where B_{j} is the $j^{\text {th }}$ Bernoulli number. The Bernolli numbers are defined with the recurrence

$$
\begin{aligned}
B_{0} & =1 \\
B_{m} & =-\frac{1}{m} \sum_{j=0}^{m-1}\binom{m+1}{j} B_{j}, \text { for } m \in \mathbb{N}^{+}
\end{aligned}
$$

For details on the summation formula (4.19) and plenty of information on the Bernoulli numbers, see [GKP94, pp. 283-290]. Just keep in mind that Knuth et al. denote the sum by $S_{k}(n)$ and define it as

$$
S_{k}(n)=0^{k}+1^{k}+2^{k}+\ldots+(n-1)^{k}
$$

For our purposes in this manual it is sufficient to know that

$$
\begin{equation*}
1^{k}+2^{k}+\ldots+n^{k}=\Theta\left(n^{k+1}\right) \tag{4.20}
\end{equation*}
$$

which fact follows easily from (4.19). In fact, (4.19) is a polynomial of degree $k+1$ of n because the $\binom{k+1}{j}$ factor and the Bernoulli numbers are just constants and clearly the highest degree of \mathfrak{n} is $k+1$. Strictly speaking, we have not proved here formally that (4.19) is a degree $k+1$ polynomial of n because we have not shown that the coefficient before $\mathrm{n}^{\mathrm{k}+1}$ is not zero. But that is indeed the case-see for instance [GKP94, (6.98), pp. 288].
:: NB :8 Be careful to avoid the error of thinking that

$$
1^{\mathrm{k}}+2^{\mathrm{k}}+\ldots+\mathrm{n}^{\mathrm{k}}
$$

is a degree k polynomial of n and thus erroneosly concluding that its order of growth is $\Theta\left(n^{k}\right)$. It is not a polynomial of n because a polynomial has an a priori fixed number of terms, while the above sum has \mathfrak{n} terms where \mathfrak{n} is the variable.
Using (4.19), we can easily derive

$$
\begin{align*}
1+2+\ldots+n & =\frac{n(n+1)}{2} \tag{4.21}\\
1^{2}+2^{2}+\ldots+n^{2} & =\frac{n(n+1)(2 n+1)}{6} \tag{4.22}\\
1^{3}+2^{3}+\ldots+n^{3} & =\frac{n^{2}(n+1)^{2}}{4} \tag{4.23}\\
1^{4}+2^{4}+\ldots+n^{4} & =\frac{n(n+1)(2 n+1)\left(3 n^{2}+3 n-1\right)}{30} \tag{4.24}
\end{align*}
$$

Problem 81. Let T be a binary heap of height h vertices. Find the minimum and maixmum number of vertices in T .

Solution:

The vertices of any binary tree are partitioned into levels, the vertices from level number i being the ones that are at distance i from the root. By definition, every level i in T, except possibly for level h, is complete in the sense it has all the 2^{i} vertices possible. The last
level (number h) can have anywhere between 1 and 2^{h} vertices inclusive. If n denotes the number of vertices in the heap, it is the case that

$$
\underbrace{2^{0}+2^{1}+2^{2}+\ldots+2^{h-1}}_{\text {the number of vertices in the complete levels }}+1 \leq n \leq \underbrace{2^{0}+2^{1}+2^{2}+\ldots+2^{h-1}}_{\text {the number of vertices in the complete levels }}+2^{h}
$$

Since $2^{0}+2^{1}+2^{2}+\ldots+2^{h-1}=\frac{2^{h}-1}{2-1}=2^{h}-1$, it follows that

$$
\begin{align*}
& 2^{h}-1+1 \leq n \leq 2^{h}-1+2^{h} \\
& 2^{h} \leq n \leq 2^{h+1}-1 \tag{4.25}
\end{align*}
$$

Problem 82. Let T be a binary heap with n vertices. Find the height h of T .

Solution:

$$
\begin{aligned}
2^{h} & \leq n \leq 2^{h+1}-1 \quad \text { see Problem } 81,(4.25) \\
2^{h} & \leq n<2^{h+1} \\
h & \leq \lg n<h+1 \quad \text { take } \lg \text { of both sides }
\end{aligned}
$$

Clearly,

$$
\begin{equation*}
h=\lfloor\lg n\rfloor \tag{4.26}
\end{equation*}
$$

Problem 83. Let T be a binary heap with n vertices. Find the number of leaves and the number of internal vertices of T .

