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1. Introduction

This is a tutorial for the interactive proof system Minlog, Version
5.0, developed by Helmut Schwichtenberg and members of the logic
group1 at the University of Munich.

Minlog is implemented in Scheme. Minlog’s favorite dialect is Pe-
tite Chez Scheme from Cadence Research Systems, which is freely dis-
tributed at the Internet address www.scheme.com.

The Minlog system can be downloaded from the Internet address
http://www.minlog-system.de

2. Getting started

The purpose of this Tutorial is to give a rather basic introduction to
the Minlog system by means of some simple examples. For a thorough
presentation of Minlog and the motivation behind it the reader should
consult the reference manual [10] and the document [9]. For a more in–
depth presentation of the theory underlying Minlog, the reader might
find it useful also to consult the book [11]. The papers listed in the
Minlog web page also provide a more detailed and advanced description
of specific features of the system. In addition, the Minlog distribution
comes equipped with a directory of examples, to which the user is
referred.

In the following we shall assume tacitly that you are using an UNIX-
like operating system and that Minlog is installed in ˜/minlog, where
˜ denotes as usual your home directory. Also, C-〈chr〉 means: hold the
CONTROL key down while typing the character 〈chr〉, while M-〈chr〉
means: hold the META (or EDIT or ESC or ALT) key down while
typing 〈chr〉.

Date: June 2, 2017.
This tutorial extends and completes a previous tutorial by L. Crosilla distributed

with version 4.0 of Minlog.
1http://www.math.lmu.de/∼logik/welcome.html
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In order to use Minlog, one simply needs a shell in which to run
Minlog and also an editor in which to edit and record the commands
for later sessions. In this tutorial we shall refer to GNU Emacs2. While
working with Emacs, the ideal would be to split the window in two
parts: one containing the file in which to store the commands, and the
other with the Minlog interactive session taking place. To this aim, it
is recommended to use the startup script ˜/minlog/minlog which takes
scheme files as (optional) arguments. For example

~/minlog/minlog file.scm

opens a new Emacs-window which is split into two parts. The upper
part contains the file (Buffer file.scm) whereas the lower part shows
the Minlog response (Buffer *minlog*).

Alternatively, one can open emacs and invoke Minlog by loading the
file minlog.el :

M-x load-file <enter>

~/minlog/minlog.el

In both cases the file init.scm is loaded. In fact, one could also simply
evaluate (load "~/minlog/init.scm") to start Minlog.

To execute a command of our file, we simply place the cursor at
the end of it (after the closed parenthesis), and type C-x C-e. In
general, C-x C-e will enable us to process any command we type in
file.scm, one at the time. To process a whole series of commands, one
can highlight the region of interest and type C-c C-r. We should also
mention at this point that to undo one step, it is enough to give the
command (undo), while (undo n) will undo the last n steps. Finally,
we can type (exit) to end a Scheme session and C-x C-c to exit
Emacs.

3. Propositional logic

3.1. A first example. We shall start from a simple example in propo-
sitional logic. Suppose we want to prove the tautology:

(A→ (B → C))→ ((A→ B)→ (A→ C)).

In the following we shall make use of the convention for which parenthe-
sis are associated to the right (as this is also implemented in Minlog).
Therefore the formula above becomes:

(A→ B → C)→ (A→ B)→ A→ C.

2See also the Appendix ?? for some useful keyboard commands to start working
with Emacs.
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It is very important, especially at the beginning, to pay the maximum
attention to the use of parenthesis to prevent mistakes; it might be
a good strategy to rather exceed in their use in the first examples.
Minlog will automatically delete the parenthesis which are not needed,
therefore facilitating the reading.

3.1.1. Making a sketch of the proof. The first task will be to make
an informal sketch of the proof. While making the plan we should
consider the following fact: Minlog (mainly) implements “Goal Driven
Reasoning”, also called “Backward Chaining”. That means that we
start by writing the conclusion we aim at as our goal and then, step
by step, refine this goal by applying to it appropriate logical rules. A
logical rule will have the effect of reducing the proof of a formula, the
goal, to the proof of one or more other formulas, which will become
the new goals. If our proof is correct, then the formula will be proved
when we reach the point of having no more goals to solve. In other
words, Minlog keeps a list of goals and updates it each time a logical
rule is applied. The proof is completed when the list of goals is empty.

In this case the tautology we want to prove is made of a series of
implications, hence we will have to make repeated use of basic rules for
“deconstructing” implications. The first move will then be to assume
that the antecedent of the outmost implication is true and try to derive
the consequent from it. That is, we assume A→ B → C and want to
derive:

(A→ B)→ A→ C;

hence we set the latter as our new goal. Then we observe that the
formula (A → B) → A → C is an implication as well, and thus can
be treated in the same way; so we now assume both A → B → C
and A → B and wish to derive A → C. Clearly, we can make the
same step once more and obtain A → B → C, A → B and A as our
premises and try to derive C from them. Now we observe that in order
to prove C from the assumption A → B → C, we need to prove both
A and B. Obviously A is proved, as it is one of our assumptions, and
B immediately follows from A→ B and A by modus ponens.

3.1.2. Implementing the proof. Once we have a plan for the proof, we
can start implementing it in Minlog. The initial step would then be
to write the formula in Minlog. For this purpose, we declare three
predicate variables A, B and C by writing 3:

3We could as well have introduced predicate constants instead of predicate vari-
ables. In this case we would have used the command add-predconst-name, with
the same syntax.
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(add-pvar-name "A" "B" "C" (make-arity))

The expression (make-arity) produces the empty arity for A, B and
C (see [10] for a description of make-arity). Minlog will then write:

ok, predicate variable A: (arity) added

ok, predicate variable B: (arity) added

ok, predicate variable C: (arity) added

We now want to prove the above formula with Minlog; we thus need
to set it as our goal.

3.1.3. Setting the goal. To set a goal, we can use the command set-goal

followed by the formula. In the present case:

(set-goal "(A -> B -> C) -> (A -> B) -> A -> C")

Alternatively, we can first give a name to the formula we wish to prove
and then use this name to set the goal. In the present case, let’s call
distr (for distributivity of implication) the formula to be proved:

(define distr (pf "(A -> B -> C) -> (A -> B) -> A -> C"))

The define command has the effect of defining a new variable, in
this case distr, and attaching to it the Scheme term which is produced
by the function pf applied to the formula we enter. In fact, the function
pf, short for “parse formula”, takes a string as argument and returns a
Scheme term. This Scheme term is the internal form in Minlog of our
formula, and distr is a name referring to it. By typing distr, one can
see the value of this variable. The strategy of naming a formula might
turn out to be particularly useful in case of very long goals.

To set distr as our goal we type:

(set-goal distr)

Typically, Minlog will number the goals occurring in the proof, and
will display the top goal as number 1, preceded by a question mark.
Minlog will print:

?_1: (A -> B -> C) -> (A -> B) -> A -> C

3.1.4. The proof. According to our sketch, the first step in proving the
tautology was to assume the antecedent of the implication and turn
the consequent into our new goal. This is simply done by writing:

(assume 1)

Here the number 1 is introduced by us to identify and name the
hypothesis. Minlog will thus denote this hypothesis by 1:

ok, we now have the new goal

?_2: (A -> B) -> A -> C from

1:A -> B -> C
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We repeat the assume command to decompose the implication in the
second goal and obtain a new goal:

(assume 2)

ok, we now have the new goal

?_3: A -> C from

1:A -> B -> C

2:A -> B

And we decompose the new goal once more:

(assume 3)

ok, we now have the new goal

?_4: C from

1:A -> B -> C

2:A -> B

3:A

We now need to start using our assumptions. As already mentioned,
in order to prove C it is enough to prove both A and B, by assumption
1. Therefore we write: (use 1). This has the effect of splitting the
goal in two distinct subgoals (note how the subgoals are numbered):

(use 1)

ok, ?_4 can be obtained from

?_6: B from

1:A -> B -> C

2:A -> B

3:A

?_5: A from

1:A -> B -> C

2:A -> B

3:A

Then we write:

(use 3)

ok, ?_5 is proved. The active goal now is

?_6: B from

1:A -> B -> C

2:A -> B

3:A

And conclude the proof by:

(use 2)

ok, ?_6 can be obtained from

?_7: A from

1:A -> B -> C
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2:A -> B

3:A

>

(use 3)

ok, ?_7 is proved. Proof finished.

To see a record of the complete proof, simply type (display-proof).
Other useful commands are (proof-to-expr) and the particularly use-
ful (proof-to-expr-with-formulas). See the manual for a descrip-
tion of the various display commands available in Minlog.

We observe that the first three assume commands could be replaced
by a single one, i.e., (assume 1 2 3). Also, in alternative to the
last two use commands, we could have given only one command:
(use-with 2 3), which amounts to applying a cut to the premises
2 and 3. A final remark: in case of rather complex proofs, it may be
more convenient to use names to denote specific hypothesis, instead of
making use of bare numbers. To do so, one can simply use the assume

command, followed by the name of the assumption in double quotes.
Before starting to read the next section it is advisable to consult the

reference manual [10] for a compendium of the commands utilized in
this example. It is worth noticing that in general these commands have
a wider applicability than their usage as here presented.

3.2. A second example: conjunction. The next example is a simple
tautology made of conjunctions and an implication. We want to prove4:

A ∧B → B ∧ A.
In this case, we shall simply record the code of our Minlog proof, asking
the reader to check Minlog’s reply at each step. We start as usual with
declaring the variables A and B and setting the goal. Note that if
one uses the same file for a number of examples, there is no need to
re-declare the same predicate variables each time. Hence here and in
the example file available with the distribution repeated declarations
are commented by prefixing a “;; ”.

;; (add-pvar-name "A" "B" (make-arity))

(set-goal "A & B -> B & A")

We than notice that the main connective is an implication, and thus
call the command assume:

(assume 1)

Next we need a command which operates on a conjunction and splits
it into its two components. We can simply write:

4Recall that ∧ binds stronger than →.
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(split)

Finally, we impart the command use which is utilized to obtain the
left (respectively the right) conjunct from an assumption which is a
conjunction and “use” it to derive the goal.

(use 1)

(use 1)

This completes the proof.

3.3. Exercises. The reader is encouraged to try and prove other tau-
tologies. For example the following:

(1) A→ B → A
(2) (A→ B → C)→ B → A→ C
(3) (A→ B)→ (B → C)→ A→ C
(4) (A→ B → C)→ A ∧B → C

3.4. Classical logic. To conclude this section on propositional logic,
we give a short example of a tautology which uses classical logic.

Minlog implements minimal logic. However, it is possible to use
Minlog to prove a proposition which holds in an extension of minimal
logic, like intuitionistic or classical logic. This is achieved by adding
specific principles which are characteristics of each kind of logic, like
the “ex falso quodlibet” or a version of the “tertium non datur”. We
recall that intuitionistic logic is obtained from minimal logic by adding
a principle which enables us to derive any formula from falsity (“ex
falso quodlibet” is Latin for “anything follows from falsity”). This
principle is usually stated as: ⊥ → A, for arbitrary A, where ⊥ denotes
falsity. Classical logic may be obtained by adding to intuitionistic logic
the law of “tertium non datur” (Latin for “there is no third option”).
This is usually stated as A ∨ ¬A, for any A. However, classical logic
may also be obtained by adding to minimal logic a consequence of
“tertium non datur”, known as “stability”, asserting that ¬¬A → A,
for any A. Negation is represented in Minlog as follows: ¬A is A→ ⊥;
consequently stability is written as:

((A→ ⊥)→ ⊥)→ A,

for each A.
We can add “external” principles to Minlog by introducing so–called

“global assumptions”. Roughly speaking, a global assumption is a
proposition whose proof does not concern us at the moment; hence
it can also be an assumption with no proof. Some global assumptions
are already set by default, like EfqLog (which is Minlog’s name for “ex
falso quodlibet”) and StabLog (which is Minlog’s name for the law of
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stability). In order to check which global assumptions we have at our
disposal we type: (display-global-assumptions). To check a par-
ticular global assumption (or theorem) whose name we already know,
we write pp (for pretty-print) followed by the name of the assumption
(or theorem) we want to check, e.g.: (pp "StabLog"). Of course we
can also introduce our own global assumptions and remove them at
any time (see the reference manual for the relevant commands).

