
8. Behavioral

Patterns – 3 of 3

SW Design Patterns,

by Boyan Bontchev,

FMI - Sofia University

2006/2016

SW Design Patterns 2DP8

Annotation

 Definitions

 Properties

 Intent, motivation, structure, participants, collaborations,

consequences, implementation issues about:

 Template Method

 Strategy

 Visitor

 Memento

 Examples in Java

SW Design Patterns 3DP8

References

 Gamma, Helm, Johnson, Vlissides ("Gang of

Four“ - GoF) Design Patterns: Elements of

Reusable Object-Oriented Software, 1995

 Design Patterns Explained, by Allan Shalloway

and James Trott, Prentice Hall, 2001

 THE DESIGN PATTERNS JAVA COMPANION,

by JAMES W. COOPER, Adison-Wesley,

October 2, 1998

SW Design Patterns 4DP6

Design pattern catalog - GoF

Purpose

Creational Structural Behavioral

Class
 Factory Method Adapter Interperter

Scope

Object

 Abstract
Factory

 Builder

 Prototype

 Singleton

 Bridge

 Composite

 Decorator

 Facade

 Flyweight

 Proxy

 Chain of Responsibility

 Command

 Iterator

 Mediator

 Template Method

 Memento

 Observer

 State

 Strategy

 Visitor

SW Design Patterns 5DP8

 Behavioral patterns are concerned with algorithms and the

assignment of responsibilities between objects.

 Behavioral patterns describe not just patterns of objects or

classes but also the patterns of communication between

them. These patterns characterize complex control flow that's

difficult to follow at run-time. They shift your focus away from

flow of control to let you concentrate just on the way objects

are interconnected.

Behavioral Design Pattern

SW Design Patterns 6DP8

Let follow a paper…

 Non-Software Examples of Software

Design Patterns, by Michael Duell, in AG

Communication Systems e-zine:

http://www2.ing.puc.cl/~jnavon/IIC2142/patexamples.htm

http://www2.ing.puc.cl/~jnavon/IIC2142/patexamples.htm

SW Design Patterns 7DP8

Behavioral class patterns use inheritance to distribute
behavior between classes:

 Template Method (GoF325) - concerns an abstract
definition of an algorithm; defines the algorithm step by step,
where each step invokes either an abstract operation or a
primitive operation. A subclass fleshes out the algorithm by
defining the abstract operations.

 Interpreter (GoF243) - represents a grammar as a class
hierarchy and implements an interpreter as an operation on
instances of these classes.

 Memento (GoF381) - without violating encapsulation,
captures and externalizes an object's internal state so that
the object can be restored to this state later

The 11 Behavioral Design Pattern

1/3

SW Design Patterns 8DP8

Behavioral object patterns use object composition rather than
inheritance. Some describe how a group of peer objects cooperate to
perform a task that no single object can carry out by itself.

An important issue here is how peer objects know about each
other. Peers could maintain explicit references to each other, but that
would increase their coupling. In the extreme, every object would
know about every other.

 Mediator (GoF273) - avoids this by introducing a mediator object
between peers; provides the indirection needed for loose coupling.

 Chain of Responsibility (GoF223) - provides even looser coupling.
It lets you send requests to an object implicitly through a chain of
candidate objects. Any candidate may fulfill the request depending on
runtime conditions. The number of candidates is open-ended, and
you can select which candidates participate in the chain at run-time.

 Observer (GoF293) - pattern defines and maintains a dependency
between objects. The classic example of Observer is in Smalltalk
Model/View/Controller, where all views of the model are notified
whenever the model's state changes.

11 Behavioral Design Pattern 2/3

SW Design Patterns 9DP8

Other behavioral object patterns are concerned with
encapsulating behavior in an object and delegating
requests to it:

 Strategy (GoF315) - encapsulates an algorithm in an object.
Strategy makes it easy to specify and change the algorithm an
object uses;

 Command (GoF233) - encapsulates a request in an object so
that it can be passed as a parameter, stored on a history list,
or manipulated in other ways.

 State (GoF305) - encapsulates the states of an object so that
the object can change its behavior when its state object
changes;

 Visitor (GoF331) encapsulates behavior that would otherwise
be distributed across classes;

 Iterator (GoF257) - abstracts the way you access and
traverse objects in an aggregate.

11 Behavioral Design Pattern 3/3

SW Design Patterns 10DP8

The Strategy Pattern [1]
 Intent :

 defines a family of algorithms,

 encapsulate each one, and

 make them interchangeable.
Strategy lets us to vary the algorithm independently from
clients that use it.

 Also Known As - Policy

 Motivation - many algorithms exist for breaking a stream of
text into lines. Hard-wiring all such algorithms into the
classes that require them isn't desirable for several reasons:
 Clients that need line breaking get more complex if they include

this code. That makes clients bigger and harder to maintain,
especially if they support multiple line breaking algorithms.

