
7. Behavioral

Patterns – 2 of 3

SW Design Patterns,

by Boyan Bontchev,

FMI - Sofia University

2006/2016

SW Design Patterns 2DP7

Annotation
 Behavioral patterns

 Definitions

 Properties

 Intent, motivation, structure, participants, collaborations,

consequences, implementation issues about:

 Iterator

 Mediator

 Observer

 State

 Examples in Java

SW Design Patterns 3DP7

References

1. Gamma, Helm, Johnson, Vlissides ("Gang of

Four“ - GoF) Design Patterns: Elements of

Reusable Object-Oriented Software, 1995

2. Design Patterns Explained, by Allan Shalloway

and James Trott, Prentice Hall, 2001

3. THE DESIGN PATTERNS JAVA

COMPANION, by JAMES W. COOPER,

Adison-Wesley, October 2, 1998

SW Design Patterns 4DP7

Design pattern catalog - GoF

Purpose

Creational Structural Behavioral

Class
 Factory Method Adapter Interperter

Scope

Object

 Abstract
Factory

 Builder

 Prototype

 Singleton

 Bridge

 Composite

 Decorator

 Facade

 Flyweight

 Proxy

 Chain of Responsibility

 Command

 Iterator

 Mediator

 Template Method

 Memento

 Observer

 State

 Strategy

 Visitor

SW Design Patterns 5DP7

 Behavioral patterns are concerned with algorithms and the

assignment of responsibilities between objects.

 Behavioral patterns describe not just patterns of objects or

classes but also the patterns of communication between

them. These patterns characterize complex control flow that's

difficult to follow at run-time. They shift your focus away from

flow of control to let you concentrate just on the way objects

are interconnected.

Behavioral Design Pattern

SW Design Patterns 6DP7

Let follow a paper…

 Non-Software Examples of Software

Design Patterns, by Michael Duell, in AG

Communication Systems e-zine:

http://www2.ing.puc.cl/~jnavon/IIC2142/patexamples.htm

http://www2.ing.puc.cl/~jnavon/IIC2142/patexamples.htm

SW Design Patterns 7DP7

Behavioral class patterns use inheritance to distribute
behavior between classes:

 Template Method (GoF325) - concerns an abstract
definition of an algorithm; defines the algorithm step by
step, where each step invokes either an abstract
operation or a primitive operation. A subclass fleshes
out the algorithm by defining the abstract operations.

 Interpreter (GoF243) - represents a grammar as a class
hierarchy and implements an interpreter as an operation
on instances of these classes.

 Memento (GoF381) - without violating encapsulation,
captures and externalizes an object's internal state so
that the object can be restored to this state later

The 11 Behavioral Design Pattern

1/3

SW Design Patterns 8DP7

Behavioral object patterns use object composition rather than
inheritance. Some describe how a group of peer objects
cooperate to perform a task that no single object can carry out
by itself. An important issue here is how peer objects know
about each other. Peers could maintain explicit references to
each other, but that would increase their coupling. In the
extreme, every object would know about every other.

 Mediator (GoF273) - avoids this by introducing a mediator object
between peers; provides the indirection needed for loose
coupling.

 Chain of Responsibility (GoF223) - provides even looser
coupling. It lets you send requests to an object implicitly
through a chain of candidate objects. Any candidate may fulfill
the request depending on runtime conditions. The number of
candidates is open-ended, and you can select which candidates
participate in the chain at run-time.

 Observer (GoF293) - pattern defines and maintains a
dependency between objects. The classic example of Observer
is in Smalltalk Model/View/Controller, where all views of the
model are notified whenever the model's state changes.

11 Behavioral Design Pattern 2/3

SW Design Patterns 9DP7

Other behavioral object patterns are concerned with
encapsulating behavior in an object and delegating requests
to it:

 Strategy (GoF315) - encapsulates an algorithm in an object.
Strategy makes it easy to specify and change the algorithm an
object uses;

 Command (GoF233) - encapsulates a request in an object so
that it can be passed as a parameter, stored on a history list,
or manipulated in other ways.

 State (GoF305) - encapsulates the states of an object so that
the object can change its behavior when its state object
changes;

 Visitor (GoF331) encapsulates behavior that would otherwise
be distributed across classes;

 Iterator (GoF257) - abstracts the way you access and traverse
objects in an aggregate.