Solution:

Let h be the height of T. We know (4.26) that $h=\lfloor\lg n\rfloor$. Let V^{\prime} be the vertices of T at level h. Let $T^{\prime \prime}$ be obtained from T by deleting V^{\prime} (see Figure 4.2). Clearly, $T^{\prime \prime}$ is a complete binary tree of height $h-1=\lfloor\lg n\rfloor-1$. The number of its vertices is

$$
\begin{equation*}
2^{\lfloor\lg n\rfloor-1+1}-1=2^{\lfloor\lg n\rfloor}-1 \tag{4.27}
\end{equation*}
$$

It follows

$$
\begin{equation*}
\left|V^{\prime}\right|=n-\left(2^{\lfloor\lg n\rfloor}-1\right)=n+1-2^{\lfloor\lg n\rfloor} \tag{4.28}
\end{equation*}
$$

The vertices at level $h-1$ are $2^{h-1}=2^{\lfloor\lg n\rfloor-1}$. Those vertices are partitioned into $\mathrm{V}^{\prime \prime}$, the vertices that have no children, and $V^{\prime \prime \prime}$, the vertices that have a child or two children (see Figure 4.2). So,

$$
\begin{equation*}
\left|\mathrm{V}^{\prime \prime}\right|+\left|\mathrm{V}^{\prime \prime \prime}\right|=2^{\lfloor\lg n\rfloor-1} \tag{4.29}
\end{equation*}
$$

Figure 4.2: The heap in Problem 83.

Note that $\left|V^{\prime \prime \prime}\right|=\left\lceil\frac{\left|V^{\prime}\right|}{2}\right\rceil$. Having in mind (4.28), it follows that

$$
\begin{align*}
\left|V^{\prime \prime \prime}\right|= & \left\lceil\frac{n+1-2^{\lfloor\lg n\rfloor}}{2}\right\rceil=\left\lceil\frac{n+1}{2}-\frac{2^{\lfloor\lg n\rfloor}}{2}\right\rceil=\left\lceil\frac{n+1}{2}-2^{\lfloor\lg n\rfloor-1}\right\rceil= \\
& \left\lceil\frac{n+1}{2}\right\rceil-2^{\lfloor\lg n\rfloor-1} \quad \text { since } 2^{\lfloor\lg n\rfloor-1} \text { is integer } \tag{4.30}
\end{align*}
$$

Use (4.29) and (4.30) to conclude that

$$
\begin{align*}
\left|V^{\prime \prime}\right| & =2^{\lfloor\lg n\rfloor-1}-\left(\left\lceil\frac{n+1}{2}\right\rceil-2^{\lfloor\lg n\rfloor-1}\right) \\
& =2^{\lfloor\lg n\rfloor-1}-\left\lceil\frac{n+1}{2}\right\rceil+2^{\lfloor\lg n\rfloor-1} \\
& =2^{2.2^{\lg n\rfloor-1}-\left\lceil\frac{n+1}{2}\right\rceil} \\
& =2^{\lfloor\lg n\rfloor}-\left\lceil\frac{n+1}{2}\right\rceil \tag{4.31}
\end{align*}
$$

It is obvious the leaves of T are $\mathrm{V}^{\prime} \cup \mathrm{V}^{\prime \prime}$. Use (4.28) and (4.31) to conclude that

$$
\begin{align*}
\left|V^{\prime}\right|+\left|V^{\prime \prime}\right| & =n+1-2^{\lfloor\lg n\rfloor}+2^{\lfloor\lg n\rfloor}-\left\lceil\frac{n+1}{2}\right\rceil \\
& =n+1-\left\lceil\frac{n+1}{2}\right\rceil=n+1+\left\lfloor-\frac{n+1}{2}\right\rfloor \\
& =\left\lfloor n+1-\frac{n+1}{2}\right\rfloor \quad \text { since } n+1 \text { is integer } \\
& =\left\lfloor\frac{n+1}{2}\right\rfloor=\left\lceil\frac{n}{2}\right\rceil \tag{4.32}
\end{align*}
$$

Then the internal vertices of T must be $\left\lfloor\frac{n}{2}\right\rfloor$ since $m=\left\lfloor\frac{m}{2}\right\rfloor+\left\lceil\frac{\mathfrak{m}}{2}\right\rceil$ for any natural number m.

