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" A
Pattern classifications

m The increase in the number of patterns made it
very important to develop proper methodologies
and techniques how to organize them.

m Pattern classification is the organization of
patterns into groups of patterns sharing the same
set of properties.

m The kind of these properties Is not fixed and may
Include criteria such as structure, intent, or
applicability.

m Depending on the chosen criteria, we could define
a classification schema.
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= B
Dimensions of classification
schemas

m Different classification schemas can have different
dimensions.

m A two dimensional schema, for example, uses two
criteria in the classification process.

m Usually, the more dimensions a schema has, the more
useful the classification is.

m The same pattern can have different kinds of
properties, it can be included in more than one
category.

m Each property maps the pattern to the category of that
property kind.
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GoF classification 1/2

In Gamma’s book, patterns are classified by two criteria:

m First is Purpose, which reflects what pattern does. Patterns
can have either creational, structural, or behavioral purpose.

Creational patterns concern the process of object
creation.

Structural patterns deal with the composition of classes
or objects.

Behavioral patterns characterize the ways in which
classes or objects interact and distribute responsibllity.
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GoF classification 2/2

In Gamma’s book, patterns are classified by two criteria:

m First is Purpose, which reflects what pattern does. Patterns
can have either creational, structural, or behavioral purpose.

m The second criterion is Scope, which specifies whether the
pattern applies primarily on classes or objects.

Class patterns deal with relationships between classes
and their sub-classes. These relationships are
established through inheritance, so they are static (fixed
at compile time).

Object patterns deal with object relationships, which can
be changed at run-time and are more dynamic (patterns
labeled as class patterns are those that focus on class
relationships.
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Design pattern catalog - GoF

Purpose

cl e Factory Method e Adapter e Interperter
ass
e Template Method

Abstract Bridge Chain of Responsibility
Factory Composite Command
Builder Decorator lterator

Scope Prototype Facade Mediator

Object Singleton Flyweight Observer

State
Strategy
Visitor
Memento

Proxy
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GoF pattern relationships
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Composite vs Decorator vs Chain
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Proxy vs Decorator vs Chain
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"
Some selected examples

Composite — Composes objects into trees
lterator — lterates over a set

Visitor — Operates on objects in a set
nterpreter — Interprets language
~lyweight — Shares objects

Decorator — Adds functionality

Strategy — Isolates algorithm
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" EEE——
Gamma’s relationships
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"
Why relations?

m Describe patterns containing other
patterns

E.g. Visitor — Iterator

m Find a pattern, similar patterns
E.g. Strategy — Decorator

m Combinations as bigger building blocks
E.g. Composite — lterator
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» BN
Zimmer'’s relations

m X uses Y in its solution
E.g. Interpreter — Iterator
m XIssimilartoY
E.g. Visitor — Strategy

m X can be combined with Y
E.qg. Iterator - Visitor

Source: W. Zimmer. “Relationships Between Design Patterns”In Pattern Languages of

Program Design, J. O. Coplien and D. C. Schmidt (eds.), Reading, MA: Addison-Wesley,
1995, pp. 345
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" S
"Why” using Zimmer's relations

m X usesY In its solution

Describe patterns containing other patterns
Combinations as bigger building blocks

m XissimilartoY
Find alternative patterns
m X can be combined with Y

Combinations as bigger building blocks
Find patterns
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" SN
Zimmer's relationships
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" S
Zimmer's layering

By arranging the patterns along the relationships
uses, Is similar to, and can be combined with, Zimmer
identifies three different layers:

A. basic design patterns and technigues — Singleton,
Iterator, Mememto, Facade, Mediator, Template method,
Flyweight

B. design patterns for typical software problems — Abs.
factory, Factory method, Prototype, Builder, Observer,
Bridge, Adapter, Strategy, State, Command, Composite,
Decorator, Proxy, Chain of resp., Visitor

c. design patterns specific to an application domain -
Interpreter
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" J
Objecitifier

m "Whatis it?” vs. "What does it do?”