11 Behavioral Design Pattern 3/3

SW Design Patterns 10DP7

The Iterator Pattern
 Intent - provides a way to access the elements of

an aggregate object sequentially without exposing
its underlying representation.

 Also Known As - Cursor

 Motivation - an aggregate object such as a list
should give you a way to access its elements
without exposing its internal structure.
 Moreover, you might want to traverse the list in different

ways, depending on what you want to accomplish.

 But you probably don't want to extend the List interface
with operations for different traversals, even if you could
anticipate the ones you will need.

 You might also need to have more than one traversal
pending on the same list.

SW Design Patterns 11DP7

The Solution
 The Iterator pattern lets you do all this. The key idea in this pattern is

to take the responsibility for access and traversal out of the list object
and put it into an iterator object. The Iterator class defines an
interface for accessing the list's elements. An iterator object is
responsible for keeping track of the current element; that is, it knows
which elements have been traversed already.

 Before you can instantiate Listlterator, you must supply the List to
traverse. Once you have the Listlterator instance, you can access the
list's elements sequentially:
 The Currentltem operation returns the current element in the list.

 First initializes the current element to the first element.

 Next advances the current element to the next element.

 IsDone tests whether we've advanced beyond the last element

 Separating the traversal mechanism from the List object lets us
define iterators for different traversal policies without enumerating
them in the List interface. For example, FilteringListIterator might
provide access only to those elements that satisfy specific filtering
constraints.

SW Design Patterns 12DP7

 The client should not know that it is a list that's traversed as opposed

to some other aggregate structure. We have to be able to change the

aggregate class without changing clients => polymorphic iteration.

 We define an AbstractList class that provides a common interface

for manipulating lists. Similarly, we need an abstract Iterator class

that defines a common iteration interface. Then we can define

concrete Iterator subclasses for the different list implementations =>

the iteration mechanism independent of concrete aggregate classes.

 Createlterator is an example of a factory method (GoF107). We use

it here to let a client ask a list object for the appropriate iterator.

SW Design Patterns 13DP7

Applicability

Use the Iterator pattern:

 to access an aggregate object's contents
without exposing its internal representation.

 to support multiple traversals of aggregate
objects.

 to provide a uniform interface for traversing
different aggregate structures (that is, to
support polymorphic iteration).

SW Design Patterns 14DP7

Structure and Participants

 Iterator
 - defines an interface for accessing and traversing elements.

 Concretelterator
 - implements the Iterator interface.

 - keeps track of the current position in the traversal of the aggregate.

 Aggregate
 - defines an interface for creating an Iterator object.

 ConcreteAggregate
 - implements the Iterator creation interface to return an instance of the proper

Concretelterator.

SW Design Patterns 15DP7

Collaborations and Consequences
 A Concretelterator keeps track of the current object in the

aggregate and can compute the succeeding object in the
traversal.

 Three important consequences:

 1. It supports variations in the traversal of an aggregate.
Complex aggregates may be traversed in many ways. Iterators
make it easy to change the traversal algorithm: Just replace the
iterator instance with a different one. You can also define Iterator
subclasses to support new traversals.

 2. Iterators simplify the Aggregate interface. Iterator's traversal
interface avoids the need for a similar interface in Aggregate,
thereby simplifying the aggregate's interface.

 3. More than one traversal can be pending on an aggregate. An
iterator keeps track of its own traversal state. Therefore you can
have more than one traversal in progress at once.

SW Design Patterns 16DP7

Implementations 1/2
 Who controls the iteration? A fundamental issue is deciding which

party controls the iteration, the iterator or the client that uses the
iterator. When the client controls the iteration, the iterator is called
an external iterator, and when the iterator controls it, the iterator is
an internal iterator

 Who defines the traversal algorithm? The aggregate might define
the traversal algorithm and use the iterator to store just the state of
the iteration. We call this kind of iterator a cursor, to point to the
current position in the aggregate. A client will invoke the Next
operation on the aggregate with the cursor as an argument, and the
Next operation will change the state of the cursor.

 3. How robust is the iterator? It can be dangerous to modify an
aggregate while you're traversing it. If elements are added or
deleted from the aggregate, you might access element twice or
missing it completely. A simple solution is to copy the aggregate and
traverse the copy, but that's too expensive to do in general. A
robust iterator ensures that insertions and removals won't interfere
with traversal, without copying the aggregate.

