10. Best Practice
Software Engineering

SW Design Patterns,
by Boyan Bontchev,
FMI - Sofia University
© 2006/2017

"
Annotation
m The Best Practice Software Engineering
(BPSE) project
m Classification

m BPSE patterns

m BPSE relationships

m Conclusions

DP10 SW Design Patterns

" A
References

m Schatten, A., Biffl, S., Demolsky, M., Gostischa-Franta, E.,
Ostreicher, Th., Winkler, D. (2010) Best Practice Software-
Engineering: Eine praxiserprobte Zusammenstellung von
komponentenorientierten Konzepten, Methoden und
Werkzeugen, Spektrum Akademischer Verlag, Springer,

Vienna, Austria.

m http://best-practice-software-engineering.ifs.tuwien.ac.at/

DP10 SW Design Patterns 3

" A
The Best Practice Software
Engineering (BPSE) project

m Initiated in TU-Vienna, 2008-2010, by Alexander
Schatten.

m The team said: “... we cannot "teach,
unexperienced developers experience, but what
we can do Is provide so called "best practices".

m Some of the good and bad decisions from
concrete projects can be abstracted to scenarios.
E.g., how to implement a persistence solution for
a business application, how to implement a robust
GUI that Is also easy to maintain and so on”.

DP10 SW Design Patterns 4

" J
BPSE experience In two levels

m The first level is called Software Patterns:

Software Patterns describe how to solve typical
problems that appear in many application scenarios in
similar ways.

A "pattern" has been defined as "an idea that has been
useful in one practical context and will probably be useful
In others." [M. Fowler, "Analysis Patterns - Reusable
Object Models", Addison Wesley, ISBN 0-201-89542-0].

These patterns can be seen as abstracted knowledge,
that guides you in better solving your concrete problems.

m The second level is: technical-implementation
best-practices

DP10 SW Design Patterns 5

" J
BPSE pattern categories

m The BPSE patterns are divided into five
categories reinforcing and complementing each
other:

Fundamental
Architectural
Creational
Structural, and
Behavioral

m Usually, patterns inside one category complement
each other because they have the same
underlying principles for structuring code.

DP10 SW Design Patterns 6

Dependency
Injection

Abstract

uses Factory

"
uses uses

l i

y Data Access . Transfer
~ - combine —- Obiject -— combine - Object

B P S E | Container I fﬂa:ecg’og Singleton |¢— uses Facade
./'
7
7 uses uses uses
attern 5 L AN
_/
7
X4 Object Pool Proxy

s

m a 4 similar
l lterator | | Decorator |
similar - o similar
Visitor T 4
/ — < uses

- =
-
-

-~
-~

-~

Delegation

Event
similar Listener

can be combined with

x ;
’ o
./ “ v ~ : '/
7 % B /
. ~ v
| / Nt combine
combine / combing /
! i 3 Siy uses
: oorpbme - similar / uses
i 4 S x ‘\
¥ -~ \
. / - ” \
| / i \
e 2 5
| P LR) \\
Composite Strategy Observer
uses uses uses

every othfar pattern

|
combine
1

DP10 Model View Interface
Controller

" EEE———
BPSE pattern catalogue: 1

1. Fundamental Design Patterns are general concepts, they are needed
In most other patterns to accomplish their task.

m Interface
m Container
m Delegation

2. Architectural Patterns express a fundamental structural organization or
schema for software systems.

3. Structural Design Patterns are concerned with how classes and objects
are composed together to form larger structures. [GoF, "Design Patterns"]

4. Creational Design Patterns abstract the instantiation process. They help
make a system independent of how its objects are created, composed, and
represented. [GoF, "Design Patterns”, Addison Wesley, ISBN 0201633612]

5. Behavioral Design Patterns are concerned with algorithms and the
assignment of responsibilities between objects. [GoF, "Design Patterns"]

DP10 SW Design Patterns 8

" J

Fundamental Patterns: Interface

Definition:

m an abstraction defining the signature operations of an entity

m sets the communication boundary between two entities

m separates functions from implementations - a class can be
exchanged easily without changing the code of the caller.