Normally “What is it?” are classes
“What does it do” are functions

m Objectifier is intended to “objectify similar
behaviour In additional classes, so that
clients can vary such behaviour
independently from other behaviour”
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" J
Objectifier as a generalization of
those patterns

m The Objectifier pattern is related to several

other patterns

m Zimmer points out that Objectifier Is a

DP9

Client

generalization of those patterns which
objectify behaviour

ref Obiectifier
o fahstract}
Ciperationi )
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Ciperationi )

Cperation )




Objecitifier

m Intent
Objectify similar behaviour

Objects represents behaviour or properties,
but not concrete objects

m Motivation

Widely used, e.g. Bridge, Command,
Builder, Iterator...
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" S
Zimmer’s layering with Objectifier

Design pattern specific to an

application domain
Design patterns for typical software problems o
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Source: http://www8.cs.umu.se/~jubo/ExJobbs/MK/patterns.htm
DP9 SW Design Patterns 22



" J
Pree divides the patterns from a

structural point of view:

* basic inheritance and interaction patterns - patterns that
encompass primarily the basic modelling OO capabilities

« patterns for structuring OO software systems - describe
how a group of classes supports the structuring of software
systems.

e patterns based on recursive structures - allow recursive
building of hierarchies - a subclass has a reference to itself or
to a superclass.

e patterns relying on abstract coupling - based on abstractly
coupled classes. The concept of abstract coupling is when an
object has a reference to an abstract class.

« patterns related to the MVC-framework

Pree. Design Patterns for Object-Oriented Software
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" J
Patterns based on recursive structures

- allow recursive building of hierarchies
- a subclass has a reference to itself or to a

superclass

1..* B
W T
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" S
Patterns relying on abstract coupling -
an object has a reference to an
abstract class

A bRef B
MethodOfa( ) o [ MethodOfB( )
I
' !
I
&y B1

bRef->Method OB

MethodOfB[ )
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Riehle’'s composite patterns

m Not the Composite Pattern!

m Compose several patterns
Form a larger structure
Higher level of abstraction

Benefit from synergies in their
Implementation

Source: Dirk Riehle. A Role-Based Design Pattern Catalog of Atomic and
Composite Patterns Structured by Pattern Purpose. Ubilab Technical Report,
1997
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ROleS [Observer} : : { Subject }

DP9

A role diagram describes the roles objects play in a
collaboration.

A role defines the abstract state and behavior of an object
In the collaboration. It can be expressed formally as a role

protocol, for example using any adequate type or interface
notation.

The actual definition of the role i1s based on what the other
roles in the collaboration require from it in order to achieve
the joint purpose.

N association

a shadow indicates any
agagreagation number of roles with differ-
role A JC dareg role B

ent role protocols (as op-
------------ posed to a cardinality of n)
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Structure of the Role Object

Pattern

DP
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m  Component (Customer)

- models a particular key
abstraction by defining its
Interface;

- specifies the protocol for
adding, removing, testing and
guerying for role objects.

A Client supplies a specification
for a ConcreteRole subclass. In
the simplest case, it is identified
by a string.

m ComponentCore
(CustomerCore)

DP9

- implements the Component
Interface including the role
management protocol;

- creates ConcreteRole
Instances;

- manages its role objects.
SW Design Patterns
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m  ComponentRole
(CustomerRole)

- stores a reference to the
decorated ComponentCore;

- implements the Component
interface by forwarding requests
to its core attribute.

m  ConcreteRole (Investor,
Borrower)

DP9

- models and implements a
context-specific extension of the
Component interface;

- can be instantiated with a
ComponentCore as argument.
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"
Role diagram of the patterns
Factory Method and Builder
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Bureaucracy composite pattern

m Consists of
Composite
Observer
Chain of Responsibility

m Uses roles to find synergies

Dirk Riehle. "Bureaucracy - A Composite Pattern.*, Proc. of
EuroPLoP '96, 1996.

DP9 SW Design Patterns 32



The Bureaucracy pattern in brief

a recurring design theme used to implement
hierarchical object structures which allow interaction
with every level of the hierarchy and maintain their
Inner consistency themselves.

It iIs a composite pattern which is based on the
Composite, Mediator, Chain of Responsibility and
Observer pattern.

Composite patterns require new presentation and
modeling techniques since their complexity makes
them more difficult to approach than non-composite
patterns.

Riehle use role diagrams to present the Bureaucracy
pattern and to explore its design and implementation
space. Role diagrams have proved to be very useful to
., geta grip on this complex pattern.
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'_
Source: Riehle D.. Bureaucracy. In Robert C. Martin, Dirk Riehle, Frank Buschmann (editors),

Pattern Languages of Program Design 3, Addison-Wesley, Reading, Massachusetts, 1997.

Bureaucracy roles

Chain of Responsibility Observer

-k
CO

Bureaucracy,

I —
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" A
Roles: Pro’s and Con’s

m Pros
Higher abstraction
Syngergies can be found
Leaves several possible implementations

m Cons

Describes the roles in the problem

Does not describe the solution

_eaves several possible implementations
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Conclusion

DP9

Several ways to relate patterns; most important
IS "why”’

Patterns can be classified in different ways;
even the same patterns may be classified
differently — for example Zimmer’s classification
of the GOF design patterns.

Roles might be useful
Especially combined with class diagrams
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