In the following we wish to prove the tautology:

((A→ B)→ A)→ A,

which is known as Peirce formula. Also for this example, we will assume
that the reader has prepared her sketch of the proof, and we will only
give an intuitive idea of the proof, preferring to rather concentrate on
the Minlog interaction, which will be given in its complete form.

As in the previous examples, we observe first of all that the goal is
an implication, hence we will assume its antecedent, (A → B) → A,
and try to prove its consequent, A. Now classical logic comes into play:
in order to prove A we will assume that its negation holds and try to
obtain a contradiction from it. This will be achieved by use of Stability.
We further note that in order to make the argument work, we will need
at some stage to resort also to “ex falso quodlibet”.

We start by setting the goal and assuming the antecedent of the
implication:

;; (add-pvar-name "A" "B" (make-arity))

(set-goal "((A -> B) -> A) -> A")

(assume 1)

We obtain:

ok, we now have the new goal

?_2: A from

1:(A -> B) -> A

We now apply Stability, StabLog, so that the goal A will be replaced
by its double negation: (A → ⊥) → ⊥. Note that ⊥ is called bot in
Minlog.

(use "StabLog")

ok, ?_2 can be obtained from

?_3: (A -> bot) -> bot from

1:(A -> B) -> A

Since this is an implication, we let:

(assume 2)

ok, we now have the new goal

?_4: bot from
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1:(A -> B) -> A

2:A -> bot

We then use hypothesis 2 to replace the goal ⊥ by A.

(use 2)

ok, ?_4 can be obtained from

?_5: A from

1:(A -> B) -> A

2:A -> bot

Also A can be replaced by A → B by use of hypothesis 1. Subse-
quently, we can assume the antecedent of the new goal, A, and call it
hypothesis 3:

(use 1)

ok, ?_5 can be obtained from

?_6: A -> B from

1:(A -> B) -> A

2:A -> bot

>

(assume 3)

ok, we now have the new goal

?_7: B from

1:(A -> B) -> A

2:A -> bot

3:A

Now we can make use of the principle of “ex falso quodlibet”: if
we want to prove B, we can instead prove falsum, since from falsum
anything follows, in particular B. Our goal can be updated to ⊥ by
the following instance of use:

(use "EfqLog")

ok, ?_7 can be obtained from:

?_8: bot from

1:(A -> B) -> A

2:A -> bot

3:A

The next two steps are obvious.

(use 2)

ok, ?_8 can be obtained from

?_9: A from

1:(A -> B) -> A

2:A -> bot

3:A
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>

(use 3)

ok, ?_9 is proved. Proof finished.

3.5. Exercises. To familiarize yourself with negation, prove the fol-
lowing propositions.

(1) (A→ B)→ ¬B → ¬A,
(2) ¬(A→ B)→ ¬B,
(3) ¬¬(A→ B)→ ¬¬A→ ¬¬B.

3.6. Note on disjunction. In Minlog we don’t have a primitive log-
ical constant for ∨. This is due to the fact that when wishing to prove
the disjunction A ∨B we can often prove

(A -> Pvar) -> (B -> Pvar) -> Pvar

instead5.

4. Predicate logic

4.1. A first example with quantifiers. We now exemplify how to
prove a statement in predicate logic. We want to prove:

∀n(Pn→ Qn)→ ∀nPn→ ∀nQn.
Here we assume that the predicates P and Q take natural numbers
as arguments. Therefore, we first of all load a file, already available
within the distribution, which introduces the algebra of natural num-
bers, including some operations on them, like for example addition.
The reader is advised to have a look at this file6 by typing:
(libload "nat.scm")

Note that this command will produce the display of the whole file
nat.scm, evaluated. If we wish to load the file “silently”, then we can
precede the libload command by the following line:

(set! COMMENT-FLAG #f)

This will have the effect of hiding the output. To revert to full display
(which is needed to proceed with the proof) one types:

(set! COMMENT-FLAG #t)

5Note, however, that there is also an (inductively defined) “or”, which is dis-
played as ord, with rules:

(pp "InlOrD")

Pvar1 -> Pvar1 ord Pvar2

(pp "InrOrD")

Pvar2 -> Pvar1 ord Pvar2
6See also section 6.1.
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As we load nat.scm, we can make use of all the conventions which
are there stipulated; in particular, we can take n,m, k to be variables
for natural numbers (i.e. of type nat)7. The next task is to introduce
two new predicate variables P and Q which take natural numbers as
arguments:

(add-pvar-name "P" "Q" (make-arity (py "nat")))

> ok, predicate variable P: (arity nat) added

ok, predicate variable Q: (arity nat) added

We then set the goal:

(set-goal "all n(P n -> Q n) -> all n P n -> all n Q n")

> ?_1: all n(P n -> Q n) -> all n P n -> all n Q n

As usual, we first have to “deconstruct” the implications:

(assume 1 2)

> ok, we now have the new goal

?_2: all n Q n from

1:all n(P n -> Q n)

2:all n P n

Then we need to take care of the universal quantifier in the goal:

(assume "n")

> ok, we now have the new goal

?_3: Q n from

1:all n(P n -> Q n)

2:all n P n

n

Note that we could have also used only one command to perform all
these actions:

(assume 1 2 "n")

We finally have to “use” our hypothesis to conclude the proof:

(use 1)

(use 2)

> ok, ?_3 can be obtained from

?_4: P n from

1:all n(P n -> Q n)

2:all n P n

n

> ok, ?_4 is proved. Proof finished.

7Note that Minlog automatically infers the type of the variables x0, x1, . . . once
the variable x has been declared. In this case, it infers for example that n0, n1, . . .
are also natural numbers.
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4.2. Another example. We now wish to prove the following:

∀n(Pn→ Qn)→ ∃nPn→ ∃nQn.
We start by setting the goal and eliminating the two implications:

(set-goal "all n(P n -> Q n) -> ex n P n -> ex n Q n")

(assume 1 2)

?_1: all n(P n -> Q n) -> ex n P n -> ex n Q n

> ok, we now have the new goal

?_2: ex n Q n from

1:all n(P n -> Q n)

2:ex n P n

Next we want to use the second assumption, now by applying “for-
ward reasoning”. Thus we assume there is a witness, say n0, for this
existential formula and call the resulting hypothesis Pn0 . To this aim
we make use of a command called by-assume:

(by-assume 2 "n0" "P_n0")

> ok, we now have the new goal

?_5: ex n Q n from

1:all n(P n -> Q n)

n0 P_n0:P n0

Alternatively, from the existential formula in hypothesis 2, we can
extract a witness, say n0, by applying an existential elimination.

(ex-elim 2)

(assume "n0" "P_n0")

> ok, ?_2 can be obtained from

?_3: all n(P n -> ex n0 Q n0) from

1:all n(P n -> Q n)

2:ex n P n

> ok, we now have the new goal

?_4: ex n Q n from

1:all n(P n -> Q n)

2:ex n P n

n0 P_n0:P n0

As we have already used assumption 2, we may wish to drop it by
writing:

(drop 2)

We conclude the proof by providing a witness, the term n0, for our
existential goal formula. This will be done by calling the command
ex-intro with argument (pt "n0"), where pt stands for “parse term”.

(ex-intro (pt "n0"))
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> ok, ?_5 can be obtained from

?_6: Q n0 from

1:all n(P n -> Q n)

n0 P_n0:P n0

Finally, we first instantiate the universal quantifier in assumption 1
to n0 and then perform a cut with the third assumption.

(use-with 1 (pt "n0") "P_n0")

> ok, ?_5 is proved. Proof finished.

4.3. An example with relations. In the next example we wish to
prove that every total relation which is symmetric and transitive is
reflexive. For simplicity we shall work also in this case with the algebra
of the natural numbers. Our aim is to prove the following statement:

∀n,m (Rnm→ Rmn) ∧ ∀n,m,k (Rnm ∧ Rmk → Rnk)

→ ∀n (∃mRnm→ Rnn),

where n, m, k vary on natural numbers, while R is a binary predicate
on natural numbers.

Before attacking our formula, we observe that in general conjunctions
are quite complex to deal with, as they normally imply the branching
of a proof in two subproofs. Thus we might wish to first find a for-
mula which is equivalent to the one above and “simpler” to prove. We
note that we can equivalently express our goal by a formula in which
the conjunctions have been replaced by implications. Also, we can ex-
press the conclusion with a prenex universal quantifier instead of an
existential one. That is, we can instead prove the following equivalent
formula:

∀n,m (Rnm→ Rmn)→ ∀n,m,k (Rnm→ Rmk → Rnk)

→ ∀n,m (Rnm→ Rnn).

We observe that the strategy of first simplifying the goal may in some
cases allow one to considerably reduce the amount of time needed to
prove a statement. For completeness and for a comparison, we shall
also record a proof of the original goal at the end of this section.

We now start by introducing the constant R. We also want to faci-
litate our work a bit further and introduce names for our two assump-
tions. In the following we shall use the function py (for “parse type”),
which is the analogous for types of the function parse formula that we
encountered in the first example.

(add-pvar-name "R" (make-arity (py "nat") (py "nat")))

(define Sym (pf "all n,m(R n m -> R m n)"))
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(define Trans (pf "all n,m,k(R n m -> R m k -> R n k)"))

We now state the goal:

(set-goal (mk-imp Sym Trans (pf "all n,m(R n m -> R n n)")))

?_1: all n,m(R n m -> R m n)

-> all n,m,k(R n m -> R m k -> R n k)

-> all n,m(R n m -> R n n)

Note that also in this case, we could have directly written the two
formulas as antecedents of the implication, avoiding the detour through
a define command. In case of more complex formulas, however, or
when we need to use the same formulas for various proofs through one
session, the strategy of introducing names for assumptions can be quite
useful.

We now observe that the goal is an implication, so that the first
step is to write (assume "Sym" "Trans"). We now obtain a univer-
sally quantified formula and hence need to proceed to eliminate the
quantifiers. This can be accomplished by another assume command
in which we specify two natural numbers, say n and m. So we write
(assume "n" "m"). This produces an implication which again needs
to be eliminated by another assume command, say (assume 3). Quite
conveniently we can put all these commands together by simply writ-
ing:

(assume "Sym" "Trans" "n" "m" 3)

ok, we now have the new goal

?_2: R n n from

Sym:all n,m(R n m -> R m n)

Trans:all n,m,k(R n m -> R m k -> R n k)

n m 3:R n m

The next move is to make use of our assumptions. It is clear that
if we take k to be n in Trans, then the goal can be obtained by an
instance of Sym, and the proof is easily completed. We here utilize
use by additionally providing a term, "m", which instantiates the only
variable which can not be automatically inferred by unification8.

(use "Trans" (pt "m"))

?_4: R m n from

Sym:all n,m (R n m -> R m n)

Trans:all n,m,k(R n m -> R m k -> R n k)

n m 3:R n m

?_3: R n m from

Sym:all n,m(R n m -> R m n)

8See [9] for an introduction to unification.
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Trans:all n,m,k(R n m -> R m k -> R n k)

n m 3:R n m

The use command has the effect of replacing the current goal with
two new goals. These are obtained from Trans by instantiating the
quantifiers with n, m and n (the two n being inferred by unification)
and then by replacing the goal with the antecedents of the resulting
instance of Trans. We can now write:

(use 3)

> ok, ?_3 is proved. The active goal now is

?_4: R m n from

Sym:all n,m(R n m -> R m n)

Trans:all n,m,k(R n m -> R m k -> R n k)

n m 3:R n m

We finally employ Sym and another use:

(use "Sym")

ok, ?_4 can be obtained from

?_5: R n m from

Sym:all n,m(R n m -> R m n)

Trans:all n,m,k(R n m -> R m k -> R n k)

n m 3:R n m

>

(use 3)

ok, ?_5 is proved. Proof finished.

