Prüfer sequence

In combinatorial mathematics, the Prüfer sequence (also Prüfer code or Prüfer numbers) of a labeled tree is a unique sequence associated with the tree. The sequence for a tree on n vertices has length $n-2$, and can be generated by a simple iterative algorithm. Prüfer sequences were first used by Heinz Prüfer to prove Cayley's formula in 1918. ${ }^{[1]}$

Contents

- 1 Algorithm to convert a tree into a Prüfer sequence - 1.1 Example

2 Algorithm to convert a Prüfer sequence into a tree

- 3 Cayley's formula

4 Other applications ${ }^{[3]}$
6 External links

Algorithm to convert a tree into a Prüfer sequence

One can generate a labeled tree's Prüfer sequence by iteratively removing vertices from the tree until only two vertices remain. Specifically, consider a labeled tree T with vertices $\{1,2, \ldots, n\}$. At step i, remove the leaf with the smallest label and set the i th element of the Prüfer sequence to be the label of this leaf's neighbour.
The Prüfer sequence of a labeled tree is unique and has length $n-2$.

Example

Consider the above algorithm run on the tree shown to the right. Initially, vertex 1 is the leaf with the smallest label, so it is removed first and 4 is put in more. Vertex 4 is now a leaf and has the smallest label, so it is removed and we append 5 to the sequence. We are left with only two vertices, so we stop. The tree's sequence is $\{4,4,4,5\}$.

Algorithm to convert a Prüfer sequence into a

tree
Let $\{a[1], a[2], \ldots, a[n]\}$ be a Prüfer sequence:

The tree will have $\mathrm{n}+2$ nodes, numbered from 1 to $\mathrm{n}+2$. For each node set its degree to the number of times it appears in the sequence plus 1. For instance, in pseudo-code:

Next, for each number in the sequence a [i] , find the first (lowest-numbered) node, j, with degree equal to 1, add the edge ($j, a[i]$) to the tree, and decrement the degrees of j and $a[i]$. In pseudo-code:

At the end of this loop two nodes with degree 1 will remain (call them u, v). Lastly, add the edge (u, v) to the tree. ${ }^{[2]}$

Cayley's formula

The Prüfer sequence of a labeled tree on n vertices is a unique sequence of length $n-2$ on the labels 1 to n - this much is clear. Somewhat less obvious is the fact that for a given sequence S of length $n-2$ on the labels 1 to n, there is a unique labeled tree whose Prüfer sequence is S.
The immediate consequence is that Prüfer sequences provide a bijection between the set of labeled trees on n vertices and the set of sequences of length $n-2$ on the labels 1 to n. The latter set has size n^{n-2}, so th existence of this bijection proves Cayley's formula, i.e. that there are n^{n-2} labeled trees on n vertices.

Other applications ${ }^{[3]}$

- Cayley's formula can be strengthened to prove the following claim:

The number of spanning trees in a complete graph K_{n} with a degree d_{i} specified for each vertex i is equal to the multinomial coefficient

$$
\binom{n-2}{d_{1}-1, d_{2}-1, \ldots, d_{n}-1}=\frac{(n-2)!}{\left(d_{1}-1\right)!\left(d_{2}-1\right)!\cdots\left(d_{n}-1\right)!} .
$$

$$
\text { The proof follows by observing that in the Prüfer sequence number } i \text { appears exactly }\left(d_{i}-1\right) \text { times. }
$$

- Cayley's formula can be generalized: a labeled tree is in fact a spanning tree of the labeled complete graph. By placing restrictions on the enumerated Prüfer sequences, similar methods can give the vertices 1 to n in one partition and vertices $n_{1}+1$ to n in the other partition, the number of labe spanning trees of G is $n_{1}^{n_{2}-1} n_{2}^{n_{1}-1}$, where $n_{2}=n-n$
- Generating uniformly distributed random Prüfer sequences and converting them into the corresponding trees is a straightforward method of generating uniformly distributed random labelled trees.

