9

(= 4) vertices and |E|

is bound by at least
therefore 3 < 2.|E|.
the result follows by

=

§ for special cases (e.g.,
reise 3.11)) and involve
£l = 4n(n—1) and the

lin+7)]

imilarly, equality holds
im = 10, in both cases
gble efforts of mathe-
srovides a reference list

fm which takes as input
i finds an embedding of

ixists.

Characterisations of planarity

3.3 Characterisations of planarity
In section 3.1 we proved that K; and Kj 4 are non-planar. These

two graphs play a fundamental rdle in the classical characterisation of
planarity due to Kuratowski and which is embodied in theorem 3.5. We
use Kuratowski’s theorem to establish two other descriptions of planarity
which more precisely fit the requirements of this text. Before proceeding
we need some definitions.

By G, = (V;, Ey) we denote a subgraph of G = (V, E). A piece of G
relative to G is then:

either
(a) an edge (u, v) € E where (u, v) ¢ E, and u, veV,,
or
(b) a connected component of (G —G,) plus any edges incident with
this component.

In figure 3.7 the graph G has a subgraph G, which is a circuit (vy, g, Vg,
vg, Vs, Uy). By, Byand By are the pieces of G relative to G,. For any piece B,
the vertices which B has in common with G, are called the points of
contact of B. Thus in figure 3.7 B, has the points of contact v and vy,
while B, has the points of contact v;, v, and vs. If a piece has two or more
points of contact then it is called a bridge. Thus B, and B, are bridges but B,
is not a bridge.

Fig. 3.7

V.
: By: VeV

: Va
G By: %E vy
Vs

Obviously a graph is planar if and only if each of its blocks is planar.
Thus in questions of planarity we can always assume that we are dealing
with blocks. Any piece of a block with respect to any proper subgraph is
clearly a bridge.

Let C be any circuit which is a subgraph of G. C then divides the plane
into two faces, an interior face and an exterior face. For every pair of
vertices of a given bridge of C, there is a path from one vertex to the
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other which does not use an edge of C. Of course, if G is planar, and if
there exists a single bridge relative to C, then C is a boundary of some face
because the bridge can belong to one and only one (namely, the other)
face of C. Two bridges B, and B, are said to be incompatible (B, # By if,
when placed in the same face of the plane defined by C, at least two of
their edges cross. See figure 3.8(a). To establish incompatibilities, each
bridge is conveniently reduced to a single vertex connected to the points
of contact with C.

Fig. 3.8

(a) " (b) . -
& /) G'(C)
(7

An auxiliary graph G+(C) relative to a circuit C has a vertex-set consisting
of a vertex for each bridge relative to C and an edge between any two
such vertices B;and B;ifand onlyif B; # B;. See, for example, figure 3.8(b).
Suppose that G+(C) is a bipartite graph with bipartition (B, B). Then the
bridges in B may be embedded in one face of C and the bridges in B may
be embedded in the other face. In this way no incompatible bridges occur
in the same face.

Before presenting Kuratowski’s theorem we need just one more defi-
nition. Whether or not a graph is planar is obviously unaffected either by
dividing an edge into two edges in series by the insertion of a vertex of
degree 2, or by the reverse of this process. Two graphs are said to be
homeomorphic if one can be made isomorphic to the other by the addition
or the deletion of vertices of degree two in this manner. Figure 3.9 (@) shows
a graph which is homeomorphic to Ky s, while (b) shows a graph which

Fig. 3.9

(a) (b)
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contains a subgraph homeomorphic to Kj 5. In this second case the sub-
graph is obtained by deleting the edge (4, B), by replacing the connected
subgraph G, by the path it contains from E to F and by similarly replacing
the connected subgraph G, by a path from D to C.

Theorem [Kuratowski] 3.5. A graph is planar if and only if it has no sub-
graph homeomorphic to Kj or to Kg 5.

Proof. In section 3.1 we proved that K and Kj 3 are non-planar. It follows
that any graph containing a subgraph homeomorphic to either cannot be
planar.