 Different algorithms will be appropriate at different times. We
don't want to support multiple line-breaking algorithms if we
don't use them all.

 It's difficult to add new algorithms and vary existing ones when
line-breaking is an integral part of a client.

SW Design Patterns 11DP8

The Solution
 We can avoid these problems by defining classes that

encapsulate different line-breaking algorithms. An algorithm
that's encapsulated in this way is called a strategy.

 The Composition class will be responsible for maintaining and
updating the line-breaks of text displayed in a text viewer.
Line-breaking strategies are implemented separately by
subclasses of an abstract Compositor class, for
implementing different strategies:

 SimpleCompositor implements a simple strategy that
determines line-breaks one at a time.

 TeXCompositor implements the TeX algorithm for finding
line-breaks. This strategy tries to optimize line-breaks
globally, that is, one paragraph at a time.

 ArrayCompositor implements a strategy that selects
breaks so that each row has a fixed number of items. It's
useful for breaking a collection of icons into rows, for
example.

SW Design Patterns 12DP8

 A Composition maintains a reference to a Compositor

object.

 Whenever a Composition reformats its text, it forwards

this responsibility to its Compositor object.

 The client of Composition specifies which Compositor

should be used by installing the Compositor it desires

into the Composition.

SW Design Patterns 13DP8

Applicability
Use the Strategy pattern when:

 many related classes differ only in their behavior.
Strategies provide a way to configure a class with one of
many behaviors.

 you need different variants of an algorithm. For example,
you might define algorithms reflecting different
space/time trade-offs (i.e., DOM vs. SAX/StaX).
Strategies can be used when these variants are
implemented as a class hierarchy of algorithms.

 an algorithm uses data that clients shouldn't know about.
Use the Strategy pattern to avoid exposing complex,
algorithm-specific data structures.

 a class defines many behaviors, and these appear as
multiple conditional statements in its operations. Instead
of many conditionals, move related conditional branches
into their own Strategy class.

SW Design Patterns 14DP8

Structure and Participants

 Strategy (Compositor)
 - declares an interface common to all supported algorithms. Context

uses this interface to call the algorithm defined by a
ConcreteStrategy.

 ConcreteStrategy (SimpleCompositor, etc.)
 - implements the algorithm using the Strategy interface.

 Context (Composition)
 - is configured with a ConcreteStrategy object.

 - maintains a reference to a Strategy object.

 - may define an interface that lets Strategy access its data.

SW Design Patterns 15DP8

Collaborations
 Strategy and Context interact to implement the chosen

algorithm.

 A context may pass all data required by the algorithm to
the strategy when the algorithm is called.

 Alternatively, the context can pass itself as an argument
to Strategy operations. That lets the strategy call back on
the context as required.

 A context forwards requests from its clients to its strategy.

 Clients usually create and pass a ConcreteStrategy
object to the context; thereafter, clients interact with the
context exclusively.

 There is often a family of ConcreteStrategy classes for a
client to choose from.

SW Design Patterns 16DP8

Consequences ++
 Families of related algorithms. Hierarchies of Strategy classes

define a family of algorithms or behaviors for contexts to reuse.
Inheritance can help factor out common functionality of the
algorithms.

 An alternative to subclassing the Context (it is another
abstraction). Inheritance offers another way to support a variety of
algorithms or behaviors. Instead of subclassing a Context class
(which mixes the algorithm implementation with Context's, making
Context harder to understand, maintain, and extend) we
encapsulate the algorithm in separate Strategy classes lets you
vary the algorithm independently of its context.

 Strategies eliminate conditional statements. The Strategy pattern
offers an alternative to conditional statements for selecting
desired behavior. Otherwise, when different behaviors are
lumped into one class, it's hard to avoid conditionals.

 A different choice of implementations. Strategies can provide
different implementations of the same behavior. The client can
choose among strategies with different time and space trade-offs.

SW Design Patterns 17DP8

Consequences --
 Clients must be aware of different Strategies. The pattern

has a potential drawback in that a client must understand
how Strategies differ before it can select the appropriate
one. Clients might be exposed to implementation issues.

 Communication overhead between Strategy and Context.
The Strategy interface is shared by all ConcreteStrategy
classes whether the algorithms they implement are trivial or
complex. Hence it's likely that some ConcreteStrategies
won't use all the information passed to them through this
interface; simple ConcreteStrategies may use none of it!

 Increased number of objects. Strategies increase the
number of objects in an application. Sometimes you can
reduce this overhead by implementing strategies as
stateless objects that contexts can share. Any residual state
is maintained by the context, which passes it in each
request to the Strategy object.