SW Design Patterns 17DP7

Implementations 2/2

 4. Additional Iterator operations - SkipTo operation is useful
for sorted or indexed collections. SkipTo positions the iterator
to an object matching specific criteria.

 5. Iterators for composites. External iterators can be difficult to
implement over recursive aggregate structures like those in
the Composite (GoF163) pattern, because a position in the
structure may span many levels of nested aggregates.
Therefore an external iterator has to store a path through the
Composite to keep track of the current object. Sometimes it's
easier just to use an internal iterator. It can record the current
position simply by calling itself recursively, thereby storing the
path implicitly in the call stack. If the nodes in a Composite
have an interface for moving from a node to its siblings,
parents, and children, then a cursor-based iterator may offer a
better alternative.

SW Design Patterns 18DP7

Example - Enumerations in Java [3]
 The Enumeration type is built into the Vector and Hashtable classes.

Rather than the Vector and Hashtable implementing the two methods of
the Enumeration directly, both classes contain an elements method that
returns an Enumeration of that class’s data:

public Enumeration elements();

 This elements() method is really a kind Factory method that produces
instances of an Enumeration class.

 Then, you move through the list with the following simple code:

Enumeration e = vector.elements();

while (e.hasMoreElements()) {

String name = (String)e.nextElement();

System.out.println(name);

}

 In addition, the Hashtable also has the keys method, which returns an
enumeration of the keys to each element in the table:

public Enumeration keys();

 This is the preferred style for implementing Enumerations in Java and has
the advantage that you can have any number of simultaneous active
enumerations of the same data.

SW Design Patterns 19DP7

The Mediator Pattern [1]
 Intent - defines an object that encapsulates how a set of objects

interact. Mediator promotes loose coupling by keeping objects
from referring to each other explicitly, and it lets you vary their
interaction independently.

 Motivation – (1) partitioning a system into many objects generally
enhances reusability but lots of interconnections make it less likely
that an object can work without the support of others - the system
acts as though it were monolithic. (2) it can be difficult to change
the system's behavior in any significant way, since behavior is
distributed among many objects.

 Example – dialog box uses a window to present a collection of
widgets such as buttons, menus, and entry fields, often with
dependencies between the widgets - a button gets disabled when
a certain entry field is empty; selecting an entry in a list of choices
called a list box might change the contents of an entry field, etc.
So, widget classes have to be customized to reflect dialog-specific
dependencies. Customizing them individually by subclassing will
be tedious, since many classes are involved.

SW Design Patterns 20DP7

The Solution
 You can avoid these problems by

encapsulating collective behavior
in a separate mediator object. A
mediator is responsible for
controlling and coordinating the
interactions of a group of objects.

 The mediator serves as an
intermediary that keeps objects in
the group from referring to each
other explicitly. The objects only
know the mediator, thereby
reducing the number of
interconnections.

 For example, FontDialogDirector
can be the mediator between the
widgets in a dialog box. A
FontDialogDirector object knows
the widgets in a dialog and
coordinates their interaction. It
acts as a hub of communication
for widgets ->

SW Design Patterns 21DP7

Interactions
1. The list box tells its director

that it's changed.

2. The director gets the selection

from the list box.

3. The director passes the

selection to the entry field.

4. Now that the entry field

contains some text, the

director enables button(s) for

initiating an action.
The director mediates between the list box and the entry field. Widgets

communicate with each other only indirectly, through the director. They don't

have to know about each other; all they know is the director. Furthermore,

because the behavior is localized in one class, it can be changed or replaced by

extending or replacing that class.

SW Design Patterns 22DP7

 DialogDirector is an abstract class that defines the overall
behavior of a dialog. Clients call the ShowDialog operation to
display the dialog on the screen.

 CreateWidgets is an abstract operation for creating the widgets of a
dialog.

 WidgetChanged is another abstract operation; widgets call it to inform
their director that they have changed.

 DialogDirector subclasses override CreateWidgets to create the
proper widgets, and they override WidgetChanged to handle the
changes.

SW Design Patterns 23DP7

Applicability

Use the Mediator pattern when:

 a set of objects communicate in well-defined but
complex ways. The resulting interdependencies
are unstructured and difficult to understand.

 reusing an object is difficult because it refers to
and communicates with many other objects.

 a behavior that's distributed between several
classes should be customizable without a lot of
subclassing.

SW Design Patterns 24DP7

Structure and Participants

 Mediator (DialogDirector)
 - defines an interface for communicating with Colleague objects.

