Sai Qian

Email: sai.qian@loria.fr Semagramme, LORIA & INRIA Nancy - Grand Est

September 29, 2011

Outline

2 More Semantics

- Type Theory & Lambda Calculus
- Dynamic Semantics
- Lexical Semantics
- Semantics in NLP

-Review

In The Last Lecture

Semantics is all about "meaning"

- Lexical Meaning Lexical Semantics
- Sentence Meaning Compositional Semantics
- Discourse Meaning Discourse Semantics

Predicate Logic & First Order Logic, some confusing pairs:

- Constants and Variables
- Terms and Formulae
- Functions and Predicates

More Semantics

└─ Type Theory & Lambda Calculus

Type Theory

- Church's Theory of Types: developed by Alonzo Church, father of lambda calculus
- Montague's semantic framework was based on Church's type theory
- Informal Definition (recursive)
 - There is a set of **basic types** $\{t_1, t_2...t_n\}$
 - If x and y are types, then x → y¹ is also a type, we call it complex type
- In Montague Semantics, two basic types e and t
 - *e* denotes the type of entities (or individuals)
 - *t* denotes the type of propositions (or truth values)
 - Other type examples: $e \to t$, $(e \to t) \to t$, $(e \to t) \to (e \to t)$...

¹Sometimes also denoted as $\langle x, y \rangle$.

More Semantics

└─ Type Theory & Lambda Calculus

Lambda Calculus & Lambda Term

- Lambda Calculus can be viewed as an extension of FOL
- λ expressions
 - General Form: $\lambda VAR.\phi$
 - VAR stands for **variables**, ϕ stands for **formulas** (not term)
 - Examples: $\lambda x.P(x)$, $\lambda y.\phi$, $\lambda x.man(x)$
- Bound/Free variable: depending on whether VAR appears in the scope of the λ operator or not in the λ term

Example (Bound/Free Variables)

Indicate all bound and free variables (if there is any) in the following λ expression:

- 1 $\lambda x.\lambda y.(P(x) \land Q(y)) \Rightarrow x, y$ Bound
- 2 $\lambda x.\lambda y.(P(x) \land Q(y) \land M(z)) \Rightarrow x, y$ Bound, z Free
- 3 $\lambda x.\lambda y.P(x) \wedge Q(y) \Rightarrow x$ Bound, y Free

More Semantics

└─ Type Theory & Lambda Calculus

α -conversion & β -reduction

- α-conversion: the renaming of bound variables in a λ expression, yielding an equivalent expression
 - $\lambda \mathbf{x}.P(\mathbf{x}) \Rightarrow_{\alpha} \lambda \mathbf{y}.P(\mathbf{y})$
 - $\lambda x.\lambda y.(P(x) \land Q(y)) \Rightarrow_{\alpha} \lambda a.\lambda b.(P(a) \land Q(b))$
- β-reduction: the process that the corresponding variable in the formula is rewritten by the argument, until the function itself is reduced to a simpler form
 - $\lambda \mathbf{x}. P(\mathbf{x}) @ \mathbf{y} \Rightarrow_{\beta} P(\mathbf{y})$
 - $\lambda \mathbf{x}.run(\mathbf{x}) @ \mathbf{J} \Rightarrow_{\beta} run(\mathbf{J})$
 - $\lambda x.\lambda y.(P(x) \land Q(y))@a@b \Rightarrow_{\beta} \lambda y.(P(a) \land Q(y))@b \Rightarrow_{\beta} P(a) \land Q(b)$

More Semantics

└─ Type Theory & Lambda Calculus

How To Do Lambda Calculus?

Steps of doing Lambda Calculus:

- Determine which expression is the function and which is the argument
- 2 Apply the argument to the function
- **3** β -reduce the conjoined element

Example (λ Calculus)

 $\begin{array}{l} \lambda P.\lambda x.(P(x) \land good(x)) @\lambda x.man(x) \Rightarrow_{\alpha} \\ \lambda P.\lambda x.(P(x) \land good(x)) @\lambda y.man(y) \Rightarrow_{\beta} \\ \lambda x.(\lambda y.man(y) @x \land good(x)) \Rightarrow_{\beta} \\ \lambda x.(\lambda y.man(y) @x \land good(x)) \Rightarrow_{\beta} \\ \lambda x.(man(x) \land good(x)) \end{array}$