Applicability:

m you want to specify how classes exchange messages -
every time, when a class should be reused, or used outside

a specific context (package), declare the communication
Interface as an Interface type

®m you have to switch the implementation of a module during
run-time

m at design-time you don't yet know which implementation you
oriVill Use at compile-timew pesign patterns 9

"
Sample structure

«interface»
Messenger

+sendMessage(r: String, t: String): void

StdOutMessenger MailMessenger

+sendMessage(r: String, t: String): void +sendMessage(r: String, t: String): void

/N

/// Retrive an Implementation of the interface
Sender Messenger m = getMessenger();

/// Send a message

m.sendMessage("Bob", "Hello Bob!");

+main(argsf]: String): void

DP10 SW Design Patterns

" A _
Fundamental Patterns: Container

DP10

A Container is an object created to hold other objects that
are accessed, placed, and maintained with the class
methods of the container - queues, sets, lists, vectors, and
caches all fit this description.

These objects - the elements of the container - are usually
allowed to be of any class and may be of the container
class itself.

Every Container should also have an associated Iterator
type that can be used to iterate through the elements of
the container.

Java programmers tend to call these types of classes
"collections" rather than "containers".

Within the Spring Framework containers represent much
more higher level concgpts such as inversion of control |

Design Patterns

"
Sample structure

I-E = _-—l
MyContainer «interface»
Node Iterator<E>
-element: E A}
-next: Node |
Node(element: E) «create» I
|
|
|
Nodelterator || J
#p: Node
+hasNext: boolean
+next: E
#head: Node
#tail: Node

+add(o: E): void
+iterator(): Iterator<E>

Code: http://best-practice-software-

engineering.ifs.tuwien.ac.at/patterns/container.ntml
DP10 SW Design Patterns

" _
Fundamental Patterns: Delegation

m "Delegation is like inheritance done manually through object
composition.”

Single Inheritance with Delegation |

Multiple Inheritance = public int call() {
return b.call();
A B }
//
/s
3

-b: B B
C

+call(): int

+call(): int

Applicability:
m to reduce the coupling of methods to their class

® you have components that behave identically, but realize
that this situation can change in the future.

Related patterns:
m_Decorator, Visitor, Observer, Strategy,
DP10 S

Desigr Patterns T 13

Sample structure

Delegation::Cat

-sound: SoundBehaviour

«interface»

Delegation::ISoundBehaviour

+makeSound() : void

+setSoundBehaviour(SoundBehaviour newsound)

+makeSound() : void

Delegation::MeowSound

Delegation::RoarSound

+makeSound() : void

+makeSound() : void

How delegation makes it easy to
compose behaviors at run-time?

Code: http://best-practice-software-
engineering.ifs.tuwien.ac.at/patterns/delegation.html

DP10

SW Design Patterns

14

" J
BPSE pattern catalogue: 2

1. Fundamental Design Patterns are general concepts, they are needed in
most other patterns to accomplish their task.

2. Architectural Patterns express a fundamental structural organization
or schema for software systems. They provide a set of predefined
subsystems, specify their responsibilities, and include rules and
guidelines for organizing the relationships between them.

m Model View Controller (MVC)
m Dependency Injection

3. Structural Design Patterns are concerned with how classes and objects
are composed together to form larger structures. [GoF, "Design Patterns"]

4. Creational Design Patterns abstract the instantiation process. They help
make a system independent of how its objects are created, composed, and
represented. [GoF, "Design Patterns"]

5. Behavioral Design Patterns are concerned with algorithms and the
assignment of responsibilities between objects. [GoF, "Design Patterns"]

DP10 SW Design Patterns 15

" A
Architectural Patterns: MVCJ/@V

User

m Model objects hold data and define pwesmem 1 7

-~

the logic for manipulating that data. shows stdtus genelqtes events
Model objects are not directly x‘u
displayed. They often are reusable, e Coneoertd
distributed, persistent and portable < .

to a variety of platforms. provides data changes

m View objects represent something V.
visible in the user interface, for Model
example a panel or button.

The Controller communicates data back and forth between the
Model objects and the View objects. A controller also performs all
application specific tasks, such as processing user input or
loading configuration data. There is usually one controller per
application or window, in many applications the Controller is
tightly coupled to the view.sw besign patterns 16

" A
More about MVC

Applicability
m almost in every application - depending on the application some

classes might be coupled tighter than others, however it is generally
always a good idea to structure your application according to MVC.

Related patterns

m Observer: used for loose coupling in Model and View. When the Model
classes change, the View classes need to be notified and updated with
the latest information.

m Strategy: used by the Model. The Data Access Object pattern is a form
of the strategy pattern it is used primarily by the Model to access
different form of data-sources (SQL, XML files, ...)

m Composite: used by the View. There can be several different views
within a MVC system, whose different implementations can be
composed together and exchanged at run time as composites.

