
10. Best Practice

Software Engineering

SW Design Patterns,

by Boyan Bontchev,

FMI - Sofia University

© 2006/2017

SW Design Patterns 2DP10

Annotation

 The Best Practice Software Engineering

(BPSE) project

 Classification

 BPSE patterns

 BPSE relationships

 Conclusions

SW Design Patterns 3DP10

References

 Schatten, A., Biffl, S., Demolsky, M., Gostischa-Franta, E.,

Östreicher, Th., Winkler, D. (2010) Best Practice Software-

Engineering: Eine praxiserprobte Zusammenstellung von

komponentenorientierten Konzepten, Methoden und

Werkzeugen, Spektrum Akademischer Verlag, Springer,

Vienna, Austria.

 http://best-practice-software-engineering.ifs.tuwien.ac.at/

SW Design Patterns 4DP10

The Best Practice Software

Engineering (BPSE) project

 Initiated in TU-Vienna, 2008-2010, by Alexander
Schatten.

 The team said: “… we cannot "teach„
unexperienced developers experience, but what
we can do is provide so called "best practices".

 Some of the good and bad decisions from
concrete projects can be abstracted to scenarios.
E.g., how to implement a persistence solution for
a business application, how to implement a robust
GUI that is also easy to maintain and so on”.

BPSE experience in two levels

 The first level is called Software Patterns:

 Software Patterns describe how to solve typical

problems that appear in many application scenarios in

similar ways.

 A "pattern" has been defined as "an idea that has been

useful in one practical context and will probably be useful

in others." [M. Fowler, "Analysis Patterns - Reusable

Object Models", Addison Wesley, ISBN 0-201-89542-0].

 These patterns can be seen as abstracted knowledge,

that guides you in better solving your concrete problems.

 The second level is: technical-implementation

best-practices

SW Design Patterns 5DP10

BPSE pattern categories

 The BPSE patterns are divided into five

categories reinforcing and complementing each

other:

 Fundamental

 Architectural

 Creational

 Structural, and

 Behavioral

 Usually, patterns inside one category complement

each other because they have the same

underlying principles for structuring code.
SW Design Patterns 6DP10

BPSE

pattern

map

SW Design Patterns 7DP10

BPSE pattern catalogue: 1
1. Fundamental Design Patterns are general concepts, they are needed

in most other patterns to accomplish their task.

 Interface

 Container

 Delegation

2. Architectural Patterns express a fundamental structural organization or

schema for software systems.

3. Structural Design Patterns are concerned with how classes and objects

are composed together to form larger structures. [GoF, "Design Patterns"]

4. Creational Design Patterns abstract the instantiation process. They help

make a system independent of how its objects are created, composed, and

represented. [GoF, "Design Patterns", Addison Wesley, ISBN 0201633612]

5. Behavioral Design Patterns are concerned with algorithms and the

assignment of responsibilities between objects. [GoF, "Design Patterns"]

SW Design Patterns 8DP10

Fundamental Patterns: Interface
Definition:

 аn abstraction defining the signature operations of an entity

 sets the communication boundary between two entities

 separates functions from implementations - a class can be

exchanged easily without changing the code of the caller.

Applicability:

 you want to specify how classes exchange messages -

every time, when a class should be reused, or used outside

a specific context (package), declare the communication

interface as an Interface type

 you have to switch the implementation of a module during

run-time

 at design-time you don't yet know which implementation you

will use at compile-timeSW Design Patterns 9DP10

Sample structure

SW Design Patterns 10DP10

Fundamental Patterns: Container
 A Container is an object created to hold other objects that

are accessed, placed, and maintained with the class

methods of the container - queues, sets, lists, vectors, and

caches all fit this description.

 These objects - the elements of the container - are usually

allowed to be of any class and may be of the container

class itself.

 Every Container should also have an associated Iterator

type that can be used to iterate through the elements of

the container.

