
Problems with solutions in the Analysis of Algorithms

c© Minko Markov
Draft date April 23, 2009



Chapter 1

Notations: Θ, O, Ω, o, and ω

The functions we consider are assumed to have positive real domains and real codomains
(ranges), unless specified otherwise. Furthermore, the functions are asymptotically positive:
f(n) is asymptotically positive iff ∃n0 : ∀n ≥ n0, f(n) > 0.

Basic definitions:

Θ(g(n)) =
{
f(n) | ∃c1, c2 > 0, ∃n0 : ∀n ≥ n0, 0 ≤ c1.g(n) ≤ f(n) ≤ c2.g(n)

}
(1.1)

O(g(n)) =
{
f(n) | ∃c > 0, ∃n0 : ∀n ≥ n0, 0 ≤ f(n) ≤ c2.g(n)

}
(1.2)

Ω(g(n)) =
{
f(n) | ∃c > 0, ∃n0 : ∀n ≥ n0, 0 ≤ c.g(n) ≤ f(n)

}
(1.3)

o(g(n)) =
{
f(n) | ∀c > 0, ∃n0 : ∀n ≥ n0, 0 ≤ f(n) < c.g(n)

}
(1.4)

ω(g(n)) =
{
f(n) | ∀c > 0, ∃n0 : ∀n ≥ n0, 0 ≤ c.g(n) < f(n)

}
(1.5)

1.4 is equivalent to:

lim
n→∞ f(n)

g(n)
= 0 (1.6)

but only in case the limit exists. 1.5 is equivalent to:

lim
n→∞ g(n)

f(n)
= 0 (1.7)

but only in case the limit exists.

1



It is universally accepted to write “f(n) = Θ(g(n))” instead of the formally correct “f(n) ∈
Θ(g(n))”.

Let us define the binary relations ≈, �, ≺, �, and � over functions as follows. For any two
functions f(n) and g(n), n ∈ R+, f(n), g(n) ∈ R:

f(n) ≈ g(n) ⇔ f(n) = Θ(g(n)) (1.8)

f(n) � g(n) ⇔ f(n) = O(g(n)) (1.9)

f(n) ≺ g(n) ⇔ f(n) = o(g(n)) (1.10)

f(n) � g(n) ⇔ f(n) = Ω(g(n)) (1.11)

f(n) � g(n) ⇔ f(n) = ω(g(n)) (1.12)

When the relations do not hold we write f(n) 6≈ g(n), f(n) 6� g(n), etc.

Properties of the relations:

1. Reflexivity: f(n) ≈ f(n), f(n) � f(n), f(n) � f(n).

2. Symmetry: f(n) ≈ g(n) ⇔ g(n) ≈ f(n).

3. Transitivity:

f(n) ≈ g(n) and g(n) ≈ h(n) ⇒ f(n) ≈ h(n)

f(n) � g(n) and g(n) � h(n) ⇒ f(n) � h(n)

f(n) ≺ g(n) and g(n) ≺ h(n) ⇒ f(n) ≺ h(n)

f(n) � g(n) and g(n) � h(n) ⇒ f(n) � h(n)

f(n) � g(n) and g(n) � h(n) ⇒ f(n) � h(n).

4. Transpose symmetry:

f(n) � g(n) ⇔ g(n) � f(n)

f(n) � g(n) ⇔ g(n) ≺ f(n).

5. f(n) ≺ g(n) ⇒ f(n) � g(n)

f(n) � g(n) 6⇒ f(n) ≺ g(n)

f(n) � g(n) ⇒ f(n) � g(n)

f(n) � g(n) 6⇒ f(n) � g(n)

2



6. f(n) ≈ g(n)⇒ f(n) 6≺ g(n)

f(n) ≈ g(n)⇒ f(n) 6� g(n)

f(n) ≺ g(n)⇒ f(n) 6≈ g(n)

f(n) ≺ g(n)⇒ f(n) 6� g(n)

f(n) ≺ g(n)⇒ f(n) 6� g(n)

f(n) � g(n)⇒ f(n) 6≈ g(n)

f(n) � g(n)⇒ f(n) 6≺ g(n)

f(n) � g(n)⇒ f(n) 6� g(n)

7. f(n) ≈ g(n) ⇔ f(n) � g(n) and f(n) � g(n)

8. There do not exist functions f(n) and g(n), such that f(n) ≺ g(n) and f(n) � g(n)

9. Let f(n) = f1(n) + f2(n) + f3(n) + . . .+ fk(n). Let

f1(n) � f2(n)

f1(n) � f3(n)

. . .

f1(n) � fk(n)

Then f(n) ≈ f1(n).

10. Let f(n) = f1(n)× f2(n)× . . .× fk(n). Let some of the fi(n) functions are constants.
Without loss of generality, let those be the first m functions for some m such that
1 ≤ m ≤ k. Namely, f1(n) = const, f2(n) = const, . . . , fm(n) = const. Then
f(n) ≈ fm+1(n)× fm+2(n)× . . .× fk(n).

11. Provided that limn→∞ f(n)
g(n) exists,

lim
n→∞ f(n)

g(n)
= const ⇔ f(n) ≈ g(n) (1.13)

However, without the provision the limit exists, it is the case that

lim
n→∞ f(n)

g(n)
= const ⇒ f(n) ≈ g(n)

lim
n→∞ f(n)

g(n)
= const 6⇐ f(n) ≈ g(n)

To see why, consider the example f(n) = n2 and g(n) = (2 + sin (n))n2. Obviously
g(n) oscillates between n2 and 3n2 and thus f(n) ≈ g(n) but it is not the case that
limn→∞ f(n)

g(n) = const because the limit does not exist.

Problem 1 ([CLR00], pp. 24–25). Let f(n) = 1
2n

2 − 3n. Prove that f(n) ≈ n2.

3



Solution:
For a complete solution we have to show some concrete positive constants c1 and c2 and a
concrete value n0 for the variable, such that for all n ≥ n0,

0 ≤ c1.n
2 ≤ 1

2
n2 − 3n ≤ c2.n

2

Since n > 0 this is equivalent to (divide by n2):

0 ≤ c1 ≤ 1

2
−
3

n
≤ c2

What we have here are in fact three inequalities:

0 ≤ c1 (1.14)

c1 ≤ 1

2
−
3

n
(1.15)

1

2
−
3

n
≤ c2 (1.16)

(1.14) is trivial, any c1 > 0 will do. To satisfy (1.16) we can pick n ′
0 = 1 and then any

positive c2 will do; say, c2 = 1. The smallest integer value for n that makes the right-hand
side of (1.15) positive is 7; the right-hand side becomes 1

2 − 3
7 = 7

14 − 6
14 = 1

14 . So, to saisfy
(1.15) we pick c1 = 1

14 and n ′′
0 = 7. The overall n0 is n0 = max {n ′

0, n
′′
0 } = 7. The solution

n0 = 7, c1 = 1
14 , c2 = 1 is obviusly not unique. �

Problem 2. Is it true that 1
1000n

3 � 1000n2?

Solution:
No. Assume the opposite. Then ∃c > 0 and ∃n0, such that for all n ≥ n0:

1

1000
n3 ≤ c.1000n2

It follows that ∀n ≥ n0:

1

1000
n ≤ 1000.c ⇔ n ≤ 1000000.c

That is clearly false. �

Problem 3. Is it true that for any two functions, at least one of the five relations ≈, �,
≺, �, and � holds between them?

Solution:
No. Proof by demonstrating an counterexample ([CLR00, pp. 31]): let f(n) = n and
g(n) = n1+sin n. Since g(n) oscillates between n0 = 1 and n2, it cannot be the case that
f(n) ≈ g(n) or f(n) � g(n) or f(n) ≺ g(n) or f(n) � g(n) or f(n) � g(n).

However, this argument from [CLR00] holds only when n ∈ R. If n ∈ N+, we cannot use
the function g(n) directly, i.e. without extra arguments. Note that sinn reaches its extreme
values −1 and 1 at 2kπ+ 3π

2 and 2kπ+ π
2 , respectively, for integer k. As these are irrational

numbers, the integer n cannot be equal to any of them. So, it is no longer true that g(n)

oscillates between n0 = 1 and n2. If we insist on using g(n) in our counterexample we have
to argue, for instance, that:

4



• for infinitely many (positive) values of the integer variable, for some constant ε > 0,
it is the case that g(n) ≥ n1+ε;

• for infinitely many (positive) values of the integer variable, for some constant σ > 0,
it is the case that g(n) ≤ n1−σ.

An alternative is to use the function g ′(n) = n1+sin (πn−π/2) that indeed oscillates between
n0 = 1 and n2 for integer n. Another alternative is to use

g ′′(n) =

{
n2, if n is even,
1, else.

�

Problem 4. Let p(n) be any univariate polynomial of degree k, such that the coefficient in
the higherst degree term is positive. Prove that p(n) ≈ nk.

Solution:
p(n) = akn

k + ak−1n
k−1 + . . .+ a1n + a0 with ak > 0. We have to prove that there exist

positive constants c1 and c2 and some n0 such that for all n ≥ n0, 0 ≤ c1nk ≤ p(n) ≤ c2nk.
Since the leftmost inequality is obvious, we have to prove that

c1n
k ≤ akn

k + ak−1n
k−1 + ak−2n

k−2 . . .+ a1n+ a0 ≤ c2nk

For positive n we can divide by nk, obtaining:

c1 ≤ ak +
ak−1

n
+
ak−2

n2
+ . . .+

a1

nk−1
+
a0

nk︸ ︷︷ ︸
T

≤ c2

Now it is obvious that any c1 and c2 such that 0 < c1 < ak and c2 > ak are suitable because
limn→∞ T = 0.

�

Problem 5. Let a ∈ R and b ∈ R+. Prove that (n+ a)b ≈ nb

Solution:
Note that this problem does not reduce to Problem 4 except in the special case when b is
integer. We start with the following trivial observations:

n+ a ≤ n+ |a| ≤ 2n, provided that n ≥ |a|

n+ a ≥ n− |a| ≥ n

2
, provided that

n

2
≥ |a|, that is, n ≥ 2|a|

It follows that:
1

2
n ≤ n+ a ≤ 2n, if n ≥ 2|a|

By raising to the bth power we obtain:(
1

2

)b

nb ≤ (n+ a)b ≤ 2bnb

So we have a proof with c1 =
(

1
2

)b
, c2 = 2b, and n0 = d2|a|e. �

5



Problem 6. Prove that for any two asymptotically positive functions f(n) and g(n), it is
the case that max (f(n), g(n)) ≈ f(n) + g(n).

Solution:
We are asked to prove there exist positive constants c1 and c2 and a certain n0, such that
for all n ≥ n0:

0 ≤ c1(f(n) + g(n)) ≤ max (f(n), g(n)) ≤ c2(f(n) + g(n))

As f(n) and g(n) are asymptotically positive,

∃n ′
0 : ∀n ≥ n ′

0, f(n) > 0

∃n ′′
0 : ∀n ≥ n ′′

0 , g(n) > 0

Let n ′′′
0 = max {n ′

0, n
′′
0 }. Obviously,

0 ≤ c1(f(n) + g(n)) for n ≥ n ′′′
0 , if c1 > 0

It is also obvious that when n ≥ n ′′′
0 :

1

2
f(n) +

1

2
g(n) ≤ max (f(n), g(n))

f(n) + g(n) ≥max (f(n), g(n)) ,

which we can write as:

1

2
(f(n) + g(n)) ≤ max (f(n), g(n)) ≤ f(n) + g(n)

So we have a proof with n0 = n ′′′
0 , c1 = 1

2 , and c2 = 1. �

Problem 7. Which of the following are true:

2n+1 ≈ 2n

22n ≈ 2n

Solution:
2n+1 ≈ 2n is true because 2n+1 = 2.2n and for any constant c, c.2n ≈ 2n. On the other
hand, 22n ≈ 2n is not true. Assume the opposite. Then, having in mind that 22n = 2n.2n,
it is the case that for some constant c2 and all n→ +∞:

2n.2n ≤ c2.2n ⇔ 2n ≤ c2

That is clearly false. �

Problem 8. Which of the following are true:

1

n2
≺ 1

n
(1.17)

2
1

n2 ≺ 2
1
n (1.18)

6



Solution:
(1.17) is true because

0 ≤ 1

n2
< c.

1

n
⇔ 0 ≤ 1

n
< c

is true for every positive constant c and sufficiently large n. (1.18), however, is not true.
Assume the opposite. Then:

∀c > 0,∃n0 : ∀n ≥ n0, 0 ≤ 2
1

n2 < c.2
1
n ⇔ 0 ≤ 2

1

n2

2
1
n

< c (1.19)

But

lim
n→∞

(
2

1

n2

2
1
n

)
= lim

n→∞
(
2

1

n2 − 1
n

)
= 1 because (1.20)

lim
n→∞

(
1

n2
−
1

n

)
= lim

n→∞
(
1− n

n2

)
= lim

n→∞
(

1
n − 1

n

)
= 0 (1.21)

It follows that (1.19) is false. �

Problem 9. Let a be a constant such that a > 1. Which of the following are true:

f(n) ≈ g(n) ⇒ af(n) ≈ ag(n) (1.22)

f(n) � g(n) ⇒ af(n) � ag(n) (1.23)

f(n) ≺ g(n) ⇒ af(n) ≺ ag(n) (1.24)

for all asymptotically positive functions f(n) and g(n).

Solution:
(1.22) is not true – Problem 7 provides a counterexample since 2n ≈ n and 22n 6≈ 2n.
The same counterexample suffices to prove that (1.23) is not true – note that 2n � n but
22n 6� 2n.

Now consider (1.24).

case 1, g(n) is increasing: True. Assume f(n) ≺ g(n). According to (1.4) on page 1,

∀c > 0, ∃n0 : ∀n ≥ n0, 0 ≤ f(n) < c.g(n) (1.25)

It follows that, for any c > 0 and all sufficiently large n,

af(n) < ac.g(n) (1.26)

We have to prove that:

∀k > 0, ∃n1 : ∀n ≥ n1, 0 ≤ af(n) < k.ag(n)

0 ≤ af(n) is trivially true so our task reduces to proving that for any k > 0 and all
sufficiently large n,

af(n) < k.ag(n) = aloga k.ag(n) = aloga k+g(n)

7



Renaming loga k to k1, what we have to prove is that for any constant k1 > 0 and
sufficiently large n,

af(n) < ak1+g(n) (1.27)

Consider any fixed k1 > 0. No matter how large k1 is, for any positive constant c1 > 1,
for all sufficiently large n—provided that g(n) is increasing—it is the case that:

k1 + g(n) ≤ c1.g(n)

Therefore, under the same assumptions,

ak1+g(n) ≤ ac1.g(n) (1.28)

From (1.27) and (1.28) it follows that what we have to prove is:

af(n) < ac1.g(n), for any constant c1 > 1. (1.29)

Compare (1.29) with (1.26), which is given. Since (1.26) holds for any positive c,
certainly it holds with the additional restriction that the constant is greater than one,
and thus we conclude that (1.29) is true.

case 2, g(n) is not increasing: In this case (1.24) is not true. Consider Problem 8. As

it is shown there, 1
n2 ≺ 1

n but 2
1

n2 6≺ 2
1
n . �

Problem 10. Let a be a constant such that a > 1. Which of the following are true:

af(n) ≈ ag(n) ⇒ f(n) ≈ g(n) (1.30)

af(n) � ag(n) ⇒ f(n) � g(n) (1.31)

af(n) ≺ ag(n) ⇒ f(n) ≺ g(n) (1.32)

for all asymptotically positive functions f(n) and g(n).

Solution:
(1.30) is true, if g(n) is increasing. Suppose there exist positive constants c1 and c2 and
some n0 such that

0 ≤ c1.ag(n) ≤ af(n) ≤ c2.ag(n),∀n ≥ n0

Since a > 1 and f(n) and g(n) are asymptotically positive, for all sufficiently large n, the
exponents have strictly larger than one values. Therefore, we can take logarithm to base a
(ignoring the leftmost inequality) to obtain:

loga c1 + g(n) ≤ f(n) ≤ loga c2 + g(n)

First note that for any constant k1 such that 0 < k1 < 1, k1.g(n) ≤ loga c1 + g(n) for all
sufficiently large n, regardless of whether the logarithm is positive or negative or zero. Then
note that for any constant k2 such that k2 > 1, loga c2 + g(n) ≤ k2.g(n) for all sufficiently

8



large n, regardless of whether the logarithm is positive or negative or zero. Conclude there
exists n1, such that

k1.g(n) ≤ f(n) ≤ k2.g(n), ∀n ≥ n1

However, if g(n) is not increasing, (1.30) is not true. We already showed (see (1.20)) that

limn→∞
(

2
1

n2

2
1
n

)
= 1. According to (1.13), it follows that 2

1

n2 ≈ 2
1
n . However, 1

n2 6≈ 1
n (see

(1.21)).

Consider (1.31). It is true if g(n) is increasing and not true otherwise. If g(n) is increasing,

the proof can be done easily as in the case with (1.30). Otherwise, observe that 2
1

n2 � 2
1
n

but 1
n2 6� 1

n

Now consider (1.32). It is not true. As a counterexample, consider that 2n ≺ 22n but
n 6≺ 2n. �

Problem 11. Let a be a constant such that a > 1. Which of the following are true:

logaφ(n) ≈ logaψ(n) ⇒ φ(n) ≈ ψ(n) (1.33)
logaφ(n) � logaψ(n) ⇒ φ(n) � ψ(n) (1.34)
logaφ(n) ≺ logaψ(n) ⇒ φ(n) ≺ ψ(n) (1.35)

φ(n) ≈ ψ(n) ⇒ logaφ(n) ≈ logaψ(n) (1.36)
φ(n) � ψ(n) ⇒ logaφ(n) � logaψ(n) (1.37)
φ(n) ≺ ψ(n) ⇒ logaφ(n) ≺ logaψ(n) (1.38)

for all asymptotically positive functions φ(n) and ψ(n).

Solution:
Let φ(n) = af(n) and ψ(n) = ag(n), which means that logaφ(n) = f(n) and logaψ(n) =

g(n). Consider (1.22) and conclude that (1.33) is not true. Consider (1.30) and conclude
that (1.36) is true if ψ(n) is increasing, and false otherwise. Consider (1.23) and conlude
that (1.34) is not true. Consider (1.31) and conclude that (1.37) is true if ψ(n) is increasing,
and false otherwise. Consider (1.24) and conclude that (1.35) is true if ψ(n) is increasing,
and false otherwise. Consider (1.32) and conlude that (1.38) is not true. �

Problem 12. Prove that for any two asymptotically positive functions f(n) and g(n),
f(n) ≈ g(n) iff f(n) � g(n) and f(n) � n.

Solution:
In one direction, assume that f(n) ≈ g(n). Then there exist positive constants c1 and c2
and some n0, such that:

0 ≤ c1.g(n) ≤ f(n) ≤ c2.g(n), ∀n ≥ n0

It follows that,

0 ≤ c1.g(n) ≤ f(n), ∀n ≥ n0 (1.39)
0 ≤ f(n) ≤ c2.g(n), ∀n ≥ n0 (1.40)

9



In the other direction, assume that f(n) � g(n) and f(n) � g(n). Then there exists a
positive constant c ′ and some n ′

0, such that:

0 ≤ f(n) ≤ c ′.g(n),∀n ≥ n ′
0

and there exists a positive constant c ′′ and some n ′′
0 , such that:

0 ≤ c ′′.g(n) ≤ f(n),∀n ≥ n ′′
0

It follows that:

0 ≤ c ′.g(n) ≤ f(n) ≤ c ′′.g(n),∀n ≥ max {n ′
0, n

′′
0 }

�

Lemma 1 (Stirling’s approximation).

n! =
√
2πn

nn

en

(
1+Θ

(
1

n

))
(1.41)

�

Here, Θ
(

1
n

)
means any function that is in the set Θ

(
1
n

)
.

Problem 13. Prove that

n! ≈ n lgn (1.42)

Solution:
Use Stirling’s approximation, ignoring the

(
1+Θ

(
1
n

))
factor, and take logarithm of both

sides to obtain:

lg (n!) = lg (
√
2π) + lgn+ n lgn− n lg e

By Property 9 of the relations, lg (
√
2π) + lgn+ n lgn− n lg e ≈ n lgn. �

Problem 14. Prove that for any constant a > 1,

an ≺ n! ≺ nn (1.43)

Solution:
Because of the factorial let us restrict n to positive integers.

lim
n→∞

n.(n− 1).(n− 2) . . . 2.1

a . a . a . . . a . a︸ ︷︷ ︸
n times

 = 0

lim
n→∞

n.(n− 1).(n− 2) . . . 2.1

n . n . n . . . n . n︸ ︷︷ ︸
n times

 =∞
�

10



Problem 15 (polylogarithm versus constant power of n). Let a, k and ε be any constants,
such that k ≥ 1, a > 1, and ε > 0. Prove that:

(loga n)k ≺ nε (1.44)

Solution:
Take loga of both sides. The left-hand side yields k. loga loga n and the right-hand side
yields ε. loga n. But

k. loga loga n ≺ ε. loga n (1.45)

because

loga loga n ≺ loga n

Having in mind (1.35) we conclude immediately the desired relation holds. �

Problem 16 (polynomial versus exponent). Let a and ε be any constants, such that a > 1
and ε > 0. Prove that:

nε ≺ an (1.46)

Solution:
Take loga of both sides. The left-hand side yields ε. loga n and the right-hand side yields
n. But

ε. loga n ≺ n (1.47)

Having in mind (1.35) we conclude immediately the desired relation holds. �

Definition 1 (log-star function, [CLR00], pp. 36). Let the function lg(i) n be defined re-
cursively for nonnegative integers i as follows:

lg(i) n =


n, if i = 0

lg
(
lg(i−1) n

)
, if i > 0 and lg(i−1) n > 0

undefined, if i > 0 and lg(i−1) n < 0 or lg(i−1) n is undefined

Then

lg∗ n = min
{
i ≥ 0 | lg(i) n ≤ 1

}
�

11



According to this definition,

lg∗ 2 = 1, since lg(0) 2 = 2 and lg(1) 2 = lg
(
lg(0) 2

)
= lg (2) = 1

lg∗ 3 = 2, since lg(0) 3 = 3 and lg
(
lg(0) 3

)
= lg (lg 3) = 0.6644 . . .

lg∗ 4 = 2

lg∗ 5 = 3

. . .

lg∗ 16 = 3

lg∗ 17 = 4

. . .

lg∗ 65536 = 4

lg∗ 65537 = 5

. . .

lg∗ 265536 = 5

lg∗
(
265536 + 1

)
= 6

. . .

