9. Patterns’
relationships

SW Design Patterns,
by Boyan Bontchev,
FMI - Sofia University
© 2006/2017

"
Annotation
m Definitions
m Classifications
m GoF relationships
m Zimmer's relationships

m Riehle composite patterns

m Conclusions

DP9 SW Design Patterns

References

DP9

Gamma, Helm, Johnson, Vlissides (*Gang of Four -
GoF) Design Patterns: Elements of Reusable Object-
Oriented Software, 1995

Design Patterns Explained, by Allan Shalloway and James
Trott, Prentice Hall, 2001

W. Zimmer. “Relationships Between Design Patterns”In
Pattern Languages of Program Design, J. O. Coplien and
D. C. Schmidt (eds.), Reading, MA: Addison-Wesley, 1995,
pp. 345

Dirk Riehle. A Role-Based Design Pattern Catalog of
Atomic and Composite Patterns Structured by Pattern
Purpose. Ubilab Technical Report, 1997

Dirk Riehle. "Bureaucracy - A Composite Pattern.”, Proc.
of EuroPLoP '96, 1996.

SW Design Patterns 3

" A
Pattern classifications

m The increase in the number of patterns made it
very important to develop proper methodologies
and techniques how to organize them.

m Pattern classification is the organization of
patterns into groups of patterns sharing the same
set of properties.

m The kind of these properties Is not fixed and may
Include criteria such as structure, intent, or
applicability.

m Depending on the chosen criteria, we could define
a classification schema.

DP9 SW Design Patterns 4

= B
Dimensions of classification
schemas

m Different classification schemas can have different
dimensions.

m A two dimensional schema, for example, uses two
criteria in the classification process.

m Usually, the more dimensions a schema has, the more
useful the classification is.

m The same pattern can have different kinds of
properties, it can be included in more than one
category.

m Each property maps the pattern to the category of that
property kind.

DP9 SW Design Patterns 5

GoF classification 1/2

In Gamma’s book, patterns are classified by two criteria:

m First is Purpose, which reflects what pattern does. Patterns
can have either creational, structural, or behavioral purpose.

Creational patterns concern the process of object
creation.

Structural patterns deal with the composition of classes
or objects.

Behavioral patterns characterize the ways in which
classes or objects interact and distribute responsibllity.

DP9 SW Design Patterns 6

GoF classification 2/2

In Gamma’s book, patterns are classified by two criteria:

m First is Purpose, which reflects what pattern does. Patterns
can have either creational, structural, or behavioral purpose.

m The second criterion is Scope, which specifies whether the
pattern applies primarily on classes or objects.

Class patterns deal with relationships between classes
and their sub-classes. These relationships are
established through inheritance, so they are static (fixed
at compile time).

Object patterns deal with object relationships, which can
be changed at run-time and are more dynamic (patterns
labeled as class patterns are those that focus on class
relationships.

DP9 SW Design Patterns 7

Design pattern catalog - GoF

Purpose

cl e Factory Method e Adapter e Interperter
ass
e Template Method

Abstract Bridge Chain of Responsibility
Factory Composite Command
Builder Decorator lterator

Scope Prototype Facade Mediator

Object Singleton Flyweight Observer

State
Strategy
Visitor
Memento

Proxy

DP9 SW Design Patterns 8

GoF pattern relationships

: saving state—> Memento Proxy
Builder -~ of iteration 5
| \ Adapter
‘\(gating | lterator avoiding .
composites L - t &8s Bridge
ddli it “equmerating _—— Command
O oo 1% e compose
ng _ : . ey
Eoornir 1 Composite [—— —defining-the-chain—— Chain of Responsibility
+ —— adding . .
| : iciefmmg, _operations Visitor
skin viersus g_c_i;im{
guts sharmg,a/\ sharing | INErPreter | gperations
_terminal _
strategies sh}quﬂ synib_ls - Mediat . complex
stqte edlator —
dependency
Strategy State management | ObServer
t:ﬂ‘t«a*ﬂ'l.‘ﬁ.ﬁ“'---«H}‘l
defining algortthm's steps——| Template Method | —
fiqure fact | Factory Method
Prototype |- €oMgure factory -~
dynamically —_ implemented
i _-dsin
. sinde Apstract Factory ?
. instance [GDF]
Singleton 1 singleinstance———| Facade
DP9 SW Design Patterns 9