It remains to be shown that a graph is planar if it does not contain a
subgraph homeomorphic to K or to K3 5. We shall prove this by induction
on the number of edges. It is clearly true for graphs with one or two edges.
As the induction hypothesis we assume it to be true for all graphs with
less than N edges. We now show that it is true for the graph G with N edges
by demonstrating that the following statement leads to a contradiction:
G is non-planar and does not contain a subgraph homeomorphic to Kj
or to K 5.

If G is non-planar, the following consequences apply:

(a) G must be connected. Otherwise G would consist of a number of
components each with less than N edges, and each not having a
subgraph homeomorphic to Kj or Kj 5 (because G does not). By
the induction hypothesis each component would be planar and
hence so would G. ‘

(b) G must not contain a point of articulation. If it did then G could be
separated at this point of articulation, x. Each resulting com-
ponent would be planar as in (a). For each component x could
be mapped into the exterior face of a planar embedding according
to theorem 3.2. The components could then clearly be rejoined
at x without loss of planarity. Hence G would be planar.

(c) If any edge of G is removed, say (x, ¥), then the remaining graph
G’ contains a simple circuit passing through x and y. Notice that
G' is connected because G contains no point of articulation. If no
such simple circuit exists then every path from x to y would have
to pass through a common vertex, say z. In other words, z would
be an articulation point of G’. G’ could then be separated at z into
two components, G (containing x) and G, (containing y). We add
the edge (x, z) to G} so forming G}, and we add the edge (y, z) to
G}, so forming Gj. Now neither G} nor G} could contain sub-
graphs homeomorphic to K; or to Ky g otherwise G would. This
is because G contains a subgraph homeomorphic to Gy, forexample,
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where the path (x, y, ..., z) in G takes the part of (x, z) in G}. By
the induction hypothesis G} and Gj would be planar. According
to theorem 3.2 we could map (x, z) of G] into the boundary of the
exterior face of G, similarly, we could take (», z) of G to the
exterior face of Gj. Without loss of planarity, the two graphs G/
and Gj could then be joined at z and the edges (x, z) and (y, 2)
replaced by (x, y). This planar reconstruction of G thus yields a
contradiction and so G’ cannot contain an articulation point. G’
is thus a block and so by theorem 2.10 contains a simple circuit
passing through x and y.

Thus, summarising, G' = G—(x, y) is connected and contains a simple
circuit C passing through x and y. In fact C could be one of a number of
such circuits. G” contains no subgraph homeomorphic to K or to K; 3,
has one less edge than G and so, by the induction hypothesis, is planar.
Let G’ be a planar embedding of G’. We then choose C to be ).h? circuit
passing through x and y which contains the largest number of faces of G’
in its interior. Any bridge of G’ with respect to C is called an interior or an
exterior bridge depending upon whether it lies in the interior or exterior
of Cfor the embedding G’. For convenience we assign a direction to C which
we take to be clockwise. If p and g are vertices on C, then S[p, ¢] denotes
the set of vertices from p to ¢ (including p and ¢) on S going in a clockwise
direction. S]p, g denotes S[p, g]—{p, q}. Note that no exterior bridge can
have more than one point of contact in S[x, y] or i Otherwise C
could be expanded to enclose at least one more face . SC e .-KJ

G is constructed from the planar graph G’ by adding the edge (x, y).
Consider the requirements of exterior and interior bridges of G’ with
respect to C in order that G be non-planar. There must exist at least one
exterior bridge £ and one interior bridge 1. As fas as E is concerned there
will be just two points of contact i and j with C such that:

ieSlx,y[ and jeS)y, x[

I may have any number of points of contact with C. We certainly require
that there are points of contact:

aeS)lx,)[ and beSly, i

otherwise (x, ) may be added to the interior of C. We also require points
of contact:

