
6. Software testing
preparation. “Black-box”
and ”White-box” testing

techniques
How to prepare tests?

Astea Solutions QA Team

Questions
● List the types of testing based on:

○ object of testing
○ knowing internal structure
○ time of test execution
○ positivism of test scenarios
○ degree of isolation
○ degree of automation
○ level of preparation

● What is static testing?

Black-box Testing White-box Testing

Equivalence
Partitioning

Boundary
Value Analysis

Decision Table
Testing

State Transition
Testing

Use Case
Testing

Pairwise
Testing

Classification
Trees Testing

Control-Flow
Testing

Method
Coverage

Data Flow
Testing

Branch
Coverage

Statement
Coverage

Black-box testing

Equivalence
Partitioning

Boundary Value
Analysis

Decision Table
Testing

State Transition
Testing

Use Case Testing

Pairwise Testing

Classification Trees
Testing

Black-box testing

Black-box testing techniques
Black-box techniques are a way to derive and select test
conditions, test cases, or test data
● Based on an analysis of the test basis documentation
● Also called specification-based or behavioral techniques
● Tests are based on the way the system is supposed to work
●

Black-box techniques are divided into two main subtypes
● Functional

○ What the system does?
● Non functional

○ How the system does what it does?

Black-box testing techniques (2)

The choice of test techniques to be used depends on a number of
factors:
● Type of the system
● Customer requirements
● Level of risk
● Documentation available
● Knowledge of the testers
● Time and budget

Equivalence Partitioning

Equivalence Partitioning
● Divide (i.e. to partition) a set of test

conditions into groups or sets that can
be considered the same (i.e. the
system should handle them
equivalently)

● Equivalence partitions are also known
as equivalence classes

● We need to test only one condition
from each partition

Equivalence Partitioning (2)
Example:

A field for age is tested

● if age is between 0-3 - baby
● if age is between 4-12 - kid
● if age is between 13-19 - teenager
● etc...

Tests:
● Group 1(0-3)
● Group 2(4-12)
● Group 3(13-19)
● Group 4(invalid)

Boundary Value Analysis

Boundary Value Analysis

● Test cases are designed based on
boundary values

● Conceptually, BVA is about testing
the edges of equivalence classes

● Both valid boundaries (in the valid
partitions) and invalid boundaries (in
the invalid partitions)

● Most mistakes are made at the
edges

Boundary Value Analysis(2)
Example:

A field for age is tested

● if age is between 0-3 - baby
● if age is between 4-12 - kid
● if age is between 13-19 - teenager
● etc...

Tests:
Group 1: -1,0,3,4
Group 2: 3,4,12,13
Group 3: 12,13,19,20

Decision Table Testing

Decision Table Testing

● Method for testing business logic
● Good way to deal with combinations of

things (e.g. inputs)
● Also referred to as a ’cause-effect’ table
● Provide a systematic way of stating

complex business rules, which is useful for
developers as well as for testers.

Decision Table Testing (2)
Conditions 1 2 3 4 5 6 7 8

Condition A T T T T F F F F

Condition B T T F F T T F F

Condition C T F T F T F T F

Actions

....

Under this concrete
combination of conditions
- carry out this concrete
combination of actions.

Decision Table Testing (3)

Conditions 1 2 3 4 5 6 7 8

Condition A T T T T F F F F

Condition B T T F F T T F F

Condition C T F T F T F T F

Actions

....

n
=

3
2 = 8n

Example:

Decision Table Testing (3)

Conditions 1 2 3 4 5 6 7 8

New Customer (15%) T T T T F F F F

Loyalty card (10%) T T F F T T F F

Coupon (20%) T F T F T F T F

Actions

Discount(%) 20 15 20 15 30 10 20 0

State Transition Testing

State Transition Testing

● Test cases are designed to execute valid
and invalid state transitions

● When we have sequences of events that
occur and conditions that apply to those
events

● When the proper handling of a particular
event/condition situation depends on the
events and conditions that have occurred
in the past

State Transition Testing (2)

State
● Persists until something external

happens, usually triggering a transition
● A state can persist for an indefinite

period

Event
● Occurs, either instantly or in a limited period
● It is something that happens

Action
● The response of the system during the

transition
● An action, like an event, is either

instantaneous or requires a limited,
finite period

How do we distinguish a state, an event, and an action?

