a sphere with added ≥ 0 “handles”. The number of the
“handles” is its genus.

genus 0 genus 1 genus 2
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The theory of Robertson of Seymour Applications of the Theory of R. & S.

Membership in P via the Theory of R. & S.
Graph Genus

The genus of graph G , shortly gen(G ), is the smallest genus
of a surfaces that G can be embedded into. The planar
graphs are precisely the graphs with genus 0.

To compute gen(G ) is an NP-complete problem.

For every fixed genus there is a polynomial-time algorithm.
That is an immediate consequence of the Theory of Robertson
and Seymour and the fact that G1 � G2 implies
gen(G1) ≤ gen(G2).

The Theory of Robertson and Seymour says that for every
genus there is a finite set of obstructions. For the torus
(genus 1) they are at least tens of thousands.
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Membership in P via the Theory of R. & S.
Graph Genus

The genus of graph G , shortly gen(G ), is the smallest genus
of a surfaces that G can be embedded into. The planar
graphs are precisely the graphs with genus 0.

To compute gen(G ) is an NP-complete problem.

For every fixed genus there is a polynomial-time algorithm.
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The theory of Robertson of Seymour Applications of the Theory of R. & S.

Membership in P via the Theory of R. & S.
Linkless Embedding

The Linkless Embedding problem is, can we embed a given
graph G in three-dimensional Euclidean space so that no two
vertex-disjoint cycles are topologically linked. Informally,
topologically linked closed curves are ones that are linked like chain
links. It is known that K6 has no linkless embedding (Conway,
Gordon 1983).

From basic considerations it is not obvious the problem is
algorithmically solvable. However, the Theory of Robertson and
Seymour implies the problem is in fact solvable in polynomial time.
It has been proved by Robertson and Seymour that the obstruction
set is the Petersen family .

Finding an efficient algorithm is an open problem.
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The theory of Robertson of Seymour Applications of the Theory of R. & S.

The Petersen family is the obstruction set of Linkless
Embedding
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The theory of Robertson of Seymour Applications of the Theory of R. & S.

Membership in P via the Theory of R. & S.
Vertex Cover for fixed k

If G is covered by ≤ k vertices and H � G then H is covered by
≤ k vertices, too.

Therefore Vertex Cover is solvable in O(n3) for all fixed k .

The obstruction set for every k value is different. There are 188
connected obstructions for k = 6.

There is a huge difference between the order of growth n3 (the
algorithm of Fellows and Langston) and the order of growth nk of
the brute force approach. Nonconstructivity aside, the complexity
function f (k)n3 is qualitatively better than nk .
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The theory of Robertson of Seymour Nonconstructivity of the Theory of R. & S.

Nonconstructivity of the results of R. & S.

The theory does not give a clue how to compute the
obstructions. It mereley proves they exist. The said toroidal
embedding obstructions were computed by a specially
designed for that purpose algorithm.

Moreover, the problem of computing the obstruction set in
general is algorithmically unsolvable.

Theorem (Fellows, Langston 1989)

There is no algorithm to compute, from a finite description of a
minor-closed family F of graphs as represented by a Turing machine
that accepts precisely the graphs in F, the set of obstructions for F.
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The theory of Robertson of Seymour Limitations of the Theory of R. & S.

Limitations of the Theory of R. & S.

Embeddability in surfaces of genus k , linkess embeddings in 3D,
and having k-vertex cover are all properties that are preserved in
minors. Not all graph properties are preserved in that way, though:

k vertex colourability is not preserved on minors (though it is
preserved on subgraphs).

Other properties that are not preserved are Hamiltonicity,
Eulericity, domination by at most k vertices.
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Fast algorithms for Vertex Cover for small k Complexity O(2kn)

A O(2kn) algorithm for Vertex Cover
The authors are Downey and Fellows

Given a graph G and number k construct a binary tree of height
≤ k in the following way :

1 Construct the root with label 〈∅,G 〉.
2 Choose an arbitrary (u, v) ∈ E (G ).

3 Construct two children of the root with labels 〈{u},G − u〉
and 〈{v},G − v〉. They are associated with G − u and G − v ,
respectively.

4 In each of G − u and G − v choose an arbitrary edge and
construct analogously four tree vertices of height 2.

5 . . .