Composite vs Decorator vs Chain

-
Decorator
7 ™
but also different features
C ™
ommon contract 1:1 successor relation
ObjectRecursion runtime list
\ vy
1:n successor relation
runtime
. tree
Composite
M v
All methods in common Chain

. vy

Proxy vs Decorator vs Chain

4 N\
Decorator
4 ™
4
N SUCEessors
Shadowing possible _
1:1 successor relation - runtime list
1 successor 1 1:1 successor relation Instance of ObjectRecursion
N Methods in common y
Aggregation to
sister class
Proxy
M vy
Chain

"
Some selected examples

Composite — Composes objects into trees
lterator — lterates over a set

Visitor — Operates on objects in a set
nterpreter — Interprets language
~lyweight — Shares objects

Decorator — Adds functionality

Strategy — Isolates algorithm

DP9 SW Design Patterns

12

" EEE——
Gamma’s relationships

Adding

responsibilities Enumerating

to objects children Defining

traversals
Changing skin vs. Defining —
Changing guts
ging g Sharing rammar
composites Adding
! Sharing operations
Sharing

terminal
DP9 SW Design Patterns symbols 13

"
Why relations?

m Describe patterns containing other
patterns

E.g. Visitor — Iterator

m Find a pattern, similar patterns
E.g. Strategy — Decorator

m Combinations as bigger building blocks
E.g. Composite — lterator

DP9 SW Design Patterns

14

» BN
Zimmer'’s relations

m X uses Y in its solution
E.g. Interpreter — Iterator
m XIssimilartoY
E.g. Visitor — Strategy

m X can be combined with Y
E.qg. Iterator - Visitor

Source: W. Zimmer. “Relationships Between Design Patterns”In Pattern Languages of

Program Design, J. O. Coplien and D. C. Schmidt (eds.), Reading, MA: Addison-Wesley,
1995, pp. 345

DP9 SW Design Patterns 15

" S
"Why” using Zimmer's relations

m X usesY In its solution

Describe patterns containing other patterns
Combinations as bigger building blocks

m XissimilartoY
Find alternative patterns
m X can be combined with Y

Combinations as bigger building blocks
Find patterns

DP9 SW Design Patterns 16

" SN
Zimmer's relationships

DP9 SW Design Patterns

17

" S
Zimmer's layering

By arranging the patterns along the relationships
uses, Is similar to, and can be combined with, Zimmer
identifies three different layers:

A. basic design patterns and technigues — Singleton,
Iterator, Mememto, Facade, Mediator, Template method,
Flyweight

B. design patterns for typical software problems — Abs.
factory, Factory method, Prototype, Builder, Observer,
Bridge, Adapter, Strategy, State, Command, Composite,
Decorator, Proxy, Chain of resp., Visitor

c. design patterns specific to an application domain -
Interpreter

DP9 SW Design Patterns 18

" J
Objecitifier

m "Whatis it?” vs. "What does it do?”

Normally “What is it?” are classes
“What does it do” are functions

m Objectifier is intended to “objectify similar
behaviour In additional classes, so that
clients can vary such behaviour
independently from other behaviour”

DP9 SW Design Patterns 19

" J
Objectifier as a generalization of
those patterns

m The Objectifier pattern is related to several

other patterns

m Zimmer points out that Objectifier Is a

DP9

Client

generalization of those patterns which
objectify behaviour

ref Obiectifier
o fahstract}
Ciperationi)
__ConcreteObjectifierA _ _ConcreteObjectifierB _

Ciperationi)

Cperation)

Objecitifier

m Intent
Objectify similar behaviour

Objects represents behaviour or properties,
but not concrete objects

m Motivation

Widely used, e.g. Bridge, Command,
Builder, Iterator...