Obviously, every real number t can be represented by a tower of twos:

t = 222..
.2

s

where s is a real number such that 1 < s ≤ 2. The height of the tower is the number of
elements in this sequence. For instance,

number its tower of twos the height of the tower

2 2 1

3 21.5849625007... 2

4 22 2

5 221.2153232957...
3

16 222
3

17 2221.0223362884...

4

65536 2222

4

65537 22221.00000051642167...

5

Having that in mind, it is trivial to see that lg∗ n is the height of the tower of twos of n.

Problem 17 ([CLR00], problem 2-3, pp. 38–39). Rank the following thirty functions by
order of growth. That is, find the equivalence classes of the “≈” relation and show their

12



order by “�”.

lg (lg∗ n) 2lg
∗ n

(√
2
)lg n

n2 n! (lgn)!(
3

2

)n

n3 lg2 n lg (n)! 22n
n

1
lg n

ln lnn lg∗n n.2n nlg lg n lnn 1

2lg n (lgn)lg n en 4lg n (n+ 1)!
√

lgn

lg∗ (lgn) 2
√

2 lg n n 2n n lgn 22n+1

Solution:

22n+1 � 22n
because 22n+1

= 22.2n
= 22n × 22n

.

22n � (n + 1)! To see why, take logarithm to base two of both sides. The left-hand
side becomes 2n, the right-hand side becomes lg ((n+ 1)!) By (1.41), lg ((n+ 1)!) ≈ (n+

1) lg (n+ 1), and clearly (n + 1) lg (n+ 1) ≈ n lgn. As 2n � n lgn, by (1.35) we have
22n � (n+ 1)!

(n+ 1)! � n! because (n+ 1)! = (n+ 1)× n!

n! � en by (1.43).

en � n.2n. To see why, consider:

lim
n→∞ n.2n

en
= lim

n→∞ n
en

2n

= lim
n→∞ n(

e
2

)n = 0

n.2n � 2n

2n �
(

3
2

)n
. To see why, consider:

lim
n→∞

(
3
2

)n
2n

= lim
n→∞

(
3

4

)n

= 0

(
3
2

)n � nlg (lg n). To see why, take lg of both sides. The left-hand side becomes n. lg
(

3
2

)
,

the right-hand side becomes lgn.lg (lgn). Clearly, lg2 n � lgn.lg (lgn) and n � lg2 n by
(1.44). By transitivity, n � lgn.lg (lgn), and so n. lg

(
3
2

)
� lgn.lg (lgn). Apply (1.35) and

the desired conclusion follows.

(lgn)lg n = nlg (lg n), which is obvious if we take lg of both sides. So, (lgn)lg n ≈ nlg (lg n).

(lgn)lg n � (lgn) ! To see why, substitute lgn with m, obtaining mm � m! and apply
(1.43).

13



(lgn) ! � n3. Take lg of both sides. The left-hand side becomes lg ((lgn) !). Substi-
tute lgn with m, obtaining lg (m!). By (1.42), lg (m!) ≈ m lgm, therefore lg ((lgn) !) ≈
(lgn).(lg (lgn)). The right-hand side becomes 3. lgn. Compare (lgn).(lg (lgn)) with 3. lgn:

lim
n→∞ 3. lgn

(lgn).(lg (lgn))
= lim

n→∞ 3

lg (lgn)
= 0

It follows that (lgn).(lg (lgn)) � 3. lgn. Apply (1.35) to draw the desired conclusion.

n3 � n2.

n2 � n lgn.

lgn! ≈ n lgn (see (1.42)).

n lgn � n.

n ≈ 2lg n because n = 2lg n by the properties of the logarithm.

n � (
√
2)lg n because (

√
2)lg n = 2

1
2

lg n = 2lg
√

n =
√
n and clearly n �

√
n.

(
√
2)lg n � 2

√
2 lg n. To see why, note that lgn �

√
lgn, therefore 1

2 . lgn �
√
2.
√

lgn =
√
2 lgn. Apply (1.24) and conclude that 2

1
2
. lg n � 2

√
2 lg n, i.e. (

√
2)lg n � 2

√
2 lg n.

2
√

2 lg n � lg2 n. To see why, take lg of both sides. The left-hand side becomes
√
2 lgn and

the right-hand side becomes lg (lg2 n) = 2. lg (lgn). Substitute lgn with m: the left-hand
side becomes

√
2m =

√
2
√
m =

√
2.m

1
2 and the right-hand side becomes 2 lgm. By (1.44)

we know that m
1
2 � lgm, therefore

√
2.m

1
2 � 2 lgm, therefore

√
2m � 2 lgm, therefore√

2 lgn � lg (lg2 n). Having in mind (1.35) we draw the desired conclusion.

lg2 n � lnn. To see this is true, observe that lnn = lg n
lg e .

lnn �
√

lgn.

√
lgn � ln lnn. The left-hand side is

√
ln n
ln 2 . Substitute lnn with m and the claim becomes

1√
ln 2
.
√
m � lnm, which follows from (1.44).

ln lnn � 2lg∗n. To see why this is true, note that ln lnn ≈ lg lgn and rewrite the claim as
lg lgn � 2lg∗n. Take lg of both sides. The left-hand side becomes lg lg lgn, i.e. a triple
logarithm. The right-hand side becomes lg∗ n. If we think of n as a tower of twos, it is
obvious that the triple logarithm decreases the height of the tower with three, while, as
we said before, the log-star measures the height of the tower. Clearly, the latter is much
smaller than the former.

2lg
∗ n � lg∗ n. Clearly, for any increasing function f(n), 2f(n) � f(n).

lg∗ n ≈ lg∗ (lgn). Think of n as a tower of twos and note that the difference in the height
of n and lgn is one. Therefore, lg∗ (lgn) = (lg∗ n) − 1.

14



lg∗ n � lg (lg∗ n). Substitute lg∗ n with f(n) and the claim becomes f(n) � lg f(n) which is
clearly true since f(n) is increasing.

lg (lg∗ n) � 1.

1 ≈ n
1

lg n . Note that n
1

lg n = 2: take lg of both sides, the left-hand side becomes lg
(
n

1
lg n

)
=

1
lg n . lgn = 1 and the right-hand side becomes lg 2 = 1. �

Problem 18. Give an example of a function f(n), n ∈ N+, such that for function g(n)

among the thirty functions from Problem 17, f(n) 6� g(n) and f(n) 6� g(n).

Solution:
For instance,

f(n) =

{
22n+2

, if n is even
1
n , if n is odd

�

Problem 19. Is it true that for any asymptotically positive functions f(n) and g(n), f(n)+

g(n) ≈ min (f(n), g(n))?

Solution:
No. As a counterexample, consider f(n) = n and g(n) = 1. Then min (f(n), g(n)) = 1,
f(n) + g(n) = n+ 1, and certainly n+ 1 6≈ 1. �

Problem 20. Is it true that for any asymptotically positive function f(n), f(n) � (f(n))2?

Solution:
If f(n) is increasing, it is trivially true. If it is decreasing, however, it may not be true:
consider (1.17). �

Problem 21. Is it true that for any asymptotically positive function f(n), f(n) ≈ f(n
2 )?

Solution:
No. As a counterexample, consider f(n) = 2n. Then f(n

2 ) = 2
n
2 . As we already saw,

2n 6≈ 2
n
2 . �

Problem 22. Compare the growth of nlg n and (lgn)n.

Solution:
Take logarithm of both sides. The left-hand side becomes (lgn)(lgn) = lg2 n, the right-
hand side, n. lg (lgn). As n. lg (lgn) � lg2 n, it follows that (lgn)n � nlg n. �

Problem 23. Compare the growth of nlg lg lg n and (lgn)!

15



Solution:
Take lg of both sides. The left-hand side becomes (lgn).(lg lg lgn), the right-hand side
becomes lg ((lgn)!). Substitute lgn with m is the latter expression to get lg ((m)!) ≈
m lgm. And that is (lgn).(lg lgn). Since (lgn).(lg lgn) � (lgn).(lg lg lgn), it follows that
(lgn)! � nlg lg lg n. �

Problem 24. Let n!! = (n!)!. Compare the growth of n!! and (n− 1)!!× ((n− 1)!)n!.

Solution:
Let (n− 1)! = v. Then n! = nv. We compare

n!! vs (n− 1)!!× ((n− 1)!)n!

(nv)! vs v!× vnv

Apply Stirling’s approximation to both sides to get:

√
2πnv

(nv)nv

env
vs

√
2πv

vv

ev
× vnv

√
2πnv (nv)nv vs

√
2πv e(n−1)v × vv × vnv

Divide by
√
2πv vnv both sides:

√
nnnv vs e(n−1)v × vv

Ignore the
√
n factor on the left. If we derive without it that the left side grows faster,

surely it grows even faster with it. So, consider:

nnv vs e(n−1)v × vv

Raise both sides to 1
v :

nn vs en−1 × v

That is,

nn vs en−1 × (n− 1)!

Apply Stirling’s aproximation second time to get:

nn vs en−1 ×
√
2π(n− 1)

(n− 1)n−1

en−1

That is,

nn vs
√
2π(n− 1) (n− 1)n−1

Since
√
2π(n− 1) (n− 1)n−1 ≈ (n− 1)(n− 1

2), we have

nn vs (n− 1)(n− 1
2)

Clearly, nn � (n− 1)(n− 1
2), therefore n!! � (n− 1)!!× ((n− 1)!)n!. �

16



Lemma 2. The function series:

S(x) =
ln x
x

+
ln2 x

x2
+

ln3 x

x3
+ . . .

is convergent for x > 1. Furthermore, limx→∞ S(x) = 0.

Proof:
It is well known that the series

S ′(x) =
1

x
+
1

x2
+
1

x3
+ . . .

called geometric series is convergent for x > 1 and S ′(x) = 1
x−1 when x > 1. Clearly,

limx→∞ S ′(x) = 0. Consider the series

S ′′(x) =
1√
x

+
1

(
√
x)2

+
1

(
√
x)3

+ . . . (1.48)

It is a geometric series and is convergent for
√
x > 1, i.e. x > 1, and limx→∞ S ′′(x) = 0.

Let us rewrite S(x) as

S(x) =
1

√
x.

√
x

ln x

+
1

(
√
x)2.

(√
x

ln x

)2
+

1

(
√
x)3.

(√
x

ln x

)3
+ . . . (1.49)

For each term fk(x) = 1

(
√

x)k.
“ √

x
ln x

”k of S(x), k ≥ 1, for large enough x, it is the case that

fk(x) < gk(x) where gk(x) = 1

(
√

x)
k is the kth term of S ′′(x). To see why this is true,

consider (1.44). Then the fact that S ′′(x) is convergent and limx→∞ S ′′(x) = 0 implies the
desired conclusion. �

Problem 25 ([Knu73], pp. 107). Prove that n
√
n ≈ 1.

Solution:
We will show an even stronger statement: limn→∞ n

√
n = 1. It is known that:

ex = 1+ x+
x2

2!
+
x3

3!
+ . . .

Note that n
√
n = eln

n√n = e(
ln n
n ).

e(
ln n
n ) = 1+

lnn
n

+

(
ln n
n

)2
2!

+

(
ln n
n

)3
3!

+ . . .︸ ︷︷ ︸
T(n)

Lemma 2 implies limn→∞ T(n) = 0. It follows that limn→∞ n
√
n = 1. �

We can also say that n
√
n = 1+O

(
lg n
n

)
, n
√
n = 1+ lg n

n +O
(

lg2 n
n2

)
, etc, where the big-Oh

notation stands for any function of the set.

17



Problem 26 ([Knu73], pp. 107). Prove that n
(

n
√
n− 1

)
≈ lnn.

Solution:
As

n
√
n = 1+

lnn
n

+

(
ln n
n

)2
2!

+

(
ln n
n

)3
3!

+ . . .

it is the case that:

n
√
n− 1 =

lnn
n

+

(
ln n
n

)2
2!

+

(
ln n
n

)3
3!

+ . . .

Multiply by n to get:

n
(

n
√
n− 1

)
= lnn+

(lnn)2

2!n
+

(lnn)3

3!n2
+ . . .︸ ︷︷ ︸

T(n)

Note that limn→∞ T(n) = 0 by an obvious generalisation of Lemma 2. The claim follows
immediately. �

Problem 27. Compare the growth of nn, (n+ 1)n, nn+1, and (n+ 1)n+1.

Solution:
nn ≈ (n+ 1)n because

lim
n→∞ (n+ 1)n

nn
= lim

n→∞
(
n+ 1

n

)n

= lim
n→∞

(
1+

1

n

)n

= e

Clearly, nn ≺ n(n+1) = n.nn. And n(n+1) ≈ (n+ 1)(n+1):

lim
n→∞ (n+ 1)n+1

nn+1
= lim

n→∞
(
1+

1

n

)n+1

= lim
n→∞

(
1+

1

n

)n

lim
n→∞

(
1+

1

n

)
= e.1 = e

�

Problem 28. Let k be a positive integer constant. Prove that

1+ k+ k2 + k3 + . . .+ kn = Θ(kn)

Solution:
First assume n is an integer variable. Then

1+ k+ k2 + k3 + . . .+ kn =
kn+1 − 1

k− 1
= Θ(kn)

The result can obviously be extended for real n, provided we define appropriately the sum.
For instance, let the sum be

S(n) = 1+ k+ k2 + k3 + . . .+ kbn−2c + kbn−1c + kn

By the above result, S(n) = kn +Θ
(
kbn−1c) = Θ(kn). �

18



Chapter 2

Iterative Algorithms

In this section we compute the asymptotic running time of algorithms that use the “for”
and “while” branching statements but make no calls to other algorithms or themselves.
Consider the following trivial algorithm.

Algorithm Add-1(n: nonnegative integer)
1 a ← 0
2 for i ← 1 to n

3 a ← a+ i

4 return a

We assume the expression on line 3 requires constant time to be executed regardless of how
large n is. Let c = const be that time. We further assume that line 2 does not take any time
– certainly, not a realistic assumption since at every iteration the control variable i must be
incremented and then compared against n but we nevertheless make it. Under these two
assumptions the total execution time of the for loop is precisely c.n. The running time of
the algorithm is c1 + c.n, where c1 is the execution time of the assignment at line 1. Using
the notatons from the previous section, the running time is Θ(n).

Now consider another algorithm:

Algorithm Add-2(n: nonnegative integer)
1 return n ∗ (n+ 1)/2

Clearly, Add-2 is equivalent to Add-1 but the running time of Add-2 is, under the said
assumptions, constant. We denote constant running time by Θ(1)†. It is not incorrect to
say the running time of both algorithms is O(n) but the big-Theta notation is superior as
it grasps precisely—in the asymptotic sense—the algorithm’s running time.

Consider the following iterative algorithm:

Algorithm Add-3(n: nonnegative integer)
1 a ← 0
2 for i ← 1 to n

†All constants are bit-Theta of each other so we might have as well used Θ(1000) or Θ(0.0001) but we
prefer the simplest form Θ(1).

19



3 for j ← 1 to n

4 a ← a+ 1

5 return a

The execution time of lines 3–4 is Θ(n) for the same reason that Add-1 has running time
Θ(n). Lines 3–4 are executed n times because the first control variable, viz. i, takes n
values 1, 2, . . . , n, and for each of those we have one execution of lines 3–4. Therefore, the
running time of Add-3 is Θ(n2). Another way to derive that is to note that the running

time of lines 2–4 is given by
n∑

i=1

n∑
j=1

c = c

n∑
i=1

n∑
j=1

1 = c.n2 = Θ(n2).

Algorithm Add-3 has two nested cycles. We can generalise that the running time of k
nested cycles of the type

Algorithm ()
1 for i1 ← 1 to n

2 for i2 ← 1 to n

3 . . .
4 for ik ← 1 to n

5 expression

where expression is computed in Θ(1), has running time Θ(nk).

Let us consider a modification of Add-3:

Algorithm Add-4(n: nonnegative integer)
1 a ← 0
2 for i ← 1 to n

3 for j ← i to n

4 a ← a+ 1

5 return a

The running time is determined by the number of times line 4 is executed, analogously to
Add-3:

n∑
i=1

n∑
j=i

1 =

n∑
i=1

( n∑
j=1

1︸ ︷︷ ︸
n

−

i−1∑
j=1

1︸ ︷︷ ︸
i−1

)
=

n∑
i=1

(n− i+ 1) =

n∑
i=1

(n+ 1) −

n∑
i=1

i =

n(n+ 1) −
n(n+ 1)

2
=
1

2
n2 +

1

2
n = Θ(n2) (see Problem 4 on page 5.)

It follows that asymptotically Add-4 has the same running time as Add-3.

Consider the following algorithm:

Algorithm A1(n: nonnegative integer)
1 for i ← 1 to n

2 for j ← i+ 1 to n

3 expression

20



where expression is computed in constant time c. The overall running time equals

n∑
i=1

n∑
j=i+1

c = c.

n∑
i=1

( n∑
j=1

1︸ ︷︷ ︸
n

−

i∑
j=1

1︸ ︷︷ ︸
i

)
= c.

n∑
i=1

(n− i) = c

(
n∑

i=1

n−

n∑
i=1

i

)
=

c

(
n2 −

n(n+ 1)

2

)
=
c

2
n2 −

c

2
n = Θ(n2)

If we are given an algorithm having input some positive integer n, a single set of nested
cycles whose boundary conditions depend on n, and inside the nested cycles, constant time
expression, a possible way of determining the running time is to change the expression to
a← a + 1, add an initial a← 0 assignment, and determine the value of a at the end as a
function of n. Typically that involves manipulation of sums. However, that method gives
more detailed answer than necessary. Consider the following algorithm:

Algorithm A2(n: positive integer)
1 a ← 0

2 for i ← 1 to n− 1

3 for j ← i+ 1 to n

4 for k ← 1 to j

5 a ← a+ 1

6 return a

We are asked to determine a that A2 returns as a function of n. The answer clearly is
n−1∑
i=1

n∑
j=i+1

j∑
k=1

1, we just need to find an equivalent closed form.

n−1∑
i=1

n∑
j=i+1

j∑
k=1

1 =

n−1∑
i=1

n∑
j=i+1

j =

n−1∑
i=1

 n∑
j=1

j−

i∑
j=1

j

 =

n−1∑
i=1

(
1

2
n(n+ 1) −

1

2
i(i+ 1)

)
=

n−1∑
i=1

(
1

2
n(n+ 1)

)
−
1

2

n−1∑
i=1

(i2 + i) =

1

2
n(n+ 1)(n− 1) −

1

2

n−1∑
i=1

i2 −
1

2

n−1∑
i=1

i

But
n∑

i=1

i2 =
1

6
n(n + 1)(2n + 1), therefore

n−1∑
i=1

i2 =
1

6
(n − 1)n(2n − 1). Further,

n−1∑
i=1

i =

21



1

2
n(n− 1), so we have

1

2
n(n− 1)(n+ 1) −

1

12
n(n− 1)(2n− 1) −

1

4
n(n− 1) =

1

2
n(n− 1)

(
n+ 1−

1

6
(2n− 1) −

1

2

)
=

1

12
n(n− 1)(6n+ 3− 2n+ 1) =

1

12
n(n− 1)(4n+ 4) =

1

3
n(n− 1)(n+ 1)

That implies that the running time of A2 is Θ(n3). Clearly A2 is equivalent to the following
algorithm.

Algorithm A3(n: positive integer)
1 return n(n− 1)(n+ 1)/3

whose running time is Θ(1).

Algorithm A4(n: positive integer)
1 a ← 0

2 for i ← 1 to n

3 for j ← i+ 1 to n

4 for k ← i+ j− 1 to n

5 a ← a+ 1

6 return a

Problem 29. Find the running time of algorithm A4 by determining the value of a it
returns as a function of n, f(n). Find a closed form for f(n).