 ConcreteMediator (FontDialogDirector)
 - implements cooperative behavior by coordinating Colleague objects.

 - knows and maintains its colleagues.

 Colleague classes (ListBox, EntryField)
 - each Colleague class knows its Mediator object.

 - each colleague communicates with its mediator whenever it would have
otherwise communicated with another colleague.

SW Design Patterns 25DP7

Consequences (benefits and

drawbacks)
 1. The Mediator limits subclassing. A mediator localizes

behavior that otherwise would be distributed among several
objects. Changing this behavior requires subclassing
Mediator only; Colleague classes can be reused as is.

 2. It decouples colleagues. A mediator promotes loose
coupling between colleagues. You can vary and reuse
Colleague and Mediator classes independently.

 3. It simplifies object protocols. A mediator replaces many-to-
many interactions with one-to-many interactions between the
mediator and its colleagues.

 4. It abstracts how objects cooperate. Making mediation an
independent concept and encapsulating it in an object lets
you focus on how objects interact apart from their individual
behavior.

 5. It centralizes control.

SW Design Patterns 26DP7

Implementation

 1. Omitting the abstract Mediator class. There's no need
to define an abstract Mediator class when colleagues
work with only one mediator. The abstract coupling that
the Mediator class provides lets colleagues work with
different Mediator subclasses, and vice versa.

 2. Colleague-Mediator communication. Colleagues have
to communicate with their mediator when an event of
interest occurs. One approach is to implement the
Mediator as an Observer using the Observer (GoF293)
pattern. Colleague classes act as Subjects, sending
notifications to the mediator whenever they change
state. The mediator responds by propagating the effects
of the change to other colleagues.

SW Design Patterns 27DP7

Java Example [3]
 When the program starts, the

Copy and Clear buttons are
disabled.

 When you select one of the
names in the left-hand list box, it
is copied into the text field for
editing, and the Copy button is
enabled.

 When you click on Copy, that text
is added to the right hand list box,
and the Clear button is enabled.

 If you click on the Clear button,
the right hand list box and the text
field are cleared, the list box is
deselected and the two buttons
are again disabled.

SW Design Patterns 28DP7

 Two Interactions’

Designs ↓

The Mediator pattern simplifies this

system by being the only class

that is aware of the other classes in the

system.

Each of the controls that the

Mediator communicates with is called a

Colleague. Each Colleague informs

the Mediator when it has received a

user event, and the Mediator decides

which other classes should be informed

of this event.

SW Design Patterns 29DP7

Sample CodeMediator med = new Mediator();

kidList = new KidList(med);

tx = new KTextField(med);

copy = new CopyButton(this, med);

clear = new ClearButton(this, med);

med.init();

//the buttons use the Command pattern and register themselves

//with the Mediator during their initialization.

public class CopyButton extends JButton implements

Command {

Mediator med; //copy of the Mediator

public CopyButton(ActionListener fr, Mediator md) {

super("Copy"); //create the button

addActionListener(fr); //add its listener

med = md; //copy in Mediator instance

med.registerMove(this); //register with the Mediator

}

public void Execute() { //execute the copy

med.copy();

}

}

SW Design Patterns 30DP7

public class KidList extends JawtList implements ListSelectionListener {

KidData kdata; //reads the data from the file

Mediator med; //copy of the mediator

public KidList(Mediator md) {

super(20); //create the JList

kdata = new KidData ("50free.txt");

fillKidList(); //fill the list with names

med = md; //save the mediator

med.registerKidList(this);

addListSelectionListener(this);

}

public void valueChanged(ListSelectionEvent ls) {

//if an item was selected pass on to mediator

JList obj = (JList)ls.getSource();

if (obj.getSelectedIndex() >= 0)

med.select();

}

private void fillKidList() {

Enumeration ekid = kdata.elements();

while (ekid.hasMoreElements()) {

Kid k =(Kid)ekid.nextElement();

add(k.getFrname()+" "+k.getLname());

}

}

}

SW Design Patterns 31DP7

//The text field is simple, since all it does is register itself with the mediator.

public class KTextField extends JTextField {

Mediator med;

public KTextField(Mediator md) {

super(10);

med = md;

med.registerText(this);

}

}

•The general point of all these classes is that

each knows about the Mediator and tells the

Mediator of its existence so the Mediator can

send commands to it when appropriate.