6 If at least one tree vertex of height ≤ k is such that the graph
associated with it has no edges, return Yes.

7 Otherwise, return No.
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Fast algorithms for Vertex Cover for small k Complexity O(2kn)

Analysis of the algorithm of Downey and Fellows

correctness In every tree vertex at height ` the label contains a
set of graph vertices of size `; viz. the vertices that
have been deleted. Note that the original G has
vertex cover of size t iff at least one of the graphs
from the tree labels at height ` has vertex cover of
size t − `. The vertex cover of the original graph is
the union of the vertex cover of the reduced graph
(the graph of the label) and set of the vertices in
that label.

time complexity (roughly) Θ(2kn) in the worst case.
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Fast algorithms for Vertex Cover for small k Complexity O(2kn)

The algorithm of Downey and Fellows at work, k = 2
The initial graph
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The algorithm of Downey and Fellows at work, k = 2
Construct the root of the tree
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Fast algorithms for Vertex Cover for small k Complexity O(2kn)

The algorithm of Downey and Fellows at work, k = 2
Choose arbitrarily (u, b). Any vertex cover of G must cover (u, b).

〈∅,G 〉v
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w

z

a b
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Fast algorithms for Vertex Cover for small k Complexity O(2kn)

The algorithm of Downey and Fellows at work, k = 2
If u is in the cover, we have to cover G − u with k − 1 = 1 vertex
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The algorithm of Downey and Fellows at work, k = 2
If b is in the cover, we have to cover G − b with k − 1 = 1 vertex

w
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〈{u},G − u〉 〈{b},G − b〉
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Fast algorithms for Vertex Cover for small k Complexity O(2kn)

The algorithm of Downey and Fellows at work, k = 2
There is no vertex cover of size 2 that contains u

77

〈{u, x},G − u − x〉 〈{u, a},G − u − a〉

〈∅,G 〉

〈{b},G − b〉〈{u},G − u〉
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Fast algorithms for Vertex Cover for small k Complexity O(2kn)

The algorithm of Downey and Fellows at work, k = 2
However, there is vertex cover of size 2 that contains b

37 7 7

. . . x . . . . . . y . . .

〈∅,G 〉

〈{b},G − b〉〈{u},G − u〉

. . . a . . .. . . a . . .
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Fast algorithms for Vertex Cover for small k Complexity O(2kn)

Further analysis of the algorithm of Downey and Fellows

Because of the 2k factor in the function of the order of growth the
algorithm is at worst exponential. However, for small k it is much
better than the brute force approach.

Which order of growth is better: nk (the brute force) or 2kn
(Downey and Fellows)? Suppose k = 20 amd n = 100 000. A
simple calculation

100 00020 = 1025 220 × 100 000 ≈ 1011

shows the difference is 14 decimal orders of magnitude...
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Fast algorithms for Vertex Cover for small k Complexity O(2kn)

Further analysis of the algorithm of Downey and Fellows

The algorithm has to be exponential at worst. A subexponential at
worst algorithm for Vertex Cover would be something the
newspapers would write about.

From practical point of view, for small k the algorithm works
reasonably well even for large inputs.

From theoretical point of view, for fixed k the algorithm is
polynomial of degree that is independent of k, and the problem is
tractable. Of course, nk is polynomial function, too, when k is
fixed but 2kn is considerably better.

Minko Markov minkom@fmi.uni-sofia.bg Parameterized Complexity



Fast algorithms for Vertex Cover for small k Complexity O(2kn)

Further analysis of the algorithm of Downey and Fellows

The algorithm has to be exponential at worst. A subexponential at
worst algorithm for Vertex Cover would be something the
newspapers would write about.

From practical point of view, for small k the algorithm works
reasonably well even for large inputs.

From theoretical point of view, for fixed k the algorithm is
polynomial of degree that is independent of k, and the problem is
tractable. Of course, nk is polynomial function, too, when k is
fixed but 2kn is considerably better.

Minko Markov minkom@fmi.uni-sofia.bg Parameterized Complexity



Fast algorithms for Vertex Cover for small k Complexity O(2kn)

Further analysis of the algorithm of Downey and Fellows

The algorithm has to be exponential at worst. A subexponential at
worst algorithm for Vertex Cover would be something the
newspapers would write about.

From practical point of view, for small k the algorithm works
reasonably well even for large inputs.