DP10 SW Design Patterns 17

" J
Sample structure 1:

Smalltalk

DP10

_ methodCall(,

Model <

- display user interface
- subscribe to model

View(s)

display output _
-

\ User

user jnput

% W

_________________ Controller(s)

- encapsulate data
- publish changes

provide functionality

process user input

update Model

rns 18

to view(s)

" J
Sample structure 2:

- user presentation N
- defines layout Event .
- references form beans -
J W ' S
|
|
ava Web App
View(s) 5. HTTP Response = Web Browser
(JSP)
T
| T\N
| o
| ™
| ~.
| o
4, rnaI uest 3. c\han‘qe view, 1. HTTP|Request
form ﬁeans provide aetions
| S
| S
| e
| ~ .
|
i N W
Model < — — 2. Instantiate action beans_ _ | copyrgller
(Beans) (Servlet)
| |
| |
I I
| |
- contains action beans - receives requests
- contains form beans - operates on model
- provides them to view - executes actions

DP10 SW Design Patterns 19

= B
Inversion of Control

m Inversion of Control (IoC) - a design principle in which
custom-written portions of a computer program receive the
flow of control from a generic framework (R. Martin and M.
Fowler)

m Also known as the Hollywood Principle - "Don't call us, we'll
call you"

m EJBs are a good example of this style of loC. When you
develop a session bean, you can implement various methods
that are called by the EJB container at various lifecyle points.
For example the Session Bean interface defines ejpbRemove,
ejbPassivate (stored to secondary storage), and ejbActivate
(restored from passive state). You don't get to control when
these methods are called, just what they do. The container
calls us, we don't call it.

DP10 SW Design Patterns 20

" S
Architectural Patterns: Dependency Injection

m Based on loC

m Relates to the way in which an object obtains references to its
dependencies - the object is passed its dependencies through
constructor arguments or after construction through setter
methods or interface methods

m There are 3 forms of dependency injection: setter- (the
recommended methodology using the Spring Framework),
constructor- and interface-based injection

m Example: a business service will work with an interface of the
Data Access Object (DAO). With the 1oC pattern, as
Implemented in Spring, the developer defines which DAO In
an external configuration file (in beans.xml). At runtime, the
Information from the configuration file are parsed and the

-dependency is injected KtQ.tha.service. 21

More about Dependency Injection
Applicability

m when the coupling between components needs to be
reduced

® you want to save time in that you don't have to write
boilerplate factory creation code over and over again

Related Patterns

m Abstract Factory: allows an application to acquire objects
and components without exposing too much information
about how to components fit together or what dependencies
each component might have.

m Container: allows objects to be configured by the container
Instead of the client. A container can configure objects
declaratively, e.g. using XML files.

DP10 SW Design Patterns 22

" J
Sample Structure

«interfaces» Movie
MovieFinder ~director: String
+findAll(): List<Movie>
7 +Movie(director: String) «create»
EIB' 7| +getDirector(): String
I /’
I #
| ~
| rd
| P
| F
ra
: e Movies
[i ~finder: MovieFinder
SemiColonDelimitedMovieFinder +Movies() «creates
-filename: String e +moviesDirectedBy(director: String): List<Movie:>
+setFilename(filename: String): void +setFinderiMovieFinder finder): void

<bean id="MovieFinder"
class="spring.ColonMovieFinder">
<property name="filename">
<value>movies1.txt</value>
</property>

< > .
DP10 /bean SW Design Patterns

" J
BPSE pattern catalogue: 3

1. Fundamental Design Patterns are general concepts, they are needed in
most other patterns to accomplish their task.

2. Architectural Patterns express a fundamental structural organization or
schema for software systems.

3. Structural Design Patterns are concerned with how classes and
objects are composed together to form larger structures. [GoF, "Design
Patterns"]

m Facade

m Decorator

m Proxy

m Data Access Object
m Transfer Object

4

. Creational Design Patterns abstract the instantiation process. They help
make a system independent of how its objects are created, composed, and
represented. [GoF, "Design Patterns"]

>. Bghavioral Design Patterns arg, goncgrned with algorlthms andthe ,

ms

assianment of responsibilities between obiects. [GoF. "Desian Patterns'l

" A
Structural Patterns: DAO

DP10
d

Access to persistent data varies greatly depending on the
type of storage (database, flat files, xml files, and so on) and
It even differs from its implementation (for example different
SQL-dialects).