•The Mediator itself is very simple. It supports

the Copy, Clear and Select methods, and has

register methods for each of the controls:

SW Design Patterns 32DP7

public class Mediator {

private ClearButton clearButton;

private CopyButton copyButton;

private KTextField ktext;

private KidList klist;

private PickedKidsList picked;

public void copy() {

picked.add(ktext.getText());

//copy text

clearButton.setEnabled(true);

//enable Clear

}

//------------------------------------

public void clear() {

ktext.setText(""); //clear text

picked.clear(); //and list

//disable buttons

copyButton.setEnabled(false);

clearButton.setEnabled(false);

klist.clearSelection(); //deselect list

}

public void select() {

String s = (String)klist.getSelectedValue();

ktext.setText(s); //copy text

copyButton.setEnabled(true); //enable Copy

}

//-----------copy in controls---------------------

public void registerClear(ClearButton cb) {

clearButton = cb;

}

public void registerCopy(CopyButton mv){

copyButton = mv;

}

public void registerText(KTextField tx) {

ktext = tx;

}

public void registerPicked(PickedKidsList pl) {

picked = pl;

}

public void registerKidList(KidList kl) {

klist = kl; }

}

SW Design Patterns 33DP7

The Observer Pattern [1]

 Intent - defines a one-to-many dependency between objects so

that when one object changes state, all its dependents are

notified and updated automatically.

 Also Known As - Dependents, Publish-Subscribe

 Motivation – a common side-effect of partitioning a system into

a collection of cooperating classes is the need to maintain

consistency between related objects. You don't want to achieve

consistency by making the classes tightly coupled, because

that reduces their reusability.

 For example, many graphical user interface toolkits separate

the presentational aspects of the user interface from the

underlying application data

SW Design Patterns 34DP7

Motivating Example

 Both a spreadsheet object and
bar chart object can depict
information in the same
application data object using
different presentations. The
spreadsheet and the bar chart
don't know about each other,
but when the user changes the
information in the spreadsheet,
the bar chart reflects the
changes immediately, and vice
versa.

This behavior implies that the spreadsheet and bar chart are dependent on

the data object and therefore should be notified of any change in its state.

And there's no reason to limit the number of dependent objects to two; there

may be any number of different user interfaces to the same data.

SW Design Patterns 35DP7

The Solution
 The Observer pattern describes how to establish these

relationships. The key objects in this pattern are the
observed subject and the observer.

 A subject may have any number of dependent observers.
All observers are notified whenever the subject
undergoes a change in state.

 In response, each observer will query the subject to
synchronize its state with the subject's state.

 This kind of interaction is also known as publish-
subscribe.

 The subject is the publisher of notifications. It sends out
these notifications without having to know who its
observers are.

 Any number of observers can subscribe to receive
notifications.

SW Design Patterns 36DP7

Applicability

Use the Observer pattern in any of the following situations:

 When an abstraction has two aspects, one dependent on
the other. Encapsulating these aspects in separate
objects lets you vary and reuse them independently.

 When a change to one object requires changing others,
and you don't know how many objects need to be
changed.

 When an object should be able to notify other objects
without making assumptions about who these objects
are. In other words, you don't want these objects to be
tightly coupled.

SW Design Patterns 37DP7

Structure and Participants

 Subject
 - knows its observers. Any number of Observer objects may observe a subject.

 - provides an interface for attaching and detaching Observer objects.

 Observer
 - defines an updating interface for objects that should be notified of changes in

a subject.

 ConcreteSubject
 - stores state of interest to ConcreteObserver objects.

 - sends a notification to its observers when its state changes.

 ConcreteObserver
 - maintains a reference to a ConcreteSubject object.

 - stores state that should stay consistent with the subject's.

 - implements the Observer updating interface to keep its state consistent with
the subject's.

SW Design Patterns 38DP7

Collaborations

 ConcreteSubject notifies its

observers whenever a change

occurs that could make its

observers' state inconsistent

with its own.

 After being informed of a

change in the concrete subject,

a ConcreteObserver object

may query the subject for

information. ConcreteObserver

uses this information to

reconcile its state with that of

the subject.

SW Design Patterns 39DP7

Consequences
 1. The Observer pattern lets you vary subjects and observers

independently. You can reuse subjects without reusing their
observers, and vice versa. It lets you add observers without
modifying the subject or other observers.

