
Homework
Функцията sasho_formating(string, width) приема непразен низ от символи string и
естесвено число width, и го обработва по следния начин:
1. Премахва интервалите в началото и края на низа, ако има такива.
2. Редуцира всяка последователност от два или повече интервала между думите до
един-единствен.
3. Заменя всяка малка буква с главна.
4. Центрира текста в поле с ширина width - допълва го поравно и от двете страни с
интервали, така че дължината на низа да бъде равна на width. Това допълване се
прави само ако дължината на текста след първите три стъпки е по-малка от
параметъра width. Допълнително, ако
(width - дължината_на_низа_преди_центрирането)
е нечетно число, "нечетният" интервал трябва да се добави в края на низа.
Напишете колкото можете positive test cases(unit tests) в следния формат
sasho_formating("run SAshoo run!!", 20) => " RUN SASHOO RUN!! "

3. Software Development
Life-Cycle

How do people make software

Astea Solutions QA Team

Questions
● Why do we test?
● When we have a bug?
● What is test case?
● What is test suite?
● Test case types?

Overview
● Phases in software development
● Waterfall
● V-model

○ Component/Unit testing
○ Integration testing
○ System/End-to-end testing
○ Acceptance testing

● Agile methodologies
○ Scrum
○ Kanban

Phases in software development
● Requirement gathering and analysis
● Design
● Development
● Testing and bug fixing
● Release/Deployment
● Maintenance

Waterfall (1)
● Final product is developed in one linear iteration
● Each phase must be completed fully before the next phase can begin

Waterfall (2)
● Advantages

○ Simple and very well known
○ Easy to manage
○ Phases do not overlap

● Disadvantages
○ No working software is produced until late during the life cycle
○ Once an application is in the testing stage, it is very difficult to go back and

change something that was not well-thought out in the concept stage.
○ High amounts of risk and uncertainty - time and cost overrun
○ Not suitable for the projects where requirements are at a moderate to high

risk of changing
● When to use

○ When the requirements are very well known, clear and fixed
○ Technology is understood

V-model (1)
● Main idea - development and testing

tasks are corresponding activities of
equal importance

● System is gradually being designed
and finally programmed and tested

● Verification - Static method for
verifying design and code

● Validation - Dynamic process for
checking and testing the real product

V-model (2)
● Component/Unit testing (1)

○ Typically occurs with access to the code being tested
○ In practice usually involves the programmer who wrote the code
○ Defects are typically fixed as soon as they found, without formally

managing these defects
○ The disadvantages is that a programmer is testing his own

program

V-model (3)
● Component/Unit testing (2)

○ Stubs - if the module/function A you are testing calls another
module/function B, which is not ready, then use a simplified version of
module/function B, called a stub

○ Drivers - allows you to call a module/function and display its return values

V-model (4)
● Integration testing

○ Tests the interactions between software components and is done
after component testing

○ The greater the scope of integration, the more difficult it becomes
to isolate defects to a specific component or system, which may
lead to increased risk and additional time for troubleshooting

V-model (5)
● System/End-to-end testing

○ Checks if the integrated product meets the specified requirements
○ In the lower test levels, the testing was done against technical

specifications. The system test, though, looks at the system from
the perspective of the customer and the future user.

○ Many functions and system characteristics result from the
interaction of all system components; consequently, they are
visible only when the entire system is present and can be observed
and tested only there

● System integration testing tests the interactions between different
systems or between hardware and software and may be done after
system testing

V-model (6)
● Acceptance testing

○ The goal is to establish confidence in the system
○ Assess the system’s readiness for deployment and use
○ Finding defects is not the main focus
○ How much acceptance testing is necessary depends on product risk
○ Customers, users, system administrators are involved
○ Acceptance tests may also be executed as a part of lower test levels or be

distributed over several test levels:
■ Usability of a component can be acceptance tested during its

component test.
■ Acceptance of new functionality can be checked on prototypes before

system testing.