 Java programmers tend to call these types of classes

"collections" rather than "containers".

 Within the Spring Framework containers represent much

more higher level concepts such as inversion of control
SW Design Patterns 11DP10

Sample structure

SW Design Patterns 12DP10

Code: http://best-practice-software-

engineering.ifs.tuwien.ac.at/patterns/container.html

Fundamental Patterns: Delegation
 "Delegation is like inheritance done manually through object

composition.“

Applicability:

 to reduce the coupling of methods to their class

 you have components that behave identically, but realize

that this situation can change in the future.

Related patterns:

 Decorator, Visitor, Observer, Strategy, …
SW Design Patterns 13DP10

Sample structure

SW Design Patterns 14DP10

Code: http://best-practice-software-

engineering.ifs.tuwien.ac.at/patterns/delegation.html

How delegation makes it easy to
compose behaviors at run-time?

BPSE pattern catalogue: 2
1. Fundamental Design Patterns are general concepts, they are needed in

most other patterns to accomplish their task.

2. Architectural Patterns express a fundamental structural organization

or schema for software systems. They provide a set of predefined

subsystems, specify their responsibilities, and include rules and

guidelines for organizing the relationships between them.

 Model View Controller (MVC)

 Dependency Injection

3. Structural Design Patterns are concerned with how classes and objects

are composed together to form larger structures. [GoF, "Design Patterns"]

4. Creational Design Patterns abstract the instantiation process. They help

make a system independent of how its objects are created, composed, and

represented. [GoF, "Design Patterns"]

5. Behavioral Design Patterns are concerned with algorithms and the

assignment of responsibilities between objects. [GoF, "Design Patterns"]

SW Design Patterns 15DP10

Architectural Patterns: MVC
 Model objects hold data and define

the logic for manipulating that data.

Model objects are not directly

displayed. They often are reusable,

distributed, persistent and portable

to a variety of platforms.

 View objects represent something

visible in the user interface, for

example a panel or button.

SW Design Patterns 16DP10

The Controller communicates data back and forth between the

Model objects and the View objects. A controller also performs all

application specific tasks, such as processing user input or

loading configuration data. There is usually one controller per

application or window, in many applications the Controller is

tightly coupled to the view.

More about MVC
Applicability

 almost in every application - depending on the application some

classes might be coupled tighter than others, however it is generally

always a good idea to structure your application according to MVC.

Related patterns

 Observer: used for loose coupling in Model and View. When the Model

classes change, the View classes need to be notified and updated with

the latest information.

 Strategy: used by the Model. The Data Access Object pattern is a form

of the strategy pattern it is used primarily by the Model to access

different form of data-sources (SQL, XML files, …)

 Composite: used by the View. There can be several different views

within a MVC system, whose different implementations can be

composed together and exchanged at run time as composites.

SW Design Patterns 17DP10

Sample structure 1:

Smalltalk

SW Design Patterns 18DP10

Sample structure 2:

Java Web App

SW Design Patterns 19DP10

Inversion of Control

 Inversion of Control (IoC) - a design principle in which

custom-written portions of a computer program receive the

flow of control from a generic framework (R. Martin and M.

Fowler)

 Also known as the Hollywood Principle - "Don't call us, we'll

call you"

 EJBs are a good example of this style of IoC. When you

develop a session bean, you can implement various methods

that are called by the EJB container at various lifecyle points.