SW Design Patterns 18DP8

Implementation
 Defining the Strategy and Context interfaces. The Strategy and

Context interfaces must give a ConcreteStrategy efficient access
to any data it needs from a context, and vice versa.

 One approach is to have Context pass data in parameters to
Strategy operations - in other words, bring the data to the
strategy. This keeps Strategy and Context decoupled. Or, a
context passes itself as an argument, and the strategy
requests data from the context explicitly.

 Alternatively, the strategy can store a reference to its context,
eliminating the need to pass anything at all. Strategies as
template parameters. In C++ templates can be used to
configure a class with a strategy.

 Making Strategy objects optional. The Context class may be
simplified if it's meaningful not to have a Strategy object. Context
checks to see if it has a Strategy object before accessing it. If
there is one, then Context uses it normally. If there isn't a
strategy, then Context carries out default behavior. The benefit of
this approach is that clients don't have to deal with Strategy
objects at all unless they don't like the default behavior.

SW Design Patterns 19DP8

Sample Java Code [3]

 Let’s consider a simplified graphing

program that can present data as a

line graph or a bar chart. We’ll start

with an abstract PlotStrategy class

and derive the two plotting classes

from it

 Since each plot will appear in its own

frame, our base PlotStrategy class will

be derived from JFrame

SW Design Patterns 20DP8

public abstract class PlotStrategy extends JFrame {

protected float[] x, y;

protected Color color;

protected int width, height;

public PlotStrategy(String title) {

super(title);

width = 300; height =200;

color = Color.black;

addWindowListener(new WindAp(this));

}

public abstract void plot(float xp[], float yp[]);
public void setPenColor(Color c) {color = c;}

// we add a WindowAdapter class that just hides the window if it is closed.

class WindAp extends WindowAdapter {

JFrame fr;

public WindAp(JFrame f) {

fr = f; //copy Jframe instance

}

public void WindowClosing(WindowEvent e) {

fr.setVisible(false); //hide window

}

}

SW Design Patterns 21DP8

//the Context needs to set a variable to refer to one concrete strategy or another.

public class Context {

//this object selects one of the strategies

//to be used for plotting

private PlotStrategy plotStrategy; //points to selected strategy

float x[], y[]; //data stored here

//---------------------------------

public Context() {

setLinePlot(); //make sure it is not null

}

//make current strategy the Bar Plot

public void setBarPlot() { plotStrategy = new BarPlotStrategy(); }

//---------------------------------

//make current strategy the Line Plot

public void setLinePlot() { plotStrategy = new LinePlotStrategy(); }

//---------------------------------

//call plot method of current strategy

public void plot() {plotStrategy.plot(x, y);}

public void setPenColor(Color c) {plotStrategy.setPenColor(c);}

public void readData(String filename) { //read data from datafile

} }

SW Design Patterns 22DP8

public class LinePlotStrategy extends PlotStrategy {

LinePlotPanel lp;

public LinePlotStrategy() {

super("Line plot");

lp = new LinePlotPanel();

getContentPane().add(lp);

}

//--------------------------------------

public void plot(float[] xp, float[] yp) {

x = xp; y = yp; //copy in data

findBounds(); //sets maxes and mins

setSize(width, height);

setVisible(true);

setBackground(Color.white);

lp.setBounds(minX, minY, maxX, maxY);

lp.plot(xp, yp, color); //set up plot data

repaint(); //call paint to plot

}

}

SW Design Patterns 23DP8

Visitor
 Intent:

 to represent an operation to be performed on the elements of an
object structure.

 Visitor lets you define a new operation without changing the
classes of the elements on which it operates.

 Motivation - consider a compiler that represents programs as
abstract syntax trees. It will need to perform operations on abstract
syntax trees for "static semantic" analyses like checking that all
variables are defined. It will also need to generate code. So it might
define operations for type-checking, code optimization, flow
analysis, etc. Moreover, we could use the abstract syntax trees for
pretty-printing, program restructuring, code instrumentation, and
computing various metrics of a program.

 Most of these operations will need to treat nodes that represent
assignment statements differently from nodes that represent
variables or arithmetic expressions. Hence there will be one class
for assignment statements, another for variable accesses, another
for arithmetic expressions, and so on. The set of node classes
depends on the language being compiled, of course, but it doesn't
change much for a given language.

SW Design Patterns 24DP8

The Problem
 The problem here is that distributing

all these operations across the
various node classes leads to a
system that's hard to understand,
maintain, and change. It will be
confusing to have type-checking code
mixed with pretty-printing code or flow
analysis code.

 Moreover, adding a new operation
usually requires recompiling all of
these classes. It would be better if
each new operation could be
added separately, and the node
classes were independent of the
operations that apply to them.