The goal is to abstract and encapsulate all access to the
data and provide an interface. This is called the Data
Access Object (DAO) pattern. The DAO "knows" which data
source (that could be a database, a flat file or even a
WebService) to connect to and is specific for this data
source.

From the applications point of view, it makes no difference
when it accesses a relational database or parses XML files
(using a DAQO). The DAO is usually able to create an
Instance of a data object ("to read data") and also to pergist

esign Patterns

ata ("to save data") to the datasource.

" A
DAQO: when and how?

Applicability

m when you need to access a persistent storage more than

one time, especially if you want to exchange the data source
later.

®m you want to separate a data resource's client interface from
Its data access mechanisms

®m you want to adapt a specific data resource's access API to a
generic client interface, with clean separation of concerns.

Related Patterns

m Abstract Factory: Applications often use a Factory to select
the right DAO implementation at run time.

m Transfer Object: The DAQO pattern often uses a Transfer

Object to send data from the data source to its client and
DPlCVice Versa. SW Design Patterns 26

Sample Structure

«interface»
BookDAO

+saveBook(b: Book): void
+loadBook(isbn: 5tring): Book

DBBookDAO

FileBookDAO

-saveStmt: PreparedStatement
-loadStmt: PreparedStatement

-basePath: String

+DBBookDAO(url: String, user: String, pw: String)
+saveBook(b: Book): void

+loadBook(isbn: String): Book

+FileBookDAO(basePath: 5tring)
+saveBook(b: Book): void
+loadBook(isbn: String): Book

DP10 SW Design Patterns

27

" S
Structural Patterns: Transfer Object

m A Transfer Object is an object encapsulating data.
A single method call is now sufficient to send and
retrieve the Transfer Object and all included data.

m Applicability:

when the number of calls made by a client to a Data
Access Object or Enterprise Bean impacts network
performance

you want to reduce communication effort when dealing
with a lot of small data entities

m Related Patterns

Data Access Object: A Transfer Object pattern is often
used in combination with a Data Access Object pattern.

DP10 SW Design Patterns 28

Sample Structure

Book

~isbn: String

~title: String
-author: String
-publisher: String
-price: float
-pages: int
-releaseDate: Date
-coverimage: byte[]

+getAuthor(): String

+setAuthor(author: String): void
+getisbn(): String

+setlsbn(isbn: String): void

+getTitle(): String

+setTitle(title: String): void
+getCoverlmage(): byte(]
+setCoverlmage(coverimage: byte[]): void
+getPages(): int

+setPages(pages: int): void

+getPrice(): float

+setPrice(price: float): void
+getPublisher(): String
+setPublisher(publisher: String): void
+getReleaseDate(): Date
+setReleaseDate(releaseDate: Date): void

DP10 SW Design Patterns

" J
BPSE pattern catalogue: 4

1. Fundamental Design Patterns are general concepts, they are needed in
most other patterns to accomplish their task.

2. Architectural Patterns express a fundamental structural organization or
schema for software systems. They provide a set of predefined subsystems,
specify their responsibilities, and include rules and guidelines for organizing
the relationships between them.

3. Structural Design Patterns are concerned with how classes and objects are
composed together to form larger structures. [GoF]

4. Creational Design Patterns abstract the instantiation process. They
help make a system independent of how its objects are created,
composed, and represented. [GoF, "Design Patterns"]

m Factory Method
m Abstract Factory
m Object Pool

m Singleton

5. Behavioral Design Patterns are concerned with algorithms and the
assignment of responsibilities betwas edpgects. [GoF, "Design Patterns]so

" J
Creational Patterns: Object Pool

m |tis cheaper (in regards to system memory and speed) for a process to
borrow an object rather than to instantiate it.

m The Object Pool lets others "check out" objects from its pool, when
those objects are no longer needed by their processes, they are
returned to the pool in order to be reused. However, we don't want a
process to have to wait for a particular object to be released, so the
Object Pool also instantiates new objects as they are required, but must
also implement a facility to clean up unused objects periodically.

m Applicability
when your application sporadically requires objects which are "expensive" to
create.
several parts of your application require the same objects at different times.

m Related Patterns

Factory Method: The Factory Method pattern can be used to encapsulate
the creation logic for objects. However, it does not manage them after their
creation, the object pool pattern keeps track of the objects it creates.