References

1. Prüfer, H. (1918). "Neuer Beweis eines Satzes über Permutationen". Arch. Math. Phys. 27: 742-744 2. Jens Gottlieb; Bryant A. Julstrom; Günther R. Raidl; Franz Rothlauf. (2001). "Prüfer numbers: A poor
representation of spanning trees for evolutionary search" (PDF). Proceedings of the Genetic and Evolutionary representation of spanning trees for evolutionary searc.
Computation Conference (GECCO-2001): 343-350.
2. Kajimoto, H. (2003). "An Extension of the Prüfer Code and Assembly of Connected Graphs from Their
Blocks". Graphs and Combinatorics. 19: 231-239, doi:10 1007/s00373 Blocks". Graphs and Combinatorics. 19: 231-239. doi:10.1007/s00373-002-0499-3.

External links

- Prüfer code (http://mathworld.wolfram.com/PrueferCode.html) - from MathWorld

Retrieved from "https://en.wikipedia.org/w/index.php?title=Prüfer_sequence\&oldid=759139282" Categories: Enumerative combinatorics \mid Trees (graph theory)

- This page was last modified on 9 January 2017, at 13:01.
- Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia $\begin{aligned} & \text { is a registered }\end{aligned}$ trademark of the Wikimedia Foundation, Inc., a non-profit organization.

Prüfer Sequence from Labeled Tree

Contents

Algorithm

Finiteness

Therefrer anes $n-2$
aldorith will sop.
Definiteness

Inputs
Ac input to tisis lagorithm st the trece T.
outputs
ffrective

Example
T T be the collowingig bebed trece

This tre nas 8
elenens
Iteration 1
Stup 1 :There are8 nodes.s.s oconimiue 10 step

Sep 4 : Removing nade 2 leans the forlowing gree

4tis stages the Prifier sequenence is (1).
Iteration 2

 Step 4 Remonoing node 3 leaves hef following tree:

Mt this stage, the
Iteration 3
Step 1. There rexe 6 nodes.s.s. ocontiux 0 ostep 2.
 Step 4 : Removing nodec 4 leaves the following tree:

thtis stage, the Prifier sequence is $(1,7,5)$
Iteration 4

Step 4 Renowoing node 5 keavss the followinig
8.

At this stase, the rifiers scequence is $(1,7,5,7)$
Iteration 5
Step 1:There are 4 nodes.s.s oconiminet $\mathbf{6}$ step 2 .

$8 . \quad .{ }^{\circ}$
Hubis sage, the Prifers sequence is $(1,7,5,7,7$
Iteration 6
Step 1: There are 3 nodes.s.socontinuct 1 ostep 2 .
Step: : Th ondessof fegesec 1 are 8,7 . of flesese 7 . 7 shte lowes.
tep $3: 7 \mathrm{i}$ sadijeento 10, s.s add 1 to the Prifier sequenene
Step 4 Remoning node 7 leaves ste following tree.
$8 \bullet \quad$ •
At his stage, he Prifier sequenere is $(1,7,5,7,7,1)$
Iteration 7
Step 1: There are 2 nodess.s. sosop.

Labeled Tree from Prüfer Sequenc

Algorithm
\qquad $\underset{\substack{\text { Let } P \\ \text { sequence. }}}{ }=(\mathbf{a}$
\qquad
\qquad
\qquad
\qquad
\qquad

Finiteness
For each iterat \qquad
Definitenes
\qquad
\qquad Inputs \qquad
Outputs \qquad
\qquad
\qquad
\qquad
Effective \qquad
Example
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
Iteration 2
Step $3:$ \qquad

\qquad
\qquad
\qquad
\qquad
Iteration 3
Step 3: \qquad

\qquad
\qquad Step $5:$ We deletet 4 fom the list oo obain ($1,5,6,7,8$) and 5 from
the satar of fte sequence to obbain $(7,7,1)$. Iteration 4

\qquad

\square
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