Solution:

f(n) =

n∑
i=1

n∑
j=i+1

n∑
k=i+j−1

1

Let us evaluate the innermost sum
n∑

k=i+j−1

1. It is easy to see that the lower boundary

i+ j− 1 may exceed the higher boundary n. If that is the case, the sum is zero because the
index variable takes values from the empty set. More precisely, for any integer t,

n∑
i=t

1 =

{
n− t+ 1 , if t ≤ n
0 , else

It follows that

n∑
k=i+j−1

1 =

{
n− i− j+ 2 , if i+ j− 1 ≤ n ⇔ j ≤ n− i+ 1

0 , else

22



Then

f(n) =

n∑
i=1

n−i+1∑
j=i+1

(n+ 2− (i+ j))

Now the innermost sum is zero when i + 1 > n − i + 1 ⇔ 2i > n ⇔ i >
⌊

n
2

⌋
, therefore

the maximum i we have to consider is
⌊

n
2

⌋
:

f(n) =

bn
2 c∑

i=1

n−i+1∑
j=i+1

(n+ 2− (i+ j)) =

(n+ 2)

bn
2 c∑

i=1

n−i+1∑
j=i+1

1−

bn
2 c∑

i=1

i

n−i+1∑
j=i+1

1

−

bn
2 c∑

i=1

n−i+1∑
j=i+1

j =

(n+ 2)

bn
2 c∑

i=1

(n− i+ 1− (i+ 1) + 1) −

bn
2 c∑

i=1

i(n− i+ 1− (i+ 1) + 1)−

bn
2 c∑

i=1

n−i+1∑
j=1

j−

i∑
j=1

j

 =

(n+ 2)

bn
2 c∑

i=1

(n− 2i+ 1) −

bn
2 c∑

i=1

i(n− 2i+ 1)−

bn
2 c∑

i=1

(
(n− i+ 1)(n− i+ 2)

2
−
i(i+ 1)

2

)
=

(n+ 2)(n+ 1)

bn
2 c∑

i=1

1− 2(n+ 2)

bn
2 c∑

i=1

i− (n+ 1)

bn
2 c∑

i=1

i+ 2

bn
2 c∑

i=1

i2−

1

2

bn
2 c∑

i=1

(
(n+ 1)(n+ 2) − i(2n+ 3)+ 6 i2− 6 i2 − i)

)
=

(n+ 2)(n+ 1)

bn
2 c∑

i=1

1− (3n+ 5)

bn
2 c∑

i=1

i+ 2

bn
2 c∑

i=1

i2−

(n+ 1)(n+ 2)

2

bn
2 c∑

i=1

1+
(2n+ 4)

2

bn
2 c∑

i=1

i =

⌊n
2

⌋
(n+ 1)(n+ 2) − (3n+ 5)

⌊
n
2

⌋ (⌊
n
2

⌋
+ 1
)

2
+ 2

⌊
n
2

⌋ (⌊
n
2

⌋
+ 1
) (
2
⌊

n
2

⌋
+ 1
)

6
−

1

2

⌊n
2

⌋
(n+ 1)(n+ 2) + (n+ 2)

⌊
n
2

⌋ (⌊
n
2

⌋
+ 1
)

2
=⌊

n
2

⌋
(n+ 1)(n+ 2)

2
−

⌊
n
2

⌋ (⌊
n
2

⌋
+ 1
)
(2n+ 3)

2
+

⌊
n
2

⌋ (⌊
n
2

⌋
+ 1
) (
2
⌊

n
2

⌋
+ 1
)

3

23



When n is even, i.e. n = 2k for some k ∈ N+,
⌊n
2

⌋
= k and so

f(n) =
k(2k+ 1)(2k+ 2)

2
−
k(k+ 1)(4k+ 3)

2
+
k(k+ 1)(2k+ 1)

3
=

k(k+ 1)(4k+ 2) − k(k+ 1)(4k+ 3)

2
+
k(k+ 1)(2k+ 1)

3
=

k(k+ 1)

(
−
1

2
+
2k+ 1

3

)
=
k(k+ 1)(4k− 1)

6

When n is odd, i.e. n = 2k+ 1 for some k ∈ N,
⌊n
2

⌋
= k and so

f(n) =
k(2k+ 2)(2k+ 3)

2
−
k(k+ 1)(4k+ 5)

2
+
k(k+ 1)(2k+ 1)

3
=

k(k+ 1)(4k+ 6) − k(k+ 1)(4k+ 5)

2
+
k(k+ 1)(2k+ 1)

3
=

k(k+ 1)

(
1

2
+
2k+ 1

3

)
=
k(k+ 1)(4k+ 5)

6

Obviously, f(n) = Θ(n3). �

Algorithm A5(n: positive integer)
1 a ← 0

2 for i ← 1 to n

3 for j ← i to n

4 for k ← n+ i+ j− 3 to n

5 a ← a+ 1

6 return a

Problem 30. Find the running time of algorithm A4 by determining the value of a it
returns as a function of n, f(n). Find a closed form for f(n).

Solution:
We have three nested for cycles and it is certainly true that f(n) = O(n3). However, now
f(n) 6= Θ(n3). It is easy to see that for any large enough n, line 5 is executed for only four
values of the ordered triple 〈i, j, k〉. Namely,

〈i, j, k〉 ∈
{
〈1, 1, n− 1〉,
〈1, 1, n〉,
〈1, 2, n− 1〉,
〈2, 1, n〉

}
because the condition in the innermost loop (line 5) requires that i + j ≤ 3. So, f(n) = 4,
thus f(n) = Θ(1). �
Problem 30 raises a question: does it make sense to compute the running time of an iterative
algorithm by counting how many time the expression in the innermost loop is executed?
At lines 2 and 3 of A5 there are condition evaluations and variable increments – can we

24



assume they take no time at all? Certainly, if that was a segment of a real-world program,
the outermost two loops would be executed Θ(n2) times, unless some sort of optimisation
was applied by the compiler. Anyway, we postulate that the running time is evaluated by
counting how many times the innermost loop is executed. Whether that is a realistic model
for real-world computation or not, is a side issue.

Algorithm A6(a1, a2, . . . an: array of positive distinct integers, n ≥ 3)
1 S: a stack of positive integers
2 (∗ P(S) is a predicate. P(S) is true iff there are at least two ∗)
3 (∗ elements in S and top(S) > next-to-top(S) ∗)
4 push(a1, S)

5 push(a2, S)

6 for i ← 3 to n

7 while P(S) do
8 pop(S)

9 push(ai, S)

Problem 31. Find the asymptotic growth rate of running time of A6. Assume the predicate
P is evaluated in Θ(1) time and the push and pop operations are executed in Θ(1) time.

Solution:
Certainly, the running time is O(n2) because the outer loop runs Θ(n) times and the inner
loop runs in O(n) time: note that for each concrete i, the inner loop (line 8) cannot be
executed more than n− 2 times sinse there are at most n elements in S and each execution
of line 8 removes one element from S.

However, a more precise analysis is possible. Observe that each element of the array is
being pushed in S and may be popped out of S later but only once. It follows that line 8
cannot be exesuted more than n times altogether, i.e. for all i, and so the algorithm runs
in Θ(n) time. �

Algorithm A7(a1, a2, . . . an: array of positive distinct integers, x: positive integer)
1 i ← 1

2 j ← n

3 while i ≤ j do
4 k ← ⌊

i+j
2

⌋
5 if x = ak

6 return k

7 else if x < ak

8 j ← k− 1

9 else i ← k+ 1

10 return −1

Problem 32. Find the asymptotic growth rate of running time of A7.

25



Solution:
The following claim is a loop invariant for A7:

For every iteration of the while loop of A7, if the iteration number is t, t ≥ 0,
it is the case that:

j− i <
n

2t
(2.1)

We prove it by induction on t. The basis is t = 0, i.e. the fisrt time the execution reaches
line 3. Then j is n, i is 1, and indeed n − 1 <

n

20
= n. Assume that at iteration t, t ≥ 1,

(2.1) holds. Consider iteration t+1. There are two ways to get from iteration t to iteration
t+ 1 and we consider them in separate cases.

Case I: we exit iteration t through line 8 In this case, j becomes
⌊
i+ j

2

⌋
− 1 and i

stays the same when going from iteration t to iteration t+ 1.

j− i

2
<

n

2t+1
directly from (2.1)

j+ i− 2i

2
<

n

2t+1

j+ i

2
− i <

n

2t+1⌊
j+ i

2

⌋
− 1︸ ︷︷ ︸

the new j

− i <
n

2t+1
since bmc− 1 ≤ m, ∀m ∈ R+

And so the induction step follows from the induction hypothesis.
Case II: we exit iteration t through line 9 In this case, j stays the same and i becomes⌊
i+ j

2

⌋
+ 1 when going from iteration t to iteration t+ 1.

j− i

2
<

n

2t+1
directly from (2.1)

2j− j− i

2
<

n

2t+1

j−
j+ i

2
<

n

2t+1

j−

(⌊
j+ i

2

⌋
+ 1

)
︸ ︷︷ ︸

the new i

<
n

2t+1
since bmc+ 1 ≥ m, ∀m ∈ R+

And so the induction step follows from the induction hypothesis.

Having proven (2.1), we see that 2t <
n

j− i
. It is obvious that j − i ≥ 1 at the beginning

of any iteration of the loop, so
n

j− i
≤ n, and therefore 2t < n ⇔ t < dlgne. Recall that

t is, after A7 finishes, the number of times the loop has been executed. It follows that the
running time of A7 is O(lgn). The logarithmic bound is not tight in general – obviously,

26



the best-case running time is Θ(1). The worst-case running time, however, is Ω(lgn), so
the worst case running time is Θ(lgn). Now we prove the worst-case running time is Ω(n).

The following claim is a loop invariant for A7:

For every iteration of the while loop of A7, if the iteration number is t, t ≥ 0,
it is the case that:

n

2t+1
− 4 < j− i (2.2)

We prove it by induction on t. The basis is t = 0, i.e. the fisrt time the execution reaches
line 3. Then j is n, i is 1, and indeed

n

21+0
=
n

2
< n− 1, for large enough n. Assume that

at iteration t, t ≥ 1, (2.2) holds. Consider iteration t+ 1. There are two ways to get from
iteration t to iteration t+ 1 and we consider them in separate cases.

Case I: we exit iteration t through line 8 In this case, j becomes
⌊
i+ j

2

⌋
− 1 and i

stays the same when going from iteration t to iteration t+ 1.

n

2t+2
− 2 <

j− i

2
directly from (2.2)

n

2t+2
− 2 <

j+ i− 2i

2
n

2t+2
− 2 <

j+ i

2
− i

n

2t+2
− 4 <

j+ i

2
− 2− i

n

2t+2
− 4 <

⌊
j+ i

2

⌋
− 1︸ ︷︷ ︸

the new j

− i since m− 2 ≤ bmc− 1, ∀m ∈ R+

Case II: we exit iteration t through line 9 In this case, j stays the same and i becomes⌊
i+ j

2

⌋
+ 1 when going from iteration t to iteration t+ 1.

n

2t+2
− 2 <

j− i

2
n

2t+2
− 2 <

2j− j− i

2
n

2t+2
− 2 < j−

j+ i

2
n

2t+2
− 4 < j−

j+ i

2
− 2

n

2t+2
− 4 < j−

(
j+ i

2
+ 2

)
n

2t+2
− 4 < j−

(⌊
j+ i

2

⌋
+ 1

)
︸ ︷︷ ︸

the new i

since m+ 2 ≥ bmc+ 1, ∀m ∈ R+

Having proven (2.2), it is trivial to prove that in the worst case, e.g. when x is not in the
array, the loop is executed Ω(lgn) times. �

27



Problem 33. Determine the asymptotic running time of the following programming seg-
ment:

s = 0;

for(i = 1; i * i <= n; i ++)

for(j = 1; j <= i; j ++)

s += n + i - j;

return s;

Solution:
The segment is equivalent to:

s = 0;
for(i = 1; i <= floor(sqrt(n)); i ++)
for(j = 1; j <= i; j ++)
s += n + i - j;

return s;

As we already saw, the running time is Θ
((√

n
)2) and that is Θ(n). �

Problem 34. Assume that An×n, Bn×n, and Cn×n are matrices of integers. Determine
the asymptotic running time of the following programming segment:

for(i = 1; i <= n; i ++)

for(j = 1; j <= n; j ++) {
s = 0;

for(k = 1; k <= n; k ++)

s += A[i][k] * B[k][j];

C[i][j] = s; }
return s;

Solution:
Having in mind the analysis of Add-3 on page 20, clearly this is a Θ(n3) algorithm. How-
ever, if consider the order of growth as a function of the length of the input, the order of
growth is Θ

(
m

3
2

)
, where m is the length of the input, i.e. m is the order of the number

of elements in the matrices and m = Θ(n2). �

Algorithm A8(a1, a2, . . . an: array of positive integers)
1 s ← 0

2 for i ← 1 to n− 4

3 for j ← i to i+ 4

4 for k ← i to j

5 s ← s+ ai

Problem 35. Determine the running time of algorithm A8.

28



Solution:
The outermost loop is executed n − 4 times (assume large enough n). The middle loop is
executed 5 times precisely. The innermost loop is executed 1, 2, 3, 4, or 5 times for j equal
to i, i+ 1, i+ 2, i+ 3, and i+ 4, respectively. Altogether, the running time is Θ(n). �

Algorithm A9(n: positive integer)
1 s ← 0

2 for i ← 1 to n− 4

3 for j ← 1 to i+ 4

4 for k ← i to j

5 s ← s+ 1

6 return s

Problem 36. Determine the running time of algorithm A9. First determine the value it
returns as a function of n.

Solution:
We have to evaluate the sum:

n−4∑
i=1

i+4∑
j=1

j∑
k=i

1

Having we mind that
j∑

k=i

1 =

{
j− i+ 1, if j ≥ i
0, else

we rewrite the sum as:

n−4∑
i=1


i−1∑
j=1

j∑
k=i

1︸ ︷︷ ︸
this is 0

+

i+4∑
j=i

j∑
k=i

1

 =

n−4∑
i=1

i+4∑
j=i

(j− i+ 1) =

n−4∑
i=1

(
(i− i+ 1) + (i+ 1− i+ 1) + (i+ 2− i+ 1) + (i+ 3− i+ 1) + (i+ 4− i+ 1)

)
=

n−4∑
i=1

(1+ 2+ 3+ 4+ 5) = 15(n− 4)

Since the returned s is 15(n− 4), the algorithm runs in Θ(n) time. �

Our notations from Chapter 1 can be generalised for two variables as follows. A bivariate
function f(n,m) is asymptotically positive iff

∃n0∃m0 : ∀n ≥ n0∀m ≥ m0, f(n,m) > 0

29



Definition 2. Let g(n,m) be an asymptotically positive function with real domain and
codomain. Then

Θ(g(n,m)) =
{
f(n,m) | ∃c1, c2 > 0, ∃n0,m0 > 0 :

∀n ≥ n0, 0 ≤ c1.g(n,m) ≤ f(n,m) ≤ c2.g(n,m)
}

Pattern matching is a computational problem in which we are given a text and a pattern
and we compute how many times or, in a more elaborate version, at what shifts, the pattern
occurs in the text. More formally, we are given two arrays of characters T and P with lengths
n and m, respectively, such that n ≥ m. For any k, 1 ≤ k ≤ n−m+ 1, we have a shift at
position k iff:

T [k] =P[k]

T [k+ 1] =P[k+ 1]

. . .

T [k+m− 1] =P[k+m− 1]

The problem then is to determine all the valid shifts. Consider the following algorithm for
that problem.

Algorithm Naive-Pattern-Mathing(T [1..n]: characters, P[1..m]: characters)
1 (∗ assume n ≥ m ∗)
2 for i ← 1 to n−m+ 1

3 if T [i, i+ 1, . . . , i+m− 1] = P

4 print “shift at” i

Problem 37. Determine the running time of algorithm Naive-Pattern-Mathing.

Solution:
The algorithm is ostensibly Θ(n) because it has a single loop with the loop control variable
running from 1 to n. That analysis, however, is wrong because the comparison at line 3
cannot be performed in constant time. Have in mind thatm can be as long as n. Therefore,
the algorihm is in fact:

Algorithm Naive-Pattern-Mathing-1(T [1..n]: characters, P[1..m]: characters)
1 (∗ assume n ≥ m ∗)
2 for i ← 1 to n−m+ 1

3 Match ← True
4 for j ← 1 to m

5 if T [i+ j− 1] 6= P[j]

6 Match ← False
7 if Match
8 print “shift at” i

30



For obvious reasons this is a Θ((n − m).m) algorithm: both the best-case and the
worst-case running times are Θ((n−m).m)†. Suppose we improve it to:

Algorithm Naive-Pattern-Mathing-2(T [1..n]: characters, P[1..m]: characters)
1 (∗ assume n ≥ m ∗)
2 for i ← 1 to n−m+ 1

3 Match ← True
4 j ← 1

5 while Match And j ≤ m do
6 if T [i+ j− 1] = P[j]

7 j ← j+ 1

8 else
9 Match ← False

10 if Match
11 print “shift at” i

Naive-Pattern-Mathing-2 has the advantage that once a mismatch is found (line 9)
the inner loop “breaks”. Thus the best-case running time is Θ(n). A best case, for instance,
is:

T = aa . . . a︸ ︷︷ ︸
n times

and P = bb . . . b︸ ︷︷ ︸
m times

However, the worst case running time is still Θ((n−m).m). A worst case is, for instance:

T = aa . . . a︸ ︷︷ ︸
n times

and P = aa . . . a︸ ︷︷ ︸
m times

It is easy to prove that (n −m).m is maximised when m varies and n is fixed for m ≈ n
2

and achieves maximum value Θ(n2). It follows that all the naive string matchings are, at
worst, quadratic algorithms. �

It is known that faster algorithms exist for the pattern matching problem. For instance,
the Knuth-Morris-Pratt [KMP77] algorithm that runs in Θ(n) in the worst case.

Problem 38. For any two strings x and y of the same length, we say that x is a circular
shift of y iff y can be broken into substrings—one of them possibly empty—y1 and y2:

y = y1 y2

such that x = y2 y1. Find a linear time algorithm, i.e. Θ(n) in the worst case, that computes
whether x is a circular shift of y or not. Assume that x 6= y.

Solution:
Run the linear time algorithm for string matching of Knuth-Morris-Pratt with input yy (y
concatenated with itself) as text and x as pattern. The algorithm will output one or more
valid shifts iff x is a circular shift of y, and zero valid shifts, otherwise. To see why, consider

†Algorithms that have the same—in asymptotic terms—running time for all inputs of the same length
are called oblivious.

31



the concatenation of y with itself when it is a circular shift of x for some y1 and y2, such
that y = y1 y2 and x = y2 y1:

y y = y1 y2 y1︸ ︷︷ ︸
this is x

y2

The running time is Θ(2n), i.e. Θ(n), at worst. �

32



Chapter 3

Recursive Algorithms and
Recurrence Relations

3.1 Preliminaries

A recursive algorithm is an algorithm that calls itself, one or more times on smaller inputs.
To prevent an infinite chain of such calls there has to be a value of the input for which the
algorithm does not call itself.

A recurrence relation in one variable is an equation, i.e. there is an “=” sign “in the
middle”, in which a function of the variable is equated to an expression that includes the
same function on smaller value of the variable. In addition to that for some basic value of
the variable, typically one or zero, an explicit value for the function is defined – that is the
initial condition†. The variable is considered by default to take nonnegative integer values,
although one can think of perfectly valid recurrence relations in which the variable is real.

Typically, in the part of the relation that is not the initial condition, the function of the
variable is written on the left-hand side of the “=” sign as, say, T(n), and the expression,
on the right-hand side, e.g. T(n) = T(n − 1) + 1. If the initial condition is, say, T(0) = 0,
we typically write:

T(n) = T(n− 1) + 1, ∀n ∈ N+ (3.1)
T(0) = 0

It is not formally incorrect to write the same thing as:

T(n− 1) = T(n− 2) + 1, ∀n ∈ N+, n 6= 1

T(0) = 0

The equal sign is interpreted as an assignment from right to left, just as the equal sign in
the C programming language, so the following “unorthodox” way of describing the same

†Note there can be more than one initial condition as in the case with the famous Fibonacci numbers:

F(n) = F(n − 1) + F(n − 2), ∀n ∈ N+
, n 6= 1

F(1) = 1

F(0) = 0

The number of initial conditions is such that the initial conditions prevent “infinite descent”.

33



relation is discouraged :

T(n− 1) + 1 = T(n), ∀n ∈ N+

0 = T(0)

Each recurrence relation defines an infinite numerical sequence, provided the variable
is integer. For example, (3.1) defines the sequence 0, 1, 2, 3, . . .. Each term of the relation,
except for the terms defined by the initial conditions, is defined recursively, i.e. in terms of
smaller terms, hence the name. To solve a recurrence relation means to find a non-recursive
expression for the same function – one that defines the same sequence. For example, the
solution of (3.1) is T(n) = n.

It is natural to describe the running time of a recursive algorithm by some recurrence
relation. However, since we are interested in asymptotic running times, we do not need the
precise solution of a “normal” recurrence relation as described above. A normal recurrence
relation defines a sequence of numbers. If the time complexity of an algorithm as a worst-
case analysis was given by a normal recurrence relation then the number sequence a1, a2,
a3, . . . , defined by that relation, would describe the running time of algorithm precisely,
i.e. for input of size n, the maximum number of steps the algorithm makes over all inputs
of size n is precisely an. We do not need such a precise analysis and often it is impossible
to derive one. So, the recurrence relations we use when analysing an algorithm typically
have bases Θ(1), for example:

T(n) = T(n− 1) + 1, n ≥ 2 (3.2)
T(1) = Θ(1)

Infinitely many number sequences are solutions to (3.2). To solve such a recurrence relation
means to find the asymptotic growth of any of those sequences. The best solution we can
hope for, asymptotically, is the one given by the Θ notation. If we are unable to pin down
the asymptotic growth in that sense, our second best option is to find functions f(n) and
g(n), such that f(n) = o(g(n)) and T(n) = Ω(f(n)) and T(n) = O(g(n)). The best solution
for the recurrence relation (3.2), in the asymptotic sense, is T(n) = Θ(n). Another solution,
not as good as this one, is, for example, T(n) = Ω(

√
n) and T(n) = O(n2).

In the problems that follow, we distinguish the two types of recurrence relation by the
initial conditions. If the initial condition is given by a precise expression as in (3.1) we have
to give a precise answer such as T(n) = n, and if the initial condition is Θ(1) as in (3.2) we
want only the growth rate.

It is possible to omit the initial condition altogether in the description of the recurrence.
If we do so we assume tacitly the initial condition is T(c) = Θ(1) for some positive constant
c. The reason to do that may be that it is pointless to specify the usual T(1); however,
it may be the case that the variable never reaches value one. For instance, consider the
recurrence relation

T(n) = T
(⌊n
2

⌋
+ 17

)
+ n

which we solve below (Problem 41 on page 42). To specify “T(1) = Θ(1)” for it is wrong.

3.1.1 Iterators

The recurrence relations can be partitioned into the following two classes, assuming T is
the function of the recurrence relations as above.

34



1. The ones in which T appears only once on the right-hand side as in (3.1).

2. The ones in which T appears mutiple times on the right-hand side, for instance:

T(n) = T(n− 1) + T(n− 2) + T(n− 3) + n (3.3)

We will call them relations with single occurrence and with multiple occurrences, respec-
tively. We find it helpful to make that distinction because in general only the relations with
single occurrence are ameaneable to the method of unfolding (see below). If the relation is
with single occurrence we define the iterator of the relation as the iterative expression that
shows how the variable decreases. For example, the iterator of (3.1) is:

n→ n− 1 (3.4)

It is not practical to define iterators for relations with multiple occurrences. If we wanted
to define iterators for them as well, they would have a set of functions on the right-hand
side, for instance the iterator of (3.3) would be

n→ {n− 1, n− 2, n− 3}

and that does help the analysis of the relation. So, we define iterators only for relations
with single occurrence. The iterators that are easiest to deal with (and, fortunately, occur
often in practice) are the ones in which the function on the right-hand side is subtraction
or division (by constant > 1):

n→ n− c, c > 0 (3.5)

n→ n

b
, b > 1 (3.6)

Another possibility is that function to be some root of n:

n→ d
√
n, d > 1 (3.7)

Note that the direction of the assignment in the iterator is the opposite to the one in
the recurrence relation (compare (3.1) with (3.4)). The reason is that a recurrence has to
phases: descending and ascending. In the descending phase we start with some value n
for the variable and decrease it in successive steps till we reach the initial condition; in
the ascending phase we go back from the initial condition “upwards”. The left-to-right
direction of the iterator refers to the descending phase, while the right-to-left direction of
the assignment in the recurrence refers to the ascending phase.