 2. Abstract coupling between Subject and Observer. All a
subject knows is that it has a list of observers, each conforming to
the simple interface of the abstract Observer class. Because
Subject and Observer aren't tightly coupled, they can belong to
different layers of abstraction in a system. A lower-level subject
can communicate and inform a higher-level observer, thereby
keeping the system's layering intact.

 3. Support for broadcast communication. Unlike an ordinary
request, the notification that a subject sends needn't specify its
receiver. The notification is broadcast automatically to all
interested objects that subscribed to it.

 4. Unexpected updates. The simple update protocol provides no
details on what changed in the subject. Without additional protocol
to help observers discover what changed, they may be forced to
work hard to deduce the changes.

SW Design Patterns 40DP7

Implementation Issues 1/3

 Mapping subjects to their observers. The simplest way for a
subject to keep track of the observers it should notify is to
store references to them explicitly in the subject, or an
associative look-up (a hash table) to maintain the subject-to-
observer mapping.

 Observing more than one subject. It might make sense in
some situations for an observer to depend on more than
one subject. The subject can simply pass itself as a
parameter in the Update operation, thereby letting the
observer know which subject to examine.

 Dangling references to deleted subjects. Deleting a subject
should not produce dangling references in its observers.
One way to avoid dangling references is to make the subject
notify its observers as it is to be deleted so that they can
reset their reference to it.

SW Design Patterns 41DP7

Implementation Issues 2/3
 Who triggers the update? The subject and its observers rely

on the notification mechanism to stay consistent. But what
object actually calls Notify to trigger the update?
 (a) Have state-setting operations on Subject calling Notify after

they change the subject's state – good as clients don't have to
remember to call Notify on the subject, BUT … several
consecutive operations will cause several consecutive
updates, which may be inefficient.

 (b) Make clients responsible for calling Notify at the right time –
good as the client can wait to trigger the update until after a
series of state changes has been made, thereby avoiding
needless intermediate updates, BUT …. clients have an added
responsibility to trigger the update. That makes errors more
likely, since clients might forget to call Notify.

 Making sure Subject state is self-consistent before notification
(i.e., before calling Notify), because observers query the
subject for its current state in the course of updating their own
state.

SW Design Patterns 42DP7

Implementation Issues 3/3
 Avoiding observer-specific update protocols: the push and pull models.

Implementations of the Observer pattern often have the subject
broadcast additional information about the change. The subject passes
this information as an argument to Update. The amount of information
may vary widely.

 push model - the subject sends to observers detailed information
about the change, whether they want it or not.

 pull model - the subject sends nothing but the most minimal
notification, and observers MAY ask for details explicitly thereafter.

 Specifying modifications of interest explicitly. You can improve update
efficiency by extending the subject's registration interface to allow
registering observers only for specific events of interest. When such an
event occurs, the subject informs only those observers that have
registered interest in that event. One way to support this uses the
notion of aspects for Subject objects.

 Encapsulating complex update semantics. When the dependency
relationship between (many) subjects and (many) observers is
particularly complex, an object (Change-Manager) that maintains
these relationships might be required.

SW Design Patterns 43DP7

Example – usage of Change

Manager
 ChangeManager

maps a subject to its
observers and
provides an interface
to maintain this
mapping – it
eliminates the need
for subjects to
maintain references
to their observers and
vice versa.

 it defines a particular
update strategy.

 it updates all
dependent observers
at the request of a
subject.

SW Design Patterns 44DP7

The State Pattern [1]
 Intent - allows an object to alter its behavior when its internal

state changes. The object will appear as an instance of different
class.

 Also Known As - Objects for States

 Motivation - consider a class TCPConnection that represents a
network connection. A TCP Connection object can be in one of
several different states: Established, Listening, Closed. When a
TCPConnection object receives requests from other objects, it
responds differently depending on its current state: the effect of
an Open request depends on whether the connection is in its
Closed state or its Established state.

 The State pattern describes how TCPConnection can exhibit
different behavior in each state. The key idea in this pattern is to
introduce an abstract class called TCPState to represent the
states of the network connection. The TCPState class declares
an interface common to all classes that represent different
operational states. Subclasses of TCPState implement state-
specific behavior.

SW Design Patterns 45DP7

 For example, the classes TCPEstablished and TCPClosed implement
behavior particular to the Established and Closed states of
TCPConnection.

 The class TCPConnection maintains a state object (an instance of a
subclass of TCPState) that represents the current state of the TCP
connection.