4.4. The same example again. We here present a Minlog proof of
the original goal in the previous example, as it allows us to exemplify
the use of some new commands. We shall leave the proof uncommented
and make a few remarks at the end. The reader will have to examine
the proof and check Minlog’s interaction.

;; (libload "nat.scm")

;; (add-pvar-name "R" (make-arity (py "nat") (py "nat")))

(set-goal "all n,m(R n m -> R m n)

& all n,m,k(R n m & R m k -> R n k)

-> all n(ex m R n m -> R n n)")

(assume 1)

(inst-with 1 ’left)

(inst-with 1 ’right)

(drop 1)

(name-hyp 2 "Sym")

(name-hyp 3 "Trans")

(assume "n" 4)
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(ex-elim 4)

(assume "m" 5)

(cut "R m n")

(assume 6)

(use-with "Trans" (pt "n") (pt "m") (pt "n") "?")

(drop "Sym" "Trans" 4)

(split)

(use 5)

(use 6)

(use-with "Sym" (pt "n") (pt "m") 5)

The use-with command is similar to the use command, but when
applied to a universal quantifier it requires to explicitly specify the
terms one wants to instantiate. In the second occurrence of use-with,
Minlog will instantiate as specified the universal quantifiers in the sec-
ond premise and then use hypothesis 5 to prove the goal.

The command inst-with is analogous to use-with, but operates
in forward reasoning; hence it allows one to simplify the hypothesis,
instead of the conclusion. In this case, (inst-with 1 ’left) has the
effect of producing the left component of the conjunction which con-
stitutes the first hypothesis. Similarly for the right component.

As to cut, this command enables one to introduce new goals: (cut

A) has the effect of replacing goal B by two new goals, A→ B and A.
In the proof above we have also made use of the commands drop and

name-hyp. We have already seen the first command, which allows one
to remove one or more hypothesis from the present context, to make
the proof more readable. In fact, it simply replaces the current goal
with another goal in which the hypothesis “dropped” are not displayed
anymore (but they are not removed in general, as should be clear from
the example above). The second command has similar “cosmetic” pur-
poses, and allows one to rename a specific hypothesis and hence to
work with names given by the user instead of numbers produced by
default. Both these commands result especially useful in the case of
long and intricate proofs.

4.5. Exercises. Prove the following goals:

(1) ∀m,nRmn→ ∀n,mRmn
(2) ∀m,nRmn→ ∀nRnn
(3) ∃m∀nRmn→ ∀n∃mRmn

4.6. Advanced exercises. Now two examples which involve a func-
tion. First declare a new function variable (where av stands for “add
variable”):
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(av "f" (py "nat=>nat"))

(set-goal "all f(all n(P(f n) -> Q n)

-> all n P n -> all n Q n)")

(set-goal "all f(all n(P n -> Q (f n))

-> ex n P n -> ex n Q n)")

And finally:

;; (add-pvar-name "Q" (make-arity (py "nat")))

;; (add-pvar-name "A" (make-arity))

(set-goal "all n(Q n -> A) -> (ex n Q n -> A)")

(set-goal "ex n(Q n -> A) -> all n Q n -> A")

4.7. Another example with classical logic. We conclude this sec-
tion on predicate logic with the proofs of two formulas which hold in
classical logic. First of all, we prove the inverse of the formula in the
last exercise, now generalised to an arbitrary type. Then we use this
formula (conveniently stored as a Lemma) to prove another formula
which is usually known as the “Drinker” formula. So we start by prov-
ing:

(∀xQx→ A)→ ∃̃x(Qx→ A).

Here Q is a unary predicate which ranges on an arbitrary type, say α.
In addition, the existential quantifier, ∃̃, is here a classical existential
quantifier, to be distinguished from the existential quantifier we en-
countered in the previous example. A classical quantifier ∃̃x is nothing
more than an abbreviation for ¬∀x ¬. Note that Minlog implements
both quantifiers, with the appropriate corresponding rules.

We start by “removing” the constant Q from example 4.1, so that
we can re-introduce it as a fresh constant which ranges on α rather
than on the natural numbers. We also introduce two new variables, x
and y, of type α. Finally, we set the goal.

(remove-pvar-name "Q")

(add-pvar-name "Q" (make-arity (py "alpha")))

(av "x" (py "alpha"))

(set-goal "(all x Q x -> A) -> excl x(Q x -> A)")

We start by “deconstructing” the two implications. Then we can
instantiate the universal quantifier in assumption 2 to a canonical in-
habitant of the type α.

(assume 1 2)

(use 2 (pt "(Inhab alpha)"))

Subsequently, we proceed by eliminating the implication in the goal,
using assumption 1 and instantiating the resulting universal quantifier
by x.
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(assume 3)

(use 1)

(assume "x")

Now it’s time to call in classical logic. The remaining steps should
be self–explanatory. Note in particular the use of EfqLog and the
command save at the end of the proof which enables us to save the
proof and call it “Lemma”.

(use "StabLog")

(assume 4)

(use 2 (pt "x"))

(assume 5)

(use 1)

(assume "x1")

(use "EfqLog")

(use-with 4 5)

(save "Lemma")

We now wish to prove the following:

∃̃x (Qx→ ∀yQy),

again with Q a unary predicate ranging on α.
The above formula is known as the “drinker” formula, as it says

something like: “in a bar, there is a person such that if that person
drinks then everybody drinks”. To prove the “drinker”, we observe
that if we substitute the predicate variable A by ∀xQx in the formula
just proved, then we obtain the drinker formula. The substitution can
be achieved by the following command.

(set-goal "excl x(Q x -> all x Q x)")

(use-with "Lemma"

(make-cterm (pv "x") (pf "Q x"))

(make-cterm (pf "all x Q x"))

"?")

Here pv stands for “parse variable”. In addition, make-cterm pro-
duces a “comprehension term” consisting of a list of variables and the
formula we wish to substitute. For example, if we wish to replace a
predicate variable P with arity x1, . . . , xn by a formula F (y1, . . . , yn)
we need to give a comprehension term consisting of a list of variables
y1, . . . , yn and the formula F (with free variables y1, . . . , yn, plus pos-
sibly other variables, bound or free). That is, we write: (make-cterm

(pv "y1") ...(pv "yn") <formula F> ). Note that the list of vari-
ables can also be empty, as in the second application of make-cterm

above. We leave the rest of the proof as an exercise for the reader.
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4.8. Equality reasoning. We now wish to prove that for any function
f taking natural numbers to natural numbers, for any natural number
n, the following holds:

fn = n→ f(fn) = n.

First of all we recall the nat library and introduce f . Then we set the
goal and start by a familiar assume command.

;; (libload "nat.scm")

(av "f" (py "nat=>nat"))

(set-goal "all f,n(f n=n -> f(f n)=n)")

(assume "f" "n" 1)

Next we can use the command simp which is an essential tool in
Minlog’s equality reasoning. This command has the effect of simplify-
ing a proof which involves equal terms by performing an appropriate
substitution in the goal. We conclude with a use command.

(simp 1)

(use 1)

Suppose now we wish to replace the right hand side by the left hand
side in the equation above:

(set-goal "all f,n(n=f n -> n=f(f n))")

This can be proved by the following commands:

(assume "f" "n" 1)

(simp "<-" 1)

(use 1)

5. Automatic proof search

Minlog allows for automatic proof search. There are two distinct
facilities for performing an automatic search in Minlog. The first is
given by the command (prop) and exemplifies Hudelmaier-Dyckhoff’s
search for the case of minimal propositional logic (see e.g. [5], [4]). The
second is given by the command (search) and allows to automatically
find proofs also for some quantified formulas.

5.1. Search in propositional logic. When we give the command
prop, Minlog will first look for a proof in propositional minimal logic.
If it fails to find a proof for the given proposition, it will try with intu-
itionistic logic, by adding appropriate instances of “ex falso quodlibet”.
If this search also gives no positive answer, it will try to find a proof
in classical logic, by adding appropriate instances of Stability.
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To apply this search algorithm, one simply needs to type (prop).
One could do so after stating the goal or at any point in a proof from
which one believes that (minimal) propositional logic should suffice.
If Minlog finds a proof, one can then display it by means of any of
the display commands available for proofs; for example by writing dnp

(which is a shortcut for display-normalized-proof).
The reader is encouraged to try prop on the following tautologies:

(1) (A→ B → C)→ (A→ B)→ A→ C
(2) ((A→ B)→ A)→ A

Further test examples can be found in the section on propositional
logic in this tutorial.

5.2. Search in predicate logic. The command search embodies a
search algorithm based on [7] and ideas of U. Berger (see the Min-
log reference manual and [8] for details on the algorithm and for some
differences with Miller’s original algorithm). The search command
enables us to automatically find a proof for a wider class of formulas
compared with prop, since it also works for some formulae with quanti-
fiers (see the reference manual for a detailed description of the class of
formulae dealt with by search). Note, however, that search only op-
erates a search in minimal logic. If one wishes to apply this command
to a classical formula like “Peirce’s law”, one could for example add
the appropriate instances of “ex falso quodlibet” and of “Stability” as
antecedents of the goal. In case of more complex proofs, in which one
can not easily modify the actual goal, an alternative would be to avail
oneself of a more complete use of the search command which allows
us to specify some global assumptions, theorems or even hypotheses
from the given context which one would like to use in the proof. Since
the search space in the case of quantified formulas can become really
vast, this possibility of declaring specific assumptions to be used in the
proof can be very useful, especially if we also state the maximum num-
ber of multiplicities we allow for each assumption (i.e., the maximum
number of times each assumption can be used in the proof). One can
also use this same device to exclude the use of a specific assumption in
the proof, simply by letting its multiplicity to be 0.

To use the plain version of search, one simply writes (search). See
the reference manual for the precise syntax of the command search

when other assumptions are invoked with the respective multiplicities.
The reader is encouraged to use search to prove the following:
∀x(Px→ Qx)→ ∃xPx→ ∃xQx.
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5.2.1. A more complex example with search. We here wish to intro-
duce a more complex example for the use of search. We apply the
algorithm to the following problem: if f is a continuous function then
f composed with itself is also a continuous function. We suggest to
solve the problem as follows.

;; (add-var-name "x" "y" (py "alpha"))

(add-tvar-name "beta")

(add-var-name "u" "v" "w" (py "beta"))

(add-infix-display-string "In" "elem" ’rel-op)

(add-var-name "f" (py "alpha=>alpha"))

(set-goal "all f(

all x,v(f x elem v ->

excl u(x elem u & all y(y elem u -> f y elem v))) ->

all x,w(f(f x)elem w ->

excl u(x elem u & all y(y elem u -> f(f y)elem w))))")

(search)

Note that one can switch on a verbose form of search by letting: (set!
VERBOSE-SEARCH #t) before calling search. In this way one can see
the single steps performed by the search algorithm and detect possible
difficulties in finding a proof.

Also, add-infix-display-string allows us to define a token with
infix notation for the program constant9.

6. Datatypes and inductively defined predicates

At this point we prefer to slightly change our style how goals appear
on the screen. The reason is that from now on our proofs become
somewhat more complex, and then the new style is more readable.

• For somewhat longer contexts it is clearer to list them first and
the goal below it, separated by a line. The command to switch
to this display style is

(set! COQ-GOAL-DISPLAY #t)

• We avoid using numbers to identify hypotheses and rather use
strings indicating what kind of a hypothesis we have. For ex-
ample “IHn” tells us that this is the hypothesis of an induction
over n.

9Similarly there are commands for prefix and postfix use, for example:
add-prefix-display-string.