- More Semantics

└─ Type Theory & Lambda Calculus

Semantics Exercise

Question

Compute the result for the following Lambda Calculus:

- λx.x@y
- *λx.y*@*y*
- $\lambda x.P(x) \wedge Q(y)@y$
- $\lambda x.y.P(x) \land Q(y)@y@z$
- λx.xy@(λz.zy)
- λx.xx@λx.xx

-More Semantics

└─ Type Theory & Lambda Calculus

Semantics Exercise

Answer

Compute the result for the following Lambda Calculus:

$$\lambda x. x @ y \Rightarrow_{\alpha,\beta} y$$

•
$$\lambda x. y @y \Rightarrow_{\alpha, \beta} y$$

$$\lambda x.P(x) \land Q(y) @ y \Rightarrow_{\alpha,\beta} P(y) \land Q(z)$$

$$\lambda x.y.P(x) \land Q(y) @y @z \Rightarrow_{\alpha,\beta} P(y) \land Q(z)$$

•
$$\lambda x.xy@(\lambda z.zy) \Rightarrow_{\alpha,\beta} yx$$

$$\lambda x.xx@\lambda x.xx \Rightarrow_{\alpha,\beta} \lambda x.xx$$

More Semantics

└─ Type Theory & Lambda Calculus

Typed Lambda Calculus

- Definition: in **Typed Lambda Calculus**, everything (variable, constant or predicate) in the λ expression has its type
- For a predicate relation (function-argument), types are strictly restricted
 - The type of the predicate and the type of the argument(s)
 must match
 - Example: $xy/x@y \rightarrow y(t_1), x(t_1 \rightarrow t_2), xy/x@y(t_2)$
 - As a result, "λx.xx" is prohibited in Typed Lambda Calculus, the formula "xx" is not typeable

More Semantics

└─ Type Theory & Lambda Calculus

Types & Syntactic Categories

Every syntactic category has its own type

- Common Nouns
 - Example: $\lambda x.man(x)$, $\lambda x.car(x)$
 - Type: $e \rightarrow t$

• The **property** of being an x such that x is a man

Determiners

- Example: $\lambda PQ.\exists x.(P(x) \land Q(x)), \ \lambda PQ.\forall x.(P(x) \rightarrow Q(x))$
- Type: $(e \rightarrow t) \rightarrow ((e \rightarrow t) \rightarrow t))$

Noun Phrases

- Example: $\lambda Q.\exists x.(man(x) \land Q(x)), \ \lambda Q.\forall x.(man(x) \rightarrow Q(x))$
- Type: $(e \rightarrow t) \rightarrow t$

More Semantics

└─ Type Theory & Lambda Calculus

Types & Syntactic Categories

- Proper Names
 - Example: RYLAI, LINA or $\lambda P.P(RYLAI)$, $\lambda P.P(LINA)$
 - Type: e or $(e \rightarrow t) \rightarrow t$

Intransitive Verb (similar to Common Noun)

- Example: $\lambda x.run(x)$, $\lambda x.sleep(x)$
- Type: $e \rightarrow t$
- Transitive Verb
 - Example: $\lambda OS.S(\lambda x.(O\lambda y.love(x, y)))$
 - Type: $((e \rightarrow t) \rightarrow t) \rightarrow (((e \rightarrow t) \rightarrow t) \rightarrow t)$
- Adjective²
 - Example: $\lambda Px.(P(x) \wedge red(x))$
 - Type: $(e \rightarrow t) \rightarrow (e \rightarrow t)$

²The λ expression for adjectives is a complicated problem, here I just give a simple example.

- More Semantics

└─ Type Theory & Lambda Calculus

Some Deeper Questions About Types

- Why common nouns are of type " $e \rightarrow t$ "? ($\lambda x.man(x)$)
 - In natural language, common nouns are properties, or sets
 - λx.man(x) denotes the set of "man" or the properties that every "man" shares in common
- How about Proper Names?
 - Take it as a constant (*RYLAI*)
 - (e → t) → t: set of sets, or set of properties
 - The properties that the entity possesses (\u03c0 P.P(RYLAI))
- NPs? Intransitive Verbs?

More Semantics

└─ Type Theory & Lambda Calculus

Compositionality

Frege's Principle (Compositionality)

The meaning of a complex expression is determined by the meanings of its constituents and the structure they are combined.