ce Sli,j[ and deS)j, il

in order that 7 % E. In other words, I must be incompatible with E so
that it cannot be taken into the exterior of C without loss of planarity.
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f2) in G]. By Figure 3.10 schematically illustrates this. In this diagram a coincides with
ir. According ¢ and b coincides with d. There are however other possible configurations.
undary of the Figure 3.11 illustrates all of those that are essentiallydifferent. For reasons of
of G to the
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clarity whenever any of a, b, ¢ or d coincide, a single label is used. Notice
that the configurations (d) and (e) differ only according to the internal
paths in 7 linking a, b, ¢ and d. Each of the configurations illustrated in
twith E so (a), (b), (¢) and (d) exhibit subgraphs which are homeomorphic to Kj ;.
planarity. Open and closed circles are used to indicate the vertices of each partition.
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The rather exceptional case indicated in (€) exhibits a subgraph homeo-
morphic to K;. We have thus found the contradiction we were seeking and
so the theorem is proved. L]

The following theorem provides a more appropriate insight into the
nature of planarity as far as the planarity algorithm of section 3.4 is
concerned.

Theorem 3.6. A necessary and sufficient condition for a graph G to be
planar is that for every circuit C of G the auxiliary graph G+(C) is bipartite.

Proof. The condition is necessary because for any circuit C of a planar
graph G, we can form a bipartition (B, B) of the bridge vertices of G relative
to C, such that bridges in B lie in one face of C for G, and the bridges of B
lie in the other face. Clearly, G*(C) is bipartite because no edge of GH(C)
connects two vertices in B or connects two vertices in B.

That the condition is sufficient can be seen as follows. If G is not planar
then according to Kuratowski’s theorem G contains a subgraph homeo-
morphic to K or to Kj 3. We suppose that G contains K; or K5 as a
subgraph, the generalisation to G containing proper homeomorphisms is
obvious. In either case (see figure 3.12, in which the chosen circuits are

o
GRS

indicated by heavily scored edges), we can choose C of the subgraph such
that G+(C) is not bipartite. For Kj 5 there are three bridges By, B; and By,
each of which is a single edge and any two of which are incompatible. In
the case of K; there are again three bridges B,, B, and By. B; and B, are
single edges while By is a vertex of K; plus its edges of attachment to E
Again any two of the bridges are incompatible. Thus for both K and
K 3, for the circuits chosen, GH(C) = K which is not bipartite. [ |

The second characterisation of planarity of particular use in this text
concerns dual graphs to which we devote the following section.

. ‘.Ifll\\llllllml!
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A planarity testing algorithm 85
colouring areas of a map using the minimum number of colours such that
no two adjacent regions are similarly coloured. It is now known that the
famous ‘four-colour’ conjecture is true, namely, that four colours are
sufficient. All we wish to note here is that the map colouring problem is
precisely equivalent to the problem of colouring the vertices of the dual
(of the graph corresponding to the map) such that no two adjacent vertices
are similarly coloured. The dual graph provides a more convenient vehicle
for reasoning about the problem.

3.4 A planarity testing algorithm

Before subjecting a particular graph to an algorithm which deter-
mines whether or not it is planar, some preprocessing may considerably
simplify the task. In this connection we note the following points:

(@) If the graph is not connected then we subject each component to
the test separately.

(b) If the graph is separable (that is, has one or more articulation
points) then it is clearly planar if and only if each of its blocks is
planar. We therefore disconnect the graph and subject each block
separately to the test.

(¢) Self-loops may obviously be removed without affecting planamy

(d) Each vertex of degree 2 plus its incident edges can be replaced by
a single edge. In other words, we construct the homeomorphic
graph with the smallest number of vertices. This graph is clearly
planar if and only if the original graph is planar.

(¢) Parallel edges can clearly be removed without affecting planarity.

The last two simplifying steps ought to be applied repeatedly and
alternately until neither can be applied further. Following these simplifi-
cations two elementary tests can be applied:

(f) If |[E| < 9 or n < 5 then the graph must be planar.
(g) If |E| > 3n—6 then the graph, by corollary 3.1, must be non-
planar.