22 L. CROSILLA, M. SEISENBERGER, H. SCHWICHTENBERG

6.1. The natural numbers. The standard example of a datatype is
that of the natural numbers. We have already seen that the natu-
ral numbers are implemented in Minlog as an algebra, and that the
distribution comes equipped with a file, called nat.scm, which intro-
duces this algebra. The algebra’s constructors are 0 and Succ (zero
and successor). To display these constructors, we simply write:

(display-alg "nat")

We obtain Minlog’s reply:

> nat

Zero: nat

Succ: nat=>nat

Note also that for convenience Minlog allows us to write 0, 1, 2,

3, ... instead of Zero, (Succ Zero), Succ(Succ Zero), ....
Algebras usually come equipped with some functions, which are

called program constants in Minlog. For example, in the case of
the natural numbers, one has the program-constants NatPlus and
NatTimes, for addition and multiplication, respectively. These are dis-
played as + and *. The behaviour of program constants is specified by
means of appropriate term rewriting rules which in Minlog are called
computation rules and rewrite rules 10.

For example, to see the program constant NatPlus and its rules type:

(display-pconst "NatPlus")

> NatPlus

comprules

nat+0 nat

nat1+Succ nat2 Succ(nat1+nat2)

rewrules

0+nat nat

Succ nat1+nat2 Succ(nat1+nat2)

nat1+(nat2+nat3) nat1+nat2+nat3

Note that here nat is a default variable of type nat. We recommend
to have a look at the file nat.scm to familiarise oneself with the way
program constants are defined.

To see the effect of term rewriting rules for + we type

(pp (nt (pt "3+4")))

10The idea is that a computation rule can be understood as a description of a
computation in a suitable semantical model, provided the syntactic constructors
correspond to semantic ones in the model, whereas the other rules should be proved
before being introduced.
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(pp (nt (pt "Succ n+Succ m+0")))

which yields as results the number 7 and Succ(Succ(n+m)). Here
pp stands for pretty print and nt stands for normalize term; this
essentially consists in repeatedly applying11 the term rewriting rules
until no new term is obtained.

6.1.1. Adding new program constants and computation rules. We now
wish to exemplify the introduction of new program constants on the
natural numbers.

Recall that if the file nat.scm is not already loaded12, we can type:

(set! COMMENT-FLAG #f)

(libload "nat.scm")

(set! COMMENT-FLAG #t)

We now introduce a new program constant which represents the func-
tion which doubles a natural number. The command used to introduce
a new program constant is add-program-constant. It requires the
name of the constant and its type; further arguments may be the de-
gree of totality, the token type (e.g. const) and the arity (see [10]).
In particular, note that in Minlog we can treat not only total objects
but also partial ones13. Therefore, when we introduce a new program
constant, we may also specify its totality degree. A totality degree of
one (t-deg-one) indicates that the program constant is total, while
zero (which is the default) denotes non–totality. As to the type, in
the present case, the new constant Double is of arrow type, as it takes
natural numbers as input and produces natural numbers as output.

(add-program-constant "Double" (py "nat=>nat"))

In case we wish to remove this program constant, we simply write:

(remove-program-constant "Double")

The behaviour of a new program constant can be specified by intro-
ducing one or more computation rules for it. This is accomplished by
use of the command add-computation-rule, having two arguments:
a left hand side and a right hand side. The right hand side specifies
the result of the computation rule for the argument indicated in the
left hand side.

The following example should clarify how to use these commands.

11Term rewriting in Minlog makes use of normalisation-by-evaluation (see [10]).
12Clearly, it is good practice to run a new Minlog session when loading new files

which could turn out to be incompatible with previously loaded files or previously
introduced definitions.

13For the notion of totality see [12, Chapter 8.3]; see also [11].



24 L. CROSILLA, M. SEISENBERGER, H. SCHWICHTENBERG

The function “Double” can be defined by specifying primitively re-
cursively how it acts on zero and on the successor of each natural
number.

(add-computation-rule (pt "Double 0") (pt "0"))

(add-computation-rule (pt "Double(Succ n)")

(pt "Succ(Succ(Double n))"))

Alternatively, one could also write:

(add-computation-rules

"Double 0" "0"

"Double(Succ n)" "Succ(Succ(Double n))")

To see the effect of the newly introduced computation rules:

(pp (nt (pt "Double 3")))

(pp (nt (pt "Double(n+2)")))

6.1.2. Proof by induction. Here we wish to exemplify a proof by induc-
tion on the natural numbers. The goal is very simple: we wish to show
that Double n = n+n. The first step of the proof consists in using the
command ind. This command requires a universally quantified goal
and proves it by induction, according to the definition of the specific
algebra type.

(set-goal "all n Double n=n+n")

(ind)

The effect of applying ind is to refine the goal to a proof of the base
and the step cases of the induction. In the present case, where the
constructors are Zero and Successor, we have to prove two cases: one
for Zero and one for Successor. Minlog’s reply will be something like
this:

ok, ?_1 can be obtained from

n2218

-------------------------------------------------------

?_3:all n(Double n=n+n -> Double(Succ n)=Succ n+Succ n)

n2218

-------------------------------------------------------

?_2:Double 0=0+0

We then replace the goal with its normal form by letting:

(normalize-goal)

n2218
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-------------------------------------------------------

?_4:T

The latter command can be abbreviated with ng and it normalizes
the goal by using the computation rules for “+” introduced in the file
nat.scm. More specifically, as both Double 0 and 0+0 reduce to 0,
the normalization will first of all produce 0=0. This in turn reduces to
truth, here indicated by T. It comes equipped with an axiom Truth, by
means of which we prove the base case.

(use "Truth")

ok, ?_4 is proved. The active goal now is

n2218

-------------------------------------------------------

?_3:all n(Double n=n+n -> Double(Succ n)=Succ n+Succ n)

As to the step, we make use of the induction hypothesis, IH, and
write:

(assume "n" "IH")

(ng)

(use "IH")

> ok, we now have the new goal

n2218 n IH:Double n=n+n

-------------------------------------------------------

?_5:Double(Succ n)=Succ n+Succ n

> ok, the normalized goal is

n2218 n IH:Double n=n+n

-------------------------------------------------------

?_6:Double n=n+n

> ok, ?_6 is proved. Proof finished.

Also in this case, when we write ng the term rewriting rules for
Double and “+” are applied.

Finally, we wish to recall that one could also define the Double func-
tion without making use of a primitive recursive definition.

(add-program-constant "DoubleN" (py "nat=>nat"))

(add-computation-rule (pt "DoubleN n") (pt "n+n"))

6.1.3. Exercises. Prove that the two definitions of the doubling func-
tion are equivalent:

(set-goal "all n Double n=DoubleN n")

Prove also the following:
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(set-goal "all n,m n+m=m+n")

6.1.4. Rewrite rules. Once we have proved the above statement for
which the two definitions of Double are equivalent, we may add a
rewrite rule which replaces each occurrence of Double by DoubleN.

(add-rewrite-rule (pt "Double n") (pt "DoubleN n"))

6.1.5. Another example. We now present another example of induction
on the natural numbers, which introduces some additional features of
Minlog.

Suppose we want to prove that for all natural numbers n, Double n
is even. We define two new program constants Odd and Even which
take a natural number as argument and give a boolean (true or false)
as output. As usual, the behaviour of these program constants can be
specified by means of appropriate computation rules. In this case the
computation rules will simultaneously characterize Odd and Even.

(add-program-constant "Odd" (py "nat=>boole"))

(add-program-constant "Even" (py "nat=>boole"))

(add-computation-rules

"Odd 0" "False"

"Even 0" "True"

"Odd(Succ n)" "Even n"

"Even(Succ n)" "Odd n")

The steps of the proof are self–explanatory:

(set-goal "all n Even(Double n)")

(ind)

(prop)

(search)

6.2. Case distinction on the booleans. We wish to give an example
of distinction by cases, and for simplicity we shall consider a trivial
example on the booleans.

We wish to prove that for any boolean p, if p is not false then it is
true. We add a variable p of type boolean and set the goal:

(av "p" (py "boole"))

(set-goal "all p((p=False -> F) -> p=True)")

The proof then proceeds by cases: either p is false or it is true. The
following steps should be clear.

(cases)

(prop)

(prop)
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6.3. Induction on lists. The following example is an exercise on lists
over an arbitrary type α. This example illustrates again the use of
induction; however, since we now deal with parametrized algebras (see
[10, 11]) the task turns out to be a bit harder than when working with
the algebra of natural numbers.

To start with we load the file list.scm, which contains basic defi-
nitions and operations on lists over an arbitrary type α14. Then we
introduce a function, Rv, on lists which has the effect of reverting a
list. Finally we prove:

∀v,w(Rv (v ∗ w) ≡ (Rvw) ∗ (Rv v)),

where v and w are lists over an arbitrary type α and ∗ denotes the
append function on lists as defined in list.scm. Further, ≡ repre-
sent Leibniz’ equality15: two elements are equal if they have the same
properties, i.e., they are indistinguishable.

We begin as follows:

;; (libload "nat.scm")

(set! COMMENT-FLAG #f)

(libload "list.scm")

(set! COMMENT-FLAG #t)

(add-var-name "x" "a" "b" "c" "d" (py "alpha"))

(add-var-name "xs" "v" "w" "u" (py "list alpha"))

We now need to define Rv. This is defined inductively, by first giving
its value for the empty list and then saying how it applies to a non-
empty list. The two defining conditions for Rv are the following:

Rv (Nilα) = (Nilα),

Rv (a :: w) = (Rvw) ∗ (a:)

where, according to the notation in list.scm, (Nilα) denotes the
empty list over the type α, a :: w denotes the list obtained by adding
the object a of type α to the list w (over α), while a: is the one element
list obtained from a. We thus write:

(add-program-constant "ListRv"

(py "list alpha => list alpha") t-deg-one)

(add-prefix-display-string "ListRv" "Rv")

14 Note that list.scm does require to first upload nat.scm. We recommend to
go through the list file before working out this example.

15Internally Leibniz equality is printed eqd, where the d stands for “defined”,
since Leibniz equality is inductively defined by the clause InitEqD: ∀ncx x ≡ x; see
6.5 for inductively defined predicates.
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(add-computation-rules

"Rv(Nil alpha)" "(Nil alpha)"

"Rv(x::xs)" "Rv xs++x:")

Note that for simplicity we have stated that ListRv is a total func-
tion. Minlog’s output will include a warning, to remind us that we
should have separately proved before that ListRv is in fact total. Also,
add-prefix-display-string allows us to define a token for the pro-
gram constant16.

The following proof makes use of a program constant, ListAppd,
already available within the file list.scm. This has the following com-
putation rules:

(Nil alpha)++xs2 xs2

(x1::xs1)++xs2 x1::xs1++xs2

And rewrite rules:

xs++(Nil alpha) xs

xs1++x2: ++xs2 xs1++(x2::xs2)

To check ListAppd we type:

(display-pconst "ListAppd")

Now we can set the goal and start the proof by calling ind:

(set-goal "all v,w Rv(v++w)eqd Rv w++Rv v")

(ind)

This has the effect of producing two subgoals, corresponding to the
base case and the step case, respectively. We tackle the base case as
follows:

(ng)

(assume "w")

(use "InitEqD")

Here we have used InitEqD, which is the axiom: xs eqd xs.
Subsequently we move to the step case:

(assume "a" "v" "IHw" "w")

(ng)

(simp "IHw")

And finally we use a theorem proved in the file list.scm and there
called ListAppdAssoc:

16In the file list.scm there already exists a program constant ListRev with
display string Rev defined exactly as our ListRv. Here we have just duplicated the
definition for pedagogical reasons, since it is a nice and easy example. However, we
had to choose a different name to avoid a clash with the already loaded list.scm.
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all xs1,xs2,xs3 xs1++(xs2++xs3)eqd xs1++xs2++xs3

Then we carry on by

(simp "ListAppdAssoc")

(use "InitEqD")

6.3.1. Exercise. In list.scm ListMap is introduced by

(add-program-constant

"ListMap" (py "(alpha1=>alpha2)=>list alpha1=>list alpha2"))

(add-infix-display-string "ListMap" "map" ’pair-op)

(add-var-name "phi" (py "alpha1=>alpha2"))

(add-computation-rules

"phi map(Nil alpha1)" "(Nil alpha2)"

"phi map y::ys" "phi y::phi map ys")

Prove that map commutes with Rv:

(av "f" (py "alpha=>alpha"))

(set-goal "all f,xs (f map Rv xs)eqd Rv(f map xs)")

In the proof it is helful to use the theorem MapAppd, which can be found
in list.scm.

