
9. Patterns’

relationships

SW Design Patterns,

by Boyan Bontchev,

FMI - Sofia University

© 2006/2017

SW Design Patterns 2DP9

Annotation

 Definitions

 Classifications

 GoF relationships

 Zimmer’s relationships

 Riehle composite patterns

 Conclusions

SW Design Patterns 3DP9

References

 Gamma, Helm, Johnson, Vlissides ("Gang of Four“ -
GoF) Design Patterns: Elements of Reusable Object-
Oriented Software, 1995

 Design Patterns Explained, by Allan Shalloway and James
Trott, Prentice Hall, 2001

 W. Zimmer. “Relationships Between Design Patterns”In
Pattern Languages of Program Design, J. O. Coplien and
D. C. Schmidt (eds.), Reading, MA: Addison-Wesley, 1995,
pp. 345

 Dirk Riehle. A Role-Based Design Pattern Catalog of
Atomic and Composite Patterns Structured by Pattern
Purpose. Ubilab Technical Report, 1997

 Dirk Riehle. "Bureaucracy - A Composite Pattern.“, Proc.
of EuroPLoP '96, 1996.

SW Design Patterns 4DP9

Pattern classifications

 The increase in the number of patterns made it
very important to develop proper methodologies
and techniques how to organize them.

 Pattern classification is the organization of
patterns into groups of patterns sharing the same
set of properties.

 The kind of these properties is not fixed and may
include criteria such as structure, intent, or
applicability.

 Depending on the chosen criteria, we could define
a classification schema.

SW Design Patterns 5DP9

Dimensions of classification

schemas

 Different classification schemas can have different
dimensions.

 A two dimensional schema, for example, uses two
criteria in the classification process.

 Usually, the more dimensions a schema has, the more
useful the classification is.

 The same pattern can have different kinds of
properties, it can be included in more than one
category.

 Each property maps the pattern to the category of that
property kind.

SW Design Patterns 6DP9

GoF classification 1/2
In Gamma’s book, patterns are classified by two criteria:

 First is Purpose, which reflects what pattern does. Patterns
can have either creational, structural, or behavioral purpose.

 Creational patterns concern the process of object
creation.

 Structural patterns deal with the composition of classes
or objects.

 Behavioral patterns characterize the ways in which
classes or objects interact and distribute responsibility.

SW Design Patterns 7DP9

GoF classification 2/2
In Gamma’s book, patterns are classified by two criteria:

 First is Purpose, which reflects what pattern does. Patterns
can have either creational, structural, or behavioral purpose.

 The second criterion is Scope, which specifies whether the
pattern applies primarily on classes or objects.

 Class patterns deal with relationships between classes
and their sub-classes. These relationships are
established through inheritance, so they are static (fixed
at compile time).

 Object patterns deal with object relationships, which can
be changed at run-time and are more dynamic (patterns
labeled as class patterns are those that focus on class
relationships.

SW Design Patterns 8DP9

Design pattern catalog - GoF

Purpose

Creational Structural Behavioral

Class
 Factory Method Adapter Interperter

 Template Method

Scope

Object

 Abstract
Factory

 Builder

 Prototype

 Singleton

 Bridge

 Composite

 Decorator

 Facade

 Flyweight

 Proxy

 Chain of Responsibility

 Command

 Iterator

 Mediator

 Observer

 State

 Strategy

 Visitor

 Memento

SW Design Patterns 9DP9

GoF pattern relationships

Composite vs Decorator vs Chain

SW Design Patterns 10DP9

Proxy vs Decorator vs Chain

SW Design Patterns 11DP9

SW Design Patterns 12DP9

Some selected examples

 Composite – Composes objects into trees

 Iterator – Iterates over a set

 Visitor – Operates on objects in a set

 Interpreter – Interprets language

 Flyweight – Shares objects

 Decorator – Adds functionality

 Strategy – Isolates algorithm

SW Design Patterns 13DP9

Gamma’s relationships

Composite

Flyweight

Sharing

composites

Decorator
Adding

responsibilities

to objects

Sharing

terminal

symbols

Changing skin vs.