SW Design Patterns 25DP8

Solution
 We can have package

related operations from each
class in a separate object,
called a visitor, and passing
it to elements of the abstract
syntax tree as it's traversed.

 When an element "accepts"
the visitor, it sends a request
to the visitor that encodes the
element's class. It also
includes the element as an
argument. The visitor will
then execute the operation
for that element—the
operation that used to be in
the class of the element.

If the compiler type-checked a procedure using

visitors, then it would create a TypeChecking-

Visitor object and call the Accept operation on

the abstract syntax tree with that object as an

argument. Each of the nodes would implement

Accept by calling back on the visitor: an

assignment node calls VisitAssignment

operation on the visitor, while a variable

reference calls VisitVariableReference. What

used to be the TypeCheck operation in class

AssignmentNode is now the VisitAssignment

operation on TypeCheckingVisitor.

SW Design Patterns 26DP8

With the Visitor pattern, you define two class hierarchies: one

for the elements being operated on (the Node hierarchy) and

one for the visitors that define operations on the elements (the

NodeVisitor hierarchy). You create a new operation by adding

a new subclass to the visitor class hierarchy. As long as the

grammar that the compiler accepts doesn't change (that is, we

don't have to add new Node subclasses), we can add new

functionality simply by defining new Node Visitor subclasses.

SW Design Patterns 27DP8

Applicability
Use the Visitor pattern when:

 an object structure contains many classes of objects with
differеnt interfaces, and you want to perform operations on these
objects that depend on their concrete classes.

 many distinct and unrelated operations need to be performed on
objects in an object structure, and you want to avoid "polluting"
their classes with these operations. Visitor lets you keep related
operations together by defining them in one class. When the
object structure is shared by many applications, use Visitor to
put operations in just those applications that need them.

 the classes defining the object structure rarely change, but you
often want to define new operations over the structure. Changing
the object structure classes requires redefining the interface to
all visitors, which is potentially costly. If the object structure
classes change often, then it's probably better to define the
operations in those classes.

SW Design Patterns 28DP8

Structure and Participants

Visitor (NodeVisitor)

- declares a Visit operation for each class of ConcreteElement in the object

structure. The operation's name and signature identifies the class that sends the

Visit request to the visitor. That lets the visitor determine the concrete class of the

element being visited. Then the visitor can access the element directly through its

particular interface.

• ConcreteVisitor (TypeCheckingVisitor)

- implements each operation declared by Visitor. Each operation implements a

fragment of the algorithm defined for the corresponding class, of object in the

structure. ConcreteVisitor provides the context for the algorithm and stores its local

state. This state often accumulates results during the traversal of the structure.

• Element (Node)

- defines an Accept operation that takes a visitor as an argument.

SW Design Patterns 29DP8

Structure and Participants (cont.)

• ConcreteElement (AssignmentNode,VariableRefNode)

- implements an Accept operation that takes a visitor as an argument.

• ObjectStructure (Program)

- can enumerate its elements.

- may provide a high-level interface to allow the visitor to visit its elements.

- may either be a composite (GoF163) or a collection such as a list or a set.

SW Design Patterns 30DP8

Collaborations
1. A client that uses the Visitor pattern must create a Concrete Visitor object

and then traverse the object structure, visiting each element with the
visitor.

2. When an element is visited, it calls the Visitor operation that corresponds
to its class.

3. The element supplies itself as an argument to this operation to let the
visitor access its state, if necessary.

The interaction diagram below illustrates the collaborations between an
object structure, a visitor, and two elements

SW Design Patterns 31DP8

Consequences
 ++Visitor makes adding new operations easy - to add

operations that depend on the components of complex objects.
You can define a new operation over an object structure simply
by adding a new visitor.

 ++ A visitor gathers related operations and separates unrelated
ones. Related behavior isn't spread over the classes defining
the object structure; it's localized in a visitor.

 -- Adding new ConcreteElement classes is hard - adding new
subclasses of Element gives rise to a new abstract operation
on Visitor and a corresponding implementation in every
ConcreteVisitor class. Sometimes a default implementation
can be provided in Visitor that can be inherited by most of the
Concrete Visitors.

 Visiting across class hierarchies. An iterator (GoF257) can visit
the objects in a structure as it traverses them by calling their
operations.

 ++ Accumulating state. Visitors can accumulate state as they
visit each element in the object structure.

SW Design Patterns 32DP8

Implementation
 Each object structure has an associated Visitor class. This

abstract visitor class declares a VisitConcreteElement
operation for each class of ConcreteElement defining the
object structure.

 Each Visit operation on the Visitor declares its argument to
be a particular ConcreteElement, allowing the Visitor to
access the interface of the ConcreteElement directly.

 Concrete Visitor classes override each Visit operation to
implement visitor-specific behavior for the corresponding
ConcreteElement class.