6.4. Defining algebras: binary trees. We now wish to show how
to introduce new algebras; we shall also give one more example on
how to use them. The example we shall consider is that of binary
trees. First of all we introduce a new algebra, called “bintree” which
has constructors “Null” and “Con”. We also add two variables of type
“bintree”: “ltree” and “rtree” (for left and right tree).

(add-algs "bintree"

’("bintree" "Null")

’("bintree=>nat=>bintree=>bintree" "Con"))

(av "ltree" "rtree" (py "bintree"))

We then add a new program constant (by using a shortcut, apc, for
the command add-program-constant) and its respective computation
rules. Flatten takes a tree and produces a list consisting of the labels
in the tree, starting with the root label.

(apc "Flatten" (py "bintree=>list nat"))

(add-computation-rules

"Flatten(Null)" "(Nil nat)"

"Flatten(Con ltree n rtree)"

"n: ++Flatten ltree++Flatten rtree")
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To see how this works, one can for example type:

(pp (nt (pt "Flatten(Con(Con Null 4 Null)

1

(Con Null 5(Con Null 7 Null)))")))

to obtain 1::4::5::7: as the list of labels.

6.5. Inductively defined predicates. In Minlog we can also intro-
duce inductively generated predicates with the command add-ids. An
example defining the even numbers inductively is as follows:

(add-ids

(list (list "EvenI" (make-arity (py "nat")) "algEvenI"))

’("EvenI 0" "InitEvenI")

’("allnc n(EvenI n -> EvenI(n+2))" "GenEvenI"))

The two closure axioms of this inductive definition are InitEvenI:

EvenI 0 and GenEvenI: allnc n( EvenI n -> EvenI(n + 2)). In
the latter, we have made use of the “non-computational” quantifier
allnc. We briefly recall that a non-computational quantifier may be
used in cases where the variable it quantifies on will not be used (freely)
in any term in the proof.17 Seen purely logically there is no difference
between the all and allnc quantifier. With algEvenI, we provide
a name for an algebra, corresponding to this inductive definition. It
can be omitted, in which case we have an “inductive definition without
computational content”.

Similarly to the case of simultaneous free algebras, we could use
add-ids to introduce simultaneously more than one predicate. The
case above is a particular example, in which the first occurrence of
list is followed by only one item.

Let’s now see a proof which uses the closure axioms for EvenI. This
makes essential use of the command intro. The command (intro i

. terms) expects as goal a formula which can be proved using the i-th
closure axiom. This axiom is then applied, via use, hence terms may
have to be provided. For example, below by calling intro 0 we apply
the first closure axiom for EvenI, and by calling intro 1 we apply the
second closure axiom.

(set-goal "all n EvenI(n+n)")

(ind)

(ng)

(intro 0)

(assume "n" "IH")

17Consequently, extracted programs (see the next chapter) will not depend on
these variables.
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(ng)

(intro 1)

(use "IH")

To conclude this section, we present a proof using induction on the
predicate EvenI.

(set-goal "allnc n(EvenI n -> ex m m+m=n)")

(assume "n" "En")

(elim "En")

Here elim applies the induction axiom for the inductive definition. For
example, if the goal is all n(EvenI n -> P n), we obtain the new
goals: P 0 and all n((EvenI n & P n) -> P(n+2)). The commands
for the rest of the proof have been explained before.

(ex-intro (pt "0"))

(use "Truth")

(assume "n1" "En1" "IH")

(by-assume "IH" "m0" "m0Prop")

(ex-intro (pt "m0+1"))

(simp "<-" "m0Prop")

(use "Truth")

6.6. Totality of program constants. An important example for an
inductively defined predicate is the totality predicate for an algebra,
for instance TotalNat for the algebra nat. It can be created by call-
ing (add-totality alg-name). When the file nat.scm is loaded this
already has been done and TotalNat is inductively defined by the two
clauses TotalNatZero and TotalNatSucc:

TotalNatZero : TotalNat 0

TotalNatSucc : ∀ncn̂ (TotalNat n̂→ TotalNat(Succ n̂))

This can be checked by executing

(display-idpc "TotalNat")

Note that here we have used n̂ rather than n as a variable name. At
this point it is appropriate to remember that in our intended model
(the Scott-Ershov partial continuous functionals) partial objects are
first class citizens, and hence quantifiers by default range over them.
When we want to talk about total objects only, we need to relativize
quantifiers to a totality predicate. To make the notation less cumber-
some we introduce the convention that if a variable name is followed by
a ^, a general (or partial)) variable is meant. Variable names without
a ^ are implicitly restricted to range over total objects only. In fact,
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∀xPx is just a convenient abbreviation for ∀ncx̂ (T x̂ → Px̂). Here T is
the totality predicate for the current type.

When adding a program constant and its computation rules the de-
fault is that this constant denotes a partial functional. However, often
the computation rules are such that it actually is total (i.e., defined for
all total arguments). It is good practice to prove totality immediately
after defining a program constant.

For example, the program constant Double clearly is total. To let
Minlog know this fact we have to prove a lemma.

;; DoubleTotal

(set-goal (rename-variables

(term-to-totality-formula (pt "Double"))))

The goal then is, as expected,

?_1: allnc n^(TotalNat n^ -> TotalNat(Double n^))

Now we carry on by assuming the variable and the hypothesis

(assume "n^" "Tn")

At this point we use the elimination axiom for TotalNat

(elim "Tn")

(use "TotalNatZero")

(assume "n^1" "Tn1" "IH")

(ng #t)

(use "TotalNatSucc")

(use "TotalNatSucc")

(use "IH")

;; Proof finished.

(save "DoubleTotal")

It is important to give this lemma the name DoubleTotal, i.e., the
name of the program constant followed by Total. After the lemma
with this name is saved Minlog will know that Double is total.

7. Program extraction from proofs

In this section we give some basic examples of program extraction
from proofs. We should perhaps mention at this point that program
extraction was one of the main original motivations in the development
of Minlog. In addition, Minlog features some interesting aspects, as for
example it implements a refined version of the so–called A–translation,
thus allowing for program extraction from classical proofs. An expo-
sition of program extraction from proofs and (modified) A–translation
is well beyond the purpose of this tutorial. See for example [2, 1, 11].
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7.1. List reversal. For our first example of program extraction from
proofs, we introduce an inductively defined predicate RevI (without
computational content) as follows:

;; (set! COMMENT-FLAG #f)

;; (libload "nat.scm")

;; (libload "list.scm")

;; (set! COMMENT-FLAG #t)

;; (add-var-name "a" "b" "c" "d" "x" (py "alpha"))

;; (add-var-name "v" "w" "u" "xs" (py "list alpha"))

(add-ids

(list (list "RevI"(make-arity (py "list alpha")

(py "list alpha"))))

’("RevI(Nil alpha)(Nil alpha)" "InitRev")

’("all a,v,w(RevI v w -> RevI(v++a:)(a::w))" "GenRevI"))

We first prove that RevI satisfies a variant clause18:

(set-goal "all a,v,w(RevI v w -> RevI(a::v)(w++a:))")

(assume "a" "v" "w" "Rvw")

(elim "Rvw")

(ng)

;; RevI(a:)(a:)

(use-with "GenRevI" (pt "a") (pt "(Nil alpha)") (pt "(Nil alpha)")

"InitRevI")

(assume "a1" "v1" "w1" "Rv1w1" "Hyp")

(assert "(a::v1++a1:)eqd(a::v1)++a1:")

(ng #t)

(use "InitEqD")

(assume "Assertion1")

(simp "Assertion1")

(assert "(a1::w1)++a:eqd(a1::w1++a:)")

(ng #t)

(use "InitEqD")

(assume "Assertion2")

(simp "Assertion2")

(use "GenRevI")

(use "Hyp")

;; Proof finished.

(save "RevIConsAppd")

18We did not take this variant as the defining clause since our definition will be
useful in section 7.3.
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Using RevIConsAppd we can prove symmetry of RevI

(set-goal "all v,w(RevI v w -> RevI w v)")

(assume "v" "w" "Rvw")

(elim "Rvw")

(use "InitRevI")

(assume "a" "v1" "w1" "Rv1w1" "Rw1v1")

(use "RevIConsAppd")

(use "Rw1v1")

;; Proof finished.

(save "RevISym")

Then we set the goal:

(set-goal "all v ex w RevI v w")

The proof proceeds by structural induction on lists. We first call ind.
Subsequently, we tackle the base case by first of all providing a witness,
Nil of type α, and then by using the first closure axiom for RevI.

(ind)

(ex-intro (pt "(Nil alpha)"))

(intro 0)

The step is proved by first of all calling some standard commands
(assume, by-assume), then by providing a witness, and finally the
second closure axiom is called as usual by an intro command.

(assume "a" "v" "IH")

(by-assume "IH" "w" "wProp")

(ex-intro (pt "w++a:"))

(use "RevISym")

(intro 1)

(use "RevISym")

(use "wProp")

We can finally name the proof we have just completed by writing:

(define constr-proof (current-proof))

Note that (current-proof) stores the latest proof.
We now extract a program from the proof and normalize it as follows:

(define eterm (proof-to-extracted-term constr-proof))

(define neterm (rename-variables (nt eterm)))

(pp neterm)

We have used rename-variables to obtain a more readable term.
This “normalized extracted term” neterm is the program we are looking
for. To display it we write:

(pp neterm)
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The output will be:

[xs](Rec list alpha=>list alpha)xs

(Nil alpha)([x,xs0,xs1]xs1++x:)

Here [xs] denotes abstraction on the variable xs, usually also writ-
ten by use of the λ notation. We observe that the extracted term uses
the recursion operator Rec. In more familiar terms, it amounts to a
program, which we may call Reverse, defined as follows:

Reverse Nil=Nil

Reverse (x :: xs)=(Reverse xs) ++ x:

Note that we could have also displayed the program by using the
command term-to-scheme-expr, which produces the λ-term corres-
ponding to the program.

To test the program we can “run” it on input [a,b,c,d]:

(pp (nt (make-term-in-app-form neterm (pt "a::b::c::d:"))))

and obtain the result: d::c::b::a:

7.2. Program extraction from proofs using inductive defini-
tions with computational content. In this section we wish to ex-
emplify how to extract a program from a proof by induction of a state-
ment which uses an inductive definition19. In fact, an inductive defi-
nition with computational content on the proof side corresponds to a
free algebra on the program side. Thus we need to provide a name for
such an algebra, if a new one has to be generated. However, if there
is an already existing algebra with fitting constructors, the name of
this algebra can be provided as well. I.e., in our example on the even
numbers, which we recall below, we could also take nat. The types of
the algebra’s constructors corresponds to the clauses of the inductive
definition, named InitEven and GenEven.

(add-ids

(list (list "EvenI" (make-arity (py "nat")) "algEvenI"))

’("EvenI 0" "InitEvenI")

’("allnc n(EvenI n -> EvenI(n+2))" "GenEvenI"))

We recall our proof and extract a program:

(set-goal "allnc n(EvenI n -> ex m m+m=n)")

(assume "n" "En")

(elim "En")

19These inductive definitions are also called “inductive definitions with compu-
tational content”. Note that there are also inductive definitions without computa-
tional content (for example RevI above). For more information on computational
content, see for example [11] and [3].
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(ex-intro (pt "0"))

(use "Truth")

(assume "n1" "En1" "IH")

(by-assume "IH" "m0" "m0Prop")

(ex-intro (pt "m0+1"))

(simp "<-" "m0Prop")

(use "Truth")

(define eterm (proof-to-extracted-term (current-proof)))

(define neterm (rename-variables (nt eterm)))

We can see the program by writing:

(pp neterm)

Here, the extracted program essentially corresponds to the identity
function. For comparison we recommend to extract a program using
the earlier defined program constants Even/Odd.