It is important to be able to estimate the number of times an iterator will be executed before
its variable becomes 1 (or whatever value the initial conditions specify). If the variable n
is integer, the iterator n→ n− 1 is the most basic one we can possibly have. The number
of times it is executed before n becomes any a priori fixed constant is Θ(n). That has to
be obvious. Now consider (3.5). We ask the same question: how many times it is executed
before n becomes a constant. Substitute n by cm and (3.5) becomes:

cm→ c(m− 1) (3.8)

35



The number of times (3.8) is executed (before m becomes a constant) is Θ(m). Since
m = Θ(n), we conclude that (3.5) is executed Θ(n) times.

Consider the iterator (3.6). To see how many times it is executed before n becomes
a constant (fixed a priori)) can be estimated as follows. Substitute n by bm and (3.6)
becomes

bm → bm−1 (3.9)

(3.9) is executed Θ(m) times because m → m − 1 is executed Θ(m) times. Since m =

logb n, we conclude that (3.6) is executed Θ(logb n) times, i.e. Θ(lgn) times. We see that
the concrete value of b is immaterial with respect to the asymptotics of the number of
executions, provided b > 1.

Now consider (3.7). To see how many times it is executed before n becomes a constant,
substitute n by ddm

. (3.7) becomes

ddm → d
dm

d = ddm−1
(3.10)

(3.10) is executed Θ(m) times. As m = logd logd n, we conclude that (3.7) is executed
Θ(logd logd n) times, i.e. Θ(lg lgn) times. Again we see that the value of the constant in
the iterator, namely d, is immaterial as long as d > 1.

Let us consider an iterator that decreases even faster than (3.7):

n→ lgn (3.11)

The number of times it is executed before n becomes a constant is lg∗ n, which follows right
from Definion 1 on page 11.

Let us summarise the rates of decrease of the iterators we just considered assuming the
mentioned “constants of decrease” b and d are 2.

iterator asymptotics of the number executions alternative form (see Definion 1)

n→ n− 1 n lg(0) n

n→ n/2 lgn lg(1) n

n→ √
n lg lgn lg(2) n

n→ lgn lg∗ n lg∗ n

There is a gap in the table. One would ask, what is the function f(n), such that the iterator
n → f(n) is executed, asymptotically, lg lg lgn times, i.e. lg(3) n times. To answer that
question, consider that f(n) has to be such that if we substitute n by 2m, the number
of executions is the same as in the iterator m → √

m. But m → √
m is the same as

lgn→ √
lgn, i.e. n→ 2

√
lg n. We conclude that f(n) = 2

√
lg n. To check this, consider the

iterator

n→ 2
√

lg n (3.12)

Substitute n by 222m

in (3.12) to obtain:

222m → 2

√
lg 222m

= 2
√

22m

= 22
2m

2
= 222m−1

(3.13)

Clearly, (3.13) is executed m = lg lg lgn = lg(3) n times.

36



A further natural question is, what the function φ(n) is, such that the iterator n→ φ(n)

is executed lg(4) n times. Applying the reasoning we used to derive f(n), φ(n) has to be
such that if we substitute n by 2m, the number of executions is the same as in m→ 2

√
lg m.

As m = lgn, the latter becomes lgn → 2
√

lg lg n, i.e. n → 22
√

lg lg n
. So, φ(n) = 22

√
lg lg n

.
We can fill in two more rows in the table:

iterator asymptotics of the number executions alternative form (see Definion 1)

n→ n− 1 n lg(0) n

n→ n/2 lgn lg(1) n

n→ √
n lg lgn lg(2) n

n→ 2
√

lg n lg lg lgn lg(3) n

n→ 22
√

lg lg n
lg lg lg lgn lg(4) n

n→ lgn lg∗ n lg∗ n

Let us define, analogously to Definion 1, the function base-two iterated exponent.

Definition 3 (iterated exponent). Let i be a nonnegative integer.

itexp(i)(n) =

{
n, if i = 0

2itexp(i−1)(n), if i > 0
�

Having in mind the results in the table, we conjecture, and it should not be too difficult to
prove by induction, that the iterator:

n→ itexp(k)

(√
lg(k) n

)
(3.14)

is executed lg(k+2) n times for k ∈ N.

3.1.2 Recursion trees

Assume we are given a recurrence relation of the form:

T(n) = k1T(f1(n)) + k2T(f2(n)) + . . .+ kpT(fp(n)) + φ(n) (3.15)

where ki, i ≤ i ≤ p are positive integer constants, fi(n) for 1 ≤ i ≤ p are integer-valued
functions such that n > f(n) for all n ≥ n0 where n0 is the largest (constant) value of the
argument in any initial condition, and φ(n) is some positive function. It is not necessary
φ(n) to be positive as the reader will see below; however, if T(n) describes the running
time of a recursive algorithm then φ(n) has to be positive. We build a special kind of
rooted tree that corresponds to our recurrence relation. Each node of the tree corresponds
to one particular value of the variable that appears in the process of unfolding the relation,
the value that corresponds to the root being n. That value we call the level of the node.
Further, with each node we associate φ(m) where m is the level of that node. We call that,
the cost of the node. Further, each node—as long as no initial condition has been reached
yet—has k1 + k2 + . . . + kp children, ki of them being at level defined by fi for 1 ≤ i ≤ p.
For example, if our recurrence is

T(n) = 2T(n− 1) + n2

37



cost (n − 2)2cost (n − 2)2 cost (n − 2)2 cost (n − 2)2

cost (n− 1)2 cost (n− 1)2level n− 1

level n− 2

level n cost n2

Figure 3.1: The recursion tree of T(n) = 2T(n− 1) + n2.

the recursion tree is as shown on Figure 3.1. It is a complete binary tree. It is binary
because there are two invocations on the right side, i.e. k1 + k2 + . . .+ kp = 2 in the above
terminology. And it is complete because it is a recurrence with a single occurrence. Note
that if k1 + k2 + . . .+ kp equals 1 then the recursion tree degenerates into a path.

The size of the tree depends on n so we can not draw the whole tree. The figure is
rather a suggestion about it. The bottom part of the tree is missing because we have not
mentioned the initial conditions. The solution of the recursion—and that is the goal of the
tree, to help us solve the recursion—is the total sum of all the costs. Typically we sum by
levels, so in the current example the sum will be

n2 + 2(n− 1)2 + 4(n− 2)2 + . . .

The general term of this sum is 2k(n− k)2. The “. . . ” notation hides what happens at the
right end, however, we agreed the initial condition is for some, it does not matter, what
constant value of the variable. Therefore, the sum

n∑
k=0

2k(n− k)2

has the same growth rate as our desired solution. Let us find a closed form for that sum.
n∑

k=0

2k(n− k)2 = n2
n∑

k=0

2k − 2n

n∑
k=0

2kk+

n∑
k=0

2kk2

Having in mind Problem 73 on page 80 and Problem 74 on page 80, that expression becomes

n2(2n+1 − 1) − 2n((n− 1)2n+1 + 2) + n22n+1 − 2n2n+1 + 4.2n+1 − 6 =

n2.2n+1 − n2 − 2n(n.2n+1 − 2n+1 + 2) + n22n+1 − 2n2n+1 + 4.2n+1 − 6 =

2.n2.2n+1 − n2 − 2.n2.2n+1 + 2n.2n+1 − 4n− 2n2n+1 + 4.2n+1 − 6 =

4.2n+1 − n2 − 4n− 6

38



level n− 1

level n− 2

level n 1

1

1 1

111

1 1 1 1 1 1 1 1
level n− 3

Figure 3.2: The recursion tree of T(n) = 2T(n− 1) + 1.

It follows that T(n) = Θ(2n).

The correspondence between a recurrence relation and its recursion tree is not necessarily
one-to-one. Consider the recurrence relation (3.2) on page 34 and its recursion tree (Fig-
ure 3.2). The cost at level n is 1, at level n− 1 is 2, at level n− 2 is 4, at level n− 3 is 8,
etc. The tree is obviously complete. Let us now rewrite (3.2) as follows.

T(n) = 2T(n− 1) + 1 ⇔ T(n) = T(n− 1) + T(n− 1) + 1

T(n− 1) = 2T(n− 2) + 1

T(n) = T(n− 1) + 2T(n− 2) + 2

We have to alter the initial conditions for this rewrite, adding T(2) = 3. Overall the
recurrence becomes

T(n) = T(n− 1) + 2T(n− 2) + 2 (3.16)
T(2) = 3

T(1) = 1

Recurrences (3.2) and (3.16) are equivalent. One can say these are different ways of writing
down the same recurrence because both of them define one and the same sequence, namely
1, 3, 7, 15, . . . However, their recursion trees are neither the same nor isomorphic. Figure 3.3
shows the tree of (3.16). To give a more specific example, Figure 3.4 shows the recursion
tree of (3.16) for n = 5. It shows the whole tree, not just the top, because the variable has
a concrete value. Therefore the initial conditions are taken into account. The reader can

39



level n− 1

level n− 2

level n 2

2

2

22

2 2 2 2 2
level n− 3

Figure 3.3: The recursion tree of T(n) = T(n− 1) + 2T(n− 2) + 2.

2

2

2

22

3 3 3 3 3

11 1 1 1 1

Figure 3.4: The recursion tree of T(n) = T(n − 1) + 2T(n − 2) + 2, T(2) = 3,
T(1) = 1, for n = 5.

40



easily see the total sum of the costs over the tree from Figure 3.4 is 31, the same as the tree
from Figure 3.2 for n = 5. However, the sum 31 on Figure 3.2 is obtained as 1+2+4+8+16,
if we sum by levels. In the case with Figure 3.4 we do not have obvious definition of levels.

• If we define the levels as the vertices that have the same value of the variable, we have
5 levels and the sum is derived, level-wise, as 2+ 2+ 6+ 15+ 6 = 31.

• If we define the levels as the vertices that are at the same distance to the root, we
have only 4 levels and the sum is derived, level-wise, as 2+ 6+ 18+ 5 = 31.

Regardless of how we define the levels, the derivation is not 1+ 2+ 4+ 8+ 16.

3.2 Problems

Our repertoire of methods for solving recurrences is:

• by induction,

• by unfolding,

• by considering the recursion tree,

• by the Master Theorem, and

• by the method of the characteristic equation.

3.2.1 Induction, unfolding, recursion trees

Problem 39. Solve

T(n) = 2T(n− 1) + 1 (3.17)
T(0) = 0

Solution:
We guess that T(n) = 2n − 1 for all n ≥ 1 and prove it by induction on n.

Basis: n = 1. We have T(1) = 2T(0) + 1 by substituting n with 1. But T(0) = 0, thus
T(1) = 2× 0+ 1 = 1. On the other hand, substituting n with 1 in our guessed solution, we
have 21 − 1 = 1.

Inductive hypothesis: assume T(n) = 2n − 1 for some n > 1.

Inductive step: T(n+1) = 2T(n)+1 by definition. Apply the inductive hypothesis to obtain
T(n+ 1) = 2 (2n − 1) + 1 = 2n+1 − 1. �
The proofs by induction have one major drawback – making a good guess can be a form of
art. There is no recipe, no algorithm for making a good guess in general. It makes sense
to compute several initial values of the sequence defined by the recurrence and try to see
a pattern in them. In the last problem, T(1) = 1, T(2) = 3, T(3) = 7 and it is reasonable
to assume that T(n) is 2n − 1. Actually, if we think about (3.17) in terms of the binary
representation of T(n), it is pretty easy to spot that (3.17) performs a shift-left by one

41



position and then turns the least significant bit from 0 into 1. As we start with T(1) = 1,
clearly

T(n) = 1 1 1 . . . 1︸ ︷︷ ︸
n times

b

For more complicated recurrence relations, however, seeing a pattern in the initial values
of the sequence, and thus making a good guess, can be quite challenging. If one fails to
see such a pattern it is a good idea to check if these numbers are found in The On-Line
Encyclopedia of Integer Sequences [Slo]. Of course, this advice is applicable when we solve
precise recurrence relations, not asymptotic ones.

Problem 40. Solve

T(n) = T(n− 1) + n (3.18)
T(0) = 1

Solution:
By unfolding (also called unwinding) of the recurrence down to the initial condition.

T(n) = T(n− 1) + n directly from (3.18)

= T(n− 2) + n− 1+ n substitute n with n− 1 in (3.18)

= T(n− 3) + n− 2+ n− 1+ n substitute n− 1 with n− 2 in (3.18)

. . .

= T(0) + 1+ 2+ 3+ . . .+ n− 2+ n− 1+ n =

= 1+ 1+ 2+ 3+ . . .+ n− 2+ n− 1+ n =

= 1+
n(n+ 1)

2

This method is considered to be not as formally precise as the induction. The reason is
that we inevitably skip part of the derivation—the dot-dot-dot “. . . ” part—leaving it to
the imagination of the reader to verify the derived closed formula. Problem 40 is trivially
simple and it is certain beyond any doubt that if we start with T(n− 3)+n− 2+n− 1+n

and systematically unfold T(i), decrementing by one values of i, eventually we will “hit”
the initial condition T(0) and the “tail” will be 1 + 2 + 3 + . . . + n − 2 + n − 1 + n. The
more complicated the expression is, however, the more we leave to the imagination of the
reader when unfolding.

One way out of that is to use the unfolding to derive a closed formula and then prove it
by induction. �

Problem 41. Solve

T(n) = 2T
(⌊n
2

⌋)
+ n (3.19)

T(1) = Θ(1) (3.20)

42



Solution:
We prove that T(n) = Θ(n lgn) by induction on n. To accomplish that we prove separately
that T(n) = O(n lgn) and T(n) = Ω(n lgn).

Part I: Proof that T(n) = O(n lgn), that is, there exists a positive constant c and some
n0, such that for all n ≥ n0,

T(n) ≤ cn lgn (3.21)

There is a potential problem with the initial condition because for n = 1 the right-hand
side of (3.21) becomes c.1. lg 1 = 0, and 0 6= Θ(1). However, it is easy to deal with that
issue, just do not take n = 1 as basis. Taking n = 2 as basis works as c.2. lg 2 is not zero.
However, note that n = 2 is not sufficient basis! There are certain values for n, for example
3, such that the iterator of this recurrence, namely

n→ ⌊n
2

⌋
“jumps over” 2, having started from one of them. Indeed,

⌊
3
2

⌋
= 1, therefore the iterator,

starting from 3, does

3→ 1

and then goes infinite descent. The solution is to take two bases, for both n = 2 and n = 3.
It is certain that no matter what n is the starting one, the iterator will at one moment
“hit” either 2 or 3. So, the bases of our proof are:

T(2) = Θ(1) (3.22)
T(3) = Θ(1) (3.23)

Of course, that does not say that T(2) = T(3), it says there exist constants c2 and c3, such
that:

c2 ≤ c.2 lg 2
c3 ≤ c.3 lg 3

Our induction hypothesis is that relative to some sufficiently large n, (3.21) holds for some
positive constant c all values of the variable between 3 and n, excluding n. The induction
step is to prove (3.21), using the hypothesis. So,

T(n) = 2T
(⌊n
2

⌋)
+ n this is the defintion of T(n)

≤ 2.c.
⌊n
2

⌋
lg
⌊n
2

⌋
+ n from the inductive hypothesis

≤ 2.c.n
2

lg
n

2
+ n

= cn(lgn− 1) + n

= cn lgn+ (1− c)n (3.24)
≤ cn lgn provided that (1− c) ≤ 0 ⇔ c ≥ 1 (3.25)

43



If c ≥ 1, the proof is valid. If we want to be perfectly precise we have to consider the two
bases as well to find a value for c that works. Namely,

c = max
{
1,

c2

2 lg 2
,
c3

3 lg 3

}
In our proofs from now on we will not consider the initial conditions when choosing an
appropriate constant.

Part II: Proof that T(n) = Ω(n lgn), that is, there exists a positive constant d and some
n1, such that for all n ≥ n1,

T(n) ≥ dn lgn (3.26)

We will ignore the basis of the induction and focus on the hypothesis and the inductive step
only. Applying the inductive hypothesis to (3.26), we get:

T(n) ≥ 2d
⌊n
2

⌋
lg
⌊n
2

⌋
+ n from the inductive hypothesis

≥ 2d
(n
2

− 1
)

lg
⌊n
2

⌋
+ n

= d(n− 2) lg
⌊n
2

⌋
+ n

≥ d(n− 2) lg
(n
4

)
+ n

= d(n− 2) (lgn− 2) + n

= dn lgn+ n(1− 2d) − 2d lgn+ 4d

≥ dn lgn provided that n(1− 2d) − 2d lgn+ 4d ≥ 0

So (3.26) holds when n(1 − 2d) − 2d lgn + 4d ≥ 0 is nonnegative. Observe that for d = 1
4

the inequality becomes

n

2
+ 16 ≥ 1

2
lgn

It certainly holds ∀n ≥ 2, therefore the choice d = 1
4 and n1 = 2 suffices for our proof. �

Problem 42. Solve

T(n) = 2T
(⌈n
2

⌉)
+ n (3.27)

T(1) = Θ(1) (3.28)

Solution:
We prove that T(n) = Θ(n lgn) by induction on n. To accomplish that we prove separately
that T(n) = O(n lgn) and T(n) = Ω(n lgn). We ignore the basis of the induction – the
solution of Problem 41 gives us enough confidence that we can handle the basis if we wanted
to.

Part I: Proof that T(n) = O(n lgn), that is, there exists a positive constant c and some
n0, such that for all n ≥ n0,

T(n) ≤ cn lgn (3.29)

44



From the inductive hypothesis

T(n) ≤ 2.c.
⌈n
2

⌉
lg
⌈n
2

⌉
+ n

≤ 2.c.
(n
2

+ 1
)

lg
⌈n
2

⌉
+ n

≤ 2.c.
(n
2

+ 1
)

lg
(
3n

4

)
+ n because

3n

4
≥
⌈n
2

⌉
∀n ≥ 2

= c(n+ 2)(lgn+ lg 3− 2) + n

= cn lgn+ cn(lg 3− 2) + 2c lgn+ 2c(lg 3− 2) + n

≤ cn lgn if cn(lg 3− 2) + 2c lgn+ 2c(lg 3− 2) + n ≤ 0

Consider

cn(lg 3− 2) + 2c lgn+ 2c(lg 3− 2) + n = (c(lg 3− 2) + 1)n+ 2c lgn+ 2c(lg 3− 2)

Its asymptotic growth rate is determined by the linear term. If the constant c(lg 3− 2) + 1

is negative then the whole expression is certainly negative for all sufficiently large values of
n. In other words, for the sake of brevity we do not specify precisely what n0 is. In order
to have c(lg 3− 2) + 1 < 0 it must be the case that c > 1

2−lg 3 . So, any c > 1
2−lg 3 works for

our proof.

Part II: Proof that T(n) = Ω(n lgn), that is, there exists a positive constant d and some
n1, such that for all n ≥ n1,

T(n) ≥ dn lgn (3.30)

From the inductive hypothesis

T(n) ≥ 2.d.
⌈n
2

⌉
lg
⌈n
2

⌉
+ n

≥ 2.d.
(n
2

)
lg
(n
2

)
+ n

= dn(lgn− 1) + n

= dn lgn+ (1− d)n

≥ dn lgn provided that (1− d)n ≥ 0 (3.31)

It follows that any d such that 0 < d ≤ 1 workds for our proof. �

As explained in [CLR00, pp. 56–57], it is easy to make a wrong “proof” of the growth rate by¢¢ NB ¢¢

induction if one is not careful. Suppose one “proves” the solution of (3.19) is T(n) = O(n)

by first guessing (incorrectly) that T(n) ≤ cn for some positive constant c and then arguing

T(n) ≤ 2c
⌊n
2

⌋
+ n

≤ cn+ n

= (c+ 1)n

= O(n)

45



While it is certainly true that cn + n = O(n), that is irrelevant to the proof. The proof
started relative to the constant c and has to finish relative to it. In other words, the
proof has to show that T(n) ≤ cn for the choice of c in the inductive hypothesis, not that
T(n) ≤ dn for some positive constant d which is not c. Proving that T(n) ≤ (c+ 1)n does
not constitute a proof of the statement we are after.

Problem 43. Solve

T(n) = T
(⌊n
2

⌋)
+ 1 (3.32)

T(1) = Θ(1) (3.33)

Solution:
We prove that T(n) = Θ(lgn) by induction on n. To accomplish that we prove separately
that T(n) = O(lgn) and T(n) = Ω(lgn).

Part I: Proof that T(n) = O(lgn), that is, there exists a positive constant c and some n0,
such that for all n ≥ n0,

T(n) ≤ c lgn (3.34)

By the inductive hypothesis,

T(n) ≤ c lg
(⌊n
2

⌋)
+ 1

≤ c lg
(
3n

4

)
+ 1 since

3n

4
≥
⌊n
2

⌋
for all sufficiently large n

= c(lgn+ lg 3− 2) + 1

= c lgn+ c(lg 3− 2) + 1

≤ c lgn provided that c(lg 3− 2) + 1 ≤ 0 ⇔ c ≥ 1

2− lg 3

Part II: Proof that T(n) = Ω(lgn), that is, there exists a positive constant d and some
n1, such that for all n ≥ n1,

T(n) ≥ d lgn (3.35)

By the inductive hypothesis,

T(n) ≥ d lg
(⌊n
2

⌋)
+ 1

≥ d lg
(n
4

)
+ 1 since

n

4
≤
⌊n
2

⌋
for all sufficiently large n

= d lgn− 2d+ 1 provided that − 2d+ 1 ≥ 0 ⇔ d ≤ 1

2

�

Problem 44. Solve

T(n) = 2T
(⌊n
2

+ 17
⌋)

+ n (3.36)

(3.37)

46



Solution:
We prove that T(n) = Θ(n lgn) by induction on n. To accomplish that we prove separately
that T(n) = O(lgn) and T(n) = Ω(lgn). Note that the initial condition is not T(1) = Θ(1)

in this problem because the itetor

n→ ⌊n
2

⌋
+ 17

never reaches 1 when starting from any sufficiently large n. Its fixed point is 34 but we
avoid mentioning the awkward initial condition T(34) = Θ(1).