 The class TCPConnection delegates all state-specific requests to
this state object. TCPConnection uses its TCPState subclass instance
to perform operations particular to the state of the connection.

 Whenever the connection changes state, the TCPConnection object
changes the state object it uses. When the connection goes from
established to closed, for example, TCPConnection will replace its
TCPEstablished instance with a TCPClosed instance.

SW Design Patterns 46DP7

Applicability
Use the State pattern in either of the following cases:

 An object's behavior depends on its state, and it must
change its behavior at run-time depending on that state.

 Operations have large, multipart conditional statements that
depend on the object's state. This state is usually
represented by one or more enumerated constants. Often,
several operations will contain this same conditional
structure. The State pattern puts each branch of the
conditional in a separate class. This lets you treat the
object's state as an object in its own right that can vary
independently from other objects.

SW Design Patterns 47DP7

Structure and Participants

 Context (TCPConnection)

 - defines the interface of interest to clients.

 - maintains an instance of a ConcreteState subclass that
defines the current state.

 State (TCPState)

 - defines an interface for encapsulating the behavior
associated with a particular state of the Context.

 ConcreteState subclasses (TCPEstablished, TCPListen,
TCPClosed)

 - each subclass implements a behavior associated with a state
of the Context.

SW Design Patterns 48DP7

Consequences
 It localizes state-specific behavior and partitions behavior for

different states. The State pattern puts all behavior
associated with a particular state into one object. Because
all state specific code lives in a State subclass, new states
and transitions can be added easily by defining new
subclasses.

 It makes state transitions explicit. When an object defines its
current state solely in terms of internal data values, its state
transitions have no explicit representation; they only show
up as assignments to some variables. Introducing separate
objects for different states makes the transitions more
explicit.

 State objects can be shared. If State objects have no
instance variables - that is, the state they represent is
encoded entirely in their type - then contexts can share a
State object. When states are shared in this way, they are
essentially flyweights (GoF195) with no intrinsic state, only
behavior.

SW Design Patterns 49DP7

Implementation 1/2
 Who defines the state transitions? The State pattern

does not specify which participant defines the criteria for
state transitions. If the criteria are fixed (1), then they
can be implemented entirely in the Context. It is
generally more flexible and appropriate, however, (2) let
the State subclasses themselves to specify their
successor state and when to make the transition.
This requires adding an interface to the Context that lets
State objects set the Context's current state explicitly.

 A table-based alternative - main advantage: regularity -
you can change the transition criteria by modifying data
instead of changing program code. But:
 A table look-up is often less efficient than a (virtual) function call.

 Putting transition logic into a uniform, tabular format makes the
transition criteria less explicit and therefore harder to
understand.

 It's usually difficult to add actions to accompany the state
transitions.

SW Design Patterns 50DP7

Implementation 2/2
 Creating and destroying State objects. A common

implementation trade-off worth considering is whether:
 (1) to create State objects only when they are needed and

destroy them thereafter (preferable when the states that
will be entered aren't known at run-time, and contexts
change state infrequently; avoids creating objects that
won't be used)

versus

 (2) creating them ahead of time and never destroying
them - better when state changes occur rapidly, in which
case you want to avoid destroying states, because they
may be needed again shortly.

 Using dynamic inheritance. Changing the behavior for a
particular request could be accomplished by changing the
object's class at run-time, but this is not possible in most
OOP languages.

SW Design Patterns 51DP7

Sample Java Code [3]

 Our program will have toolbar
buttons for Select, Rectangle, Fill,
Circle and Clear.

 Each one of the tool buttons does
something rather different when it
is selected and you click or drag
your mouse across the screen.
Thus, the state of the graphical
editor affects the behavior the
program should exhibit. This
suggests some sort of design
using the State pattern.

SW Design Patterns 52DP7

 Initially we might design our
program like this, with a
Mediator managing the
actions of 5 command buttons
->

 However, this initial design
puts the entire burden of
maintaining the state of the
program on the Mediator, and
we know that the main
purpose of a Mediator is to
coordinate activities between
various controls, such as the
buttons.

 Keeping the state of the
buttons inside the Mediator
can make it too complicated
as well as leading to a set of if
or switch tests making the
program difficult to read and
maintain.

Further, this set of large,

monolithic conditional

statements might have to

be repeated for each action

the Mediator interprets,

such as mouseUp,

mouseDrag, rightClick and so

forth.