DP9 SW Design Patterns

21

" S
Zimmer’s layering with Objectifier

Design pattern specific to an

application domain
Design patterns for typical software problems o

[&bst:lract Fact-:-r'.r] b‘!.l.l;lder :I |:O1:-5e11.rer] [Bndae] [Stratemr]
:

En:-nuuand] @nr becnrat']

T -

Eggletnn h'emulateMethDd j
[_!'.Ilediat-:ur J’ T '[F-a-:.ade]

Basic design patterns & techniques

B Jﬁ.uée-*: Yinjtssehtion ;. 777 P Wariant of uses ¥ in its sohition
ymmmmmm—————— \ (X can be combined with Y)
TTTTo Wi smdlarte ¥ _ [

Source: http://www8.cs.umu.se/~jubo/ExJobbs/MK/patterns.htm
DP9 SW Design Patterns 22

" J
Pree divides the patterns from a

structural point of view:

* basic inheritance and interaction patterns - patterns that
encompass primarily the basic modelling OO capabilities

« patterns for structuring OO software systems - describe
how a group of classes supports the structuring of software
systems.

e patterns based on recursive structures - allow recursive
building of hierarchies - a subclass has a reference to itself or
to a superclass.

e patterns relying on abstract coupling - based on abstractly
coupled classes. The concept of abstract coupling is when an
object has a reference to an abstract class.

« patterns related to the MVC-framework

Pree. Design Patterns for Object-Oriented Software
DP9 SW Design Patterns 23

" J
Patterns based on recursive structures

- allow recursive building of hierarchies
- a subclass has a reference to itself or to a

superclass

1..* B
W T

DP9 SW Design Patterns 24

B2

" S
Patterns relying on abstract coupling -
an object has a reference to an
abstract class

A bRef B
MethodOfa() o [MethodOfB()
I
' !
I
&y B1

bRef->Method OB

MethodOfB[)

DP9 SW Design Patterns

Riehle’'s composite patterns

m Not the Composite Pattern!

m Compose several patterns
Form a larger structure
Higher level of abstraction

Benefit from synergies in their
Implementation

Source: Dirk Riehle. A Role-Based Design Pattern Catalog of Atomic and
Composite Patterns Structured by Pattern Purpose. Ubilab Technical Report,
1997

DP9 SW Design Patterns 26

ROleS [Observer} : : { Subject }

DP9

A role diagram describes the roles objects play in a
collaboration.

A role defines the abstract state and behavior of an object
In the collaboration. It can be expressed formally as a role

protocol, for example using any adequate type or interface
notation.

The actual definition of the role i1s based on what the other
roles in the collaboration require from it in order to achieve
the joint purpose.

N association

a shadow indicates any
agagreagation number of roles with differ-
role A JC dareg role B

ent role protocols (as op-
------------ posed to a cardinality of n)

SW Design Patterns 27

Structure of the Role Object

Pattern

DP

Clienth,

ClientB

Component

opearationy]
addRole (Spec)

hasFRola Speg
remaveRolefSpec)

getRole (Spec)

A

ComponentCore

operation()
addRole (Spec)

hasﬁolﬁslpeg]
removeRole(Speac)
getRole (Spec)

roles

ComponentRole

state

corg

operation{) a
addRole (Spec)

hasRole{Spec)
removeRole(Spec®

getRole (Spac)

core-=gperation()

A

- ConcreteRoled

addedBehavioral)

addedstateA

core-=hasRole(aSpec)

- ConcreteRoleB

addedBehaviorB()

m Component (Customer)

- models a particular key
abstraction by defining its
Interface;

- specifies the protocol for
adding, removing, testing and
guerying for role objects.