Montague Semantics

Type Theory + Lambda Calculus + First Order Logic (FOL) + Compositionality

More Semantics

└─ Type Theory & Lambda Calculus

14/31

More Semantics

└─ Type Theory & Lambda Calculus

Doing Semantics Compositionally

Balanar kills every hero.

More Semantics

└─ Type Theory & Lambda Calculus

Syntactic Ambiguity

- Definition: the same sequence of words is interpreted as having different syntactic structures
- Examples
 - The boy saw the man with a telescope.

More Semantics

└─ Type Theory & Lambda Calculus

Examples

• The boy saw the man with a telescope.

More Semantics

└─ Type Theory & Lambda Calculus

Semantic Ambiguity

- Definition: with the same syntactic structure, there exists different meaning interpretations
- Every man loves a woman.
 - There is a celebrity woman, and every man in the world likes her
 - 2 For every man in the world, there is a woman that he likes
- Meaning representation for the two readings
 - $1 \exists y(woman(y) \land \forall x(man(x) \rightarrow love(x, y)))$
 - 2 $\forall x(man(x) \rightarrow \exists y(woman(y) \land love(x, y)))$
- How to resolve scope ambiguity?
 - Two alternative syntactic structures³
 - Cooper Storage: computationally expensive

More Semantics

Dynamic Semantics

Where Compositional FOL Fails?

A hero dies. He revives at the fountain.

- What is the FOL translation?
 - $\exists x(hero(x) \land die(x)) + revive(x) ???$
 - $\exists x(hero(x) \land die(x) \land revive(x))$
- Scope of " $\exists x$ " is extended, **not** a systematic solution

2 Every farmer who owns a donkey beats it.

- What is the FOL translation of this sentence?
 - $\forall x (farmer(x) \land \exists y (donkey(y) \land own(x, y)) \rightarrow beat(x, y)) ???$
 - $\forall x \exists y (farmer(x) \land donkey(y) \land own(x, y) \rightarrow beat(x, y)) ???$
 - $\forall x \forall y (farmer(x) \land donkey(y) \land own(x, y) \rightarrow beat(x, y))$
- Same meaning as "if a farmer owns a donkey, then he beats it."
- Why existential quantifier "a" should be translated into universal quantifier?

More Semantics

Dynamic Semantics

Dynamic Semantics

Dynamic Semantics

- Why dynamic pieces of text or discourse are viewed as instructions to update an existing context with new information
- In a slogan meaning is of context change potential
- Other dynamic semantic formalisms
 - File Change Semantics by Irene Heim
 - Dynamic Predicate Logic by Groenendijk & Stokhof
 - Dynamic Treatment to MS by Philippe de Groote⁴

Lexical Semantics

Motivation for "Event"

In Davidson's 1967 paper "The Logical Form of Action Sentences", **event** was described as a **linguistic entity** in action sentences

- Modifiers
 - Examples:
 - **1** Brutus stabbed Caesar in the back with a knife.
 - 2 Brutus stabbed Caesar in the back.
 - **3** Brutus stabbed Caesar with a knife.
 - 4 Brutus stabbed Caesar.
 - How to represent meanings of the 4 sentence in a logical way, while pertaining the entailment relation among them?
 - Higher Order Modifiers
 - Multiple Predicates: *stab*1, *stab*2, *stab*3
 - A "Complete" Predicate: *stab*(*subj*, *obj*, *location*, *tool*...)
 - Event

Lexical Semantics

Motivation for "Event" Continued

- Modifiers
 - Representation with Event
 - $\exists e(stab(e) \land subj(e, B) \land obj(e, C) \land in(e, back) \land with(e, knife))$
 - 2 $\exists e(stab(e) \land subj(e, B) \land obj(e, C) \land in(e, back))$
 - 3 $\exists e(stab(e) \land subj(e, B) \land obj(e, C) \land with(e, knife))$
 - 4 $\exists e(stab(e) \land subj(e, B) \land obj(e, C))$

 $\blacksquare \ \ \mbox{Implication Result:} \ \ S_1 \to S_2 \to S_4, \ S_1 \to S_3 \to S_4$

- Vague Semantic Ambiguities
 - Examples:
 - John and Mary went to school.
 - John loves all women he meets.
 - How many "events" are there?
- "Event" Everywhere
 - I'll sleep after that.
 - I'll do that first.