From theoretical point of view, for fixed k the algorithm is
polynomial of degree that is independent of k, and the problem is
tractable. Of course, nk is polynomial function, too, when k is
fixed but 2kn is considerably better.

Minko Markov minkom@fmi.uni-sofia.bg Parameterized Complexity



Fast algorithms for Vertex Cover for small k Complexity O(n + exp(2k2))

Algorithm of Sam Buss, 1989

A trivial observation: if the graph has vertex u of degree > k then
u is in every vertex cover of size ≤ k .

1 We are given a graph G and number k . Suppose W ⊆ V (G )
are the vertices of degree > k .

2 Let p = |W |. If p > k then return No. Else, let ` = k − p.

3 H ← G −W .

4 If |E (H)| > k` then return No.

5 If H has no `-vertex cover then return No.

6 Else, the union of any `-vertex cover of H and W is a
k-vertex cover for G .
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5 If H has no `-vertex cover then return No.

6 Else, the union of any `-vertex cover of H and W is a
k-vertex cover for G .
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Fast algorithms for Vertex Cover for small k Complexity O(n + exp(2k2))

Analysis of the algorithm of Buss

The correctness is obvious. Time complexity analysis:

Steps 1, . . . , 4 are linear time.

Step 5 is the search of minimum vertex cover of the reduced
graph H. ` is at most k therefore the graph H at step 5 H
has at most k2 edges and 2k2 vertices. A minimum vertex
cover for a graph with 2k2 vertices can be computed in

O
(

22k2
)

using brute force.

Altogether, the algorithm works in O
(
n + m + 22k2

)
.

The crucial advantage of the algorithm of Buss is that it runs the
superpolynomial procedure on the reduced graph H whose size is a
function of k and not of n.
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Fast algorithms for Vertex Cover for small k

Improvements of the algorithm of Buss

A minimum vertex cover of the reduced graph can be computed by
more sophisticated ways, e.g. using the algorithm of Downey and
Fellows with the bounded search tree. As pointed out in (Downey
and Fellows, 1999, pp. 35–36), a simple improvement of idea of

the bounded search tree yeilds a O( 4
√

5
k
n) algorithm.

By combining the algorithm of Buss with the said improvement,
Downey and Fellows propose an algorithm for Vertex Cover
that runs in O(n + k22k).

At the moment, the fastest algorithm for Vertex Cover when k
is small is the algorithm of Chen, Kanj, and Xia, running in
O(1.2738knO(1)).
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Parameterized Complexity Foundations of Parameterized Complexity

Complexity as a function of two variables

A two variable complexity function is significantly more informative
than the classical complexity function of a single variable – the
input size.
In Parameterized Complexity one variable is the input size and the
other one is called the parameter. The parameter is aimed at
capturing the aspect of the problem that makes it intractable, to
the extent that the input size participates in the overall complexity
expression in a “bening” way, say as a linear or quadratic factor.
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Parameterized Complexity Foundations of Parameterized Complexity

Parameterized Problems: The Formal Definition

Definition

A parameterized decision problem is L ⊆ Σ∗ × Σ∗ where Σ is the
input alphabet. If (σ, k) ∈ L, the parameter is k .

Typically the parameter is a natural number, therefore we can say
L ⊆ Σ∗ × N.
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Parameterized Complexity Foundations of Parameterized Complexity

The Theory of Parameterized Complexity

A branch of Computational Complexity that focuses on
investigating the inherent difficulty of intractable problems with
respect to the input size and a parameter, the complexity being a
function of both.

It was created in the first half of the 90’s by Mike Fellows and Rod
Downey .
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Parameterized Complexity The creators of the theory

Michael Ralph Fellows and Rodney Graham Downey

Mike Fellows Rod Downey

Minko Markov minkom@fmi.uni-sofia.bg Parameterized Complexity



Parameterized Complexity Vertex Cover as a parameterized problem

Vertex Cover revisited
This time as a parameterized p-Vertex-Cover

Every parameterized decision problem is defined by three
components: generic instance, parameter, and question with
Yes/No answer.

Definition of p-Vertex Cover:

An ordered pair of an undirected graph G = (V ,E ) and
natural number k .

Parameter k

Does G have a vertex cover of size ≤ k?