Singleton: Object Pools are usuallly implemented as Singletons.
DP10 SW Design Patterns 31

" J
Sample Structure

DP10

«zabstracts
ObjectPool

-expirationTime: long
-locked: HashTable<T, Long>
-unlocked: HashTable<T,Long=
+validate(o: T): boolean
+create(): T
+expire(o: T): void
+checkOut(): T «synchronizeds»
+checkin(o: T): void «synchronized»

JDBCConnectionPool

-dsn: String
=usr: String
-pwd: String

+]DBCConnectionPool(driver, dsn, usr, pwd: String) «create»
+create(): Connection

+expire(o: Connection): void
+validate(o: Connection): boolean

SW Design Patterns

32

" J
BPSE pattern catalogue: 5

1. Fundamental Design Patterns are general concepts, they are needed in
most other patterns to accomplish their task.

2. Architectural Patterns express a fundamental structural organization or
schema for software systems. They provide a set of predefined subsystems,
specify their responsibilities, and include rules and guidelines for organizing
the relationships between them.

3. Structural Design Patterns are concerned with how classes and objects are
composed together to form larger structures. [GoF , "Design Patterns"]

4. Creational Design Patterns abstract the instantiation process. They help
make a system independent of how its objects are created, composed, and
represented. [GoF, "Design Patterns"]

5. Behavioral Design Patterns are concerned with algorithms and the
assignment of responsibilities between objects. [GoF, "Design Patterns"]

m lterator

m Observer

m Event Listener

m STJIOategy SW Design Patterns 33

" A
Behavioral Patterns: Event Listener

m Events are messages that are sent from one object to another.
The component sending the event (aka firing the event) is the
producer, the component receiving the event (aka handling the
event) is the consumer. The producer of an event should have
the ability to add and delete listeners for the events produced by

itself.

m A predefined method of the listener is invoked by the producer
when an event is fired.
m Applicability
Handling User-Interactions, such as clicking on a button, is realized
through Events and Event-Listeners

m Related Patterns
Observer: The Event Listener pattern is a special flavor of Observer

Delegation: Event Listeners usually use delegation to accomplish their
pp1tasSks. SW Design Patterns 34

" J
Sample Structure

public class TestGUIEvents extends JFrame {

int clickCount;

public TestGUIEvents() {
A clickCount =0; setTitle("Click-Count: " + clickCount);
JButton button = new JButton("Click me!");
button.addActionListener(new ButtonListener());

JFrame

add(button);
TestGUIEvents pack();
#ButtonListener }
+actionPerformed(arg0: ActionEvent): void public static void main(String[] args) {
new TestGUIEvents().setVisible(true);
~clickCount; int }
+TestGUIEvents() «create protected class ButtonListener implements ActionListener {
+main(args: Stringf)): void public void actionPerformed(ActionEvent arg0) {

clickCount++;
setTitle("Click-Count: " + clickCount);

}
}

DP10 } SW Design Patterns 35

] Dependency Abstract ; Data Access . Transfer
usles usles uses
B I S E : Fact .
Container M?aihoorz Singleton |4— yuses _{ Facade
./.
/s
s uses uses uses
combine \ /
s
./-
a p 7 Object Pool Proxy
I I l / | | ,,j |
ik _similar]
- | lterator | l Decorator |
a al I l . “similar_| - o " similar
| Visitor P § i
| e ——— =7 uses > v
! 23 \ i i Delegation
! 4 A -
| i.4 \ /‘/ 4
i / Scatt combine
combine / combing /
| i " N
: cor.pbme - chnllas / uses uses
i /-/ 5. \ Event
. 2 ~ \ s ¥ =
Voo e \ similar Listener
| /‘ /'/ \\
Composite Strategy Observer
can be combined with
r m
\ase o ise every othfa patte
I
combine
|
i
DP10 Model View Interface
Controller

" A
Conclusions

m Some simple patterns can be directly transformed into

code. However, do not expect all patterns to be complete
solutions!

m Pattern make use of fundamental concepts of Object
Oriented programming: Class, Object, Method, Message

passing, Inheritance, Encapsulation, Abstraction and
Polymorphism.

m Well-designed object-oriented systems have multiple
patterns embedded in them.

DP10 SW Design Patterns 37