SW Design Patterns 53DP7

Program Functionality
1. If the Pick button is selected, clicking inside a drawing element

should cause it to be highlighted or appear with “handles”. If the
mouse is dragged and a drawing element is already selected, the
element should move on the screen.

2. If the Rect button is selected, clicking on the screen should cause a
new rectangle drawing element to be created.

3. If the Fill button is selected and a drawing element is already
selected, that element should be filled with the current color. If no
drawing is selected, then clicking inside a drawing should fill it with
the current color.

4. If the Circle button is selected, clicking on the screen should cause
a new circle drawing element to be created.

5. If the Clear button is selected, all the drawing elements are
removed.

Common: our actions use the mouse click event to cause actions.
One uses the mouse drag event to cause an action. Thus, we
really want to create a system that can help us redirect these
events based on which button is currently selected.

SW Design Patterns 54DP7

public class State {

public void mouseDown(int x, int y) {}

public void mouseUp(int x, int y) {}

public void mouseDrag(int x, int y) {}

public void select(Drawing d, Color c) {} //for Fill event

}

// none of the cases need all of these events, we gave our base class

//empty methods rather than creating an abstract base class.

//now we create 4 derived State classes for Pick, Rect, Circle and Fill and

//put instance of all of them inside a StateManager (Context) class which

//sets the current state an executes methods on that state object.

SW Design Patterns 55DP7

A typical State object simply overrides those event methods that it

must handle specially. For example, this is the complete Rectangle

state object:

public class RectState extends State {

private Mediator med; //save the Mediator

public RectState(Mediator md) {

med = md;

}

//-------------------------------------

//create a new Rectangle where mouse clicks

public void mouseDown(int x, int y) {

med.addDrawing(new visRectangle(x, y));

}

}

The RectState object simply tells the Mediator to add a rectangle

drawing to the drawing list.

SW Design Patterns 56DP7

//the Circle state object tells the Mediator to add a circle to the draw in list:

public class CircleState extends State {

private Mediator med; //save Mediator

public CircleState(Mediator md) {

med = md;

}

//Draw circle where mouse clicks

public void mouseDown(int x, int y) {

med.addDrawing(new visCircle(x, y));
}

}

public class FillState extends State {

private Mediator med; //save Mediator

private Color color; //save current color

public FillState(Mediator md) {

med = md;

}

//Fill drawing if selected

public void select(Drawing d, Color c) {

color = c;

if(d!= null) { d.setFill(c); //fill that drawing }

}

//Fill drawing if you click inside one

public void mouseDown(int x, int y) {

Vector drawings = med.getDrawings();
for(int i=0; i< drawings.size(); i++) {

Drawing d = (Drawing)drawings.elementAt(i);

if(d.contains(x, y)) d.setFill(color); //fill drawing

}

}

}

SW Design Patterns 57DP7

import java.awt.*;

public class StateManager {

private State currentState;

RectState rState; //states are kept here

ArrowState aState;

CircleState cState;

FillState fState;

public StateManager(Mediator med) {

rState = new RectState(med); //create instances

cState = new CircleState(med); //of each state

aState = new ArrowState(med);

fState = new FillState(med);

currentState = aState;

}

//These methods are called when the tool buttons are selected

public void setRect() { currentState = rState; }

public void setCircle() { currentState = cState; }

public void setFill() { currentState = fState; }

public void setArrow() { currentState = aState; }

public void mouseDown(int x, int y) { currentState.mouseDown(x, y); }

public void mouseUp(int x, int y) { currentState.mouseUp(x, y);}

public void mouseDrag(int x, int y) { currentState.mouseDrag(x, y);}

public void select(Drawing d, Color c) { currentState.select(d, c); }

}

SW Design Patterns 58DP7

public Mediator() {

startRect = false;

dSelected = false;

drawings = new Vector();

undoList = new Vector();

stMgr = new StateManager(this);

}

public void startRectangle() {

stMgr.setRect(); //change to rectangle state

arrowButton.setSelected(false);

circButton.setSelected(false);

fillButton.setSelected(false);

}

public void startCircle() {

stMgr.setCircle(); //change to circle state

rectButton.setSelected(false);

arrowButton.setSelected(false);

fillButton.setSelected(false);

}

<- The Mediator is the

critical class,

however, since it tells

the StateManager

when the current

program state

changes.