If these two tests fail to resolve the question of planarity then the pre-
processed graph is subjected to a more elaborate test. We pursue that
shortly. First it is worth demonstrating what simplification can result from
this preprocessing, particularly the repeated applications of () and (e).
Figure 3.17 shows a graph with three blocks subjected to this processing
which resolves that the graph is planar.

Many algorithms have been published which test for planarity. Planarity
testing can be done in O(n) time as Hoperoft & Tarjan'® first showed.
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Lempel, Even & Cederbaum® published an algorithm which, through the
work of Even & Tarjan'¥! and Leuker & Booth® was also shown to be
realisable in O(n)-time. These two algorithms require lengthy explanations
and verification. We therefore describe a much simpler but nevertheless
fairly efficient algorithm due to Demoucron, Malgrange & Pertuiset.® Of
course, what is subjected to the algorithm, following any preprocessing,
is a block. Before describing the algorithm we need one further definition.

Let /7 be a planar embedding of the subgraph H of G. If there exists
a planar embedding G, such that H < G, then H is said to be G-admissible.
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For example consider figure 3.18. In (a) a graph is shown while (b) and (¢)
show two different planar embeddings of the samesubgraph H = G—(1, 5).
In (b) A is G-admissible whilst (¢) shows an embedding of H which is not
G-admissible.

Fig. 3.18
(a) ; (c) 2
1 ; . %
4 Zog
G G-admissible G-inadmissible

Let B be any bridge of G relative to H. Now, B can be drawn in a face’of
H if all the points of contact of B are in the boundary of /. By F(B e
denote the set of faces of A in which B is drawable. >

The planarity testing algorithm is outlined in figure 3.19. The algorithm
finds a sequence of graphs G, Gy, ..., such that G; = G, and finds their
planar embeddings G}, Gy, .... If G is planar then, as we shall see, each
G, found by the algorithm is G-admissible and the algorithm terminates
with a planar embedding of G, Gz _,,- If G is non-planar then the
algorithm stops with the discovery of some bridge B (with respect to the
current G;) for which F(B, G;) = @. Obviously a necessary condition that
G, is G-admissible is that for every bridge B relative to G;, F(B, G)# @.

The first of the sequence of graphs found by the algorithm, G, is a
circuit (lines 1-3). Since G is a block it must contain such a circuit. Clearly,
G, will be planar. The boolean variable EMBEDDABLE (lines 5, 6, 10
and 12) has the value true so long as the algorithm has not detected a
bridge B relative to the current G; for which F(B, G;) = @. If it acquires
the value false then the algorithm terminates (line 6) with the message ‘G is
non-planar’ (line 11). The variable fis used to record the number of faces
of the current G;. It is initialised to the value 2 in line 4 and is incremented
by one for each execution of the while body (lines 7-19). Each execution
of the while body constructs a new G;,, from the current G,. This is
achieved as follows. Lines 7 and 8, respectively, find the set of bridges of G
relative to G; and for each such bridge B, the set F(B, G)). If there now
exists a bridge B which can be drawn in only one face F of G; (e,
|F(B, G))| = 1, line 13), then Gy, is constructed by drawing a path F;
between two points of contact of B in the face F. If no such bridge exists

Fasd
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Fig. 3.19. A planarity testing algorithm.

1. Find a circuit C of G
2, i=1
3. G,«C G «C
4, f<2
5. EMBEDDABLE < true
6. while f # |E|—n+2 and EMBEDDABLE do
begin
T find each bridge B of G relative to G;
8. for each B find F(B, G,)
9. if for some B, F(B, G,) = @ then
begin
10. EMBEDDABLE < false
11, output the message ‘G is non-planar’
end
12. if EMBEDDABLE then
begin
13. if for some B, |F(B, G))| = 1 then F < F(B, G)
else let B be any bl;idge and F be any face such
that Fe F(B, G;)
14. find a path P; = B connecting two points of contact
of Bto G(
15. Gl'+l. ‘f"Gi"i'Pg
16. Obtain a planar embedding Gy Of Gyyy by drawing P,
in the face F of G";
17 i<i+l
18. f<f+1
19. if f = |E|—n+2 then output the message ‘G is planar’
end

end.