For example the Session Bean interface defines ejbRemove,

ejbPassivate (stored to secondary storage), and ejbActivate

(restored from passive state). You don't get to control when

these methods are called, just what they do. The container

calls us, we don't call it.
SW Design Patterns 20DP10

 Based on IoC

 Relates to the way in which an object obtains references to its

dependencies - the object is passed its dependencies through

constructor arguments or after construction through setter

methods or interface methods

 There are 3 forms of dependency injection: setter- (the

recommended methodology using the Spring Framework),

constructor- and interface-based injection

 Example: a business service will work with an interface of the

Data Access Object (DAO). With the IoC pattern, as

implemented in Spring, the developer defines which DAO in

an external configuration file (in beans.xml). At runtime, the

information from the configuration file are parsed and the

dependency is injected into the service.SW Design Patterns 21DP10

Architectural Patterns: Dependency Injection

More about Dependency Injection
Applicability

 when the coupling between components needs to be

reduced

 you want to save time in that you don't have to write

boilerplate factory creation code over and over again

Related Patterns

 Abstract Factory: allows an application to acquire objects

and components without exposing too much information

about how to components fit together or what dependencies

each component might have.

 Container: allows objects to be configured by the container

instead of the client. A container can configure objects

declaratively, e.g. using XML files.
SW Design Patterns 22DP10

Sample Structure

SW Design Patterns 23DP10

<bean id="MovieFinder"

class="spring.ColonMovieFinder">

<property name="filename">

<value>movies1.txt</value>

</property>

</bean>

BPSE pattern catalogue: 3
1. Fundamental Design Patterns are general concepts, they are needed in

most other patterns to accomplish their task.

2. Architectural Patterns express a fundamental structural organization or

schema for software systems.

3. Structural Design Patterns are concerned with how classes and

objects are composed together to form larger structures. [GoF, "Design

Patterns"]

 Facade

 Decorator

 Proxy

 Data Access Object

 Transfer Object

4. Creational Design Patterns abstract the instantiation process. They help

make a system independent of how its objects are created, composed, and

represented. [GoF, "Design Patterns"]

5. Behavioral Design Patterns are concerned with algorithms and the

assignment of responsibilities between objects. [GoF, "Design Patterns"]
SW Design Patterns 24DP10

Structural Patterns: DAO
 Access to persistent data varies greatly depending on the

type of storage (database, flat files, xml files, and so on) and

it even differs from its implementation (for example different

SQL-dialects).

 The goal is to abstract and encapsulate all access to the

data and provide an interface. This is called the Data

Access Object (DAO) pattern. The DAO "knows" which data

source (that could be a database, a flat file or even a

WebService) to connect to and is specific for this data

source.

 From the applications point of view, it makes no difference

when it accesses a relational database or parses XML files

(using a DAO). The DAO is usually able to create an

instance of a data object ("to read data") and also to persist

data ("to save data") to the datasource.
SW Design Patterns 25DP10

DAO: when and how?
Applicability

 when you need to access a persistent storage more than

one time, especially if you want to exchange the data source

later.

 you want to separate a data resource's client interface from

its data access mechanisms

 you want to adapt a specific data resource's access API to a

generic client interface, with clean separation of concerns.

Related Patterns

 Abstract Factory: Applications often use a Factory to select

the right DAO implementation at run time.

 Transfer Object: The DAO pattern often uses a Transfer

Object to send data from the data source to its client and

vice versa. SW Design Patterns 26DP10

Sample Structure

SW Design Patterns 27DP10

Structural Patterns: Transfer Object

 A Transfer Object is an object encapsulating data.

A single method call is now sufficient to send and

retrieve the Transfer Object and all included data.

 Applicability:

 when the number of calls made by a client to a Data

Access Object or Enterprise Bean impacts network

performance

 you want to reduce communication effort when dealing

with a lot of small data entities

 Related Patterns

 Data Access Object: A Transfer Object pattern is often

used in combination with a Data Access Object pattern.

SW Design Patterns 28DP10

Sample Structure

SW Design Patterns 29DP10

BPSE pattern catalogue: 4
1. Fundamental Design Patterns are general concepts, they are needed in

most other patterns to accomplish their task.

2. Architectural Patterns express a fundamental structural organization or

schema for software systems. They provide a set of predefined subsystems,

specify their responsibilities, and include rules and guidelines for organizing

the relationships between them.