A Client supplies a specification
for a ConcreteRole subclass. In
the simplest case, it is identified
by a string.

m ComponentCore
(CustomerCore)

DP9

- implements the Component
Interface including the role
management protocol;

- creates ConcreteRole
Instances;

- manages its role objects.
SW Design Patterns

Participants 1/2

CGomponent

aperation)

addRole (Spec)

hasRole(Spec)

re.moue.r’?o."ef§pecj

getRole (Spec)

[|
ComponentCore ComponentRole
- 10les -
operafion() operaion() @ [—
alRole (Spec) | = addRale (3pec) Ee petalon)
hasRole(Spec) *| hasRole(Spec) - |
removeﬂuﬁe(ﬁpec] femoveRole(3pec)’ L PasRlfeSpe)
getRole (Spec) (etRole (3pec)
sfate J\
|
ConcreteRaleA
addedBehaviorA)
altedStated
ConcreteRoleB
aldedBehavior()
29

m ComponentRole
(CustomerRole)

- stores a reference to the
decorated ComponentCore;

- implements the Component
interface by forwarding requests
to its core attribute.

m ConcreteRole (Investor,
Borrower)

DP9

- models and implements a
context-specific extension of the
Component interface;

- can be instantiated with a
ComponentCore as argument.

SW Design Patterns

Companent
operation])
aaRole (Spec)
hasrole[Spa
remoueRuIe(S)pecj
(etrole (Spec)
[|
ComponentCore CompaneniRole
foles
operation() operafion) e
atddRale (Spec) b addRole (3pec)
hasRoleFjSFecJ e hasRole(Spet)
removeRale(3pac) removeRole(3pec)®
getRole (Spec) (etRole (Spec)

state

Participants 2/2

core-=operafion()

core-=hasRole(aSpec)

l

ConcreteRoled

addedBenaviorA)

adedStaleA

ConcreteRoleB

aidedBehaviord()

30

"
Role diagram of the patterns
Factory Method and Builder

SW Design Patterns

Bureaucracy composite pattern

m Consists of
Composite
Observer
Chain of Responsibility

m Uses roles to find synergies

Dirk Riehle. "Bureaucracy - A Composite Pattern.*, Proc. of
EuroPLoP '96, 1996.

DP9 SW Design Patterns 32

The Bureaucracy pattern in brief

a recurring design theme used to implement
hierarchical object structures which allow interaction
with every level of the hierarchy and maintain their
Inner consistency themselves.

It iIs a composite pattern which is based on the
Composite, Mediator, Chain of Responsibility and
Observer pattern.

Composite patterns require new presentation and
modeling techniques since their complexity makes
them more difficult to approach than non-composite
patterns.

Riehle use role diagrams to present the Bureaucracy
pattern and to explore its design and implementation
space. Role diagrams have proved to be very useful to
., geta grip on this complex pattern.

erns 33

'_
Source: Riehle D.. Bureaucracy. In Robert C. Martin, Dirk Riehle, Frank Buschmann (editors),

Pattern Languages of Program Design 3, Addison-Wesley, Reading, Massachusetts, 1997.

Bureaucracy roles

Chain of Responsibility Observer

-k
CO

Bureaucracy,

I —

DP9 SW Design Patterns 34

" A
Roles: Pro’s and Con’s

m Pros
Higher abstraction
Syngergies can be found
Leaves several possible implementations

m Cons

Describes the roles in the problem

Does not describe the solution

_eaves several possible implementations

DP9 SW Design Patterns

35

Conclusion

DP9

Several ways to relate patterns; most important
IS "why”’

Patterns can be classified in different ways;
even the same patterns may be classified
differently — for example Zimmer’s classification
of the GOF design patterns.

Roles might be useful
Especially combined with class diagrams

SW Design Patterns 36