Part I: Proof that T(n) = O(n lgn), that is, there exists a positive constant c and some
n0, such that for all n ≥ n0,

T(n) ≤ cn lgn (3.38)

By the inductive hypothesis,

T(n) ≤ 2c
(⌊n
2

⌋
+ 17

)
lg
(⌊n
2

⌋
+ 17

)
+ n

= 2c
(n
2

+ 17
)

lg
(n
2

+ 17
)

+ n

= c(n+ 34) lg
(
n+ 34

2

)
+ n

= c(n+ 34)
(
lg (n+ 34) − 1

)
+ n

≤ c(n+ 34)
(
lg (

√
2n) − 1

)
+ n (3.39)

because for all sufficiently large values of n, say n ≥ 100, it is the case that
√
2n ≥ n+ 34.

T(n) ≤ c(n+ 34)
(
lg (

√
2n) − 1

)
+ n from (3.39)

= c(n+ 34)

(
lgn+

1

2
lg 2− 1

)
+ n

= c(n+ 34)

(
lgn−

1

2

)
+ n

= cn lgn+ 34c lgn−
cn

2
− 17c+ n

≤ cn lgn provided that 34c lgn−
cn

2
− 17c+ n ≤ 0

In order 34c lgn − cn
2 − 17c + n = n

(
1− c

2

)
+ 34c lgn − 17c to be non-positive for all

sufficiently large n it suffices
(
1− c

2

)
to be negative because the linear function dominated

the logarithmic function. A more detailed analysis is the following. Fix c = 4. The
expression becomes (−1)n+ 136 lgn− 136.

(−1)n+ 136 lgn− 136 ≤ 0 ⇔ n ≥ 136(lgn− 1) ⇔ n

lgn− 1
≥ 136

For n = 65536 = 216 the inequality holds:

216

15
≥ 136

47



so we can finish the proof with choosing n0 = 65536 and c = 4.

Part II: Proof that T(n) = Ω(n lgn), that is, there exists a positive constant d and some
n1, such that for all n ≥ n1,

T(n) ≥ dn lgn

By the inductive hypothesis,

T(n) ≥ 2d
(⌊n
2

⌋
+ 17

)
lg
(⌊n
2

⌋
+ 17

)
+ n

≥ 2d
(⌊n
2

⌋)
lg
(⌊n
2

⌋)
+ n

≥ 2d
(n
2

)
lg
(n
2

)
+ n

= dn(lgn− 1) + n

= dn lgn+ (1− d)n

≥ dn lgn provided that 1− d ≥ 0 ⇔ d ≤ 1 �

Problem 45. Solve

T(n) = 2T
(n
2

)
+ 1 (3.40)

T(1) = Θ(1)

by the method of the recursion tree.

Solution:
The recursion tree is shown on Figure 3.5. The solution is the sum over all levels:

T(n) = 1+ 2+ 4+ 8+ . . .︸ ︷︷ ︸
the number of terms is the height of the tree

(3.41)

The height of the tree is the number of times the iterator

n→ n

2

is executed before the variable becomes 1. As we already saw, that number is lgn†. So,
(3.41) in fact is

T(n) = 1+ 2+ 4+ 8+ . . .︸ ︷︷ ︸
lg n terms

= 1+ 2+ 4+ 8+ . . .+
n

2
+ n

=

lg n∑
i=1

n

2i
= n

(
lg n∑
i=1

1

2i

)
≤ n

( ∞∑
i=1

1

2i

)
︸ ︷︷ ︸

2

= 2n

We conclude that T(n) = Θ(n). �

†Actually it is blg nc but that is immaterial with respect to the asymptotic growth of T(n).

48



level
n

2

level
n

4

level n

level
n

8

1 1 1 1

1 1

1 1 1 1 1 1 1 1

1 1

2

4

8

Figure 3.5: The recursion tree of T(n) = 2T
(

n
2

)
+ 1.

However, that proof by the method of the recursion tree can be considered insufficiently
precise because it involves several approximations and the use of imagination—the dot-dot-
dot notations. Next we demonstrate a proof by induction of the same result. We may think
of the proof with recursion tree as a mere way to derive a good guess to be verified formally
by induction.

Problem 46. Prove by induction on n that the solution to

T(n) = 2T
(n
2

)
+ 1 (3.42)

T(1) = Θ(1)

is T(n) = Θ(n).

Solution:
We prove separately that T(n) = O(n) and T(n) = Ω(n).

Part I: Proof that T(n) = O(n). For didactic purposes we will first make an unsuccessful
attempt.

Part I, try 1: Assume there exists a positive constant c and some n0, such that for all
n ≥ n0,

T(n) ≤ cn (3.43)

By the inductive hypothesis,

T(n) ≤ 2cn
2

+ 1

= cn+ 1

49



Our proof ran into a problem: no matter what positive c we choose, it is not true that
cn + 1 ≤ cn, and thus (3.43) cannot be shown to hold. Of course, that failure does not
mean our claim T(n) = Θ(n) is false. It simply means that (3.43) is inappropriate. We
amend the situation by a technique known as strenthening the claim. It consists of stating an
appropriate claim that is stronger than (3.43) and then proving it by induction. Intuitively,
that stronger claim has to contain some minus sign in such a way that after applying the
inductive hypothesis, there is a term like −c that can “cope with” the +1.

Part I, try 2: Assume there exists positive constants b and c and some n0, such that for
all n ≥ n0,

T(n) ≤ cn− b (3.44)

By the inductive hypothesis,

T(n) ≤ 2
(
c
n

2
− b
)

+ 1

= cn− 2b+ 1

≤ cn for any b such that − 2b+ 1 ≤ 0 ⇔ b ≥ 1

2

Part II: Proof that T(n) = Ω(n), that is, there exists a positive constant d and some n1,
such that for all n ≥ n1,

T(n) ≥ dn

By the inductive hypothesis,

T(n) ≥ 2
(
d
n

2

)
+ 1

= dn+ 1

≥ dn

�

Problem 47. Prove by induction on n that the solution to

T(n) = 2T(n− 1) + n (3.45)
T(1) = Θ(1)

is T(n) = Θ(2n).

Solution:
We prove separately that T(n) = O(n) and T(n) = Ω(n).

Part I: Proof that T(n) = O(n). For didactic purposes we will first make several unsuc-
cessful attempts.

Part I, try 1: Assume there exists a positive constant c such that for all large enough n,

T(n) ≤ c2n

50



By the inductive hypothesis,

T(n) ≤ 2c2n−1 + n

= c2n + n

6≤ c2n for any choice of positive c

Our proof failed so let us strenghten the claim.

Part I, try 2: Assume there exist positive constants b and c such that for all large enough
n,

T(n) ≤ c2n − b

By the inductive hypothesis,

T(n) ≤ 2(c2n−1 − b) + n

= c2n − 2b+ n

6≤ c2n − b for any choice of positive c

The proof failed once again so let us try another strenghtening of the claim.

Part I, try 3: Assume there exist positive constants b and c such that for all large enough
n,

T(n) ≤ c2n−b

By the inductive hypothesis,

T(n) ≤ 2(c2n−b−1) + n

= c2n−b + n

6≤ c2n−b for any choice of positive c

Yet another failure and we try yet another strenghtening of the claim.

Part I, try 4: Assume there exists a positive constant c such that for all large enough n,

T(n) ≤ c2n − n

By the inductive hypothesis,

T(n) ≤ 2(c2n−1 − n) + n

= c2n − n

≤ c2n − n for any choice of positive c

Sucess! At last we have managed to formulate a provable hypothesis.

Part II: Proof that T(n) = Ω(n), that is, there exists a positive constant d such that for
all sufficiently large n,

T(n) ≥ d2n

51



By the inductive hypothesis,

T(n) ≥ 2(d2n−1) + n

= d2n + n

≥ d2n

Success! Again we see that the strengthening of the claim is required only in one direction
of the proof. �

The next three problems have the iterator

n→ √
n

According to the table on page 37, that number of times this iterator is executed before
n becomes some fixed constant is Θ(lg lgn). Note, however, that unless n is integer, this
constant cannot be 1 because for real n, it is the case that n > 1 after any iteration.
Therefore “T(1) = Θ(1)” cannot be the initial condition if n is real. One way out of that is
to change the initial conditions to

T(n) = Θ(1) for 2 ≤ n ≤ 4

Problem 48. Solve

T(n) = 2T(
√
n) + 1 (3.46)

Solution:
Substitute n by 22m

, i.e. m = lg lgn and 2m = lgn. Then (3.46) becomes

T
(
22m

)
= 2T

(
2

2m

2

)
+ 1

which is

T
(
22m

)
= 2T

(
22m−1

)
+ 1 (3.47)

Further substitute T
(
22m)

by S(m) and (3.47) becomes

S(m) = 2S(m− 1) + 1 (3.48)

But we know the solution to that recurrence. According to Problem 39, S(m) = Θ(2m).
Let us go back now to the original n and T(n).

S(m) = Θ(2m) ⇔ T
(
22m

)
= Θ(lgn) ⇔ T(n) = Θ(lgn)

�

Problem 49. Solve

T(n) = 2T(
√
n) + lgn (3.49)

52



Solution:
Substitute n by 2m, i.e. m = lgn and m = lgn. Then (3.49) becomes

T (2m) = 2T
(
2

m
2

)
+m (3.50)

Further substitute T
(
22m)

by S(m) and (3.50) becomes

S(m) = 2S
(m
2

)
+m (3.51)

Consider Problem 41 and Problem 42. They have solve the same recurrence, differing from
(3.51) only in the way the division is rounded to integer. In Problem 41 the iterator is

n→ ⌊n
2

⌋
and in Problem 42 the iterator is

n→ ⌈n
2

⌉
Both Problem 41 and Problem 42 have Θ(n lgn) solutions. We conclude the solution of
(3.51) is S(m) = Θ(m lgm), which is equivalent to T(n) = Θ(lgn lg lgn). �

Problem 50. Solve

T(n) =
√
nT(

√
n) + n (3.52)

Solution:
Let us unfold the recurrence:

T(n) = n+ n
1
2 T
(
n

1
2

)
(3.53)

= n+ n
1
2

(
n

1
2 + n

1
4 T
(
n

1
4

))
(3.54)

= 2n+ n
3
4 T
(
n

1
4

)
(3.55)

= 2n+ n
3
4

(
n

1
8 + T

(
n

1
8

))
(3.56)

= 3n+ n
7
8 T
(
n

1
8

)
(3.57)

. . . (3.58)

= in+ n

“
1− 1

2i

”
T
(
n

1

2i

)
(3.59)

As we already said, the maximum value of i, call it imax, is imax = lg lgn. But then
2imax = lgn, therefore

n

“
1− 1

2imax

”
=

n

n
1

2imax

=
n

n
1

lg n

=
n

2
the derivation of n

1
lg n = 2 is on page 15

So, for i = imax,

T(n) = (lg lgn)n+
n

2
T(c) c is some number such that 2 ≤ c ≤ 4

53



But T(c) is a constant, therefore T(n) = Θ(n lg lgn).

Let us prove the same result by induction.
Part 1: Prove that T(n) = O(n lg lgn), that is, there exists a positive constant c such
that for all sufficiently large n,

T(n) ≤ cn lg lgn (3.60)

Our inductive hypothesis then is

T(
√
n) ≤ c

√
n lg lg

√
n (3.61)

We know by the definition of the problem that

T(n) =
√
nT(

√
n) + n (3.62)

Apply (3.61) to (3.62) to get

T(n) ≤
√
n(c

√
n lg lg

√
n) + n

= cn lg lg
√
n+ n

= cn lg
(
1

2
lgn

)
+ n

= cn lg
(

lgn
2

)
+ n

= cn(lg lgn− 1) + n

= cn lg lgn− cn+ n

≤ cn lg lgn provided that − cn+ n ≤ 0 ⇔ c ≥ 1

Part 2: Prove that T(n) = Ω(n lg lgn), that is, there exists a positive constant d such
that for all sufficiently large n,

T(n) ≥ dn lg lgn (3.63)

Our inductive hypothesis then is

T(
√
n) ≥ d

√
n lg lg

√
n (3.64)

We know by the definition of the problem that

T(n) =
√
nT(

√
n) + n (3.65)

Apply (3.64) to (3.65) to get

T(n) ≥
√
n(d

√
n lg lg

√
n) + n

= dn lg lg
√
n+ n

= dn lg
(
1

2
lgn

)
+ n

= dn lg
(

lgn
2

)
+ n

= dn(lg lgn− 1) + n

= dn lg lgn− dn+ n

≥ dn lg lgn provided that − dn+ n ≥ 0 ⇔ d ≤ 1

�

54



Problem 51. Solve by unfolding

T(n) = T(n− 2) + 2 lgn (3.66)

Solution:
Let us unfold the recurrence:

T(n) = T(n− 2) + 2 lgn
= T(n− 4) + 2 lg (n− 2) + 2 lgn
= T(n− 6) + 2 lg (n− 4) + 2 lg (n− 2) + 2 lgn
= . . .

= T(c) + . . .+ 2 lg (n− 4) + 2 lg (n− 2) + 2 lgn (3.67)

where c is either 1 or 2†.

Case I: n is odd. Then c = 1 and (3.67) is:

2 lgn+ 2 lg (n− 2) + 2 lg (n− 4) + . . .+ 2 lg 3+ T(1) (3.68)

We approximate T(1) with 0 = lg 1, which does not alter the asymptotic growth rate of
(3.68), and thus (3.68) becomes:

lgn2 + lg (n− 2)2 + lg (n− 4)2 + . . .+ lg 32 + lg 1 =

lg
(
n2(n− 2)2(n− 4)2 . . . 32.1

)
=

lg
(
n.n(n− 2)(n− 2)(n− 4)(n− 4) . . . 5.5.3.3.1︸ ︷︷ ︸

n factors

)
= T(n) (3.69)

Define

X(n) = lg
(
n(n− 1)(n− 2)(n− 3) . . . 3.2.1︸ ︷︷ ︸

n factors

)
= lgn!

Y(n) = lg
(

(n+ 1)n(n− 1)(n− 2) . . . 4.3.2︸ ︷︷ ︸
n factors

)
= lg (n+ 1)!

and note that

X(n) ≤ T(n) ≤ Y(n) (3.70)

because of the following inequalities between the corresponding factors inside the logarithms

X(n) = lg
(

n

6

n− 1

6

n− 2

6

n− 3

6

. . . 3

6

2

6

1

6

)
T(n) = lg

(
n

6

n

6

n− 2

6

n− 2

6

. . . 3

6

3

6

1

6

)
Y(n) = lg

(
n+ 1 n n− 1 n− 2 . . . 4 3 2

)
†The initial conditions that define T(1) and T(2) are omitted.

55



However, X(n) = Θ(n lgn) and Y(n) = Θ((n+ 1) lg (n+ 1)) = Θ(n lgn) by (1.42). Having
in mind that and (3.70), T(n) = Θ(n lgn) follows immediately.

Case II: n is even. Then c = 2 and (3.67) is:

2 lgn+ 2 lg (n− 2) + 2 lg (n− 4) + . . .+ 2 lg 4+ T(2) (3.71)

We approximate T(2) with 1 = lg 2, which does not alter the asymptotic growth rate of
(3.68), and thus (3.68) becomes:

lgn2 + lg (n− 2)2 + lg (n− 4)2 + . . .+ lg 42 + lg 2 =

lg
(
n2(n− 2)2(n− 4)2 . . . 42.2

)
=

lg
(
n.n(n− 2)(n− 2)(n− 4)(n− 4) . . . 6.6.4.4.2︸ ︷︷ ︸

n−1 factors

)
= T(n) (3.72)

Define

X(n) = lg
(
n(n− 1)(n− 2)(n− 3) . . . 4.3.2︸ ︷︷ ︸

n−1 factors

)
= lgn!

Y(n) = lg
(

(n+ 1)n(n− 1)(n− 2) . . . 5.4.3︸ ︷︷ ︸
n−1factors

)
= lg

(n+ 1)!

2
= lg (n+ 1)! − 1

and note that

X(n) ≤ T(n) ≤ Y(n) (3.73)

because of the following inequalities between the corresponding factors inside the logarithms

X(n) = lg
(

n

6

n− 1

6

n− 2

6

n− 3

6

. . . 4

6

3

6

2

6

)
T(n) = lg

(
n

6

n

6

n− 2

6

n− 2

6

. . . 4

6

4

6

2

6

)
Y(n) = lg

(
n+ 1 n n− 1 n− 2 . . . 5 4 3

)
However, X(n) = Θ(n lgn) and Y(n) = Θ((n+ 1) lg (n+ 1)) = Θ(n lgn) by (1.42). Having
in mind that and (3.70), T(n) = Θ(n lgn) follows immediately. �

Problem 52. Solve by induction

T(n) = T(n− 2) + 2 lgn (3.74)

Solution:
We use Problem 51 to guess the solution T(n) = Θ(n lgn).

Part I: Proof that T(n) = O(n lgn), that is, there exists a positive constant c such that
for all sufficiently large n,

T(n) ≤ cn lgn (3.75)

56



The following inequalities hold

T(n) ≤ c(n− 2) lg (n− 2) + 2 lgn from the induction hypothesis
≤ c(n− 2) lgn+ 2 lgn
= cn lgn− 2c lgn+ 2 lgn
≤ cn lgn provided that − 2c lgn+ 2 lgn ≤ 0 ⇔ c ≥ 1

Part II: Proof that T(n) = Ω(n lgn), that is, there exists a positive constant d such that
for all sufficiently large n,

T(n) ≥ dn lgn (3.76)

It is the case that

T(n) ≥ d(n− 2) lg (n− 2) + 2 lgn from the induction hypothesis
= (dn− 2d) lg (n− 2) + 2 lgn
= dn lg (n− 2) + 2(lgn− d lg (n− 2)) (3.77)

Having in mind (3.76) and (3.77), our goal is to show that

dn lg (n− 2) + 2(lgn− d lg (n− 2)) ≥ dn lgn ⇔
dn lg (n− 2) − dn lgn+ 2(lgn− d lg (n− 2)) ≥ 0 ⇔

d lg
(
n− 2

n

)n

︸ ︷︷ ︸
A

+ 2 lg
n

(n− 2)d︸ ︷︷ ︸
B

≥ 0 (3.78)

Let us first evaluate A when n grows infinitely:

lim
n→∞d lg

(
n− 2

n

)n

= d lim
n→∞ lg

(
1+

−2

n

)n

= d lg lim
n→∞

(
1+

−2

n

)n

= d lg e−2 = −2d lg e

Now consider B when n grows infinitely:

lim
n→∞ 2 lg

n

(n− 2)d
= 2 lg lim

n→∞ n

(n− 2)d
(3.79)

Note that for any d such that 0 < d < 1, (3.79) is +∞. For instance, for d = 1
2 , (3.79)

becomes

2 lg lim
n→∞

(
n

1
2

n
1
2

(n− 2)
1
2

)
=

2 lg lim
n→∞

(
n

1
2

(
n

n− 2

)1
2

)
=

2 lg


(

lim
n→∞n1

2

) lim
n→∞

(
1

1− 2
n

)1
2


︸ ︷︷ ︸

1

 = +∞

57



It follows inequality (3.78) is true for any choice of d such that 0 < d < 1, say, d = 1
2 ,

because A by absolute value is limited by a constant, and B grows infinitely. And that
concludes the proof of (3.75). �

The proof by induction in Part II of the solution to Problem 51 is tricky. Consider (3.77):¢¢ NB ¢¢

dn lg (n− 2) + 2(lgn− d lg (n− 2))

Typically, we deal with logarithms of additions or differences by approximating the additions
or differences with multiplications or fractions. But notice that if we approximate n − 2

inside the above logarithms with any fraction n
α , for any positive constant α, we cannot

accomplish the proof. Here is what happens when we substitute n − 2 with n
α in the

logarithm on the left:

dn lg
n

α
+ 2(lgn− d lg (n− 2)) = dn lgn− dαn+ 2(lgn− d lg (n− 2))

To accomplish the proof, we have to show the latter is greater than or equal to dn lgn;
and to show that, we have to show that the term −dαn+ 2(lgn− d lg (n− 2)) is positive.
But that is not true! Both d and α are positive constants, so −dαn is necessarily negative
for positive values of n. And the asymptotic behaviour of −dαn + 2(lgn − d lg (n− 2)) is
determined by −dαn because the linear function dominates the logarithmic function for all
sufficiently large n. Therefore, we need a more sophisticated technique, based on analysis.

Problem 53. Solve by unfolding

T(n) = T(n− 1) + lgn

Solution:

T(n) = T(n− 1) + lgn
= T(n− 2) + lg (n− 1) + lgn
= T(n− 3) + lg (n− 2) + lg (n− 1) + lgn
. . .

= T(1)︸︷︷︸
Θ(1)

+ lg 2+ lg 3+ . . .+ lg (n− 2) + lg (n− 1) + lgn

= Θ(1) + lg (2.3 . . . (n− 2)(n− 1)n)

= Θ(1) + lgn!

= Θ(1) +Θ(n lgn) by (1.42)
= Θ(n lgn)

�

Problem 54. Solve by unfolding

T(n) = 3T
(⌊n
4

⌋)
+ n (3.80)

58



Solution:

T(n) = n+ 3T
(⌊n
4

⌋)
= n+ 3

(⌊n
4

⌋
+ 3T

(⌊⌊
n
4

⌋
4

⌋))

= n+ 3
(⌊n
4

⌋
+ 3T

(⌊ n
16

⌋))
because

⌊⌊
n
4

⌋
4

⌋
=
⌊ n
16

⌋
= n+ 3

⌊n
4

⌋
+ 9T

(⌊ n
16

⌋)
= n+ 3

⌊n
4

⌋
+ 9

⌊ n
16

⌋
+ 27T

(⌊ n
64

⌋)
. . .