then P, is a path between two points of contact for any bridge. In either case,
P, divides some face F into two faces and f'is incremented by one (line 18).
Notice that if G is planar then G will have, according to theorem 3.3,
(|E| —n+2) faces and this fact is used to terminate the algorithm (lines
6 and 19). In a more detailed encoding of the algorithm, each G, may be
represented by its set of faces {F}. Here each F, can be described by the
ordered set of vertices which mark its boundary in, say, a clockwise
direction about an axis passing through the face. In this sense of course,
each axis ought to be viewed from the same side of the plane.

Of course, if the graph is planar, then the algorithm obtains a planar
embedding, Gz _,,,» and this could be output in the form of a set of faces
by a modification of the conditional statement 19.

Theorem 3.10. The algorithm of Demoucron et al. is valid.
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Proof. We have to show that each term of the sequence Gy, Gy, .., G\g1_p.11»
if G is planar, is G-admissible. The proof is by induction. If G is planar then
G, is clearly G-admissible. We assume that G; is G-admissible for
1 <i<k < |E|—n+1. Wenow show that G, will be G-admissible. Let
B and F be as defined in statement 13 of the algorithm. Let G be a planar
embedding of G where G, < G. If |F(B, G)| = 1 then, clearly, G,,, as
constructed by the algorithm satisfies G;,, € G. We therefore suppose
that |F(B, G,)|> 1 and imagine that B is not drawn in F in G but in some
other face F’. Now G is a block so that every bridge of G with respect to
G, has at least two points of contact and can therefore be drawn in just
two faces. Thus each bridge with points of contact on the boundary between
the faces F and F’ may be drawn individually in either F or in F’. Now
there clearly exists another planar embedding of G in which each such
bridge is drawn in Fif it appears in F’ in G and is drawn in F” if it appears
in Fin G. The G,.,, constructed by the algorithm is clearly G-admissible,
since G}, is contained in this new G. |

It is easy to see that the planarity testing algorithm can be implemented
in polynomial time although it is less sophisticated than the linear-time
algorithms mentioned earlier. We leave the details to the reader (exercise
3.14). However we note the following. The body of the while statement
(lines 7-19) is executed at most (|E|—n+1) times. In order to find each
bridge B of G = (V, E) relative to G; = (¥, E;) in line 7, we define
G' = (G—V;), and then need to find:

(a) each (u, v) € E such that (u, v) ¢ E;, butue V;and vel,
and
(b) each component of G’ and add to each component any edges that
connect it to vertices in V.

For each bridge we need to record its points of contact with G;. If b is the
set of points of contact of B, then in line 8, a face F is in F(B, G, if and
only if every element of b is in F. Here we presume that F denotes an
(ordered) set of vertices as described earlier. If each face is described in
this manner, then in line 16 Gy, is easily obtained from G, by simply
replacing one Fe G,., by two new faces in an obvious manner. Returning
to the determination of bridges in line 7, notice that all but one of the
bridges relative to G; are bridges relative to G, ,. This exceptional bridge
is replaced by none or more other bridges. All other steps of the algorithm
are easily implemented in an efficient manner.

Figure 3.20 shows an application of the algorithm to the graph G shown
there. For each successive G;, the diagram contains a tabulation of the set
of bridges relative to G, the value of f, F(B, G,), B and F as defined in
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Fig. 3.20. An application of the planarity testing algorithm.