 Who is responsible for traversing the object structure? A
visitor must visit each element of the object structure. The
question is, how does it get there? We can put responsibility
for traversal in any of three places: 1) in the object structure,
2) in the visitor, or, 3) in a separate iterator object (see
Iterator (GoF257)).

SW Design Patterns 33DP8

Sample Java Example [1]
//let have a simple Employee object which maintains a record of the employee’s –

//name, salary, vacation taken and number of sick days taken.

public class Employee {

int sickDays, vacDays;

float Salary;

String Name;

public Employee(String name, float salary, int vacdays, int

sickdays) {

vacDays = vacdays; sickDays = sickdays;

Salary = salary; Name = name;

}

public String getName() { return Name; }

public int getSickdays() { return sickDays; }

public int getVacDays() { return vacDays; }

public float getSalary() { return Salary; }

public void accept(Visitor v) { v.visit(this); }

}

SW Design Patterns 34DP8

//we want to prepare a report of the number of vacation days that

//all employees have taken so far this year. We could just write some code in

//the client to sum the results of calls to each Employee’s getVacDays function,

//or we could put this function into a Visitor.

//the base Visitor class needs to have a suitable abstract visit method for

//each kind of class in our program.

public abstract class Visitor {

public abstract void visit(Employee emp);

}

public class VacationVisitor extends Visitor {

protected int total_days;

public VacationVisitor() { total_days = 0; }

//-----------------------------

public void visit(Employee emp) {

total_days += emp.getVacDays();

}

//-----------------------------

public int getTotalDays() {

return total_days;

}

}

SW Design Patterns 35DP8

Now, all we have to do to compute the total vacation taken is to go

through a list of the employees and visit each of them, and then ask the

Visitor for the total.

VacationVisitor vac = new VacationVisitor();

for (int i = 0; i < employees.length; i++) {

employees[i].accept(vac);

}

System.out.println(vac.getTotalDays());

Let’s re-iterate what happens for each visit:

1. We move through a loop of all the Employees.

2. The Visitor calls each Employee’s accept method.

3. That instance of Employee calls the Visitor’s visit method.

4. The Visitor fetches the vacation days and adds them into the total.

5. The main program prints out the total when the loop is complete.

SW Design Patterns 36DP8

Template Method [1]
 Intent - to define the skeleton of an algorithm in an operation, deferring

some steps to subclasses. Template Method lets subclasses redefine
certain steps of an algorithm without changing the algorithm's structure.

 Motivation - consider an application framework that provides Application
and Document classes. The Application class is responsible for opening
existing documents stored in an external format, such as a file. A Document
object represents the information in a document once it's read from the file.

 Applications built with the framework can subclass Application and
Document to suit specific needs. For example, a drawing application defines
DrawApplication and DrawDocument subclasses; a spreadsheet application
defines Spreadsheet-Application and SpreadsheetDocument subclasses.

SW Design Patterns 37DP8

The abstract Application class defines the algorithm for opening and

reading a document in its OpenDocument operation:

void Application::OpenDocument (const char* name) {

if(! CanOpenDocument(name)) {

// cannot handle this document

return;

}

Document* doc = DoCreateDocument();

if (doc) {

_docs->AddDocument(doc) ;

AboutToOpenDocument(doc) ;

doc->Open() ;

doc->DoRead() ;

}

}

We call OpenDocument a template method. A template method defines

an algorithm in terms of abstract operations that subclasses override to

provide concrete behavior. Application subclasses define the steps of the

algorithm that check if the document can be opened (CanOpenDocument)

etc. Document classes define the step that reads the document (DoRead).

By defining some of the

steps of an algorithm using

abstract operations, the

template method fixes

their ordering, but it lets

Application and

Document subclasses

vary those steps to suit

their needs.

SW Design Patterns 38DP8

Applicability
The Template Method pattern should be used:

 to implement the invariant parts of an algorithm once and
leave it up to subclasses to implement the behavior that
can vary.

 when common behavior among subclasses should be
factored and localized in a common class to avoid code
duplication. This is a good example of "refactoring to
generalize“. You should:
 first identify the differences in the existing code;

 then separate the differences into new operations;

 finally, you replace the differing code with a template method
that calls one of these new operations.

 to control subclasses extensions. You can define a
template method that calls "hook“ operations (see
Consequences) at specific points, thereby permitting
extensions only at those points.

SW Design Patterns 39DP8

Structure and Participants

 AbstractClass (Application)
 - defines abstract primitive operations that concrete subclasses define

to implement steps of an algorithm.

 - implements a template method defining the skeleton of an algorithm.
The template method calls primitive operations as well as operations
defined in AbstractClass or those of other objects.

 ConcreteClass (MyApplication)
 - implements the primitive operations to carry out subclass-specific steps

of the algorithm.