= 30
⌊ n
40

⌋
+ 31

⌊ n
41

⌋
+ 32

⌊ n
42

⌋
+ . . .+ 3i−1

⌊ n

4i−1

⌋
︸ ︷︷ ︸

main part P(n)

+ 3iT
(⌊n
4i

⌋)
︸ ︷︷ ︸

remainder

(3.81)

The maximum value for i, let us call it imax, is achieved when
⌊

n
4i

⌋
becomes 1. It follows

imax = blog4 nc. Let us estimate the main part and the remainder of (3.81) for i = imax.

• To estimate the main part, define

X(n) = 30
( n
40

)
+ 31

( n
41

)
+ 32

( n
42

)
+ . . .+ 3imax−1

( n

4imax−1

)
Y(n) = 30

( n
40

+ 1
)

+ 31
( n
41

+ 1
)

+ 32
( n
42

+ 1
)

+ . . .+ 3imax−1
( n

4imax−1
+ 1
)

Clearly, X(n) ≤ P(n) ≤ Y(n). But

X(n) = n

imax−1∑
j=0

(
3

4

)j

≤ n
∞∑
j=0

(
3

4

)j

= n
1

1− 3
4

= 4n

= Θ(n)

59



and

Y(n) = n

imax−1∑
j=0

(
3

4

)j

+

imax−1∑
j=0

3j

≤ 4n+

imax−1∑
j=0

3j

= 4n+Θ
(
3imax−1

)
by Problem 28

= 4n+Θ
(
3log4 n

)
imax = blog4 nc and 3blog4 nc = Θ(3log4 n)

= Θ(n)

Then it has to be the case that X(n) = Θ(n).

• To estimate the remainder, consider the two factors in it:

3imax = 3blog4 nc = Θ(3log4 n) = Θ(nlog3 4)

T
(⌊ n

4imax

⌋)
= T(1) = Θ(1)

It follows the remainder is Θ(3log4 n) = o(n).

Therefore, T(n) = Θ(n) + o(n) = Θ(n). �

Problem 55. Solve

T(n) = 2T
(n
2

)
+ n2

by the method of the recursion tree.

Solution:
The recursion tree is shown on Figure 3.6. The solution is the sum

n2 +
n2

2
+
n2

4
+
n2

8
+ . . . ≤ n2

∞∑
i=0

1

2i
= 2n2

It follows T(n) = Θ(n2). �

Problem 56. Solve

T(n) = T
(n
3

)
+ T

(
2n

3

)
+ n

by the method of the recursion tree.

Solution:
The recursion tree is shown on Figure 3.7. This time the tree is not complete so we do not
write the levels on the left side in terms of n (as we did on Figure 3.6). Rather, the level of
each node is the distance between it and the root. Thus the equidistant with respect to the

60



n2

64
n2

64
n2

64
n2

64
n2

64
n2

64
n2

64
n2

64

level
n

2

level
n

4

level n

level
n

8

n2

16
n2

16
n2

16
n2

16

n2

4
n2

4

n2 n2

n2

2

n2

4

n2

8

Figure 3.6: The recursion tree of T(n) = 2T
(

n
2

)
+ n2.

2n
27

2n
27

4n
27

2n
27

4n
27

4n
27

8
27

n
27

×1
3 ×2

3

×1
3 ×2

3 ×1
3 ×2

3

×2
3×2

3×2
3×2

3×1
3 ×1

3 ×1
3×1

3

n
9

2n
9

2n
9

4n
9

2n
3

n n

n

n

n
3

n

Figure 3.7: The recursion tree of T
(

n
3

)
+ T

(
2n
3

)
+ n.

61



root nodes are at the same level. Think of the tree as an ordered tree. That is, if a node
has any children we distinguish between the left and the right child. The value of the left
child is the value of the parent multiplied by 1

3 and the value of the right child is the value
of the parent multiplied by 2

3 . It is trivial to prove by induction that for each level such
that all the nodes at this level exist, the sum of the values at that level is n. However, we
cannot obtain the answer immediately through mulitplying n by the height because the tree
is not balanced. The maximum distance between the root and any leaf is achieved along
the rightmost path (starting at the root, always take the right choice; see Figure 3.7) and
the minimum distance, by the leftmost path. The length of the leftmost path is determined
by the iterator

n→ n

3

which is executed Θ(log3 n) times before reaching any fixed in advance constant. The length
of the rightmost path is determined by the iterator

n→ 2n

3
=
n
3
2

which is executed Θ
(
log 3

2
n
)

times before reaching any fixed in advance constant.
Let T be the recursion tree. Construct two balanced trees T1 and T2 such that the

height of T1 is Θ(log3 n) and the height of T2 is Θ
(
log 3

2
n
)
. Suppose that each level in T1

and T2 is associated with some value n – it does not matter for what reason, just assume
each level “costs” n. Let Si(n) be the sum of those costs in Ti over all levels for i = 1, 2.
Clearly,

S1(n) = n×Θ(log3 n) = Θ(n log3 n) = Θ(n lgn)

S2(n) = n×Θ
(
log 3

2
n
)

= Θ
(
n log 3

2
n
)

= Θ(n lgn)

To conlude the solution, note that S1(n) ≤ T(n) ≤ S2(n) because T1 can be considered a
subtree of T and T can be considered a subtree of T2. Then T(n) = Θ(n lgn). �

Problem 57. Solve by unfolding

T(n) = T(n− a) + T(a) + n a = const, a ≥ 1

Solution:
We assume a is integer† and the initial conditions are

T(1) = Θ(1)

T(2) = Θ(1)

. . .

T(a) = Θ(1)

†It is not essential to postulate a is integer. The problems makes sense even if a is just a positive
real. If that is the case the initial conditions have to be changed to cover some interval with length a, e.g.
T(i) = const. if i ∈ (0, a].

62



Let us unfold the recurrence.

T(n) = T(n− a) + T(a) + n

= (T(n− 2a) + T(a) + n− a) + n

= T(n− 2a) + 2T(a) + 2n− a

= (T(n− 3a) + T(a) + n− 2a) + 2T(a) + 2n− a

= T(n− 3a) + 3T(a) + 3n− 3a

= (T(n− 4a) + T(a) + n− 4a) + 3T(a) + 3n− 3a

= T(n− 4a) + 4T(a) + 4n− 6a

= (T(n− 5a) + T(a) + n− 4a) + 4T(a) + 4n− 6a

= T(n− 5a) + 5T(a) + 5n− 10a

. . .

= T(n− ia) + iT(a) + in−
1

2
i(i− 1)a (3.82)

Let the maximum value i takes be imax. Consider the iterator

n→ n− a

It maps every n > a, n ∈ N, to a unique number from {1, 2, . . . , a}. Let that number be
called k. So imax is the number of times the iterator is executed until the variable becomes
k. If nmoda 6= 0 then k is nmoda, otherwise k is a†. It follows that

imax =

{⌊
n
a

⌋
, if nmoda 6= 0

n
a − 1, else

That is equivalent to

imax =
⌈n
a

⌉
− 1

Subsituting i with
⌈

n
a

⌉
− 1 in (3.82), we get

T(k) +
(⌈n
a

⌉
− 1
)
T(a) +

(⌈n
a

⌉
− 1
)
n−

1

2

(⌈n
a

⌉
− 1
)(⌈n

a

⌉
− 1− 1

)
a (3.83)

The growth rate of (3.83) is determined by

n
⌈n
a

⌉
−
1

2

⌈n
a

⌉ ⌈n
a

⌉
= Θ(n2)

It follows T(n) = Θ(n2). �

Problem 58. Solve

T(n) = T(αn) + T((1− α)n) + n, α = const., 0 < α < 1 (3.84)

by the method of the recursion tree.

63



×α ×β

×α ×β ×α ×β

α3n α2βn

α2βn αβ2n

α2βn αβ2n

αβ2n β3n

×α ×α ×α×α ×β×β×β×β

α2n αβn αβn

n n

αn βn

β2n

(α+ β)n

(α + β)2n

(α + β)3n

Figure 3.8: The recursion tree of T(n) = T(αn) + T(βn) + n where 0 < α,β < 1
and α+ β = 1.

Solution:
Define that 1− α = β. Obviously, 0 < β < 1 and (3.84) becomes

T(n) = T(αn) + T(βn) + n (3.85)

The recursion tree of (3.85) is shown on Figure 3.8. The solution is completely analogous
to the solution of Problem 56. The level of each node is the distance between it and the
root. The sum of the costs at every level such that all nodes at that levels exist, is n. More
precisely, at level i the sum is (α + β)in = n. The tree is not complete. Assume without
loss of generality that α ≤ β and think of the tree as an ordered tree. The shortest path
from the root to any leaf is the leftmost one, i.e. “follow the alphas”, and the longest path
is the rightmost one. The length of the shortest path is log( 1

α) n and of the longest path,
log“

1
β

” n. We prove that T(n) = Θ(n lgn) just as in Problem 56 by considering two other

trees, one that is a subgraph of the current one and one that isa supergraph of the current
one. Since the first of then has sum of the costs n × Θ

(
log( 1

α) n
)

= Θ(n lgn) and the

second one, n×Θ
(

log“
1
β

” n
)

= Θ(n lgn), it follows T(n) = Θ(n lgn). �

Problem 59. Solve

T(n) = T(n− 1) +
1

n
(3.86)

†Not n mod a, which is 0.

64



Solution:
We solve the recurrence by unfolding. Before we commence the unfolding check the defi-
nition of the harmonic series, the partial sum Hn of the harmonic series, and its order of
growth Θ(lgn) on page 91.

T(n) = T(n− 1) +
1

n

= T(n− 2) +
1

n− 1
+
1

n

= T(n− 3) +
1

n− 2
+

1

n− 1
+
1

n

. . .

= T(1) +
1

2
+
1

3
+ . . .+

1

n− 2
+

1

n− 1
+
1

n

= T(1) − 1+ 1+
1

2
+
1

3
+ . . .+

1

n− 2
+

1

n− 1
+
1

n︸ ︷︷ ︸
Hn

= O(1) +Hn

= O(1) +Θ(lgn)

= Θ(lgn)

�

Problem 60. Solve by unfolding

T(n) =
n

n+ 1
T(n− 1) + 1

Solution:

T(n) =
n

n+ 1
T(n− 1) + 1

=
n

n+ 1

(
n− 1

n
T(n− 2) + 1

)
+ 1

=
n− 1

n+ 1
T(n− 2) +

n

n+ 1
+ 1

=
n− 1

n+ 1

(
n− 2

n− 1
T(n− 3) + 1

)
+

n

n+ 1
+ 1

=
n− 2

n+ 1
T(n− 3) +

n− 1

n+ 1
+

n

n+ 1
+ 1

=
n− 2

n+ 1

(
n− 3

n− 2
T(n− 4) + 1

)
+
n− 1

n+ 1
+

n

n+ 1
+ 1

=
n− 3

n+ 1
T(n− 4) +

n− 2

n+ 1
+
n− 1

n+ 1
+

n

n+ 1
+ 1 (3.87)

65



If we go on like that down to T(1), (3.87) unfolds into

T(n) =
2

n+ 1
T(1) +

3

n+ 1
+

4

n+ 1
+ . . .+

n− 2

n+ 1
+
n− 1

n+ 1
+

n

n+ 1
+ 1

=
2

n+ 1
T(1) +

3

n+ 1
+

4

n+ 1
+ . . .+

n− 2

n+ 1
+
n− 1

n+ 1
+

n

n+ 1
+
n+ 1

n+ 1

=
2T(1)

n+ 1
+

1

n+ 1

n+1∑
i=3

i

=
2T(1)

n+ 1
+

1

n+ 1

((
n+1∑
i=1

i

)
− 3

)

=
2T(1)

n+ 1
+

1

n+ 1

(
(n+ 1)(n+ 2)

2
− 3

)
=

1

n+ 1

(
4T(1) + (n2 + 3n+ 2) − 6

)
=
n2 + 3n+ 4T(1) − 4

n+ 1

=
n2

n+ 1︸ ︷︷ ︸
Θ(n)

+
3n

n+ 1︸ ︷︷ ︸
Θ(1)

+
4T(1) − 4

n+ 1︸ ︷︷ ︸
O(1)

= Θ(n)

So, T(n) = Θ(n). �

Problem 61. Solve by unfolding

T(n) =
n

n+ 1
T(n− 1) + n2

Solution:

T(n) =
n

n+ 1
T(n− 1) + n2

=
n

n+ 1

(
n− 1

n
T(n− 2) + (n− 1)2

)
+ n2

=
n− 1

n+ 1
T(n− 2) +

n(n− 1)2

n+ 1
+ n2

=
n− 1

n+ 1

(
n− 2

n− 1
T(n− 3) + (n− 2)2

)
+
n(n− 1)2

n+ 1
+ n2

=
n− 2

n+ 1
T(n− 3) +

(n− 1)(n− 2)2

n+ 1
+
n(n− 1)2

n+ 1
+ n2

=
n− 2

n+ 1

(
n− 3

n− 2
T(n− 4) + (n− 3)2

)
+

(n− 1)(n− 2)2

n+ 1
+
n(n− 1)2

n+ 1
+ n2

=
n− 3

n+ 1
T(n− 4) +

(n− 2)(n− 3)2

n+ 1
+

(n− 1)(n− 2)2

n+ 1
+
n(n− 1)2

n+ 1
+ n2 (3.88)

66



If we go on like that down to T(1), (3.88) unfolds into

T(n) =
2

n+ 1
T(1) +

3.22

n+ 1
+
4.32

n+ 1
+ . . .

+
(n− 2)(n− 3)2

n+ 1
+

(n− 1)(n− 2)2

n+ 1
+
n(n− 1)2

n+ 1
+ n2

=
2

n+ 1
T(1) +

3.22

n+ 1
+
4.32

n+ 1
+ . . .

+
(n− 2)(n− 3)2

n+ 1
+

(n− 1)(n− 2)2

n+ 1
+
n(n− 1)2

n+ 1
+

(n+ 1)n2

n+ 1

=
2T(1)

n+ 1
+

1

n+ 1

n+1∑
i=3

i(i− 1)2

=
2T(1)

n+ 1
+

1

n+ 1

((
n+1∑
i=1

i(i− 1)2

)
− 2

)

=
2T(1) − 2

n+ 1
+

1

n+ 1

n+1∑
i=1

i(i− 1)2

=
2T(1) − 2

n+ 1
+

1

n+ 1

n+1∑
i=1

(i3 − 2i2 + i)

=
2T(1) − 2

n+ 1
+

1

n+ 1

(
n+1∑
i=1

i3 − 2

n+1∑
i=1

i2 +

n+1∑
i=1

i

)
(3.89)

Having in mind (4.21), (4.22), and (4.23) on page 92, (3.89) becomes

2T(1) − 2

n+ 1
+

1

n+ 1

(
(n+ 1)2(n+ 2)2

4
− 2

(n+ 1)(n+ 2)(2n+ 3)

6
+

(n+ 1)(n+ 2)

2

)
=
2T(1) − 2

n+ 1︸ ︷︷ ︸
O(1)

+
(n+ 1)(n+ 2)2

4︸ ︷︷ ︸
Θ(n3)

−
(n+ 2)(2n+ 3)

3︸ ︷︷ ︸
Θ(n2)

+
n+ 2

2︸ ︷︷ ︸
Θ(n)

= Θ(n3)

So, T(n) = Θ(n3). �

Problem 62. Solve by unfolding

T(n) =
n

n+ 1
T(n− 1) +

√
n (3.90)

where
√
n stands for either b

√
nc or d

√
ne.

Solution:

67



T(n) =
n

n+ 1
T(n− 1) +

√
n

=
n

n+ 1

(
n− 1

n
T(n− 2) +

√
n− 1

)
+
√
n

=
n− 1

n+ 1
T(n− 2) +

n
√
n− 1

n+ 1
+
√
n

=
n− 1

n+ 1

(
n− 2

n− 1
T(n− 3) +

√
n− 2

)
+
n
√
n− 1

n+ 1
+
√
n

=
n− 2

n+ 1
T(n− 3) +

(n− 1)
√
n− 2

n+ 1
+
n
√
n− 1

n+ 1
+
√
n

=
n− 2

n+ 1

(
n− 3

n− 2
T(n− 4) +

√
n− 3

)
+

(n− 1)
√
n− 2

n+ 1
+
n
√
n− 1

n+ 1
+
√
n

=
n− 3

n+ 1
T(n− 4) +

(n− 2)
√
n− 3

n+ 1
+

(n− 1)
√
n− 2

n+ 1
+
n
√
n− 1

n+ 1
+
√
n (3.91)

If we go on like that down to T(1), (3.91) unfolds into

T(n) =
2

n+ 1
T(1) +

3
√
2

n+ 1
+
4
√
3

n+ 1
+ . . .

+
(n− 2)

√
n− 3

n+ 1
+

(n− 1)
√
n− 2

n+ 1
+
n
√
n− 1

n+ 1
+
√
n

=
2

n+ 1
T(1) +

3
√
2

n+ 1
+
4
√
3

n+ 1
+ . . .

+
(n− 2)

√
n− 3

n+ 1
+

(n− 1)
√
n− 2

n+ 1
+
n
√
n− 1

n+ 1
+

(n+ 1)
√
n

n+ 1

=
2T(1)

n+ 1
+

1

n+ 1

n∑
i=2

(i+ 1)
√
i

=
2T(1)

n+ 1
+

1

n+ 1

((
n∑

i=1

(i+ 1)
√
i

)
−
√
2

)

=
2T(1) −

√
2

n+ 1
+

1

n+ 1

n∑
i=1

(i+ 1)
√
i

=
2T(1) −

√
2

n+ 1
+

1

n+ 1

n∑
i=1

(i
√
i+

√
i)

=
2T(1) −

√
2

n+ 1
+

1

n+ 1

(
n∑

i=1

i
√
i+

n∑
i=1

√
i

)
(3.92)

68



But we know that

n∑
i=1

⌊√
i
⌋

= Θ
(
n

3
2

)
by (4.5) on page 83.

n∑
i=1

⌈√
i
⌉

= Θ
(
n

3
2

)
by (4.7) on page 85.

n∑
i=1

i
⌊√
i
⌋

= Θ
(
n

5
2

)
by (4.10) on page 87.

n∑
i=1

i
⌈√
i
⌉

= Θ
(
n

5
2

)
by (4.14) on page 90.

Therefore, regardless of whether “
√
n” in (3.90) stands for b

√
nc or d

√
ne,

T(n) =
2T(1) −

√
2

n+ 1
+

1

n+ 1

(
Θ
(
n

5
2

)
+Θ

(
n

5
2

))
by substituting into (3.92)

=
2T(1) −

√
2

n+ 1
+

1

n+ 1

(
Θ
(
n

5
2

))
= O(1) +Θ

(
n

3
2

)
So, T(n) = Θ

(
n

3
2

)
. �

Problem 63. Solve by unfolding

T(n) =
n

n+ 1
T(n− 1) + lgn (3.93)

Solution:

T(n) =
n

n+ 1
T(n− 1) + lgn

=
n

n+ 1

(
n− 1

n
T(n− 2) + lg (n− 1)

)
+ lgn

=
n− 1

n+ 1
T(n− 2) +

n

n+ 1
lg (n− 1) + lgn

=
n− 1

n+ 1

(
n− 2

n− 1
T(n− 3) + lg (n− 2)

)
+

n

n+ 1
lg (n− 1) + lgn

=
n− 2

n+ 1
T(n− 3) +

n− 1

n+ 1
lg (n− 2) +

n

n+ 1
lg (n− 1) + lgn

= . . .

=
2

n+ 1
T(1)︸ ︷︷ ︸

A

+
3

n+ 1
lg 2+

4

n+ 1
lg 3+ . . .+

n− 1

n+ 1
lg (n− 2) +

n

n+ 1
lg (n− 1) + lgn︸ ︷︷ ︸

B

69



Clearly, A = O(1). Consider B.

B =
3

n+ 1
lg 2+

4

n+ 1
lg 3+ . . .+

n− 1

n+ 1
lg (n− 2) +

n

n+ 1
lg (n− 1) +

n+ 1

n+ 1
lgn

=
1

n+ 1
(3 lg 2+ 4 lg 3+ . . .+ (n− 1) lg (n− 2) + n lg (n− 1) + (n+ 1) lgn)

=
1

n+ 1

(
lg 23 + lg 34 + . . .+ lg (n− 2)(n−1) + lg (n− 1)n + lgn(n+1)

)
=

1

n+ 1
lg
(
23.34 . . . (n− 2)(n−1).(n− 1)n.n(n+1)

)
=

1

n+ 1
lg
(
2n+1

2n−2

3n+1

3n−3
. . .

(n− 2)n+1

(n− 2)2

(n− 1)n+1

n− 1

nn+1

n0

)
=

1

n+ 1
lg
(
2n+13n+1 . . . (n− 2)n+1(n− 1)n+1nn+1

2n−23n−3 . . . (n− 2)2(n− 1)1n0

)
Define that

f(n) = 2n+13n+1 . . . (n− 2)n+1(n− 1)n+1nn+1 (3.94)

g(n) = 2n−23n−3 . . . (n− 2)2(n− 1)1n0 (3.95)

so

B =
1

n+ 1
lg
(
f(n)

g(n)

)
=

lg f(n)

n+ 1
−

lg g(n)

n+ 1

Using the notations (1.11) and (1.12) on page 2, we claim that f(n) � g(n). To see why
this is true, note that both f(n) and g(n) have n− 1 factors and compare the factors in the
order in which they appear in (3.94) and (3.95).

f(n) = 2n+1

�
3n+1

�

. . . (n− 2)n+1

�

(n− 1)n+1

�

nn+1

�

g(n) = 2n−2 3n−3 . . . (n− 2)2 (n− 1)1
n0

Now it is obvious that f(n) � g(n). Then by (1.37) on page 9, lg f(n) � lg g(n), therefore

lg f(n)

n+ 1
� lg g(n)

n+ 1

It follows that

B = Θ

(
lg f(n)

n+ 1

)
It is clear from (3.94) that f(n) = (n!)n+1. Therefore,

lg f(n) = lg (n!)n+1 = (n+ 1) lgn! = (n+ 1)Θ(n lgn)

It follows that

B = Θ(n lgn)

Recall that T(n) = A+ B and A = O(1). We conclude that

T(n) = Θ(n lgn)

�

70



Problem 64. Solve

T(1) = Θ(1) (3.96)
T(2) = Θ(1) (3.97)
T(n) = T(n− 1).T(n− 2) (3.98)

Solution:
Unlike the problems we encountered so far, the aymptotic growth rate of T(n) in this
problem depends on the concrete values of the constants in (3.96) and (3.97). It is easy to
see that if T(1) = T(2) = 1 then T(n) = 1 for all positive n. So let us postulate that

T(1) = c (3.99)
T(2) = d (3.100)

where c and d are some positive constants. Then

T(3) = T(2).T(1) = cd

T(4) = T(3).T(2) = cd2

T(5) = T(4).T(3) = c2d3

T(6) = T(5).T(4) = c3d5

T(7) = T(6).T(5) = c5d8

. . .