Changing guts

Strategy
Sharing

strategies

Interpreter

Defining

grammar

Iterator

Enumerating

children

Visitor

Adding

operations

Defining

traversals

SW Design Patterns 14DP9

Why relations?

 Describe patterns containing other

patterns

 E.g. Visitor – Iterator

 Find a pattern, similar patterns

 E.g. Strategy – Decorator

 Combinations as bigger building blocks

 E.g. Composite – Iterator

SW Design Patterns 15DP9

Zimmer’s relations

 X uses Y in its solution

 E.g. Interpreter – Iterator

 X is similar to Y

 E.g. Visitor – Strategy

 X can be combined with Y

 E.g. Iterator - Visitor

Source: W. Zimmer. “Relationships Between Design Patterns”In Pattern Languages of

Program Design, J. O. Coplien and D. C. Schmidt (eds.), Reading, MA: Addison-Wesley,

1995, pp. 345

SW Design Patterns 16DP9

”Why” using Zimmer’s relations

 X uses Y in its solution

 Describe patterns containing other patterns

 Combinations as bigger building blocks

 X is similar to Y

 Find alternative patterns

 X can be combined with Y

 Combinations as bigger building blocks

 Find patterns

SW Design Patterns 17DP9

Zimmer’s relationships

Composite

Flyweight

Decorator

Strategy

Interpreter

Iterator

Visitor

Can be combined

Uses

similar

Zimmer’s layering

SW Design Patterns 18DP9

By arranging the patterns along the relationships
uses, is similar to, and can be combined with, Zimmer
identifies three different layers:
A. basic design patterns and techniques – Singleton,

Iterator, Mememto, Façade, Mediator, Template method,
Flyweight

B. design patterns for typical software problems – Abs.
factory, Factory method, Prototype, Builder, Observer,
Bridge, Adapter, Strategy, State, Command, Composite,
Decorator, Proxy, Chain of resp., Visitor

C. design patterns specific to an application domain -
Interpreter

SW Design Patterns 19DP9

Objectifier

 ”What is it?” vs. ”What does it do?”

 Normally “What is it?” are classes

 “What does it do” are functions

 Objectifier is intended to “objectify similar
behaviour in additional classes, so that
clients can vary such behaviour
independently from other behaviour”

Objectifier as a generalization of

those patterns

 The Objectifier pattern is related to several

other patterns

 Zimmer points out that Objectifier is a

generalization of those patterns which

objectify behaviour

SW Design Patterns 20DP9

SW Design Patterns 21DP9

Objectifier

 Intent

 Objectify similar behaviour

 Objects represents behaviour or properties,

but not concrete objects

 Motivation

 Widely used, e.g. Bridge, Command,

Builder, Iterator…

SW Design Patterns 22DP9

Zimmer’s layering with Objectifier

Basic design patterns & techniques

Design pattern specific to an

application domain

Design patterns for typical software problems

(X can be combined with Y)

Source: http://www8.cs.umu.se/~jubo/ExJobbs/MK/patterns.htm

Pree divides the patterns from a

structural point of view:

SW Design Patterns 23DP9

• basic inheritance and interaction patterns - patterns that

encompass primarily the basic modelling OO capabilities

• patterns for structuring OO software systems - describe

how a group of classes supports the structuring of software

systems.

• patterns based on recursive structures - allow recursive

building of hierarchies - a subclass has a reference to itself or

to a superclass.

• patterns relying on abstract coupling - based on abstractly

coupled classes. The concept of abstract coupling is when an

object has a reference to an abstract class.

