Original Problem

Find the sum

$$
S:=\sum_{V=1}^{\infty} \sum_{J=1}^{\infty} \sum_{I=1}^{\infty} \sum_{M=0}^{V} \sum_{C=1}^{J} \frac{(-1)^{M} 2^{4 J+4 M}\binom{V}{M}(J+M+1)!^{2}}{C I^{2}\left(I^{4}+4\right)^{J+M+1}(2 J+2 M+3)!}
$$

Technical Simplification

Using the usual notation of harmonic numbers $H_{J}=\sum_{C=1}^{J} \frac{1}{C}$, we obviously deduce

$$
S=\sum_{V=1}^{\infty} \sum_{J=1}^{\infty} \sum_{I=1}^{\infty} \sum_{M=0}^{V} \frac{H_{J}(-1)^{M} 2^{4 J+4 M}\binom{V}{M}(J+M+1)!^{2}}{I^{2}\left(I^{4}+4\right)^{J+M+1}(2 J+2 M+3)!}
$$

Steps of the Solution

1. Show that for every $J \in \mathbb{N}$ the hamronic number H_{J} can be written as

$$
H_{J}=\int_{0}^{1} \frac{1-(1-t)^{J}}{t} \mathrm{~d} t
$$

2. Let $q>1$. Prove the identity

$$
\sum_{J=1}^{\infty} \frac{H_{J}}{q^{J}}=\frac{q}{q-1} \cdot \ln \left(\frac{q}{q-1}\right)
$$

3. Show that for every $n \in \mathbb{N}$ we have

$$
\int_{0}^{1} x^{n+1} \cdot(1-x)^{n+1} \mathrm{~d} x=\frac{(n+1)!^{2}}{(2 n+3)!}
$$

4. Show that for every $q>\frac{1}{4}$ we have

$$
\sum_{J=1}^{\infty} \frac{H_{J}}{q^{J}} \sum_{M=0}^{V}(-1)^{M} \frac{\binom{V}{M}}{q^{M}} \cdot \frac{(J+M+1)!^{2}}{(2 J+2 M+3)!}=\int_{0}^{1} x(1-x) \cdot\left(1-\frac{x(1-x)}{q}\right)^{V-1} \cdot \ln \left(\frac{q}{q-x(1-x)}\right) \mathrm{d} x
$$

5. Show that for every $q>\frac{1}{4}$ we have

$$
\sum_{V=1}^{\infty} \sum_{J=1}^{\infty} \sum_{M=0}^{V} \frac{H_{J}(-1)^{M}\binom{V}{M}(J+M+1)!^{2}}{q^{J+M+1}(2 J+2 M+3)!}=\int_{0}^{1} \ln \left(\frac{q}{q-x(1-x)}\right) \mathrm{d} x
$$

and, consequently,

$$
\frac{1}{2 \sqrt{4 q-1}} \sum_{V=1}^{\infty} \sum_{J=1}^{\infty} \sum_{M=0}^{V} \frac{H_{J}(-1)^{M}\binom{V}{M}(J+M+1)!^{2}}{q^{J+M+1}(2 J+2 M+3)!}=\frac{1}{\sqrt{4 q-1}}-\arctan \left(\frac{1}{\sqrt{4 q-1}}\right)
$$

6. Further, set $\sqrt{4 q-1}=\frac{I^{2}}{2}$ and utilize the last identity form the previous step. Summing over all positive integers I yields

$$
\sum_{I=1}^{\infty} \sum_{V=1}^{\infty} \sum_{J=1}^{\infty} \sum_{M=0}^{V} \frac{H_{J}(-1)^{M}\binom{V}{M}(J+M+1)!^{2}}{I^{2}\left(\frac{I^{4}+4}{16}\right)^{J+M+1}(2 J+2 M+3)!}=\sum_{I=1}^{\infty}\left(\frac{2}{I^{2}}-\arctan \left(\frac{2}{I^{2}}\right)\right)
$$

Evaluating both sums on the right-hand side and performing obvious simplifications on the left-hand side implies that

$$
\sum_{V=1}^{\infty} \sum_{J=1}^{\infty} \sum_{I=1}^{\infty} \sum_{M=0}^{V} \sum_{C=1}^{J} \frac{(-1)^{M} 2^{4 J+4 M}\binom{V}{M}(J+M+1)!^{2}}{C I^{2}\left(I^{4}+4\right)^{J+M+1}(2 J+2 M+3)!}=\frac{4 \pi^{2}-9 \pi}{192}
$$