The parameter is not necessarily the number from the generic
instance. Such a number may not exist—consider Hamiltonian
Cycle—while every classical decision problem can be
parameterized. For instance, Hamiltonian Cycle can be
parameterized by the diameter of the graph (just an idea).
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FPT FPT : the parameterized analogue of P

Complexity class FPT

Definition

A parameterized problem L is fixed parameter tractable (FPT) if
there is an algorithm that computes whether 〈x , y〉 ∈ L in time
O(f (y)× nO(1)) where f (y) is a computable function that does
not depend on x .

As we saw, p-Vertex Cover ∈ FPT .

The complexity expression can as well be O(g(y) + nO(1)): both
formulations are equivalent.
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FPT FPT : the parameterized analogue of P

Not all parameterized problems are in FPT

It has been proved that p-Dominating Set 6∈ FPT , under the
assumption that every NP-complete problem necessitates
deterministic exponential time.

Definition of p-Dominating Set:

An ordered par of unndirected graph G = (V ,E ) and a
natural number k .

Parameter k .

Does G dominating set of size ≤ k?

Dominating set of G is every U ⊆ V such that

∀x ∈ V : x ∈ U ∨ ∃y ∈ U((x , y) ∈ E )
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FPT Klam value

Klam: the maximum value of the parameter for which the
problem is tractable

For an FPT problem, “the klam value” is the maximum value of
the parameter for which it is realistic to solve the problem, for
input sizes that arise in practice (whatever that means...).

Downey and Fellows propose the klam value to be computed as
follows: the maximum k for which f (k) does not exceed some so
called universal constant. The proposed universal constant is 1020.
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FPT Klam value

klam values for p-Vertex Cover

The complexities of the current fastest algorithms for a number of
FPT problems can be seen at fpt.wikidot.com/fpt-races. The f (k)
function of p-Vertex Cover is 1.2738k . The solution to the
eqation 1.2738k = 1020 is approximately k = 190 and that is the
current klam value for that problem.

For the same problem with the restriction of maximum degree 3 in
the graph, the function si 1.1616k and the klam value is 307.
For 2k (the algorithm for Vertex Cover of Downey and
Fellows) the klam value is 66.
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FPT Klam value

p-Vertex Cover is the champion of efficient
parameterization

Clearly, p-Vertex Cover stands out among all parameterized
problems. For some reason, Vertex Cover is much more
ameanable to efficient parameterization than the remaining FPT
problems.

Compare the klam value of Vertex Cover with the one of
Clique Cover. Since the f (k) function of the latter is 22k , its
klam value is about 6.

Minko Markov minkom@fmi.uni-sofia.bg Parameterized Complexity

http://fpt.wikidot.com/fpt-races
http://fpt.wikidot.com/fpt-races


FPT Different parametrizations

The choice of the parameter is not unique

p-Vertex Cover seems to be the most natural way to
parameterize Vertex Cover. However, the latter can be
parameterized in a number of ways. The results are different
parameterized problems that have different properties.
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FPT Different parametrizations

Different ways to parameterize Vertex Cover
As parameterized problems, they are different problems

Suppose we a are given a graph with n vertices and a number k .

We can choose the parameter to be n − k and ask whether
the graph has vertex cover of size n − k . That is in fact the
Independent Set problem. It is known (Downey and
Fellows, 1999) that Independent Set is not in FPT (under
certain widely believed assumptions).

Consider planar graphs. Since every planar graph is
4-colourable it has vertex cover of size ≤

⌊
3n
4

⌋
: at least

⌈
n
4

⌉
vertices are not in the cover. We can parameterize by⌊

3n
4

⌋
− k. Unfortunately, it is not known whether this

problems is in FPT.
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FPT Different parametrizations

Different ways to parameterize Vertex Cover
As parameterized problems, they are different problems

We can parameterize by the treewidth of the graph. It is
well-known that if the treewidth is ≤ t Vertex Cover can
be solved in time O(2tn) regardless of the vertex cover size k
that we are interested in. Consequently, choosing the
treewidth as a parameter yield a another parameterized
problem.
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FPT Constructing FPT algorithms

Techniques for constructing FPT algorithms

Elementary techniques:

Using bounded search trees, e.g. the algorithm of Downey and
Fellows for Vertex Cover.

Reducing the problem to a kernel, e.g. the algorithm of Buss
for Vertex Cover.