(set-goal "all n ex m((Even n -> 2*m=n) &

(Odd n -> 2*m+1=n))")

One first has to prove totality of Even and Odd, then prove their dis-
jointness and finally prove the goal above. A solution to this exercise
can be found in Appendix A.1.

As mentioned, we can define the even predicate by an inductive
definition without computational content.

(add-ids (list (list "EvenNC" (make-arity (py "nat"))))

’("EvenNC 0" "InitEvenNC")

’("allnc n(EvenNC n -> EvenNC(n+2))" "GenEvenNC"))

Generally, for non-computational (n.c.) inductively defined predicates
no algebra name is provided. Important special cases are the “uniform
one clause defined” inductive predicates20 which are non-computational.
Examples are Leibniz equality EqD, and uniform variants ExU and AndU

of the existential quantifier and conjunction.
One can prove a non-computational version of the lemma above,

where we only need to replace the ex-intro command by the general
intro, since ExU is inductively defined.

(set-goal "allnc n(EvenNC n -> exu m m+m=n)")

(assume "n" "En")

(elim "En")

(intro 0 (pt "0"))

20 An inductive predicates is called uniform one clause defined if it has just one
clause with ∀nc and →nc (an n.c. variant of →) only; see the reference manual for
details.
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(use "Truth")

(assume "n1" "En1" "IH")

(by-assume "IH" "m0" "m0Prop")

(intro 0 (pt "m0+1"))

(simp "<-" "m0Prop")

(use "Truth")

We conclude this section with a more substantial example of program
extraction from proofs involving inductive definitions. Every construc-
tive proof of an existential theorem (or “problem”; cf. [6]) contains –
by the very meaning of “constructive proof” – a construction of a so-
lution in terms of the parameters of the problem. To get hold of such
a solution we have two methods.

Write-and-verify. Guided by our understanding of how the con-
structive proof works we directly write down a program to compute
the solution, and then formally prove (“verify”) that this indeed is the
case.

Prove-and-extract. Formalize the constructive proof, and then ex-
tract the computational content of this proof in the form of a realizing
term t. The soundness theorem guarantees (and even provides a formal
proof) that t is a solution to the problem.

In simple cases the two methods are often essentially the same. How-
ever, in more complex situations the prove-and-extract method seems
to be preferable, for the following reasons.

(i) Dealing with a problem on the proof level makes it possible to use
more abstract mathematical tools.

(ii) Generally a better organization of the material becomes possible,
which is an essential aspect of a good mathematical analysis of a
problem.

(iii) Such a structural approach leads to a better understanding of
what is going on, which will make it easier to adapt the proof to
a somewhat changed specification.

Consider the problem of recognizing whether a list of left and right
parentheses is balanced, and if so produce a generating tree (a.k.a.
parse tree). Usually one tackles this problem by the write-and-verify
method: one writes such a parser as a shift-reduce syntax analyser,
and verifies that it is correct and complete. But we can view it also
as a good test for the prove-and-extract method. However, since this
example is rather complicated we have relegated its treatment into
Appendix A.2.
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7.3. Program extraction from classical proofs. Finally, we wish
to exemplify how to extract programs from classical proofs. Once more,
an account of the theory underlying this example exceeds the modest
aims of this tutorial, so that we can but refer the inquisitive reader to
the literature already mentioned above.

The goal is to prove a classical variant of the statement in Section 7.1.
Quite concisely, we set the goal and produce a proof:

(set-goal "all v excl w RevI v w")

(assume "v0" "AllNegHyp")

(cut "all u allnc v(v++u eqd v0 ->

all w(RevI v w -> bot))")

(assume "claim")

Now we can make use of the claim to prove the goal:

(use "claim"

(pt "v0") (pt "(Nil alpha)") (pt "(Nil alpha)"))

(ng)

(use "InitEqD")

(intro 0)

And prove the claim by induction:

(ind)

The base case is tackled as follows:

(assume "v")

(ng)

(assume "v=v0" "w")

(simp "v=v0")

(use "AllNegHyp")

As to the step we write:

(assume "a" "u" "IH" "v" "EqDHyp" "w" "RHyp")

(use "IH" (pt "v++a:") (pt "a::w"))

(ng)

(use "EqDHyp")

(intro 1)

(use "RHyp")

Finally we name the proof, which we conveniently call class-proof:

(define class-proof (np (current-proof)))

Finally we add a variable g:

(av "g" (py "list alpha=>list alpha"))
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The reasons for this are purely cosmetic. In fact, g will be the de-
fault name in case the extracted program needs a variable of type list

alpha=>list alpha. Otherwise the program would use a default vari-
able.

(define eterm

(atr-min-excl-proof-to-structured-extracted-term

class-proof))

(define neterm (rename-variables (nt eterm)))

We display the program and obtain the output:

(pp neterm)

[xs]

(Rec list alpha=>list alpha=>list alpha)xs([xs0]xs0)

([x,xs0,g,xs1]g(x::xs1))

(Nil alpha)

Finally:

(pp (nt (make-term-in-app-form neterm (pt "a::b::c:"))))

This gives the result:

c::b::a:

To conclude, we would like to remark that this program differs from
that obtained in section 7.1. In fact, the program above could be
written in a more readable form as follows:

Reverse xs0 = reverse-acc xs0 Nil

reverse-acc Nil xs1 = xs1

reverse-acc (x1::xs2) xs4 = reverse-acc xs2 (x1::xs4)

The reader can see that this program is linear, hence better than the
previous one which is quadratic.
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Appendix A. Extraction examples

A.1. Even and Odd. We first need to prove totality of Even and Odd

;; NatEvenOddTotal

(set-goal "allnc n^(TotalNat n^ -> TotalBoole(Even n^) &

TotalBoole(Odd n^))")

(assume "n^" "Tn")

(elim "Tn")

(split)

(use "TotalBooleTrue")

(use "TotalBooleFalse")

(assume "n^1" "Tn1" "IHn1")

(split)

(ng #t)

(use "IHn1")

(ng #t)

(use "IHn1")

;; Proof finished.

(save "NatEvenOddTotal")

;; EvenTotal

(set-goal

(rename-variables (term-to-totality-formula (pt "Even"))))

(assume "n^" "Tn")

(use "NatEvenOddTotal")

(use "Tn")

;; Proof finished.

(save "EvenTotal")

;; OddTotal

(set-goal

(rename-variables (term-to-totality-formula (pt "Odd"))))

(assume "n^" "Tn")

(use "NatEvenOddTotal")

(use "Tn")

;; Proof finished.

(save "OddTotal")

Next we prove that Even and Odd are disjoint.

;; NatEvenOddDisjunct

(set-goal "all n(Even n -> Odd n -> F)")

(ind)
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;; Base

(ng)

(assume "Useless" "Absurd")

(use "Absurd")

;; Step

(assume "n" "IHn" "E(n+1)" "O(n+1)")

(use-with "IHn" "O(n+1)" "E(n+1)")

;; Proof finished.

(save "NatEvenOddDisjunct")

Finally we can prove our goal and extract.

(set-goal

"all n ex m((Even n -> 2*m=n) & (Odd n -> 2*m+1=n))")

(ind)

;; Base

(ex-intro "0")

(split)

(assume "Useless")

(use "Truth")

(assume "Absurd")

(use "Absurd")

;; Step

(assume "n" "IHn")

(by-assume "IHn" "m" "mProp")

(ex-intro "[if (Even n) m (Succ m)]")

(split)

;; Case Odd n

(assume "E(n+1)")

(assert "Even n -> F")

(assume "En")

(use "NatEvenOddDisjunct" (pt "n"))

(use "En")

(use "E(n+1)")

(assume "Even n -> F")

(simp "Even n -> F")

(ng #t)

(use "mProp")

(use "E(n+1)")

;; Case Even n

(assume "O(n+1)")

(simp "O(n+1)")

(ng #t)
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(use "mProp")

(use "O(n+1)")

;; Proof finished.

(define eterm (proof-to-extracted-term (current-proof)))

(define neterm (rename-variables (nt eterm)))

(pp neterm)

;; [n](Rec nat=>nat)n 0([n0,n1][if (Even n0) n1 (Succ n1)])

A.2. Parsing. Let E range over expressions formed as lists of left and
right parentheses L,R. We are interested in the [13] language of bal-
anced lists of L and R. It is generated by either of the grammars

grammar U : E ::= Nil | ELER
grammar S : E ::= Nil | LER | EE

It is not too difficult to see that both grammars generate the same
expressions. S appears to be more natural, but its generation trees
are not unique: one can always append the empty list Nil. This can
be repaired easily by only dealing with non-empty lists. However, a
drawback then is that one often wants to specialize general lemmas
(like the closure poperty of U below) to the empty list. Therefore we
restrict attention to U .

First we formulate the grammar U as an inductively defined predicate
over lists x, y, z of parentheses L,R given by the clauses

InitU: U(Nil)

GenU: Ux→ Uy → U(xLyR)

The corresponding free algebra on the program side will be that of
binary trees, which we introduce first.

(add-algs "bin"

’("bin" "I")

’("bin=>bin=>bin" "C"))

Since we will work with lists of parentheses, we need the library file
list.scm.

(set! COMMENT-FLAG #f)

(libload "nat.scm")

(libload "list.scm")

(set! COMMENT-FLAG #t)

(add-algs "par" ’("L" "par") ’("R" "par"))

(add-totality "par")
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As a preparatory step we first have to prove that ordinary equality =
(a boolean valued function) implies Leibniz equality, for the two types
par and list par.

;; ParEqToEqD

(set-goal "all par1,par2(par1=par2 -> par1 eqd par2)")

(cases)

(cases)

(assume "Useless")

(use "InitEqD")

(assume "L=R")

(use "EFEqD")

(use "AtomToEqDTrue")

(use "L=R")

(cases)

(assume "R=L")

(use "EFEqD")

(use "AtomToEqDTrue")

(use "R=L")

(assume "Useless")

(use "InitEqD")

;; Proof finished.

(save "ParEqToEqD")

(add-var-name "x" "y" "z" (py "list par"))

;; ListParEqToEqD

(set-goal "all x1,x2(x1=x2 -> x1 eqd x2)")

(ind)

(cases)

(assume "Useless")

(use "InitEqD")

(assume "par1" "x1" "Absurd")

(use "EFEqD")

(use "AtomToEqDTrue")

(use "Absurd")

(assume "par1" "x1" "IH")

(cases)

(assume "Absurd")

(use "EFEqD")

(use "AtomToEqDTrue")

(use "Absurd")



44 L. CROSILLA, M. SEISENBERGER, H. SCHWICHTENBERG

(assume "par2" "x2" "=Hyp")

(ng "=Hyp")

(assert "x1=x2")

(use "=Hyp")

(assume "x1=x2")

(assert "par1=par2")

(use "=Hyp")

(assume "par1=par2")

(drop "=Hyp")

(assert "x1 eqd x2")

(use "IH")

(use "x1=x2")

(assume "x1 eqd x2")

(assert "par1 eqd par2")

(use "ParEqToEqD")

(use "par1=par2")

(assume "par1 eqd par2")

(elim "x1 eqd x2")

(assume "x^3")

(elim "par1 eqd par2")

(assume "par^3")

(use "InitEqD")

;; Proof finished.

(save "ListParEqToEqD")

Now we inductively define a predicate (grammar) U over lists of
parentheses.