G, | f |Bridges| F(B,G)| B | F P,

G |2| B |{F,Fi

By |{F\ Fy
By, |{F.F)
B, |{F,Fy

By |{FLF) |B|F| (L3

Gy |3 | B [{FFy
By, |{Fy Fyl
B, |{F, Fy}
B, | {F} |By| F|Q27059)

Gy | 4| B | (Fy

Bs {F:h Fl}
By | {Fy
By | {Fy

B, |[{FsFol [Ba| Fy| (1,4)

G.|5| B {Fg}
By {F3)
By {Fs}
B, |{Fs,Fe} | By| Fs| (3,5)

Gy |6 B | {F)
B, | {Fg
B, |{FuFy} |Bi|Fi| (4.6

Gs |7 | B {Fs}
B, |{Fy, Fg} |By| Fs| (6,7)

G, |8 | B {(Fo} | B;| Fy|(2,8,9)

GS 9 BB {Fi.'a} BB Flb (71 8)

algorithm
terminates

G, |10[(E|-n+ =10 =7

Bridge definitions

B, =[(1,3)], B, = [(1,9), B; = [(3, 5)]
B, = [(4, 6)]
B.'n o [(7s B)s (?, 2)1 (71 5)- (7'6)! (8’ 2)! (81 5)]

BG = [{65 7)]! B? - [(85 2)! (8$ 5)1 (Sa 7)]
By = [(7,8)]
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statement 13 of the algorithm and P; as defined in statement 14. There is a
separate table defining each bridge by its edge-set. As can be seen, in this
case the algorithm terminates when f = (| E|—n+ 2) with a planar embed-
ding of G, Gy and the message ‘G is planar’ would be output. The ad-
ditional sketch labelled G’ represents a planar embedding of G which could
have resulted if in going from G| to G, the path (1, 3) had been placed in F,
rather than in F;. This illustrates a point in the verification of theorem 3.10.
Because G is planar, the bridges relative to G, that are finally placed in Fy
could all have been placed in F, and vice versa. This is rather a special
example because G is not distinctly different from G,. In fact, G’ can be
obtained from G4 merely by causing (see theorem 3.2) the face (2, 8, 5, 3)
to become the exterior face. In general, however, given a choice of Band F
as defined in statement 13 of the algorithm, distinctly different embeddings
can be obtained.

Fig. 3.21. An application of the planarity testing algorithm,

6
1 5
G
2 4
3
6
I . B I ; F(Bh Gx) = {F,, F3}
G, P . h Py =(1,2,4,6,5)
3 3
1 5
W B, F(B,, Gz] = {Fy}
6. F i
3
I 5
c, \/ By %ﬂ F(By, Gy) =#
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Finally, Figure 3.21 shows an application of the algorithm to the non-
planar graph K;. For each G; there is one bridge denoted by B;, F(B;, G,)
and P; also indicated in each case. The algorithm terminates when
F(Bj, G;) = @with the message ‘G is non-planar’.

3.5 Summary and references

Euler’s formula provides a simple basis for deriving many
immediate results relating to planar graphs. Some of the problems that
follow provide further illustration of this. We also provided the extension
to non-planar surfaces in section 3.2. The treatment of non-planar surfaces
was informal, being illustrative rather than rigorous. Results in this area
are highly specificand not of much practical benefit. Chapter 2 of Beineke
& Wilson” provides a good commentary and selection of results.
Chapter 11 of Harary® is also worthy of a reference.

The main characterisations of planarity we described were those of
Kuratowski® and of Whitney'® who used the idea of combinatorial dual.
Our proofs of the relevant theorems are not based upon the original papers
but on simpler expositions. The proof of theorem 3.5 is largely based on
one given by Berge,™! whilst the proof of theorem 3.8 is based on
Parsons’.'? Another well-known characterisation of planarity not covered
in the text is that due to McLane™: a graph is planar if and only if it has
a circuit basis (see section 2.2.1), together with one additional circuit
such that this collection of circuits contains each edge of the graph twice.
Finally, theorem 3.6 is essentially taken from Demoucron er al.!®

A survey of early planarity testing algorithms is provided by Shirey.™!
As was stated earlier, linear time algorithms have been described by
Hopcroft & Tarjan® and by Lempel er al® Both of these algorithms
receive detailed description in Even.' Our validification in theorem 3.10
of the planarity testing algorithm of Demoucron et al.,'® which is rather
simpler than that to be found in the original text, was influenced by
the presentation of Bondy & Murty in [16].
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EXERCISES

3.1. Given an arbitrary simple planar graph with n vertices and |E| edges,
show that the maximum number of edges, M, that can be added to the
graph, subject to it remaining planar is given by
M = 3n—|E|-6
(Use Euler’s formula. When no more edges can be added every face of
an embedding is triangular. Every simple planar graph is thus a sub-
graph of such a planar triangulation.)