Sophisticated techniques:

Using bounded treewidth. It is possible to construct efficient
divide-and-conquer algorithms or dynamic programming
algorithms for graphs of bounded treewidth, even for problems
that are intractable on general graphs, provided the tree
decomposition is known.

In case a graph problem is expressible in Monadic Second
Order Logic (MSOL), it is solvable in linear time on graphs of
fixed treewidth: Courcelle’s theorem.

Minko Markov minkom@fmi.uni-sofia.bg Parameterized Complexity

http://www.sciencedirect.com/science/article/pii/089054019090043H


FPT Constructing FPT algorithms

Techniques for constructing FPT algorithms

Elementary techniques:

Using bounded search trees, e.g. the algorithm of Downey and
Fellows for Vertex Cover.

Reducing the problem to a kernel, e.g. the algorithm of Buss
for Vertex Cover.

Sophisticated techniques:

Using bounded treewidth. It is possible to construct efficient
divide-and-conquer algorithms or dynamic programming
algorithms for graphs of bounded treewidth, even for problems
that are intractable on general graphs, provided the tree
decomposition is known.

In case a graph problem is expressible in Monadic Second
Order Logic (MSOL), it is solvable in linear time on graphs of
fixed treewidth: Courcelle’s theorem.

Minko Markov minkom@fmi.uni-sofia.bg Parameterized Complexity

http://www.sciencedirect.com/science/article/pii/089054019090043H


FPT FPT reductions

FPT reductions are more elaborate than Karp reductions

Definition (Definition 2.1, Flum, Grohe 2006)

Let Π = 〈Q, κ〉 and Π′ = 〈Q ′, κ′〉 be parameterized problems over
the alphabet Σ. An FPT reduction from Π to Π′ is a function
ψ : Σ∗ → Σ∗ such that:

1 ∀x ∈ Σ∗(x ∈ Q ↔ ψ(x) ∈ Q ′).

2 ψ is computable by an FPT algorithm with respect to κ. That
means, ψ(x) is computable in time f (κ(x)) · p(|x |) for some
computable function f and some polynomial p.

3 There exists a computable function g : N→ N, such that
∀x ∈ Σ∗ : κ′(ψ(x)) ≤ g(κ(x)).
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FPT FPT reductions

FPT is the easy parameterized class

FPT is the analogue of P. The FPT reductions in it are
analogous to the polynomial reductions in P. Just as a polynomial
reduction from a polynomial-time solvable problem yields a
polynomial-time solvable problem, FPT reductions preserve
membership in FPT. Condition 3 is crucial to that end.

Lemma (Lemma 2.2, Flum, Grohe 2006)

The complexity class FPT is closed with respect to FPT
reductions. That is, if Π is reduced to Π′ via FPT reduction and
Π′ ∈ FPT , then Π ∈ FPT .
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FPT FPT reductions

Proof of the Lemma

Assume an FPT reduction x → x ′ from 〈Q, κ〉 to 〈Q ′, κ′〉
computable in time h(k)q(|x |) with k ′ ≤ g(k) where k = κ(x),
k ′ = κ(x ′), g and h are computable functions, and q is a
polynomial. Then |x ′| ≤ h(k)q(|x |).
Let A be a an algorithm deciding 〈Q ′, κ′〉 in time f ′(k ′)p′(|x ′|).
WLOG, f ′ is not decreasing.

Then x
?
∈ Q is decided by first computing the corresponding x ′

and then deciding x ′
?
∈ Q ′ . That takes time at most

h(k)q(|x |) + f ′(k ′)p′(|x ′|) ≤ h(k)q(|x |) + f ′(g(k))p′(h(k)q(|x |))

But p′(h(k)q(|x |)) ≤ p′(h(k))p′(q(|x |)). QED
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FPT FPT reductions

A Karp reduction that is not an FPT reduction

Consider the standard Karp reduction from Vertex Cover to
Independent Set:

(G , k)→ (G , n − k)

That is a Karp reduction but not an FPT reduction. Note that the
n − k is not a function of k only. So, condition 3 of the definition
of FPT reduction is violated.
Indeed, it seems Independent Set is not in FPT while
Vertex Cover is in FPT.
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FPT FPT reductions

A Karp reduction that is an FPT reduction

On the other hand, the standard Karp reduction from Clique to
Independent Set:

(G , k)→ (G , k)

is an FPT reduction.
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Conclusion

Parameterized Complexity Theory provides powerful tools for
dealing with intractability, in case the instances have small
parameter.