(add-ids

(list (list "U" (make-arity (py "list par")) "bin"))

’("U(Nil par)" "InitU")

’("allnc x,y(U x -> U y -> U(x++L: ++y++R:))" "GenU"))

We work with two predicates RP(n, x) meaning U(xRn) and LP(n, y)
meaning U(Lny). For RP we have an inductive definition

RP(0,Nil)

Uz → RP(n, x)→ RP(n+ 1, xzL)

We define RP with a parameter predicate to be substituted by U .

(add-pvar-name "P" (make-arity (py "list par")))

(add-ids

(list (list "RP" (make-arity (py "nat") (py "list par"))

"list"))
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’("RP 0(Nil par)" "InitRP")

’("allnc n,x,z(P z -> RP n x -> RP(Succ n)(x++z++L:))"

"GenRP"))

The algebra associated with this definition of RP is lists of parentheses.
LP can be defined via a boolean valued function with defining equa-

tions

LP(0,Nil) = tt

LP(n+ 1,Nil) = ff

LP(n, Lx) = LP(n+ 1, x)

LP(0, Rx) = ff

LP(n+ 1, Rx) = LP(n, x)

In Minlog this reads

(add-program-constant "LP" (py "nat=>list par=>boole"))

(add-computation-rules

"LP 0(Nil par)" "True"

"LP(Succ n)(Nil par)" "False"

"LP n(L::x)" "LP(Succ n)x"

"LP 0(R::x)" "False"

"LP(Succ n)(R::x)" "LP n x")

As mentioned above, it is advisable to prove totality of a program
constant immediately after its definition.

(set-totality-goal "LP")

(assert

"allnc x^(TotalList x^ -> allnc n^(TotalNat n^ -> TotalBoole(LP n^ x^)))")

(assume "x^" "Tx")

(elim "Tx")

(assume "n^" "Tn")

(elim "Tn")

(use "TotalBooleTrue")

(assume "n^1" "Useless1" "Useless2")

(use "TotalBooleFalse")

(assume "par^" "Tpar")

(elim "Tpar")

(assume "x^1" "Tx1" "IHx1" "n^" "Tn")

(ng #t)

(use "IHx1")

(use "TotalNatSucc")

(use "Tn")
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(assume "x^1" "Tx1" "IHx1" "n^" "Tn")

(elim "Tn")

(use "TotalBooleFalse")

(assume "n^1" "Tn1" "Useless")

(ng #t)

(use "IHx1")

(use "Tn1")

(assume "LPTotalAux" "n^" "Tn" "x^" "Tx")

(use "LPTotalAux")

(use "Tx")

(use "Tn")

;; Proof finished.

(save-totality)

Then clearly the following closure property of U holds

RP(n, x)→ U(z)→ LP(n, y)→ U(xzy).

One proves by induction on y that the claim holds for all n.

;; ClosureU

(set-goal

"all y allnc n,x,z((RP (cterm (x^) U x^))n x ->

U z -> LP n y -> U(x++z++y))")

(ind)

In the base case y = Nil ine uses induction on RP(n, x).

(assume "n" "x" "z" "RP n x")

(elim "RP n x")

;; InitRP

(ng #t)

(auto)

;; GenRP

(ng #t)

(assume "n1" "x1" "z1" "Useless1" "Useless2"

"Useless3" "Useless4" "Absurd")

(use "Efq")

(use "Absurd")

In the step one distinguishes cases on the first character. In case L :: y
use the induction hypothesis for n+ 1.

(cases)

(ng #t)

(assume "y" "IHy" "n" "x" "z" "RP n x" "U z" "LP(Succ n)y")

(use-with "IHy" (pt "Succ n") (pt "x++z++L:")

(pt "(Nil par)") "?" "?" "?")
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(use "GenRP")

(use "U z")

(use "RP n x")

(use "InitU")

(use "LP(Succ n)y")

In case R :: y again use induction on RP(n, x). The first RP clause uses
Efq, the second one the induction hypothesis on y, GenU and equality
arguments.

(assume "y" "IHy" "n" "x" "z" "RP n x")

(elim "RP n x")

;; First RP clause

(ng #t)

(assume "U z" "Absurd")

(use "Efq")

(use "Absurd")

;; Second RP clause. Uses IHy, GenU and equality arguments.

(assume "n1" "x1" "z1" "U z1" "RP n1 x1" "IH" "U z")

(ng #t)

(simp (pf "x1++z1++(L::z)++(R::y)=x1++z1++(L::z)++R: ++y"))

(simp (pf "x1++z1++(L::z)=x1++(z1++(L::z))"))

(simp (pf "x1++(z1++(L::z))++R: =x1++(z1++(L::z)++R:)"))

(use "IHy")

(use "RP n1 x1")

(use-with "GenU" (pt "z1") (pt "z") "U z1" "U z")

(simp "ListAppdAssoc")

(simp "ListAppdAssoc")

(simp "ListAppdAssoc")

(use "Truth")

(simp "ListAppdAssoc")

(use "Truth")

(ng #t)

(use "Truth")

;; Proof finished

(save "ClosureU")

In particular we have LP(0, y)→ U(y).
Conversely one can easily prove U(y)→ LP(0, y) by induction on U .

One needs a property of LP first

;; LPProp

(set-goal "all x,y,n,m(LP n x -> LP m y -> LP(n+m)(x++y))")
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(ind)

;; 2,3

(ind)

;; 4,5

(cases)

(cases)

(auto)

;; 5

(ng)

(cases)

(assume "y" "IHy")

(ng)

(assume "n" "m" "Hyp1" "Hyp2")

(use-with "IHy" (pt "n") (pt "Succ m") "Hyp1" "Hyp2")

(assume "y" "IHy" "n")

(cases)

(assume "Hyp1" "Absurd")

(use "Efq")

(use "Absurd")

(ng)

(use "IHy")

;; 3

(cases)

(assume "x" "IHx")

(ng)

(assume "y" "n" "m" "Hyp1" "Hyp2")

(use-with "IHx" (pt "y") (pt "Succ n") (pt "m") "Hyp1" "Hyp2")

(assume "x" "IHx" "y")

(cases)

(assume "m" "Absurd" "Hyp1")

(use "Efq")

(use "Absurd")

(use "IHx")

;; Proof finished.

(save "LPProp")

Using LPProp one can prove

;; Soundness

(set-goal "all y(U y -> LP 0 y)")

(assume "z" "IdHyp")

(elim "IdHyp")

(use "Truth")
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(assume "x" "y" "Ux" "LP 0 x" "Uy" "LP 0 y")

(simp "<-" "ListAppdAssoc")

(use-with "LPProp" (pt "x") (pt "L::y++R:") (pt "0") (pt "0")

"LP 0 x" "?")

(ng #t)

(use-with "LPProp" (pt "y") (pt "R:") (pt "0") (pt "1")

"LP 0 y" "Truth")

;; Proof finished.

(save "Soundness")

From ClosureU we obtain

;; Completeness

(set-goal "all y(LP 0 y -> U y)")

(assume "y" "LP 0 y")

(use-with "ClosureU" (pt "y") (pt "0")

(pt "(Nil par)") (pt "(Nil par)")

"?" "InitU" "LP 0 y")

(use "InitRP")

;; Proof finished.

(save "Completeness")

Hence the test LP(0, y) is correct (all y in U satisfies it) and complete
(it implies y in U). Because of LP(0, y) ↔ U(y) we have a decision
procedure for U . With p a boolean variable we can express this by a
proof of

∀y∃p((p→ U(y)) ∧ ((p→ F)→ U(y)→ F))

(add-var-name "p" (py "boole"))

;; Parse

(set-goal "all y ex p((p -> U y) & ((p -> F) -> U y -> F))")

(assume "y")

(ex-intro "LP 0 y")

(split)

(use "Completeness")

(assume "LP 0 y -> F" "Uy")

(use "LP 0 y -> F")

(use "Soundness")

(use "Uy")

;; Proof finished.

(save "Parse")

The computational content of this proof is a parser for U . Given y
it returns a boolean saying whether or not y is in U , and if so it also
returns a generation tree (a.k.a. parse tree) for U(y).
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To extract the computational content we need to “animate” the theo-
rems ClosureU and Completeness, or more precisely the automatically
generated program constants cClosureU and cCompleteness abbrevi-
ating their computational content. These constants will be unfolded
under normalization once the theorems are animated.

(animate "ClosureU")

(animate "Completeness")

(add-var-name "a" (py "bin"))

(add-var-name "as" (py "list bin"))

(add-var-name "f" (py "list bin=>bin=>bin"))

(define eterm

(proof-to-extracted-term (theorem-name-to-proof "Parse")))

(define neterm-Parse (rename-variables (nt eterm)))

(ppc neterm-Parse)

Here is the term extracted from the proof above.

[x]LP 0 x@

(Rec list par=>list bin=>bin=>bin)x

([as,a][case as (Nil -> a) (a0::as0 -> I)])

([par,x0,f,as,a]

[case par

(L -> f(a::as)I)

(R -> [case as (Nil -> I) (a0::as0 -> f as0(C a0 a))])])

Nil

I

Since this term involves the recursion operator it is not easy to read.
To grasp its meaning we rewrite it. It amounts to applying a function
g to x, Nil and I, where

g(Nil, as , a) =

{
a if as = Nil

I else

g(L :: x, as , a) = g(x, a :: as , I)

g(R :: x, as , a) =

{
I if as = Nil

g(x, as0, C(a0, a)) if as = a0 :: as0

In g(x, as , a) the first argument x is a list of parentheses L,R to be
parsed. The second argument as is a stack of parse trees, and the
third a is the working memory of the parser which stores the parse tree
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being generated. Initially g is called with x, the empty stack Nil and
the empty parse tree I.

Recall the grammar U . We read x from left to right. When an L
occurs, the current parse tree a (corresponding to E0 in E0LE1R) is
pushed onto the stack, and then g starts generating a parse tree for
E1, with the empty parse tree I in its working memory. Now suppose
R occurs in x. If the stack is Nil, return the empty parse tree I. If
not, pop the top element a0 from the stack. Then g starts generating
a parse tree from the rest of x, the tail as0 of the stack, and as current
parse tree C(a0, a) in its working memory.

If the input x is empty, in case the stack as is empty as well the
current parse tree a is returned, and otherwise the empty parse tree I.

To test our extracted neterm-Parse we use some simple Scheme
functions. (generate-seq n) generates a list of 2n infinite sequences
starting with all possible variations of n digits and continuing with 0.

(define (generate-seq n)

(if (= n 0)

(list (lambda (n) 0))

(foldr (lambda (f l)

(cons (lambda (n) (if (= n 0) 0 (f (- n 1))))

(cons (lambda (n) (if (= n 0) 1 (f (- n 1))))

l)))

’()

(generate-seq (- n 1)))))

(first f n) returns a list of (f 0),(f 1),...,(f n-1).

(define (first f n)

(if (= n 0)

’()

(cons (f 0)

(first (lambda (n) (f (+ n 1))) (- n 1)))))

We also use

(define (blist-to-lpar-term blist)

(if (null? blist)

(pt "(Nil par)")

(mk-term-in-app-form

(pt "(Cons par)")

(if (zero? (car blist)) (pt "L") (pt "R"))

(blist-to-lpar-term (cdr blist)))))

(define (generate-lpar-terms n)

(let* ((seq (generate-seq n))
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(01lists (map (lambda (f) (first f n)) seq))

(reduced-01lists

(list-transform-positive 01lists

(lambda (l)

(and (zero? (car l))

(not (zero? (car (last-pair l)))))))))

(map blist-to-lpar-term reduced-01lists)))

Now we can test neterm-Parse on all lpar-terms of length l.

(define (test-parser-term parser-term . l)

(let ((len (if (null? l) 4 (car l))))

(map (lambda (lpar-term)

(display "Testing on ")

(display (term-to-string lpar-term))

(let* ((pairterm (nt (make-term-in-app-form

parser-term lpar-term)))

(lterm

(term-in-pair-form-to-left pairterm))

(rterm

(term-in-pair-form-to-right pairterm)))

(if (and (term-in-const-form? lterm)

(string=?