 - relies on AbstractClass to implement invariant steps of the algorithm.

SW Design Patterns 40DP8

Consequences
 Template methods are a fundamental technique for code reuse.

They are particularly important in class libraries, because they
are the means for factoring out common behavior in library
classes.

 Template methods lead to an inverted control structure. This
refers to how a parent class calls the operations of a subclass
and not the other way around.

 Template methods call the following kinds of operations:
 concrete operations (either on the ConcreteClass or on client

classes);

 concrete AbstractClass operations (i.e., operations that are
generally useful to subclasses);

 primitive operations (i.e., abstract operations);

 factory methods (see Factory Method (GoF107)); and

 hook operations, which provide default behavior that subclasses
can extend if necessary. A hook operation often does nothing by
default.

SW Design Patterns 41DP8

Implementation

 Using C++/Java access control - the primitive operations
that a template method calls can be declared as
protected. This ensures that they are only called by the
template method.

 Minimizing primitive operations. An important goal in
designing template methods is to minimize the number
of primitive operations that a subclass must override to
flesh out the algorithm. The more operations that need
overriding, the more tedious things get for clients.

 Naming conventions. You can identify the operations
that should be overridden by adding a prefix to their
names. Use prefixes template method names with "Do-":
"DoCreateDocument", "DoRead", etc.

SW Design Patterns 42DP8

Sample Java Example [3]
Let’s consider a simple program for drawing triangles on a screen. We’ll start with an

abstract Triangle class, and then derive some special triangle types from it.

public abstract class Triangle {

Point p1, p2, p3;

public Triangle(Point a, Point b, Point c) { //save

p1 = a; p2 = b; p3 = c;

}

public void draw(Graphics g) { //This routine draws a general triangle

drawLine(g, p1, p2);

Point current = draw2ndLine(g, p2, p3);

closeTriangle(g, current);

}

public void drawLine(Graphics g, Point a, Point b) {

g.drawLine(a.x, a.y, b.x, b.y);

}

//this routine has to be implemented for each triangle type.

abstract public Point draw2ndLine(Graphics g, Point a, Point b);

public void closeTriangle(Graphics g, Point c) { //draw back to first point

g.drawLine(c.x, c.y, p1.x, p1.y);

}

}

SW Design Patterns 43DP8

//To draw a standard, general triangle with no restrictions on its shape, we

//simple implement the draw2ndLine method in a derived stdTriangle class:

public class stdTriangle extends Triangle {

public stdTriangle(Point a, Point b, Point c) {

super(a, b, c);

}

public Point draw2ndLine(Graphics g, Point a, Point b) {

g.drawLine(a.x, a.y, b.x, b.y);

return b;

}

}

//Drawing an Isosceles Triangle

public class IsoscelesTriangle extends Triangle {

Point newc; int newcx, newcy; int incr;

public IsoscelesTriangle(Point a, Point b, Point c) {

super(a, b, c);

… //calculate newc

}

//draws 2nd line using saved new point

public Point draw2ndLine(Graphics g, Point b, Point c){

g.drawLine(b.x, b.y, newc.x, newc.y);

return newc;

}

SW Design Patterns 44DP8

The Memento Pattern [1]
 Intent - without violating encapsulation, captures and

externalizes an object's internal state so that the object can be
restored to this state later.

 Also Known As - Token

 Motivation – sometimes it's necessary to record the internal
state of an object. This is required when implementing
checkpoints and undo mechanisms that let users back out of
tentative operations or recover from errors. You must save
state information somewhere so that you can restore objects to
their previous states. But objects normally encapsulate some or
all of their state, making it inaccessible to other objects and
impossible to save externally. Exposing this state would violate
encapsulation, which can compromise the application's
reliability and extensibility.

Consider for example a graphical editor that supports
connectivity between objects. A user can connect two
rectangles with a line, and the rectangles stay
connected when the user moves either of them.

SW Design Patterns 45DP8

Motivating Problem

 Usually, a ConstraintSolver object records connections as
they are made and generates mathematical equations that
describe them. It solves these equations whenever the
user makes a connection or otherwise modifies the
diagram. ConstraintSolver uses the results of its
calculations to rearrange the graphics so that they
maintain the proper connections.

 Supporting undo in this application isn't as easy as it may
seem. In general, the ConstraintSolver's public interface
might be insufficient to allow precise reversal of its effects
on other objects. The undo mechanism must work more
closely with ConstraintSolver to reestablish previous state,
but we should also avoid exposing the ConstraintSolver's
internals to the undo mechanism.

SW Design Patterns 46DP8

Solution 1/2
 We can solve this problem with the Memento pattern. A

memento is an object that stores a snapshot of the
internal state of another object—the memento's
originator.