Often initial nonconstrucive results or hopelessly useless from
practical point of view algorithms are followed by efficient in
the practical sense algorithms. That confirms the algorithmic
folklore: the natural problems are either completely
intractable, or efficiently solvable.

The results are orthogonal to the results of the classical
Computational Complexity Theory or the Approximation
Algorithms Theory.

A multitude of problems turn out to be intractable even for a
fixed parameter. A powerful toolset for proving parameterized
intractability has been developed.
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Conclusion

The Parameterized Complexity Theory is quite new and until
recently, relatively unkown. The 1998 ACM classification does not
mention Parameterized Complexity, while 2012 ACM classification
has the following item:

Theory of computation → Design and analysis of
algorithms → Parameterized complexity and exact
algorithms

Nowadays it is typical when discussing an NP-hard problem to
mention whether it is FPT or not along with the approximability
results.
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The End

Minko Markov minkom@fmi.uni-sofia.bg Parameterized Complexity



Bibliography I

[BT06] Andrej Bogdanov and Luca Trevisan.

Average-case complexity.

Foundations and Trends in Theoretical Computer Science,
2(1):1–106, October 2006.

[CG83] J. H. Conway and C. McA. Gordon.

Knots and links in spatial graphs.

Journal of Graph Theory, 7:445–453, 1983.

[CKX06] Jianer Chen, Iyad A. Kanj, and Ge Xia.

Improved parameterized upper bounds for vertex cover.

In Rastislav Kralovic and Pawel Urzyczyn, editors, MFCS,
volume 4162 of Lecture Notes in Computer Science, pages
238–249. Springer, 2006.

Minko Markov minkom@fmi.uni-sofia.bg Parameterized Complexity



Bibliography II

[Cou90] Bruno Courcelle.

The monadic second-order logic of graphs. I. Recognizable sets
of finite graphs.

Information and Computation, 85(1):12–75, 1990.

[DF92] R. G. Downey and M. R. Fellows.

Fixed-parameter tractability and completeness.

Congressus Numerantium, 87:161–187, 1992.

[DF99] Rodney G. Downey and Michael R. Fellows.

Parameterized Complexity.

Springer-Verlag, 1999.

530 pp.

Minko Markov minkom@fmi.uni-sofia.bg Parameterized Complexity



Bibliography III

[Die12] Reinhard Diestel.

Graph Theory, 4th Edition, volume 173 of Graduate texts in
mathematics.

Springer, 2012.

Freely available at http://diestel-graph-theory.com/.

[DX02] Michael J. Dinneen and Liu Xiong.

Minor-order obstructions for the graphs of vertex cover six.

J. Graph Theory, 41(3):163–178, November 2002.

[FG06] Jörg Flum and Martin Grohe.

Parameterized Complexity Theory.

Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

Minko Markov minkom@fmi.uni-sofia.bg Parameterized Complexity

http://diestel-graph-theory.com/


Bibliography IV

[FL87] Michael R. Fellows and Michael A. Langston.

Nonconstructive advances in polynomial-time complexity.

Information Processing Letters, 26(3):157–162, 1987.

[FL88] Michael R. Fellows and Michael A. Langston.

Nonconstructive tools for proving polynomial-time decidability.

Journal of the ACM, 35(3):727–739, 1988.

[FL89] M. R. Fellows and M. A. Langston.

On search decision and the efficiency of polynomial-time
algorithms.

In Proceedings of the Twenty-first Annual ACM Symposium on
Theory of Computing, STOC ’89, pages 501–512, New York,
NY, USA, 1989. ACM.

Minko Markov minkom@fmi.uni-sofia.bg Parameterized Complexity



Bibliography V

[FL92] Michael R. Fellows and Michael A. Langston.

Constructivity issues in graph algorithms.

In Constructivity in Computer Science, Summer Symposium,
pages 150–158, London, UK, UK, 1992. Springer-Verlag.

[GKP94] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik.

Concrete Mathematics: A Foundation for Computer Science.

Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 2nd edition, 1994.

[GMC05] Andrei Gagarin, Wendy J. Myrvold, and John Chambers.