Lexical Semantics

Verb Classification 1

Intuitional Way

- Main Verb (Action Verb): a verb that is used to describe an action or an event
 - Intransitive verb, transitive verb, di-transitive verb...
 - Example: run, play, give...
- Auxiliary Verb: a verb that does not have a real meaning by itself, while it requires to go along with another action verb
 - Expressing tense, passiveness, modality
 - Examples: have, be, could, should...
- Linking Verb (State Verb): a verb that denotes the state of the object
 - Has meaning, but can not describe an action or event
 - Example: *seem*, *smell*, *be*...

Lexical Semantics

Verb Classification 2

- Vendler's Way⁵
 - State Verb: no effect of meaning changing or modifying during the time span
 - Example: John loves Mary. John is tall.
 - Activity Verb: describing a concrete on-going action, that has internal change and duration, but end point is not necessary
 - Example: John runs. John walks along the river.
 - Achievement Verb: besides describing an event or action, an end point or culmination is required, the event should be without duration
 - Example: Mary arrived at the destination. John reaches the top of the mountain
 - Accomplishment Verb: nearly the same as the achievement verb except that the described event needs to have duration
 - Example: John consumed an apple.

⁵This classification is based on Vendler's 1967 paper "Verbs and Times". 🛓 🔊

Lexical Semantics

Thematic Roles

- What is "Thematic Role"?
 - View the verb as the center of the sentence, the roles that the rest parts of the sentence play
 - Coarse Example: subject, object, location...
- Why we need "Thematic Role"?
 - Assumption: languages do not differ in expressive power
 - A universal representation at the semantic level
- Examples
 - Brutus (Agent) stabbed Caesar (Theme) with a knife (Instrument).
 - Caesar (Theme) was stabbed by Brutus (Agent) with a knife (Instrument).
- Thematic Roles do not change with sentence structures

Lexical Semantics

Thematic Roles Details

- It is still controversial to declare how many thematic roles are there
- A general framework

Thematic Role	Syntactic Correspondence
Agent	Subject
Theme	Direct object; subject of "be"
Goal	Indirect object, or with "to"
Benefactive	Indirect object, or with "for"
Instrument	Object of "with"; subject
Experiencer	Subject

Semantics in NLP

Semantics in NLP - WSD

Word Sense Disambiguation

- A word could have several meanings
- Disambiguation between different meanings is necessary
- Needed for most NLP that involve semantics
- Selectional restrictions to identify meanings intended in given context
 - 1 The astronomer saw the star.
 - 2 The astronomer married the star.
- Statistical evidence derived from large corpora
 - **1** John sat on the bank.
 - **2** John went to **the bank**.
 - 3 King Kong sat on the bank.

Semantics in NLP

Semantics in NLP -LR

Lexical Relations

- Relations among word meanings are also very important for natural language based applications
- The most commonly used lexical relations
 - **Hyponymy** (is_a) e.g., *dog* is a hyponym of *animal*, *animal* is the hypernym of *dog*
 - Meronymy (part-of) e.g., arm is a meronym of body
 - Synonymy e.g., eggplant & aubergine, fall & autumn
 - Antonymy e.g., big & little, tall & short
- WordNet: a good source for lexical relations

Semantics in NLP

Semantics in NLP - LR Continued

- In natural language applications, the most commonly used lexical relation is hyponymy such that
 - Semantic Classification (e.g., selectional restrictions, named entity recognition)
 - Shallow Inference (e.g., "X murdered Y" implies "X killed Y")
 - Word Sense Disambiguation
 - Machine Translation (if a term cannot be translated, substitute a hypernym)

Semantics in NLP

Semantics in NLP - Other

Shallow Semantic Parsing (Role Labeling)

- Based on the event structure, labeling the thematic roles of each components
- Potential Situations
 - Historical document
 - Newspaper, live sport commentary (football, basketball)
- Natural Language Understanding
 - Ultimate goal for NLP
 - Same words, different meanings
 - **1** John loves Mary. \Rightarrow love(J, M)
 - **2** Mary loves John. \Rightarrow love(M, J)

More Semantics

Semantics in NLP

- Type Theory & Lambda Calculus
- Typed Lambda Calculus and natural language semantics
- Compositional Semantics obtaining meaning representation in a systematic way
- Dynamic Semantics
- Event Semantics & Thematic Roles
- Semantics in NLP applications