The degrees that appear in this sequence look like the Fibonacci number (see the definition
on page 91). Indeed, it is trivial to prove by induction that

T(1) = c

T(n) = dFn−1cFn−2 , for all n > 1 (3.101)

Define

a = c
1√
5

b = d
1√
5

and derive

T(n) = Θ
(
bφn−1

)
Θ
(
aφn−2

)
applying (4.15) on page 91 on (3.101)

= Θ
(
bφn−1

aφn−2
)

= Θ
(
bφ.φn−2

aφn−2
)

= Θ
(
kφn−2

aφn−2
)

defining that bφ = k

= Θ
(
(ak)φn−2

)
(3.102)

Depending on how detalied analysis we need, we may stop right here. However, we can go
on a little further because depending on what a and k are, (3.101) can have dramatically
different asymptotic growth.

71



• If ak > 1, T(n) −−−−−→
n → +∞ ∞.

• If ak = 1, T(n) = 1 for all positive n, thus T(n) = Θ(1).

• If ak < 1, T(n) −−−−−→
n → +∞ 0, thus T(n) = O(1).

�

3.2.2 The Master Theorem

There are several theoretical results solving a broad range of recurrences corresponding to
divide-and-conquer algorithms that are called master theorems. The one stated below is
due to [CLR00]. There is a considerately more powerful master theorem due to Akra and
Bazzi [AB98]. See [Lei96] for a detailed explanation.

Theorem 1 (Master Theorem, [CLR00], pp. 62). Let a ≥ 1 and b > 1 be constants, let
k = lgb a, and let f(n) be a positive function. Let

T(n) = aT
(n
b

)
+ f(n)

T(1) = Θ(1)

where
n

b
is interpreted either as

⌊n
b

⌋
or
⌈n
b

⌉
. Then T(n) can be bounded asymptotically as

follows.

Case 1 If f(n) = O
(
nk−ε

)
for some positive constant ε then T(n) = Θ(nk).

Case 2 If f(n) = Θ(nk) then T(n) = Θ
(
nk. lgn

)
.

Case 3 If both

1. f(n) = Ω
(
nk+ε

)
for some positive constant ε, and

2. for some positive constant c and for all sufficiently large n, a.f
(

n
b

)
≤ c.f(n),

then T(n) = Θ(f(n)). �

Case 3-2 is known as the regularity condition.

Note that the condition f(n) = O
(
nk−ε

)
is stronger than f(n) = o(nk) and f(n) =

Ω
(
nk+ε

)
is stronger than f(n) = ω

(
nk
)
:

f(n) = O(nk−ε) ⇒ f(n) = o(nk)

f(n) = o(nk) 6⇒ f(n) = O(nk−ε)

f(n) = Ω(nk+ε) ⇒ f(n) = ω(nk)

f(n) = ω(nk) 6⇒ f(n) = Ω(nk+ε)

72



For example, consider that

n lgn = ω(n) (3.103)

n lgn 6= Ω(n1+ε) for any ε > 0 because lgn 6= Ω(nε) by (1.44) (3.104)
n

lgn
= o(n) (3.105)

n

lgn
6= O(n1−ε) for any ε > 0 because

1

lgn
6= O(n−ε) (3.106)

To see why 1
lg n 6= O(n−ε) in (3.106) consider that

lim
n→∞ lgn

nε
= 0 ⇒ lim

n→∞
(

1
nε

1
lg n

)
= 0 ⇒ 1

nε
= o

(
1

lgn

)
by (1.6) ⇒

1

lgn
= ω

(
1

nε

)
by the transpose symmetry

Problem 65. Solve by the Master Theorem

T(n) = 4T
(n
2

)
+ n

Solution:
Using the terminology of the Master Theorem, a is 4, b is 2, thus logb a is log2 4 = 2 and
nlogb a is n2. The function f(n) is n. The theorem asks us to compare f(n) and nlogb a,
which, in the current case, is to compare n with n2. Clearly, n = O(n2−ε) for some ε > 0,
so Case 1 of the Master Theorem is applicable and T(n) = n2. �

Problem 66. Solve by the Master Theorem

T(n) = T

(
2n

3

)
+ 1

Solution:
Rewrite the recurrence as

T(n) = 1.T

(
n
3
2

)
+ 1

Using the terminology of the Master Theorem, a is 1, b is 3
2 , thus logb a is log 3

2
1 = 0 and

nlogb a is n0 = 1. The function f(n) is n. Clearly, 1 = Θ(n0), so Case 2 of the Master
Theorem is applicable. Assording to it, T(n) = Θ(1. lgn) = Θ(lgn). �

Problem 67. Solve

T(n) = 3T
(n
4

)
+ n lgn

73



Solution:
Using the terminology of the Master Theorem, a is 3, b is 4, thus logb a is log4 3, which
is approximately 0.79, and the function f(n) is n lgn. It certainly is true that n lgn =

Ω(nlog4 3+ε) for some ε > 0, for instance ε = 0.1. However, we have to check the regularity
condition to see if Case 3 of the Master Theorem is aplicable. The regularity condition in
this case is:

∃c such that 0 < c < 1 and 3
n

4
lg
n

4
≤ cn lgn for all sufficiently large n

The latter clearly holds for, say, c = 3
4 , therefore Case 3 is applicable and according to it,

T(n) = Θ(n lgn). �

Problem 68. Solve

T(n) = 2T
(n
2

)
+ n lgn

Solution:
Let us the try to solve it using the Master Theorem. Using the terminology of the Master
Theorem, a is 2 and b is 2, thus logb a is log2 2 = 1, therefore nlogb a is n1 = n. The
function f(n) is n lgn. Let us see if we can classify that problem in one of the three cases
of the Master Theorem.

try Case 1 Is it true that n lgn = O(n1−ε) for some ε > 0? No, because n lgn = ω(n1).

try Case 2 Is it true that n lgn = Θ(n1)? No, because n lgn = ω(n1).

try Case 3 Is it true that n lgn = Ω(n1+ε) for some ε > 0? No, see (3.104).

Therefore this problem cannot be solved using the Master Theorem as stated above. We
solve it by Theorem 2 on page 77 and the answer is T(n) = Θ(n lg2 n). �

Problem 69. Solve

T(n) = 4T
(n
2

)
+ n (3.107)

T(n) = 4T
(n
2

)
+ n2 (3.108)

T(n) = 4T
(n
2

)
+ n3 (3.109)

(3.110)

Solution:
Using the terminology of the Master Theorem, a is 4 and b is 2, thus logb a is log4 2 = 2,
therefore nlogb a is n2. With respect to (3.107), it is the case that n = O(n2−ε) for some
ε > 0, therefore the solution of (3.107) is T(n) = Θ(n2) by Case 1 of the Master Theorem.
With respect to (3.108), it is the case that n2 = Θ(n2), therefore the solution of (3.108)
is T(n) = Θ(n2 lgn) by Case 2 of the Master Theorem. With respect to (3.109), it is the
case that n3 = Ω(n2+ε) for some ε > 0, therefore the solution of (3.109) is T(n) = Θ(n3)

74



by Case 3 of the Master Theorem, provided the regularity condition holds. The regularity
condition here is

∃c such that 0 < c < 1 and 4
(n
2

)3
≤ cn3 for all sufficiently large n

Clearly that holds for any c such that 1
2 ≤ c < 1. Therefore, by Case 3 of the Master

Theorem, the solution of (3.109) is T(n) = Θ(n3). �

Problem 70. Solve

T(n) = T
(n
2

)
+ lgn (3.111)

Solution:
Let us try to solve it using the Master Theorem. Using the terminology of the Master
Theorem, a is 1 and b is 2, thus logb a is log2 1 = 0, therefore nlogb a is n0 = 1. The
function f(n) is lgn. Let us see if we can classify that problem in one of the three cases of
the Master Theorem.

try Case 1 Is it true that lgn = O(n0−ε) for some ε > 0? No, because lgn is an increasing
function and n−ε = 1

nε is a decreasing one.

try Case 2 Is it true that lgn = Θ(n0)? No, because lgn = ω(n0).

try Case 3 Is it true that lgn = Ω(n0+ε) for some ε > 0? No, see (1.44) on page 11.

So the Master Theorem is not applicable and we seek other methods for solving. Substitute
n by 2m, i.e. m = lgn and m = lgn. Then (3.111) becomes

T (2m) = T
(
2m−1

)
+m (3.112)

Further substitute T (2m) by S(m) and (3.112) becomes

S(m) = S(m− 1) +m (3.113)

But that recurrence is the same as (3.18), therefore its solution is S(m) = Θ(m2). Let us
go back now to the original n and T(n).

S(m) = Θ(m2) ⇔ T(2m) = Θ(lg2 n) ⇔ T(n) = Θ(lg2 n)

�

75



Problem 71. Solve by the Master Theorem

T(n) = 2T
(n
2

)
+ n3 (3.114)

T(n) = T

(
9n

10

)
+ n (3.115)

T(n) = 16T
(n
4

)
+ n2 (3.116)

T(n) = 7T
(n
3

)
+ n2 (3.117)

T(n) = 7T
(n
2

)
+ n2 (3.118)

T(n) = 2T
(n
4

)
+
√
n (3.119)

T(n) = 4T
(n
2

)
+ n2

√
n (3.120)

T(n) = 8T
(n
2

)
+ n3 (3.121)

T(n) = 3T
(n
2

)
+ 2n2 (3.122)

T(n) = 3T
(n
2

)
+ n lgn (3.123)

Solution:
(3.114): as n3 = Ω

(
nlog2 2+ε

)
for some ε > 0, we classify the problem into Case 3 of the

Master Theorem. To apply Case 3, we have to check the regularity condition holds. Namely,
there is a constant c such that 0 < c < 1 and 2

(
n
2

)3 ≤ cn3 ⇔ 1
4 ≤ c. So, any c such that

1
4 ≤ c < 1 will do, therefore the regularity condition holds, therefore Case 3 is applicable,
therefore T(n) = Θ(n3).

(3.115): rewrite the recurrence as T(n) = 1.T

(
n
10
9

)
+ n. As n = Ω

(
n

„
log 10

9
1

«
+ε
)

for

some ε > 0, we classify the problem into Case 3 of the Master Theorem. To apply Case 3,
we have to check the regularity condition holds. Namely, there is a constant c such that

0 < c < 1 and 1
(

n
10
9

)
≤ cn ⇔ 9

10 ≤ c. So, any c such that 9
10 ≤ c < 1 will do, therefore

the regularity condition holds, therefore Case 3 is applicable, therefore T(n) = Θ(n).

(3.116): As n2 = Θ
(
nlog4 16

)
, we classify the problem into Case 2 of the Master Theorem

and so T(n) = n2 lgn.

(3.117): as n2 = Ω
(
nlog3 7+ε

)
for some ε > 0, we classify the problem into Case 3 of the

Master Theorem. To apply Case 3, we have to check the regularity condition holds. Namely,
there is a constant c such that 0 < c < 1 and 7

(
n
3

)2 ≤ cn2 ⇔ 7
9 ≤ c. So, any c such that

7
9 ≤ c < 1 will do, therefore the regularity condition holds, therefore Case 3 is applicable,
therefore T(n) = Θ(n2).

(3.118): as n2 = O
(
nlog2 7−ε

)
for some ε > 0, we classify the problem into Case 1 of the

Master Theorem and so T(n) = Θ
(
nlog2 7

)
.

76



(3.119): as
√
n = Θ

(
nlog4 2

)
, we classify the problem into Case 2 of the Master Theorem

and so T(n) = Θ(
√
n lgn).

(3.120): as n
5
2 = Ω

(
nlog2 4+ε

)
for some ε > 0, we classify the problem into Case 3 of

the Master Theorem. To apply Case 3, we have to check the regularity condition holds.
Namely, there is a constant c such that 0 < c < 1 and 4

(
n
2

)5
2 ≤ cn

5
2 ⇔ 1√

2
≤ c. So, any c

such that 1√
2
≤ c < 1 will do, therefore the regularity condition holds, therefore Case 3 is

applicable, therefore T(n) = Θ(n2
√
n).

(3.121): As n3 = Θ
(
nlog8 2

)
, we classify the problem into Case 2 of the Master Theorem

and so T(n) = n3 lgn.

(3.122): as 2n2 = Ω
(
nlog2 3+ε

)
for some ε > 0, we classify the problem into Case 3 of

the Master Theorem. To apply Case 3, we have to check the regularity condition holds.
Namely, there is a constant c such that 0 < c < 1 and 3

(
2
(

n
2

)2) ≤ c2n2 ⇔ 3 ≤ 4c. So,

any c such that 3
4 ≤ c < 1 will do, therefore the regularity condition holds, therefore Case 3

is applicable, therefore T(n) = Θ(2n2) = Θ(n2).

(3.123): as n lgn = O
(
nlog2 3−ε

)
for some ε > 0, we classify the problem into Case 1 of the

Master Theorem and so T(n) = Θ
(
nlog2 3

)
. �

The following result extends Case 2 of the Master Theorem.

Theorem 2. Under the premises of Theorem 1, assume

f(n) = Θ(nk lgt n) (3.124)

for some constant t ≥ 0. Then

T(n) = Θ(nk lgt+1 n)

Proof:
Theorem 1 itself is not applicable because the recurrence for the said f(n) cannot be classified
into any of the three cases there. To solve the problem we use unfolding. For simplicity
we assume that n is an exact power of b, i.e. n = bm for some integer m > 0. The same
technique is used in [CLR00] for proving the Master Theorem: first prove it for exact powers
of b and then prove the result holds for any positive n. Here we limit our proof to the case
that n is an exact power of b and leave it to the reader to generalise for any positive n.

Assume that the logarithm in (3.124) is base-b and note we can rewrite what is inside
the Θ-notation on the right-hand side of (3.124) in the following way:

nk logt
b n = nlogb a (logb b

m)t = b(m logb a)mt = b(logb am)mt = ammt (3.125)

Then (3.124) is equivalent to saying that

c1a
mmt ≤ f(bm) ≤ c2ammt

for some positive constants c1 and c2 and all sufficiently large values of m. However, for
the sake of simplicity, we will assume in the remainder of the proof that

f(bm) = ammt (3.126)

77



The reader is invited to construct a proof for the general case.

By the definition of the Master Theorem, T(n) = aT
(

n
b

)
+ f(n). Using (3.126) we rewrite

that as follows.

T(bm) = aT

(
bm

b

)
+ ammt

= aT(bm−1) + ammt ⇔
S(m) = aS(m− 1) + ammt substituting T(bm) with S(m)

= a
(
aS(m− 2) + am−1(m− 1)t) + ammt

= a2S(m− 2) + am(m− 1)t + ammt

= a2
(
aS(m− 3) + am−2(m− 2)t

)
+ am(m− 1)t + ammt

= a3S(m− 3) + am(m− 2)t + am(m− 1)t + ammt

. . .

= am−1S(1) + am2t + am3t + . . .+ am(m− 2)t + am(m− 1)t + ammt

= am−1S(1) − am + am (1t + 2t + 3t + . . .+ (m− 2)t + (m− 1)t +mt)︸ ︷︷ ︸
Θ(mt+1) by (4.20) on page 92

= am−1S(1) − am + amΘ(mt+1)

= am−1S(1) − am +Θ(ammt+1) (3.127)

But (3.127) is Θ(ammt+1) because ammt+1 = ω(|am−1S(1) − am|). So,

S(m) = Θ(ammt+1) ⇔ T(n) = Θ
(
alogb n(logb n)t+1

)
Having in mind that alogb n = nlogb a and logb n = Θ(lgn), we conclude that

T(n) = Θ
(
nlogb a lgt+1 n

)
�

Problem 72. Solve

T(n) = 2T
(n
2

)
+

n

lgn

Solution:
Let us the try to solve it using the Master Theorem. Using the terminology of the Master
Theorem, a is 2 and b is 2, thus logb a is log2 2 = 1, therefore nlogb a is n1 = n. The
function f(n) is n

lg n . Let us see if we can classify that problem in one of the three cases of
the Master Theorem.

try Case 1 Is it true that n
lg n = O(n1−ε) for some ε > 0? No, see (3.106) on page 73.

try Case 2 Is it true that n
lg n = Θ(n1)? No, because n lgn = o(n1).

try Case 3 Is it true that n
lg n = Ω(n1+ε) for some ε > 0? No, because n lgn = o(n1).

78



Therefore this problem cannot be solved using the Master Theorem as stated above. Fur-
thermore, Theorem 2 on page 77 cannot be applied either because it is not true that
n

lg n = Θ(nlog2 2 lgt(n)) for any t ≥ 0.
We solve the problem by unfolding.

T(n) = 2T
(n
2

)
+

n

lgn

= 2

(
2T
(n
4

)
+

n
2

lg n
2

)
+

n

lgn

= 4T
(n
4

)
+

n

(lgn) − 1
+

n

lgn

= 4

(
2T
(n
8

)
+

n
4

lg n
4

)
+

n

(lgn) − 1
+

n

lgn

= 8T
(n
8

)
+

n

(lgn) − 2
+

n

(lgn) − 1
+

n

lgn
. . .

= nT(1) +
n

2
+
n

3
+ . . .+

n

(lgn) − 2
+

n

(lgn) − 1
+

n

lgn

= nT(1) − n︸ ︷︷ ︸
A

+n

(
1

1
+
1

2
+
1

3
+ . . .+

1

(lgn) − 2
+

1

(lgn) − 1
+

1

lgn

)
︸ ︷︷ ︸

B

Clearly, |A| = O(n). Now observe that B = n.Hlg n because inside the parentheses is
the (lgn)th partial sum of the harmonic series (see 4.16 on page 91). By (4.17), Hlg n =

Θ(lg lgn), therefore B = Θ(n lg lgn), therefore T(n) = Θ(n lg lgn). �

79



Chapter 4

Appendix

Problem 73. Find a closed formula for
n∑

k=0

2kk

Solution:
Let

Sn =

n∑
k=0

2kk

Then

Sn + (n+ 1)2n+1 =

n∑
k=0

2kk+ (n+ 1)2n+1 =

n∑
k=0

2k+1(k+ 1) = 2

n∑
k=0

2kk+ 2

n∑
k=0

2k

Since
∑n

k=0 2
k = 2n+1 − 1,

Sn + (n+ 1)2n+1 = 2

n∑
k=0

2kk︸ ︷︷ ︸
2Sn

+ 2(2n+1 − 1) = 2Sn + 2.2n+1 − 2

Then

Sn = n2n+1 + 2n+1 − 2.2n+1 + 2 = n2n+1 − 2n+1 + 2

So,

Sn = (n− 1)2n+1 + 2 (4.1)

�

Problem 74. Find a closed formula for
n∑

k=0

2kk2

80



Solution:
Let

Sn =

n∑
k=0

2kk2

Then

Sn + 2n+1(n+ 1)2 =

n∑
k=0

2kk2 + 2n+1(n+ 1)2 =

n∑
k=0

2k+1(k+ 1)2

= 2

n∑
k=0

2k(k2 + 2k+ 1)

= 2

n∑
k=0

2kk2

︸ ︷︷ ︸
2Sn

+ 4

n∑
k=0

2kk︸ ︷︷ ︸
4(n−1)2n+1+8

+ 2

n∑
k=0

2k

︸ ︷︷ ︸
2.2n+1−2

Then

Sn + n22n+1 + 2n2n+1 + 2.2n+1 = 2Sn + 4n2n+1 − 4.2n+1 + 8+ 2.2n+1 − 2

So,

Sn = n22n+1 − 2n2n+1 + 4.2n+1 − 6 (4.2)

�

Problem 75. Find a closed formula for the sum of the first n odd numbers

Sn = 1+ 3+ 5+ . . .+ 2n− 1

Solution:
It is trivial to prove by induction on n that Sn = n2.
Basis: S1 = 12.
Induction hypothesis: assume Sn = n2.
Induction step:

Sn+1 = 1+ 3+ 5+ . . .+ 2n− 1+ 2n+ 1

= Sn + 2n+ 1 by definition

= n2 + 2n+ 1 by the induction hypothesis

= (n+ 1)2

Indeed,

Sn = n2 (4.3)

There is a geometric proof of the same fact, illustrated on Figure 4.1. �

81



1+ 3 = 22

1+ 3+ 5+ 7 = 42

1+ 3+ 5 = 32

1 = 12

Figure 4.1: A geometric proof that the sum of the first n odd numbers is the nth

square n2.

Problem 76. Find a closed formula for

n∑
i=1

⌊√
i
⌋

Solution:
To gain some intuition, let us write down the sum explicitly, i.e. all the terms, for some
small n, say n = 17. For clarity put boxes around the terms whose positions are perfect
squares, i.e. around the first, fourth, ninth, and sixtienth term.