 The undo mechanism will request a memento from the
originator when it needs to checkpoint the originator's
state. The originator initializes the memento with
information that characterizes its current state.

 Only the originator can store and retrieve information
from the memento - the memento is "opaque" to other
objects.

SW Design Patterns 47DP8

Solution 2/2
 In the graphical editor example just discussed, the

ConstraintSolver can act as an originator. The following
sequence of events characterizes the undo process:

 The editor requests a memento from the
ConstraintSolver as a side-effect of the move
operation. The ConstraintSolver creates and returns
a memento, an instance of a class SolverState in this
case.

 A SolverState memento contains data structures that
describe the current state of the ConstraintSolver's
internal equations and variables. Later when the user
undoes the move operation, the editor gives the
SolverState back to the ConstraintSolver.

 Based on the information in the SolverState, the
ConstraintSolver changes its internal structures to
return its equations and variables to their exact
previous state.

SW Design Patterns 48DP8

Applicability

Use the Memento pattern when

 a snapshot of (some portion of) an object's state

must be saved so that it can be restored to that

state later,

and

 usage of a direct interface to obtaining the state

would expose implementation details and would

break the object's encapsulation.

SW Design Patterns 49DP8

Structure and Participants

 Memento (SolverState)

 - stores internal state of the Originator object. The memento may store as much
or as little of the originator's internal state as necessary for its originator.

 - protects against access by objects other than the originator. Mementos have
effectively two interfaces. Caretaker sees a narrow interface to the Memento—it
can only pass the memento to other objects. Originator sees a wide interface,
one that lets it access all the data necessary to restore itself to its previous state.
Ideally, only the originator can access the memento's internal state.

 Originator (ConstraintSolver)

 - creates a memento containing a snapshot of its current internal state.

 - uses the memento to restore its internal state.

 Caretaker (undo mechanism)

 - is responsible for the memento's safekeeping.

 - never operates on or examines the contents of a memento.

SW Design Patterns 50DP8

Collaborations
 A caretaker requests a

memento from an originator,
holds it for a time, and
passes it back to the
originator, as the interaction
diagram illustrates ->

 Sometimes the caretaker
won't pass the memento
back to the originator,
because the originator might
never need to revert to an
earlier state.

 Mementos are passive. Only
the originator that created a
memento will assign or
retrieve its state.

SW Design Patterns 51DP8

Consequences ++

 ++ Preserving encapsulation boundaries. Memento avoids
exposing information that only an originator should manage
but that must be stored nevertheless outside the originator.
The pattern shields other objects from potentially complex
Originator internals, thereby preserving encapsulation
boundaries.

 ++ It simplifies Originator. In other encapsulation-preserving
designs, Originator keeps the versions of internal state that
clients have requested. That puts all the storage management
burden on Originator. Having clients managing the state they
ask for:

 simplifies Originator and

 keeps clients from having to notify originators when they're
done.

SW Design Patterns 52DP8

Consequences --

 -- Using mementos might be expensive. Mementos might incur
considerable overhead if Originator must copy large amounts
of information to store in the memento or if clients create and
return mementos to the originator often enough. Unless
encapsulating and restoring Originator state is cheap, the
pattern might not be appropriate.

 -- Defining narrow and wide interfaces. It may be difficult in
some lang’s to ensure that only the originator can access the
memento's state.

 -- Hidden costs in caring for mementos. A caretaker is
responsible for deleting the mementos it cares for. However,
the caretaker has no idea how much state is in the memento.
Hence an otherwise lightweight caretaker might incur large
storage costs when it stores mementos.

SW Design Patterns 53DP8

Implementation
 Language support. Mementos have two interfaces:

 a wide one for originators, and

 a narrow one for other objects.

Ideally, the implementation language will support two levels of
static protection. C++ let you do this by making the Originator a
friend of Memento and making Memento's wide interface private.
Only the narrow interface should be declared public.

 Storing ONLY incremental changes. When mementos get created
and passed back to their originator in a predictable sequence, then
Memento can save just the incremental change to the originator's
internal state. For example, undoable commands in a history list
can use mementos to ensure that commands are restored to their
exact state when they're undone (see Command - GoF233). The
history list defines a specific order in which commands can be
undone and redone. That means mementos can store just the
incremental change that a command makes rather than the full
state of every object they affect.

SW Design Patterns 54DP8

Sample Java Example [3]

 Let’s consider a simple prototype of a
graphics drawing program that creates
rectangles, and allows you to select
them and move them around by
dragging them with the mouse. This
program has a toolbar containing three
buttons: Rectangle, Undo and Clear

 The Rectangle button is a
JToggleButton which stays selected
until you click the mouse to draw a
new rectangle. Once you have drawn
the rectangle, you can click in any
rectangle to select it;

There are 5 actions we need to

respond to in this program:

1. Rectangle button click

2. Undo button click

3. Clear button click

4. Mouse click

5. Mouse drag.

SW Design Patterns 55DP8

 The three buttons can be constructed as Command objects
and the mouse click and drag can be treated as commands
as well. This suggests an opportunity to use the Mediator
pattern, and that is, in fact, the way this program is
constructed.