Forbidden minors and subdivisions for toroidal graphs with no
K3,3’s.

Electronic Notes in Discrete Mathematics, 22:151–156, 2005.

Minko Markov minkom@fmi.uni-sofia.bg Parameterized Complexity



Bibliography VI

[HT74] John Hopcroft and Robert Tarjan.

Efficient planarity testing.

Journal of the ACM, 21(4):549–568, October 1974.

[Imp95] Russell Impagliazzo.

A personal view of average-case complexity.

In Structure in Complexity Theory Conference, pages 134–147,
1995.

[Joh87] David S. Johnson.

The NP-Completeness Column: An Ongoing Guide. The Many
Faces Of Polynomial Time.

Journal of Algorithms, 8:285–303, 1987.

Minko Markov minkom@fmi.uni-sofia.bg Parameterized Complexity



Bibliography VII

[Kur30] Kazimierz Kuratowski.

Sur le Probleme des Courbes Gauches en Topologie.

Fundamenta Mathematicae, 15:271–283, 1930.

[Lan61] Rolf Landauer.

Irreversibility and heat generation in the computing process.

IBM Journal of Research and Development, 5:183–191, 1961.

[MR95] Rajeev Motwani and Prabhakar Raghavan.

Randomized algorithms.

Cambridge University Press, New York, NY, USA, 1995.

[NC00] Michael A. Nielsen and Isaac L. Chuang.

Quantum Computation and Quantum Information.

Cambridge Series on Information and the Natural Sciences.
Cambridge University Press, 2000.

Minko Markov minkom@fmi.uni-sofia.bg Parameterized Complexity



Bibliography VIII

[Nie06] Rolf Niedermeier.

Invitation to Fixed-Parameter Algorithms.

Oxford Lecture Series in Mathematics and Its Applications.
OUP Oxford, 2006.

[PV01] M. B. Plenio and V. Vitelli.

The physics of forgetting: Landauers erasure principle and
information theory.

Contemporary Physics, 42:25–60, 2001.

[RS83] Neil Robertson and Paul Seymour.

Graph minors. I. Excluding a forest.

Journal of Combinatorial Theory, Series B, 35:39–61, 1983.

Minko Markov minkom@fmi.uni-sofia.bg Parameterized Complexity



Bibliography IX

[RS84] Neil Robertson and Paul Seymour.

Graph minors. III. Planar tree-width.

Journal of Combinatorial Theory, Series B, 36:49–64, 1984.

[RS86a] Neil Robertson and Paul Seymour.

Graph minors. II. Algorithmic aspects of tree-width.

Journal of Algorithms, 7:309–322, 1986.

[RS86b] Neil Robertson and Paul Seymour.

Graph minors. V. Excluding a planar graph.

Journal of Combinatorial Theory, Series B, 41:92–114, 1986.

[RS86c] Neil Robertson and Paul Seymour.

Graph minors. VI. Disjoint paths across a disc.

Journal of Combinatorial Theory, Series B, 41:115–138, 1986.

Minko Markov minkom@fmi.uni-sofia.bg Parameterized Complexity



Bibliography X

[RS88] Neil Robertson and Paul Seymour.

Graph minors. VII. Disjoint paths on a surface.

Journal of Combinatorial Theory, Series B, 45:212–254, 1988.

[RS90a] Neil Robertson and Paul Seymour.

Graph minors. IV. Tree-width and well-quasi-ordering.

Journal of Combinatorial Theory, Series B, 48:227–254, 1990.

[RS90b] Neil Robertson and Paul Seymour.

Graph minors. IX. Disjoint crossed paths.

Journal of Combinatorial Theory, Series B, 49:40–77, 1990.

[RS90c] Neil Robertson and Paul Seymour.

Graph minors. VIII. A Kuratowski theorem for general surfaces.

Journal of Combinatorial Theory, Series B, 48:255–288, 1990.

Minko Markov minkom@fmi.uni-sofia.bg Parameterized Complexity



Bibliography XI

[RS91] Neil Robertson and Paul Seymour.

Graph minors. X. Obstructions to tree-decomposition.

Journal of Combinatorial Theory, Series B, 52:153–190, 1991.

[RS94] Neil Robertson and Paul Seymour.

Graph minors. XI. Circuits on a surface.

Journal of Combinatorial Theory, Series B, 60:72–106, 1994.

