
Using Dump Files 

Visual Studio 2015  
Other Versions  

 
  

Dump files with or without heaps; create a dump file; open a dump file; find the binaries, 

pdbs, and source file for a dump file. 

Contents 

What is a dump file? 

Dump files, with or without heaps 

Requirements and limitations 

Create a dump file 

Open a dump file 

Find binaries, symbol (.pdb) files, and source files 

What is a dump file? 

A dump file is a snapshot of an app at the point in time the dump is taken. It shows what 

process was executing and what modules were loaded. If the dump was saved with heap 

information, the dump file contains a snapshot of what was in the app's memory at that point 

in time. Opening a dump file with a heap in Visual Studio is like stopping at a breakpoint in a 

debug session. Although you cannot continue execution, you can examine the stacks, threads, 

and variable values of the app at the time the dump occurred. 

Dumps are primarily used for debugging issues that occur on machines that the developer 

doesn’t have access to. For example, you can use a dump file from a customer's machine 

when you can’t reproduce the customer's crash or hang on your machine. Dumps are also 

created by testers to save crash or hang data so that the test machine can be used for more 

testing. The Visual Studio debugger can save dump files for managed or native code. The 

debugger can load dump files that were created by Visual Studio or by other programs that 

save files in the minidump format. 

Contents 

Dump files, with or without heaps 

You can create dump files with or without heap information.  

javascript:;
javascript:void(0)
https://msdn.microsoft.com/en-us/library/d5zhxt22.aspx#BKMK_What_is_a_dump_file_
https://msdn.microsoft.com/en-us/library/d5zhxt22.aspx#BKMK_Dump_files__with_or_without_heaps
https://msdn.microsoft.com/en-us/library/d5zhxt22.aspx#BKMK_Requirements_and_limitations
https://msdn.microsoft.com/en-us/library/d5zhxt22.aspx#BKMK_Create_a_dump_file
https://msdn.microsoft.com/en-us/library/d5zhxt22.aspx#BKMK_Open_a_dump_file
https://msdn.microsoft.com/en-us/library/d5zhxt22.aspx#BKMK_Find_binaries__symbol___pdb__files__and_source_files
javascript:void(0)
https://msdn.microsoft.com/en-us/library/d5zhxt22.aspx#BKMK_Contents
javascript:void(0)


 Dump files with heaps contain a snapshot of the app's memory. This includes the 

values of variables at the time the dump was created. If you load a dump file that was 

saved with a heap, Visual Studio can load the symbols even if the application binary is 

not found. Visual Studio also saves the binaries of loaded native modules in the dump 

file, which can make debugging much easier.  

 Dump files without heaps are much smaller than dumps with heap information. 

However, the debugger has to load the app binaries to find the symbol information. 

The binaries must be an exact match of the binaries that were used when the dump 

was created. Only the values of stack variables are saved in dump files without heap 

data. 

Contents 

Requirements and limitations 

 Debugging dump files of optimized code can be confusing. For example, compiler 

inlining of functions can result in unexpected call stacks and other optimizations might 

change the lifetime of variables.  

 Dump files from 64-bit machines must be debugged on an instance of Visual Studio 

that is running on a 64-bit computer. 

 In versions of Visual Studio before VS 2013, dumps of 32-bit apps that were run on 

64-bit machines that were collected by some tools (such as Task Manager and 64-bit 

WinDbg) could not be opened in Visual Studio. This limitation has been removed in 

VS 2013.  

 Visual Studio can debug dump files of native apps from ARM devices. Visual Studio 

can also debug apps dump files of managed apps from ARM devices, but only in the 

native debugger. 

 To debug kernel-mode dump files in Visual Studio 2013, download the Windows 8.1 

Version of Debugging Tools for Windows. See Kernel Debugging in Visual Studio. 

 Visual Studio can't debug dump files saved in the older dump format known as a full 

user-mode dump. Note that a full user-mode dump is not the same a dump with heap. 

 To debug with the SOS.dll (SOS Debugging Extension) in Visual Studio, you must 

install the Debugging Tools for Windows that is part of the Windows Driver Kit 

(WDK). See Windows 8.1 Preview: Download kits, bits, and tools.  

Contents 

Create a dump file 

To create a dump file with Visual Studio: 

 While you are debugging a process in Visual Studio, you can save a dump file when 

the debugger has stopped at an exception or at a breakpoint. Choose Save Dump As, 

Debug. In the Save Dump As dialog box, in the Save as type list, you can select 

Minidump or Minidump with Heap (the default). 