• patterns related to the MVC-framework
Pree. Design Patterns for Object-Oriented Software

Patterns based on recursive structures
- allow recursive building of hierarchies

- a subclass has a reference to itself or to a

superclass

SW Design Patterns 24DP9

Patterns relying on abstract coupling -

an object has a reference to an

abstract class

SW Design Patterns 25DP9

SW Design Patterns 26DP9

Riehle’s composite patterns

 Not the Composite Pattern!

 Compose several patterns

 Form a larger structure

 Higher level of abstraction

 Benefit from synergies in their

implementation

Source: Dirk Riehle. A Role-Based Design Pattern Catalog of Atomic and

Composite Patterns Structured by Pattern Purpose. Ubilab Technical Report,

1997

SW Design Patterns 27DP9

Roles
 A role diagram describes the roles objects play in a

collaboration.

 A role defines the abstract state and behavior of an object

in the collaboration. It can be expressed formally as a role

protocol, for example using any adequate type or interface

notation.

 The actual definition of the role is based on what the other

roles in the collaboration require from it in order to achieve

the joint purpose.

Observer Subject
1 n

SW Design Patterns 28DP9

Structure of the Role Object

Pattern

SW Design Patterns 29DP9

Participants 1/2
 Component (Customer)

 - models a particular key
abstraction by defining its
interface;

 - specifies the protocol for
adding, removing, testing and
querying for role objects.

 A Client supplies a specification
for a ConcreteRole subclass. In
the simplest case, it is identified
by a string.

 ComponentCore
(CustomerCore)
 - implements the Component

interface including the role
management protocol;

 - creates ConcreteRole
instances;

 - manages its role objects.

SW Design Patterns 30DP9

Participants 2/2 ComponentRole

(CustomerRole)

 - stores a reference to the

decorated ComponentCore;

 - implements the Component

interface by forwarding requests

to its core attribute.

 ConcreteRole (Investor,

Borrower)

 - models and implements a

context-specific extension of the

Component interface;

 - can be instantiated with a

ComponentCore as argument.

Role diagram of the patterns

Factory Method and Builder

SW Design Patterns 31DP9

SW Design Patterns 32DP9

Bureaucracy composite pattern

 Consists of

 Composite

 Observer

 Chain of Responsibility

 Uses roles to find synergies

Dirk Riehle. "Bureaucracy - A Composite Pattern.“, Proc. of

EuroPLoP '96, 1996.

SW Design Patterns 33DP9

The Bureaucracy pattern in brief
 a recurring design theme used to implement

hierarchical object structures which allow interaction
with every level of the hierarchy and maintain their
inner consistency themselves.

 It is a composite pattern which is based on the
Composite, Mediator, Chain of Responsibility and
Observer pattern.

 Composite patterns require new presentation and
modeling techniques since their complexity makes
them more difficult to approach than non-composite
patterns.

 Riehle use role diagrams to present the Bureaucracy
pattern and to explore its design and implementation
space. Role diagrams have proved to be very useful to
get a grip on this complex pattern.

SW Design Patterns 34DP9

Bureaucracy roles

RootParent

Composite

Child Leaf

1
*

Observer Subject
1 *

Observer

Handler

Tail

Successor

Chain of Responsibility

1 1

Manager Director

Subordinate Leaf

1

*

Bureaucracy

Source: Riehle D.. Bureaucracy. In Robert C. Martin, Dirk Riehle, Frank Buschmann (editors),

Pattern Languages of Program Design 3, Addison-Wesley, Reading, Massachusetts, 1997.

SW Design Patterns 35DP9

Roles: Pro’s and Con’s

 Pros

 Higher abstraction

 Syngergies can be found

 Leaves several possible implementations

 Cons

 Describes the roles in the problem

 Does not describe the solution

 Leaves several possible implementations

SW Design Patterns 36DP9

Conclusion

 Several ways to relate patterns; most important

is ”why”

 Patterns can be classified in different ways;

even the same patterns may be classified

differently – for example Zimmer’s classification

of the GOF design patterns.

 Roles might be useful

 Especially combined with class diagrams