[RS95a] Neil Robertson and Paul Seymour.

Graph minors XII. Distance on a surface.

Journal of Combinatorial Theory, Series B, 64:240–272, 1995.

[RS95b] Neil Robertson and Paul Seymour.

Graph minors. XIII. The disjoint paths problem.

Journal of Combinatorial Theory, Series B, 63:65–110, 1995.

Minko Markov minkom@fmi.uni-sofia.bg Parameterized Complexity



Bibliography XII

[RS95c] Neil Robertson and Paul Seymour.

Graph minors. XIV. Extending an embedding.

Journal of Combinatorial Theory, Series B, 65:23–50, 1995.

[RS96] Neil Robertson and Paul Seymour.

Graph minors. XV. Giant steps.

Journal of Combinatorial Theory, Series B, 68:112–148, 1996.

[RS99] Neil Robertson and Paul Seymour.

Graph minors. XVII. Taming a vortex.

Journal of Combinatorial Theory, Series B, 77:162–210, 1999.

[RS03a] Neil Robertson and Paul Seymour.

Graph minors. XVI. Excluding a non-planar graph.

Journal of Combinatorial Theory, Series B, 89:43–76, 2003.

Minko Markov minkom@fmi.uni-sofia.bg Parameterized Complexity



Bibliography XIII

[RS03b] Neil Robertson and Paul Seymour.

Graph minors. XVIII. Tree-decompositions and
well-quasiordering.

Journal of Combinatorial Theory, Series B, 89:77–108, 2003.

[RS04a] Neil Robertson and Paul Seymour.

Graph minors. XIX. Well-quasi-ordering on a surface.

Journal of Combinatorial Theory, Series B, 90:325–385, 2004.

[RS04b] Neil Robertson and Paul Seymour.

Graph minors. XX. Wagners conjecture.

Journal of Combinatorial Theory, Series B, 92:325–357, 2004.

[RS09] Neil Robertson and Paul Seymour.

Graph minors. XXI. Graphs with unique linkages.

Journal of Combinatorial Theory, Series B, 99:583–616, 2009.

Minko Markov minkom@fmi.uni-sofia.bg Parameterized Complexity



Bibliography XIV

[RS10] Neil Robertson and Paul Seymour.

Graph minors. XXIII. Nash-Williams immersion conjecture.

Journal of Combinatorial Theory, Series B, 100:181–205, 2010.

[RS12] Neil Robertson and Paul Seymour.

Graph minors. XXII. Irrelevant vertices in linkage problems.

Journal of Combinatorial Theory, Series B, 102:530–563, 2012.

[Sch96] Bruce Schneier.

Applied Crytography.

John Wiley & Sons, 2nd edition, 1996.

[Vaz01] Vijay V. Vazirani.

Approximation algorithms.

Springer-Verlag New York, Inc., New York, NY, USA, 2001.

Minko Markov minkom@fmi.uni-sofia.bg Parameterized Complexity



Bibliography XV

[Wag37] K. Wagner.

ber eine eigenschaft der ebenen komplexe.

Mathematische Annalen, 114(1):570–590, 1937.

[Wor94] Thomas Worsch.

Lower and upper bounds for (sums of) binomial coefficients,
1994.

Minko Markov minkom@fmi.uni-sofia.bg Parameterized Complexity


	Introduction
	The problem is intractable! Now what?
	Circumventing intractability
	The gist of Parameterized Complexity

	The Vertex Cover problem
	Formal defintion and complexity

	The theory of Robertson of Seymour
	Graph Minors
	WQO: Well Quasi Ordering
	Planarity in the light of the Theory of R. & S.
	Membership in P via the Theory of R. & S.
	Nonconstructivity of the Theory of R. & S.
	Limitations of the Theory of R. & S.

	Fast algorithms for Vertex Cover when k is small
	Algorithm of Fellows and Downey with complexity O(2k n)
	Algorithm of Buss with complexity O(n + 22k2)

	The Theory of Parameterized Complexity
	Foundations of Parameterized Complexity
	Vertex Cover as a parameterized problem

	Fixed Parameter Tractable (FPT) Problems
	FPT: the parameterized analogue of P
	Klam value
	The same classical problem can be turned into a parameterized problem in different ways
	Constructing FPT algorithms
	FPT reductions