 With Just-In-Time Debugging in Visual Studio enabled, you can attach the debugger 

to a crashed process that is running outside the debugger, and then save a dump file. 

See Attach to Running Processes with the Visual Studio Debugger 

https://msdn.microsoft.com/en-us/library/d5zhxt22.aspx#BKMK_Contents
javascript:void(0)
https://msdn.microsoft.com/library/windows/hardware/ff551880.aspx
https://msdn.microsoft.com/windows/hardware/gg463009
https://msdn.microsoft.com/windows/hardware/gg463009
https://msdn.microsoft.com/library/windows/hardware/jj149675.aspx
https://msdn.microsoft.com/library/windows/hardware/ff545506.aspx
https://msdn.microsoft.com/library/windows/hardware/ff545506.aspx
https://msdn.microsoft.com/en-us/library/bb190764.aspx
https://msdn.microsoft.com/library/windows/hardware/bg127147.aspx
https://msdn.microsoft.com/en-us/library/d5zhxt22.aspx#BKMK_Contents
javascript:void(0)
https://msdn.microsoft.com/en-us/library/5hs4b7a6.aspx
https://msdn.microsoft.com/en-us/library/3s68z0b3.aspx


You can also create dump files with any program that supports the Windows minidump 

format. For example, the Procdump command-line utility from Windows Sysinternals can 

create process crash dump files based on triggers or on-demand. See Requirements and 

limitations in this topic for additional information about using other tools to create dump files. 

Contents 

Open a dump file 

1. In Visual Studio, choose File, Open, File. 

2. In the Open File dialog box, locate and select the dump file. It will usually have a 

.dmp extension. Then choose OK. 

3. The Dump File Summary window appears. In this window, you can view debugging 

summary information for the dump file, set the symbol path, start debugging, and copy 

the summary information to the clipboard. 

 

4. To start debugging, go to the Actions section, and choose either Debug with Native 

Only or Debug with Mixed.  

Find binaries, symbol (.pdb) files, and source files 

To use the full features of Visual Studio to debug a dump file, you need access to: 

https://technet.microsoft.com/sysinternals/default
https://msdn.microsoft.com/en-us/library/d5zhxt22.aspx#BKMK_Requirements_and_limitations
https://msdn.microsoft.com/en-us/library/d5zhxt22.aspx#BKMK_Requirements_and_limitations
https://msdn.microsoft.com/en-us/library/d5zhxt22.aspx#BKMK_Contents
javascript:void(0)
javascript:void(0)


 The .exe file for which the dump was taken and other binaries (DLLs, etc.) that were 

used in the dump process.  

If you are debugging a dump with heap data, Visual Studio can cope with missing 

binaries for some modules, but it must have binaries for enough modules to generate 

valid call stacks. Visual Studio includes the native modules in a dump file with heap. 

 Symbol (.pdb) files for the .exe and other binaries. 

 Source files for the modules that you are interested in.  

The executable and the .pdb files must match exactly the version and build of the files 

used when the dump was created. 

You can debug using the disassembly of the modules if you can’t find the source files, 

Default search paths for executable files 

Visual Studio automatically searches these locations for executable files that aren’t included 

in the dump file: 

1. The directory that contains the dump file. 

2. The path of the module that is specified in the dump file. This is the module path on 

the machine where the dump was collected. 

3. The symbol paths specified in the Debugging, Options, Symbols page of the Visual 

Studio Tools, Options dialog box. You can add more locations to search on this page. 

Using the No Binary / Symbol / Source pages 

If Visual Studio can’t find the files needed to debug a module in the dump, it displays an 

appropriate page (No Binary Found, No Symbols Found, or No Source Found). These 

pages provide detailed information about the cause of the issue and provide action links that 

can help you identify the correct location of the files. See Specify Symbol (.pdb) and Source 

Files in the Visual Studio Debugger. 

Contents 

 

https://msdn.microsoft.com/en-us/library/ms241613.aspx
https://msdn.microsoft.com/en-us/library/ms241613.aspx
https://msdn.microsoft.com/en-us/library/d5zhxt22.aspx#BKMK_Contents

	Using Dump Files
	Contents
	What is a dump file?
	Dump files, with or without heaps
	Requirements and limitations
	Create a dump file
	Open a dump file
	Find binaries, symbol (.pdb) files, and source files