V-model (7)
● Advantages

○ In theory more reliable product than waterfall developed application
○ Simple and easy to use
○ Easy to manage
○ Phases do not overlap

● Disadvantages
○ No working software is produced until late during the life cycle
○ Once an application is in the testing stage, it is very difficult to go back and

change something that was not well-thought out in the concept stage.
○ High amounts of risk and uncertainty - time and cost overrun
○ Not suitable for the projects where requirements are at a moderate to high

risk of changing
● When to use

○ When the requirements are very well known, clear and fixed
○ Technology is understood

Agile methodologies

Agile methodologies
● Advantages

○ Is a very realistic approach to software development
○ Suitable for fixed or changing requirements
○ Good model for environments that change steadily
○ Gives flexibility to developers
○ Customer satisfaction by rapid, continuous delivery of useful software
○ Continuous attention to technical excellence and good design.

● Disadvantages
○ The project can easily get taken off track if the customer representative is

not clear what final outcome that they want.
○ Only senior programmers are capable of taking the kind of decisions

required during the development process. Hence it has no place for
newbie programmers, unless combined with experienced resources

● When to use
○ Requirements are changing over software development life-cycle

Scrum (1)
● Roles

○ Product owner
○ Scrum master
○ Team

● Artefacts
○ Product backlog
○ Sprint backlog
○ Burndown charts

● Ceremonies
○ Sprint planning
○ Sprint review/demo
○ Sprint retrospective
○ Daily scrum meeting

Scrum (2)
● Sprint/Iteration - regular, repeatable work cycle. During each sprint, a team

creates a potentially shippable product increment
● Product owner

○ Defines the features of the product
○ Decides on release date and content
○ Responsible for the profitability of the product (ROI)
○ Prioritizes features according to market value
○ Adjusts features and priority every iteration
○ Accepts or rejects work results

Scrum (3)
● Scrum master

○ Deeply understands the work being done by the team
○ Observing that the team obeys the rules and realizes the method of Scrum

entirely
○ Does not interfere into the decisions of the team regarding specifically the

development, but rather is there for the team as an advisor
○ Gives only impulses and advises to the team to lead the correct way, to

use the right method or to choose the right technology
● Team

○ Cross-functional - software engineers, architects, programmers, analysts,
QA experts, testers, UI designers, etc.

○ Decides self dependent, which requirements or User Stories it can
accomplish in one sprint

Scrum (4)
● Product backlog

○ The list of functionality, technology and issues
○ Managed and prioritised by Product owner
○ Emerging, prioritised, estimated
○ One list for multiple teams on product

● Sprint backlog
○ List of tasks the team needs to address during the sprint
○ Tasks are estimated by the team
○ Team members sign up for tasks, they are not assigned
○ Estimated work remaining is updated daily
○ Only team can change it

Scrum (5)
● Burndown charts

Scrum (5)
● Sprint planning

○ Team picks items from product backlog that they can commit to complete
○ Sprint backlog is created

■ List of tasks necessary to achieve the work
■ Task are identified and each item is estimated
■ Scrum master does NOT decide for the team

○ Team self-organises to meet the goal - tasks are NOT assigned by manager
● Daily standup

○ Happens everyday at a fixed time
○ 15 minutes long stand up meeting
○ 3 questions are answered by every team member

■ What did I do yesterday?
■ What do I plan to do today?
■ Do I have some blocker?

○ Only one team member can speak at a time
○ Specific issues are resolved offline

Scrum (6)
● Sprint review

○ Informal
○ Team presents what is done during the sprint
○ Typically takes the form of a demo of new features or underlying architecture
○ Whole team participates

● Sprint retrospective
○ Review at what is working and is not for the team
○ Issues must be acted upon
○ Typically an hour or so
○ Done after every sprint
○ Whole team participates

Kanban (1)
● A kanban team is only focused

on the work that's actively in
progress

● The product owner is free to re-
prioritize work in the backlog

● Flexibility in planning
● Minimizing cycle time
● Moving toward continuous

delivery - the practice of building
and validating code
incrementally throughout the
day–is essential for maintaining
quality

Kanban (2)

Summary
● What are the phases in software development life-cycle?
● What is end-to-end testing?
● What are the scrum roles?
● What are the scrum artefacts?
● What is sprint in scrum?
● What are the questions in daily standup that every team member should

answer?

QUESTIONS