State Transition Testing (3)

start

wait for
PIN

1st try
2nd try

3rd try

eat
card

access
to

account

card inserted
enter PIN

PIN not OK

PIN not OK PIN not OK

PIN OK
PIN OK

PIN OK

State Transition Testing (4)

Test case examples:
● Correct PIN is entered the first time.
● Enter an incorrect PIN each time, so

that the system eats the card.
● The PIN was incorrect the first time

but OK the second time
● The PIN was correct on the third try.
● etc...

State Transition Testing (5)
State Transition table

Current State Event Action Next State

start card is inserted Please enter PIN wait for PIN

wait for PIN enter PIN Checking PIN 1st try

... …

Use Case Testing

Use Case Testing

Use case testing is a technique that helps us identify test cases that exercise the
whole system from start to finish.
● Description of a particular use of the system by an actor (a user of the

system).
● It describes the interactions the actor has with the system in order to achieve a

specific task
● Actors are generally people but they may also be other systems.
● Use cases are a sequence of steps that describe the interactions between

the actor and the system.
● They serve as the foundation for developing test cases mostly at the system

and acceptance testing levels.

Pairwise Testing

Pairwise Testing
● Testing the software using combinatorial method
● It's a method to test all the possible combinations of the parameters involved
● usually used in Configuration testing
● Most of the bugs are found with one or two options involved

○ The basic bug hypothesis is that this level of coverage is sufficient
● Tools for automatic generation of all-pairs are available

Example:

Check-Box - Checked or Unchecked
Radio Button - ON or OFF

Classification Trees Testing

Classification Trees Testing
A tree showing equivalence partitions hierarchically ordered

● Test cases are designed to execute combinations of inputs and/or
outputs

● Based on the functional specification of the test object
● Used to design test cases in the classification tree method
● Some options for one factor won't coexist with options for another

factor
● Usually a tool is used (CTE)

Classification Trees Testing (2)

White-box testing

Control-Flow Testing

Method Coverage

Data Flow Testing

Branch Coverage

Statement Coverage

White-box Testing

White-box testing
● White-box techniques are a way to derive test cases based on analysis of the code
● Design test cases that:

○ Exercise independent paths within a module or unit
○ Exercise logical decision
○ Execute loops at their boundaries

● Also called clear box, structural or glass box testing
● It uses the internal structure of the component or system
● The code of the tested object is considered
● Testing can be commenced at an earlier stage. It’s applicable to:

○ Unit testing
○ Integration testing
○ System testing

Control-Flow Testing

Control-flow testing
● Represented in a flow graph
● We consider various aspects of this

flowgraph in order to ensure that we have
an adequate set of test cases

● The adequacy of the test cases is often
measured with a metric called coverage

● Coverage is a measure of the
completeness of the set of test cases

Control-flow testing (2)
Method Coverage

A measure of the
percentage of methods
that have been executed
by test cases.
Undoubtedly, your tests
should call 100% of your
methods

Statement Coverage

A measure of the
percentage of statements
that have been executed
by test cases. Your
objective should be to
achieve 100% statement
coverage through your
testing.

Branch coverage

A measure of the percentage
of the decision points
(Boolean expressions) of the
program have been
evaluated as both true and
false in test cases.

Data-Flow Testing

Data-flow testing
● In data flow-based testing,

the control flowgraph is
annotated with information
about how the program
variables are defined and
used

● Different criteria exercise
with varying degrees of
precision how a value
assigned to a variable is
used along different control
flow paths.

define
x

use xuse x

kill x

Data-flow testing
Examples:
~d the variable does not exist (indicated by the ~), then it is defined (d)
~u the variable does not exist, then it is used (u)
~k the variable does not exist, then it is killed or destroyed (k)
dd Defined and defined again—not invalid but suspicious. Probably a
programming error.
du Defined and used—perfectly correct. The normal case.
dk Defined and then killed—not invalid but probably a programming error.
uu Used and used again—acceptable.
uk Used and killed—acceptable.
kd Killed and defined—acceptable. A variable is killed and then redefined.
ku Killed and used—a serious defect. Using a variable that does not exist or
is undefined is always an error.
kk Killed and killed—probably a programming error.

Summary

● What is Equivalence Partitioning?
● When do we use BVA?
● What is Use Case?
● How to make a decision table?
● What are the properties of State transition testing?
● What is Control-flow testing?
● Give examples for data-flow?

QUESTIONS