3. Structural Design Patterns are concerned with how classes and objects are

composed together to form larger structures. [GoF]

4. Creational Design Patterns abstract the instantiation process. They

help make a system independent of how its objects are created,

composed, and represented. [GoF, "Design Patterns"]

 Factory Method

 Abstract Factory

 Object Pool

 Singleton

5. Behavioral Design Patterns are concerned with algorithms and the

assignment of responsibilities between objects. [GoF, "Design Patterns"]SW Design Patterns 30DP10

Creational Patterns: Object Pool
 It is cheaper (in regards to system memory and speed) for a process to

borrow an object rather than to instantiate it.

 The Object Pool lets others "check out" objects from its pool, when

those objects are no longer needed by their processes, they are

returned to the pool in order to be reused. However, we don't want a

process to have to wait for a particular object to be released, so the

Object Pool also instantiates new objects as they are required, but must

also implement a facility to clean up unused objects periodically.

 Applicability

 when your application sporadically requires objects which are "expensive" to

create.

 several parts of your application require the same objects at different times.

 Related Patterns

 Factory Method: The Factory Method pattern can be used to encapsulate

the creation logic for objects. However, it does not manage them after their

creation, the object pool pattern keeps track of the objects it creates.

 Singleton: Object Pools are usually implemented as Singletons.
SW Design Patterns 31DP10

Sample Structure

SW Design Patterns 32DP10

BPSE pattern catalogue: 5
1. Fundamental Design Patterns are general concepts, they are needed in

most other patterns to accomplish their task.

2. Architectural Patterns express a fundamental structural organization or

schema for software systems. They provide a set of predefined subsystems,

specify their responsibilities, and include rules and guidelines for organizing

the relationships between them.

3. Structural Design Patterns are concerned with how classes and objects are

composed together to form larger structures. [GoF , "Design Patterns"]

4. Creational Design Patterns abstract the instantiation process. They help

make a system independent of how its objects are created, composed, and

represented. [GoF, "Design Patterns"]

5. Behavioral Design Patterns are concerned with algorithms and the

assignment of responsibilities between objects. [GoF, "Design Patterns"]

 Iterator

 Observer

 Event Listener

 Strategy SW Design Patterns 33DP10

Behavioral Patterns: Event Listener
 Events are messages that are sent from one object to another.

The component sending the event (aka firing the event) is the

producer, the component receiving the event (aka handling the

event) is the consumer. The producer of an event should have

the ability to add and delete listeners for the events produced by

itself.

 A predefined method of the listener is invoked by the producer

when an event is fired.

 Applicability

 Handling User-Interactions, such as clicking on a button, is realized

through Events and Event-Listeners

 Related Patterns

 Observer: The Event Listener pattern is a special flavor of Observer

 Delegation: Event Listeners usually use delegation to accomplish their

tasks. SW Design Patterns 34DP10

Sample Structure

SW Design Patterns 35DP10

public class TestGUIEvents extends JFrame {

int clickCount;

public TestGUIEvents() {

clickCount = 0; setTitle("Click-Count: " + clickCount);

JButton button = new JButton("Click me!");

button.addActionListener(new ButtonListener());

add(button);

pack();

}

public static void main(String[] args) {

new TestGUIEvents().setVisible(true);

}

protected class ButtonListener implements ActionListener {

public void actionPerformed(ActionEvent arg0) {

clickCount++;

setTitle("Click-Count: " + clickCount);

}

}

}

BPSE

pattern

map

again

SW Design Patterns 36DP10

SW Design Patterns 37DP10

Conclusions

 Some simple patterns can be directly transformed into

code. However, do not expect all patterns to be complete

solutions!

 Pattern make use of fundamental concepts of Object

Oriented programming: Class, Object, Method, Message

passing, Inheritance, Encapsulation, Abstraction and

Polymorphism.

 Well-designed object-oriented systems have multiple

patterns embedded in them.