"True"

(const-to-name

(term-in-const-form-to-const

lterm))))

(begin (display " Parse tree: ")

(display (term-to-string rterm)))

(display " No"))

(newline)))

(generate-lpar-terms len)))

*the-non-printing-object*)

We obtain for l = 6

(test-parser-term neterm-Parse 6)

The result is

Testing on L::R::R::R::R::R: No

Testing on L::L::R::R::R::R: No

Testing on L::R::L::R::R::R: No

Testing on L::L::L::R::R::R: Parse tree: C I(C I(C I I))

Testing on L::R::R::L::R::R: No

Testing on L::L::R::L::R::R: Parse tree: C I(C(C I I)I)
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Testing on L::R::L::L::R::R: Parse tree: C(C I I)(C I I)

Testing on L::L::L::L::R::R: No

Testing on L::R::R::R::L::R: No

Testing on L::L::R::R::L::R: Parse tree: C(C I(C I I))I

Testing on L::R::L::R::L::R: Parse tree: C(C(C I I)I)I

Testing on L::L::L::R::L::R: No

Testing on L::R::R::L::L::R: No

Testing on L::L::R::L::L::R: No

Testing on L::R::L::L::L::R: No

Testing on L::L::L::L::L::R: No

Appendix B. Useful Commands

B.1. Emacs.

• Start Emacs: emacs &

• Leave Emacs: C-x C-c
• Split a window in two: C-x 2

• Move to another Buffer: C-x b (then specify the Buffer’s name)
• Move to another window: C-x o

• Load a file: C-x C-f (then give a name of a file with extension
.scm)
• Save a file: C-x C-s

• Exit from the Minibuffer: C-g

B.2. Scheme.

• Load (Petite) Scheme: M-x run-petite

• Evaluate a Scheme expression: C-x C-e

• Evaluate a region: mark the region and then C-c C-r

• Kill a process: C-c C-c

• Leave the Debug: r
• End a Scheme session: (exit)
• Comment: ;

C = Control (or Strg), M = Meta (or Edit or Esc or Alt).

B.3. Minlog. The following is a list of commands which could be used
in a “standard” interactive proof with Minlog. Rather than explaining
the commands in detail (many of them have been demonstrated in the
above tutorial), we shall write them down, often with a short descrip-
tion of their use gathered from the reference manual. The reader is
advised to check the full details with the reference manual.
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B.3.1. Some declarations needed to start a proof.

(add-tvar-name name1 ...)

(add-algs ...)

(add-var-name name1 ... type)

(add-predconst-name name1 ... arity)

(add-pvar-name name1 ... type)

(add-program-constant name type <rest>)

(add-computation-rule lhs rhs)

(add-rewrite-rule lhs rhs)

(add-global-assumption name formula) (abbr. aga)

For each introduction command above there corresponds another one
having the effect of removing the item so introduced (constants, vari-
ables, etc). For example:
(remove-predconst-name name1 ...)

There are also numerous display commands, in particular the following:

(display-pconst name1 ...).

(display-alg alg-name1 ...)

(display-idpc idpc-name1 ...)

(display-global-assumptions string1 ...)

(display-theorems string1 ...)

For types, terms and formulas there is a command (pp object) (for
pretty-print), which tries to insert useful line breaks. Variants are (ppc
object) (for pretty-print with case display) and (pp-subst substitution)

(for pretty-printing substitutions).
rename-variables renames bound variables in terms, formulas and

comprehension terms.

B.3.2. Goals.

(1) (set-goal formula) where formula needs to be closed (if it
not so, then universal quantifiers will be inserted automati-
cally).

(2) (normalize-goal . ng-info) (abbr. ng) takes optional argu-
ments ng-info. If there are none, the goal formula and all
hypotheses are normalized. Otherwise exactly those among the
hypotheses and the goal formula are normalized whose num-
bers (or names, or just #t for the goal formula) are listed as
additional arguments.

(3) (display-current-goal) (abbr. dcg).
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B.3.3. Generating interactive proofs. Implication
(assume x1...)

moves the antecedent of a goal in implication form to the hypotheses.
The hypotheses, x1 . . . , should be identified by numbers or strings.
(use x)

where x is

• a number or string identifying a hypothesis from the context,
• the string “Truth”,
• the name of a theorem or global assumption.
• a closed proof,
• a formula with free variables from the context, generating a new

goal.

Conjunction
(split)

expects a conjunction A ∧ B as goal and splits it into two new goals,
A and B.
(use x . elab-path)

where x is as in the description of the use command for implication
and elab-path consists of ’left or ’right.

Universal Quantifier
(assume x1...)

moves universally quantified variables into the context. The variables
need to be named (by using previously declared names of the appro-
priate types).
(use x . terms)

where x is as in the case of implication and the optional terms is here a
list of terms. When pattern unification succeeds in finding appropriate
instances for the quantifiers in the goal, then these instances will be
automatically inserted. However, one needs to explicitly provide terms
for those variables that cannot be automatically instantiated by pattern
unification.

Existential Quantifier
(ex-intro term)

by this command the user provides a term to be used for the present
(existential) goal.
(ex-elim x),

where x is

• a number or string identifying an existential hypothesis from
the context,
• the name of an existential global assumption or theorem,
• a closed proof on an existential formula,
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• an existential formula with free variables from the context,
generating a new goal.

Classical Existential Quantifier
(exc-intro terms)

this command is analogous to (ex-intro), but it is used in the case
of a classical existential goal.
(exc-elim x)

this corresponds to (ex-elim) and applies to a classical existential
quantifier.

B.3.4. Other general commands. (use-with x . x-list)

is a more verbose form of use, where the terms are not inferred via
unification, but have to be given explicitly. Here x is as in use, and
x-list is a list consisting of

• a number or string identifying a hypothesis form the context,
• the name of a theorem or global assumption,
• a closed proof,
• the string “?” generating a new goal,
• ’left or ’right,
• a term, whose free variables are added to the context.

(inst-with x . x-list)

does for forward chaining the same as use-with for backward chaining.
It adds a new hypothesis which is an instance of a selected hypothesis
or of a theorem. Here x and x-list are as in use-with.
(inst-with-to x . x-list name-hyp)

expects a string as its last argument, to name the newly introduced
instantiated hypothesis.
(cut A)

replaces the goal B by the two new goals A and A→ B, with A→ B
to be proved first. Note that the same effect can also be produced by
means of the use command.
(assert A)

replaces the goal B by the two new goals A and A→ B, with A to be
proved first.
(ind)

expects a goal ∀xρA with ρ an algebra. If c1, . . . , cn are the constructors
of the algebra ρ, then (ind) will generate n new goals:

∀~xi(A[x := x1i]→ · · · → A[x := xki]→ A[x := ci~xi]).

(simind all-formula1...)

expects a goal ∀xρA with ρ an algebra. The user provides other formulas
to be proved simultaneously with the given one.
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(cases)

expects a goal ∀xρA with ρ an algebra. Assume that c1, . . . , cn are the
constructors of the algebra ρ. Then n new (simplified) goals ∀~xiA[x :=
ci~xi] are generated.
(simp x)

expects a known fact of the form rB, ¬rB, t = s or t ≈ s. In case rB,
the boolean term r in the goal is replaced by T , and in case ¬rB it is
replaced by F . If t = s (resp. t ≈ s), the goal is written in the form
A[x := t]. Using Compat-Rev (i.e. ∀x,y(x = y → Py → Px)) (resp.
Eq-Compat-Rev (i.e. ∀x,y(x ≈ y → Py → Px))) the goal A[x := t] is
replaced by A[x := s], where P is {x | A }, x is t and y is s. Here x is

• a number or string identifying a hypothesis form the context,
• the name of a theorem or global assumption, or
• a closed proof,
• a formula with free variables from the context, generating a new

goal.

(name-hyp i x1 )
expects an index i and a string. Then a new goal is created, which
differs from the previous one only in display aspects: the string names
the ith hypothesis.
(drop . x-list),

hides (but does not erase) the hypothesis listed in x-list. If x-list

is empty, all hypotheses are hidden.
(by-assume x yu)

is used when proving a goalG from an existential hypothesis ExHyp : ∃yA.
It corresponds to saying “by ExHyp assume we have a y satisfying A”.
Here x identifies an existential hypothesis, and we assume the variable
y and the kernel A (with label u). This command corresponds to the
sequence (ex-elim x), (assume y u), (drop x).
(intro i . terms)

expects as goal an inductively defined predicate. The i-th introduction
axiom for this predicate is applied, via use (hence terms may have to
be provided).
(elim idhyp)

Recall that I~r provides (i) a type substitution, (ii) a predicate instan-
tiation, and (iii) the list ~r of argument terms. In (elim idhyp) idhyp
is, with an inductively defined predicate I,

• a number or string identifying a hypothesis I~r form the context
• the name of a global assumption or theorem I~r;
• a closed proof of a formula I~r;



58 L. CROSILLA, M. SEISENBERGER, H. SCHWICHTENBERG

• a formula I~r with free variables from the context, generating a
new goal.

Then the (strengthened) elimination axiom is used with ~r for ~x and
idhyp for I~r to prove the goal A(~r ), leaving the instantiated (with
{ ~x | A(~x ) }) clauses as new goals.
(elim)

expects a goal I~r → A(~r ). Then the (strengthened) clauses are gene-
rated as new goals, via use-with.
(undo) or (undo n)

has the effect of cancelling the last step in a proof, or the last n steps,
respectively.

B.3.5. Automation and search.
(strip)

moves all universally quantified variables and hypotheses of the current
goal into the context.
(strip n)

does the same as (strip) but only for n variables or hypotheses.
(proceed)

automatically refines the goal as far as possible as long as there is a
unique proof. When the proof is not unique, it prompts us with the
new refined goal, and allows us to proceed in an interactive way.
(prop)

searches for a proof of the stated goal. It is devised for propositional
logic only.
(search m (name1 m1) ...)

expects for m a default value of multiplicity (i.e. a positive integer
stating how often the assumptions are to be used). Here name1 . . .
are

• numbers or names of hypotheses from the present context or
• names of theorems or global assumptions,

and m1 . . . indicate the multiplicities of the specific name1 . . . . To
exclude a hypothesis one can list it with multiplicity 0.
(auto m (name1 m1) ...)

It can be convenient to automate (the easy cases of an) interactive
proof development by iterating search as long as it is successful in
finding a proof. Then the first goal where it failed is presented as the
new goal. auto takes the same arguments as search.

B.3.6. Displaying proofs objects. There are many ways to display a
proof. We normally use display-proof for a linear representation,
showing the formulas and the rules used. We also provide a (hopefully)
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readable type-free lambda expression via proof-to-expr, and we can
add useful information with either proof-to-expr-with-formulas or
proof-to-expr-with-aconsts. In case the optional proof argument
is not present, the current proof is taken instead.

(display-proof . opt-proof) abbreviated dp,

(display-normalized-proof . opt-proof) abbreviated dnp,

(proof-to-expr . opt-proof),

(proof-to-expr-with-formulas . opt-proof),

(proof-to-expr-with-aconsts . opt-proof).

Here display-normalized-proof normalizes the proof first. When in
addition one wants to check the correctness of the proof, use

(check-and-display-proof . opt-proof-and-ignore-deco-flag)

abbreviated cdp. ignore-deco-flag is set to true as soon as the
present proof argument proves a formula of nulltype.

B.3.7. Searching for theorems. It is a practical problem to find existing
theorems or global assumptions relevant for the situation at hand. To
help searching for those we provide

(search-about symbol-or-string . opt-strings).

It searches in THEOREMS and GLOBAL-ASSUMPTIONS for all items whose
name contains each of the strings given, excluding the strings Total
Partial CompRule RewRule Sound. It one wants to list all these as
well, take the symbol ’all as first argument.
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