 Moreover, our Mediator is an ideal place to manage the Undo
action list; it can keep a list of the last n operations so that
they can be undone. Thus, the Mediator also functions as the
Caretaker object we described above. In fact, since there
could be any number of actions to save and undo in such a
program, a Mediator is virtually required so that there is a
single place where these commands can be stored for
undoing later.

 In this program we save and undo only two actions: creating
new rectangles and changing the position of rectangles. Let’s
start with our visRectangle class which actually draws each
instance of the rectangles:

SW Design Patterns 56DP8

public class visRectangle {

int x, y, w, h; Rectangle rect; boolean selected;

public visRectangle(int xpt, int ypt) {

x = xpt; y = ypt; //save location

w = 40; h = 30; //use default size

saveAsRect();

}

public void setSelected(boolean b) { selected = b; }

//---

private void saveAsRect() { //convert to rectangle so we can use “contains”

rect = new Rectangle(x-w/2, y-h/2, w, h);

}

public void draw(Graphics g) {

g.drawRect(x, y, w, h);

if (selected) { //draw “handles”

g.fillRect(x+w/2, y-2, 4, 4); g.fillRect(x-2, y+h/2, 4, 4);

g.fillRect(x+w/2, y+h-2, 4, 4); g.fillRect(x+w-2, y+h/2, 4, 4);

}

}

public boolean contains(int x, int y) {return rect.contains(x, y);}

public void move(int xpt, int ypt) {

x = xpt; y = ypt;saveAsRect();

}

}

SW Design Patterns 57DP8

//our simple Memento class is contained in the same file, visRectangle.java,

//and thus has access to the position and size variables:

class Memento {

visRectangle rect;

//saved fields- remember internal fields

//of the specified visual rectangle

int x, y, w, h;

public Memento(visRectangle r) {

rect = r; //Save copy of instance

x = rect.x; y = rect.y; //save position

w = rect.w; h = rect.h; //and size

}

//---

public void restore() {

//restore the internal state of

//the specified rectangle

rect.x = x; rect.y = y; //restore position

rect.h = h; rect.w = w; //restore size

}

}

SW Design Patterns 58DP8

When we create an instance of the Memento class, we pass it the

visRectangle instance we want to save. It copies the size and position

parameters and saves a copy of the instance of the visRectangle itself.

Later, when we want to restore these parameters, the Memento knows

which instance it has to restore them to and can do it directly, as we see in

the restore() method.

The rest of the activity takes place in the Mediator class, where we

save the previous state of the list of drawings as an Integer on the undo list:

public void createRect(int x, int y) {

unpick(); //make sure no rectangle is selected

if(startRect) { //if rect button is depressed

Integer count = new Integer(drawings.size());

undoList.addElement(count); //Save previous list size

visRectangle v = new visRectangle(x, y);

drawings.addElement(v); //add new element to list

startRect = false; //done with this rectangle

rect.setSelected(false); //unclick button

canvas.repaint();

} else pickRect(x, y); //if not pressed look for rect to select

}

SW Design Patterns 59DP8

//save the previous position of a rectangle before moving it in a Memento:

public void rememberPosition() {

if(rectSelected){

Memento m = new Memento(selectedRectangle);

undoList.addElement(m);

} }

//the undo method simply decides whether to reduce the drawing list

//by one or to invoke the restore method of a Memento:

public void undo() {

if(undoList.size()>0) { //get last element in undo list

Object obj = undoList.lastElement();

undoList.removeElement(obj); //and remove it

//if this is an Integer, the last action was a new rectangle

if (obj instanceof Integer) { //remove last created rectangle

Object drawObj = drawings.lastElement();

drawings.removeElement(drawObj);

}

//if this is a Memento, the last action was a move

if(obj instanceof Memento) { //get the Memento

Memento m = (Memento)obj;

m.restore(); //and restore the old position

}

repaint();

}

}

SW Design Patterns 60DP8

We have covered all the

GoF design patterns
Purpose

Creational Structural Behavioral

Class
 Factory Method Adapter Interperter

Scope

Object

 Abstract
Factory

 Builder

 Prototype

 Singleton

 Bridge

 Composite

 Decorator

 Facade

 Flyweight

 Proxy

 Chain of Responsibility

 Command

 Iterator

 Mediator

 Template Method

 Observer

 State

 Strategy

 Visitor

 Memento