3.2. Demonstrate that every simple graph with |E| < 9 or with n < 5 is

planar.

3.3. (a) Three houses have to be connected individually to the sources of
three amenities (electricity, gas and water). Show that this cannot
be done without at least two of the lines of supply crossing.
(Because of this old problem, K, , is sometimes known as the
amenities graph.)

(b) Show that the Petersen graph (figure 6.14) contains a subgraph
homeomorphic to Kj, 5 and is therefore, according to Kuratowski’s
theorem, non-planar.
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34.

3.5,

3.6.
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3.8.

Planar graphs

In a completely regular (simple planar) graph every vertex has the same
degree d(v), and every face has the same degree d(f). Draw every
completely regular (finite) graph. (For these graphs 2|E| =nd(v) = fd(f).
Euler’s formula then gives:

. 4d(f)

2d(v)—d(f) (d(v)-2)
For a fixed d(v) we can find the allowable d(f) consistent with a finite
positive integer n. There are only five such graphs with d(v) > 2 and
dif) > 2)
In the previous exercise we presumed that »n was finite. Suppose,
however, that n = oo, then show that if G is completely regular and
d(v) > 2 then d(f) can only be 3, 4 or 6. This is a well-known fact in
crystallography.
A self-dual is a simple planar graph which is isomorphic to its dual.
Show, using Euler’s formula, that if G is a self-dual then 2n = |E|+2.
How might a self dual be constructed for n = 4?7
(Not every simple planar graph with 27 = |E|+2 is a self-dual. Take
care with vertices of degree 2.)
The complement G of a graph G = (V, E) with n vertices is given by
G = (K,—E). Show that if n > 11, then at least one of G and G is
non-planar.
(Use corollary 3.1. This result is also true for # = 9 and n = 10, but
the proof is more difficult.)
Draw a planar embedding of the following graph in which every edge
is a straight line.

3.9.

(Every simple planar graph has an embedding in which each edge is
a straight line, Fary!!7l)

Show that the average degree of the vertices in a simple planar graph is
less than 6 (in fact less than or equal to [6—(12/n)]). Thus provide a
different proof from that in the text that any simple planar graph must
have at least one vertex of degree at most 5.

(Use corollary 3.1 and that the average degree of the vertices is
2E|/n.)
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Exercises 95
Show that if G, is a dual of G, and that if G is 2-isomorphic to G,,
then Gj is also a dual of G,.

(Establish first that there is a one-to-one correspondence between edges
of G, and edges of Gj and that a circuit in G, is a circuit in G; and
vice-versa. This exercise proves one-half of theorem 3.7, proof of the
other half is quite lengthy — see Whitney!9,)

. An electrical circuit consists of connections between two sets of

terminals 4 and B. Set A has six and set B has five terminals. Each
member of A is connected to every member of B. Show by construction
that such a circuit can be printed on two sides of an insulating sheet
with terminals extending through the sheet.
[In general the thickness of a complete bipartite graph K,,, is given by
(see the chapter by White & Lowell in [):

rs
F= l.2(r+s)—4J
There may be some rare exceptions to this formula, but none has less
than 48 vertices.]
Find three planar graphs such that their union is the complete graph
on ten vertices, K.
Embed the complete graph on seven verticss, K, on a torus.
Describe the details of an implementation of the planarity testing
algorithm of figure 3.17 which is as efficient as you can make it.