17∑
i=1

⌊√
i
⌋

= 1 + 1+ 1︸ ︷︷ ︸
run 1

+ 2 + 2+ 2+ 2+ 2︸ ︷︷ ︸
run 2

+ 3 + 3+ 3+ 3+ 3+ 3+ 3︸ ︷︷ ︸
run 3

+ 4 + 4︸ ︷︷ ︸
run 4

The pattern is clear: the sum is the first n, in this case n = 17, terms of a series whose
terms are the consecutive positive integers grouped in runs, run j being the sum of 2j + 1
in number j’s. Naturally, each run starts at a term whose position in the series is a perfect
square: run 1 starts at position 1, run 2 starts at position 4, run 3 starts at position 9, etc.
Problem 75 explains why the runs, except possibly for the last run, have lengths that are the
consecutive odd numbers—since the first j odd numbers sum precisely to a perfect square,
viz. j2, it follows the difference between the two consecutive perfect squares (j+ 1)2 − j2 is
an odd number, viz. 2j+ 1.

The run with the largest number can be incomplete, as is the case when n = 17—run
number 4 has only two terms. Let us call the number of complete runs, i.e. the ones that
have all the terms, kn. For instance, k17 = 3. We claim that

kn = b
√
n+ 1c− 1

To see why, imagine that n decreases one by one and think of the moment when kn decreases.
That is not when n becomes a perfect square minus one but when n becomes a perfect square
minus two. For instance, k15 = 3 but k14 = 2. Hence we have

√
n+ 1, not

√
n.

Having all that in mind we break the desired sum down into two sums:

n∑
i=1

⌊√
i
⌋

= S1 + S2

where S1 is the sum of the terms of the complete runs and S2, of the incomplete run. S2 = 0

if and only if n is a perfect square minus one. More precisely, if we denote the number of

82



terms in S2 by ln,

ln = n− b
√
n+ 1c2 + 1

For instance, l17 = 2 as seen above and indeed 17 − b
√
17+ 1c2 + 1 = 17 − 42 + 1 = 2;

l15 = 0 as seen above and indeed 15− b
√
15+ 1c2 + 1 = 15− 42 + 1 = 0.

Let us first compute S1.

S1 = 1.3+ 2.5+ 3.7+ 4.9+ 5.11+ . . .+ k(n)(2k(n) + 1)

=

k(n)∑
i=1

i(2i+ 1)

= 2

k(n)∑
i=1

i2 +

k(n)∑
i=1

i

= 2
k(n).(k(n) + 1).(2k(n) + 1)

6
+
k(n).(k(n) + 1)

2
by (4.21) and (4.22)

= k(n).(k(n) + 1)

(
4k(n) + 2

6
+
3

6

)
=
1

6
k(n).(k(n) + 1).(4k(n) + 5)

=
1

6
(b
√
n+ 1c− 1)(b

√
n+ 1c− 1+ 1)(4b

√
n+ 1c− 4+ 5)

=
1

6
(b
√
n+ 1c− 1)b

√
n+ 1c(4b

√
n+ 1c+ 1)

Clearly, S1 = Θ
(
n

3
2

)
. S2 is easier to compute, it has l(n) terms, each term being k(n)+ 1.

S2 = ln(kn + 1)

= (n− b
√
n+ 1c2 + 1)(b

√
n+ 1c− 1+ 1)

= (n− b
√
n+ 1c2 + 1)b

√
n+ 1c

Clearly, S2 = O
(
n

3
2

)
, therefore S1 + S2 = Θ

(
n

3
2

)
+O

(
n

3
2

)
= Θ

(
n

3
2

)
.

Let us denote b
√
n+ 1c by ñ. It follows that

S1 =
ñ(ñ− 1)(4ñ+ 1)

6

S2 = (n− ñ2 + 1)ñ
n∑

i=1

⌊√
i
⌋

= ñ

(
(ñ− 1)(4ñ+ 1)

6
+ (n− ñ2 + 1)

)
(4.4)

and
n∑

i=1

⌊√
i
⌋

= Θ
(
n

3
2

)
(4.5)

�

83



Problem 77. Find a closed formula for
n∑

i=1

⌈√
i
⌉

Solution:
Let us start with a small example as in Problem 76, say for n = 17. For clarity put boxes
around the terms whose positions are perfect squares, i.e. around the first, fourth, ninth,
and sixtienth term.

17∑
i=1

⌈√
i
⌉

= 1︸︷︷︸
run 1

+ 2+ 2+ 2︸ ︷︷ ︸
run 2

+ 3+ 3+ 3+ 3+ 3︸ ︷︷ ︸
run 3

+ 4+ 4+ 4+ 4+ 4+ 4+ 4︸ ︷︷ ︸
run 4

+ 5︸︷︷︸
run5

The pattern is quite similar to the one in Problem 76. We sum the first n terms of a series
whose terms are the consecutive positive integers grouped in runs, run j being the sum of
2j− 1 in number j’s.

The run with the largest number can be incomplete. For instance, if n = 17 then run
number 5 has only one term. Let us call the number of complete runs, i.e. the ones that
have all the terms, sn. For instance, s17 = 4. It is obvious that

sn = b
√
nc

We break the desired sum down into two sums:
n∑

i=1

⌊√
i
⌋

= S1 + S2

where S1 is the sum of the terms of the complete runs and S2, of the incomplete run. S2 = 0

if and only if n is a perfect square. We denote the number of terms in S2 by tn.

tn = n− b
√
nc2

For instance, t17 = 1 as seen above and indeed 17− b
√
17c2 = 17− 42 = 1; t16 = 0 as seen

above and indeed 16− b
√
16c2 = 16− 42 = 0.

Let us compute S1.

S1 = 1.1+ 2.3+ 3.5+ 4.7+ 5.9+ . . .+ sn(2sn − 1)

=

sn∑
i=1

i(2i− 1)

= 2

sn∑
i=1

i2 −

sn∑
i=1

i

= 2
sn.(sn + 1).(2sn + 1)

6
−
sn.(sn + 1)

2
by (4.21) and (4.22)

= sn.(sn + 1)

(
4sn + 2

6
−
3

6

)
=
1

6
sn.(sn + 1).(4sn − 1)

=
1

6
(b
√
nc)(b

√
nc+ 1)(4b

√
nc− 1)

84



Clearly, S1 = Θ
(
n

3
2

)
. Now we compute S2. It has tn terms, each term being sn + 1.

S2 = tn.(sn + 1)

= (n− b
√
nc2)(b

√
nc+ 1)

Clearly, S2 = O
(
n

3
2

)
, therefore S1 + S2 = Θ

(
n

3
2

)
+O

(
n

3
2

)
= Θ

(
n

3
2

)
.

It follows that
n∑

i=1

⌈√
i
⌉

= (b
√
nc+ 1)

(
b
√
nc(4b

√
nc− 1)

6
+ n− b

√
nc2
)

(4.6)

and
n∑

i=1

⌈√
i
⌉

= Θ
(
n

3
2

)
(4.7)

�

Problem 78. Find a closed formula for

n∑
i=1

i
⌊√
i
⌋

Solution:
The line of reasoning is very similar to the one in Problem 76. We sum the first n terms of
a series, the series being the one mentioned in the solution of Problem 76 with each term
multiplied by its position. Consider for example n = 17. The terms whose positions are
perfect squares are boxed.

17∑
i=1

i
⌊√
i
⌋

= 1 + 2+ 3︸ ︷︷ ︸
run 1

+ 8 + 10+ 12+ 14+ 16︸ ︷︷ ︸
run 2

+ 27 + 30+ 33+ 36+ 39+ 42+ 45︸ ︷︷ ︸
run 3

+ 64 + 68︸ ︷︷ ︸
run 4

Unlike Problem 76, now the runs consist of those consecutive terms whose differences are
equal (and equal to the number of the run). Just as in Problem 76, all the runs but the last
one are complete, the last run being either complete or incomplete. We denote the number
of the complete runs with kn and the number of terms in the incomplete run by ln. It is
the case that

kn = b
√
n+ 1c− 1

ln = n− b
√
n+ 1c2 + 1

the reasoning being exactly the same as in Problem 76. We break the desired sum down
into two sums:

n∑
i=1

i
⌊√
i
⌋

= S1 + S2

85



where S1 is the sum of the terms of the complete runs and S2, of the incomplete run.

Let us first compute S1.

S1 = 1.(1+ 2+ 3) + 2.(4+ 5+ 6+ 7+ 8) + 3.(9+ 10+ 11+ 12+ 13+ 14+ 15)

+ 4.(16+ 17+ 18+ 19+ 20+ 21+ 22+ 23+ 24)

+ 5.(25+ 26+ 27+ 28+ 29+ 30+ 31+ 32+ 33+ 34+ 35)

+ . . .

+ kn

(
k2

n + (k2
n + 1) + (k2

n + 2) + . . .+ ((kn + 1)2 − 1)︸ ︷︷ ︸
k2

n+2kn

)

=

kn∑
i=1

i

i2+2i∑
j=i2

j

=

kn∑
i=1

i

i2+2i∑
j=1

j−

i2−1∑
j=1

j


=

kn∑
i=1

i

(
(i2 + 2i)(i2 + 2i+ 1)

2
−

(i2 − 1)i2

2

)

=
1

2

kn∑
i=1

i
(
i4 + 2i3 + i2 + 2i3 + 4i2 + 2i− i4 + i2

)
=
1

2

kn∑
i=1

i
(
4i3 + 6i2 + 2i

)
= 2

kn∑
i=1

i4 + 3

kn∑
i=1

i3 +

kn∑
i=1

i2 apply (4.22), (4.23), and (4.24)

= 2
kn(kn + 1)(2kn + 1)(3k2

n + 3kn − 1)

30
+ 3

k2
n(kn + 1)2

4
+
kn(kn + 1)(2kn + 1)

6

=
kn(kn + 1)

2

(
(4kn + 2)(3k2

n + 3kn − 1)

15
+
3kn(kn + 1)

2
+
2kn + 1

3

)
=
kn(kn + 1)

60

(
(8kn + 4)(3k2

n + 3kn − 1) + 45kn(kn + 1) + 20kn + 10
)

=
kn(kn + 1)

60

(
24k3

n + 24k2
n − 8kn + 12k2

n + 12kn − 4+ 45k2
n + 45kn + 20kn + 10

)
=
kn(kn + 1)

60

(
24k3

n + 81k2
n + 69kn + 6

)
=
kn(kn + 1)(8k3

n + 27k2
n + 23kn + 2)

20
(4.8)

86



Substitute kn with b
√
n+ 1c− 1 in (4.8) to obtain

S1 =
1

20
b
√
n+ 1c(b

√
n+ 1c− 1)

(
8(b

√
n+ 1c− 1)3+

27(b
√
n+ 1c− 1)2 + 23(b

√
n+ 1c− 1) + 2

)
=
1

20
b
√
n+ 1c(b

√
n+ 1c− 1)

(
8b
√
n+ 1c3 − 24b

√
n+ 1c2 + 24b

√
n+ 1c− 8

27b
√
n+ 1c2 − 54b

√
n+ 1c+ 27+ 23b

√
n+ 1c− 23+ 2

)
=
1

20
b
√
n+ 1c(b

√
n+ 1c− 1)

(
8b
√
n+ 1c3 + 3b

√
n+ 1c2 − 7b

√
n+ 1c− 2

)
Clearly, S1 = Θ

(
n

5
2

)
. Now we compute S2. It has ln terms, the first term is (kn + 1)3,

and the difference between every two consecutive terms is (kn + 1).

S2 =

ln∑
i=1

(kn + 1)3 + (i− 1)(kn + 1)

= (kn + 1)3
ln∑
i=1

1+ (kn + 1)

ln∑
i=1

(i− 1)

= (kn + 1)3ln +
(kn + 1)(ln − 1)ln

2

= b
√
n+ 1c3(n− b

√
n+ 1c2 + 1) +

b
√
n+ 1c(n− b

√
n+ 1c2)(n− b

√
n+ 1c2 + 1)

2

Clearly, S2 = O
(
n

5
2

)
, therefore S1 + S2 = Θ

(
n

5
2

)
+O

(
n

5
2

)
= Θ

(
n

5
2

)
.

Let us denote b
√
n+ 1c by ñ. It follows that

S1 =
ñ(ñ− 1)(8ñ3 + 3ñ2 − 7ñ− 2)

20

S2 = ñ3(n− ñ2 + 1) +
ñ(n− ñ2)(n− ñ2 + 1)

2

and
n∑

i=1

i
⌊√
i
⌋

=
ñ(ñ− 1)(8ñ3 + 3ñ2 − 7ñ− 2)

20
+ ñ3(n− ñ2 + 1) +

ñ(n− ñ2)(n− ñ2 + 1)

2

(4.9)

and
n∑

i=1

i
⌊√
i
⌋

= Θ
(
n

5
2

)
(4.10)

�

Problem 79. Find a closed formula for
n∑

i=1

i
⌈√
i
⌉

87



Solution:
The solution of this problem is quite similar to the solution of Problem 77. We sum the
first n terms of a series, the series being the one mentioned in the solution of Problem 77
with each term multiplied by its position. Consider for example n = 17. The terms whose
positions are perfect squares are boxed.

17∑
i=1

i
⌈√
i
⌉

= 1︸︷︷︸
run 1

+ 4+ 6+ 8︸ ︷︷ ︸
run 2

+ 15+ 18+ 21+ 24+ 27︸ ︷︷ ︸
run 3

+ 40+ 44+ 48+ 52+ 56+ 60+ 64︸ ︷︷ ︸
run 4

+ 85︸︷︷︸
run5

Unlike Problem 77, now the runs consist of those consecutive terms whose differences are
equal (and equal to the number of the run). Just as in Problem 77, all the runs but the last
one are complete, the last run being either complete or incomplete. We denote the number
of the complete runs with s(n) and

s(n) = b
√
nc

the reasoning being exactly the same as in Problem 77. The number of terms in the
incomplete run is

t(n) = n− b
√
nc2

We break the desired sum down into two sums:

n∑
i=1

i
⌈√
i
⌉

= S1 + S2

where S1 is the sum of the terms of the complete runs and S2, of the incomplete run.

88



Let us first compute S1.

S1 = 1.1+ 2.(2+ 3+ 4) + 3.(5+ 6+ 7+ 8+ 9)

+ 4.(10+ 11+ 12+ 13+ 14+ 15+ 16)

+ 5.(17+ 18+ 19+ 20+ 21+ 22+ 23+ 24+ 25)

+ . . .

+ sn
(
((sn − 1)2 + 1) + ((sn − 1)2 + 2) + . . .+ s2n︸ ︷︷ ︸

(sn−1)2+2sn−1

)

=

sn∑
i=1

i

2i−1∑
j=1

(i− 1)2 + j (4.11)

=

sn∑
i=1

i

2i−1∑
j=1

(i− 1)2 +

2i−1∑
j=1

j


=

sn∑
i=1

i

(
(i− 1)2(2i− 1) +

(2i− 1)2i

2

)

=

sn∑
i=1

i
(
(i2 − 2i+ 1)(2i− 1) + 2i2 − i

)
=

sn∑
i=1

i(2i3 − i2 − 4i2 + 2i+ 2i− 1+ 2i2 − i)

=

sn∑
i=1

i(2i3 − 3i2 + 3i− 1)

= 2

sn∑
i=1

i4 − 3

sn∑
i=1

i3 + 3

sn∑
i=1

i2 −

sn∑
i=1

i apply (4.21), (4.22), (4.23), and (4.24)

= 2
sn(sn + 1)(2sn + 1)(3s2n + 3sn − 1)

30
− 3

s2n(sn + 1)2

4
+

3
sn(sn + 1)(2sn + 1)

6
−
sn(sn + 1)

2

=
sn(sn + 1)

2

(
2(2sn + 1)(3s2n + 3sn − 1)

15
−
3sn(sn + 1)

2
+
6sn + 3

3
− 1

)
(4.12)

89



Simplify (4.12) to obtain

sn(sn + 1)

2

(
12s3n + 12s2n − 4sn + 6s2n + 6sn − 2

15
−
3s2n + 3sn

2
+
6sn + 3

3
− 1

)
=

sn(sn + 1)

2

(
24s3n + 36s2n + 4sn − 4

30
−
45s2n + 45sn

30
+
60sn + 30

30
−
30

30

)
=

sn(sn + 1)

60
(24s3n + 36s2n + 4sn − 4− 45s2n − 45sn + 60sn + 30− 30) =

sn(sn + 1)(24s3n − 9s2n + 19sn − 4)

60
=

b
√
nc(b

√
nc+ 1)(24b

√
nc3 − 9b

√
nc2 + 19b

√
nc− 4)

60

Clearly, S1 = Θ
(
n

5
2

)
. Now we compute S2. It has tn terms, the first term is (s2n+1)(sn+1),

and the difference between every two consecutive terms is (sn + 1).

S2 =

tn∑
i=1

(s2n + 1)(sn + 1) + (i− 1)(sn + 1) =

= (s2n + 1)(sn + 1)

tn∑
i=1

1+ (sn + 1)

tn∑
i=1

(i− 1)

= tn(s2n + 1)(sn + 1) +
(sn + 1)(tn − 1)tn

2
=

=
tn(sn + 1)

2

(
2s2n + 2+ tn − 1

)
=

=
tn(sn + 1)(2s2n + tn + 1)

2

=
(n− b

√
nc2)(b

√
nc+ 1)(2b

√
nc2 + n− b

√
nc2 + 1)

2

=
(n− b

√
nc2)(b

√
nc+ 1)(n+ b

√
nc2 + 1)

2

Clearly, S2 = O
(
n

5
2

)
, therefore S1 + S2 = Θ

(
n

5
2

)
+O

(
n

5
2

)
= Θ

(
n

5
2

)
. It follows that

n∑
i=1

i
⌊√
i
⌋

=
b
√
nc(b

√
nc+ 1)(24b

√
nc3 − 9b

√
nc2 + 19b

√
nc− 4)

60
+

(n− b
√
nc2)(b

√
nc+ 1)(n+ b

√
nc2 + 1)

2
(4.13)

and

n∑
i=1

i
⌈√
i
⌉

= Θ
(
n

5
2

)
(4.14)

�

90



Fact: The Fibonacci numbers are the natural numbers defined by the recurrence relation

F0 = 0

F1 = 1

Fn = Fn−1 + Fn−2, for all n > 1

The first several elements of the sequence are

0, 1, 1, 2, 3, 5, 8, 13, 21, . . .

The asymptotic growth rate of Fn is determined by the following equality [GKP94, pp. 300]

Fn =

⌊
φn

√
5

+
1

2

⌋
=
φn

√
5
, rounded to the nearest integer

where φ = 1+
√

5
2 is the so called “golden ratio”, the positive root of φ2 = φ + 1. Clearly,

for any positive constant c,

cFn = Θ

(
c

φn
√

5

)
= Θ

(
kφn

)
, where k = c

1√
5 (4.15)

�

Fact: The harmonic series

1+
1

2
+
1

3
+
1

4
+ . . . =

∞∑
i=1

1

i

is divergent. Its nth partial sum is denoted by Hn.

Hn =
1

1
+
1

2
+
1

3
+ . . .+

1

n− 1
+
1

n
(4.16)

It is known that

Hn = Θ(lgn) (4.17)

Furthermore, lnn < Hn < lnn+ 1 for n > 1. For details, see [GKP94, pp. 272–278]. �

Fact: The sum of the first kth powers for some integer constant k ≥ 1 is

1k + 2k + . . .+ nk =

n∑
i=0

ik (4.18)

It is well known that

n∑
i=0

ik =
1

k+ 1

k∑
j=0

(
k+ 1

j

)
Bj(n+ 1)k+1−j (4.19)

91



where Bj is the jth Bernoulli number. The Bernolli numbers are defined with the recurrence

B0 = 1

Bm = −
1

m

m−1∑
j=0

(
m+ 1

j

)
Bj, for m ∈ N+

For details on the summation formula (4.19) and plenty of information on the Bernoulli
numbers, see [GKP94, pp. 283–290]. Just keep in mind that Knuth et al. denote the sum
by Sk(n) and define it as

Sk(n) = 0k + 1k + 2k + . . .+ (n− 1)k

For our purposes in this manual it is sufficient to know that

1k + 2k + . . .+ nk = Θ(nk+1) (4.20)

which fact follows easily from (4.19). In fact, (4.19) is a polynomial of degree k + 1 of
n because the

(
k+1

j

)
factor and the Bernoulli numbers are just constants and clearly the

highest degree of n is k+1. Strictly speaking, we have not proved here formally that (4.19)
is a degree k + 1 polynomial of n because we have not shown that the coefficient before
nk+1 is not zero. But that is indeed the case—see for instance [GKP94, (6.98), pp. 288].

Be careful to avoid the error of thinking that¢¢ NB ¢¢

1k + 2k + . . .+ nk

is a degree k polynomial of n and thus erroneosly concluding that its order of growth is
Θ(nk). It is not a polynomial of n because a polynomial has an a priori fixed number of
terms, while the above sum has n terms where n is the variable.

Using (4.19), we can easily derive

1+ 2+ . . .+ n =
n(n+ 1)

2
(4.21)

12 + 22 + . . .+ n2 =
n(n+ 1)(2n+ 1)

6
(4.22)

13 + 23 + . . .+ n3 =
n2(n+ 1)2

4
(4.23)

14 + 24 + . . .+ n4 =
n(n+ 1)(2n+ 1)(3n2 + 3n− 1)

30
(4.24)

�

92



Bibliography

[AB98] Mohamad Akra and Louay Bazzi. On the solution of linear recurrence equations.
Computational Optimization and Applications, 10(2):195–210, 1998.

[CLR00] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to
Algorithms. McGraw-Hill Book Company, first edition, 2000.

[GKP94] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete Mathemat-
ics. Addison-Wesley, second edition, 1994.

[KMP77] D. E. Knuth, J. H. Morris, and V. R. Pratt. Fast pattern matching in strings.
SIAM Journal on Computing, 6:323–350, 1977.

[Knu73] Donald E. Knuth. The Art of Computer Programming, volume 1. Addison-Wesley
Publishing Company, second edition, 1973.

[Lei96] Leighton. Note on Better Master Theorems for Divide-and-Conquer Recurrences,
1996. Available online at http://courses.csail.mit.edu/6.046/spring04/
handouts/akrabazzi.pdf.

[Slo] N. J. Sloane. The on-line encyclopedia of integer sequences. maintained by N.
J. A. Sloane njas@research.att.com, available at http://www.research.att.
com/~njas/sequences/.

93


