
Merge(A: array of integer, l, m, h: integer)
1 (∗ A is an array A[1, . . . , n] and 1 ≤ l ≤ m < h ≤ n. ∗)
2 (∗ Assume A[l, . . . ,m] is sorted and A[m + 1, . . . , h] is sorted. ∗)
3 n1 ← m − l + 1

4 n2 ← h − m

5 create arrays L[1, . . . , n1 + 1] and R[1, . . . , n2 + 1]

6 L[1, . . . , n1]← A[l, . . . ,m]

7 R[1, . . . , n2]← A[m + 1, . . . , h]

8 L[n1 + 1]←∞
9 R[n2 + 1]←∞

10 i← 1

11 j← 1

12 for k← l to h

13 if L[i] ≤ R[j]

14 A[k]← L[i]

15 i← i + 1

16 else
17 A[k]← R[j]

18 j← j + 1

Problem 1. Prove that after Merge terminates the array A[l, . . . , h] is sorted.

Solution:
We prove the following is a loop invariant with respect to the for cycle (lines 12–18) in
Merge. The invariant consists of two separate claims.

Invariant 1. Every time the execution of Merge reaches line 12,

claim i: A[l, . . . , k − 1] contains k − l smallest elements of L and R in sorted
order.

claim ii: L[i] and R[j] are smallest elements in L and R, respectively, that have
not been copied into A.

Proof: By induction on k, the loop control variable.

Basis: k = l. In that case the range [l, . . . , k − 1] is [l, . . . , l − 1]. But that is an empty
range, therefore claim i is vacuously true. claim ii holds because on the one hand i = 1

and j = 1, and on the other hand by the premises of Merge, L[1] is a smallest element in
L and R[1] is a smallest element in R. Clearly, L[1] and R[1] have not been copied into A.

Inductive hypothesis: Assume claim i and claim ii hold when the execution of Merge
is at line 12 and the body of the for loop is to be executed at least once more, that is,

k ≤ h (1)

Inductive step: Next line 13 is executed. We prove it never compares∞ with∞. Assume
the opposite. By the inductive hypothesis, precisely k− l elements from L and R are already
copied into A. Since L[i] = ∞ and R[j] = ∞, Merge has already copied at least n1 + n2

1

elements into A (namely, the elements that are not ∞). But then it has to be the case that
k − l ≥ n1 + n2. Clearly, n1 + n2 = h − m + m − l + 1 = h − l + 1. So we derived that

k − l ≥ h − l + 1 ⇔ k ≥ h + 1 (2)

which contradicts (1).
So, the if at line 13 compares values, at least one of which is not ∞, therefore the

comparison makes sense. First assume the comparison yields “YES”. Note that in this case

i < n1 + 1 (3)

because L[i] 6= ∞. By the inductive hypothesis L[i] is a smallest element in L and R that
has not been copied into A. Line 14 is executed next. After the assignment at line 14,
A[l, . . . , k] contains k − l + 1 = (k + 1) − l smallest elements of L and R, therefore claim i
holds for k + 1. At line 15 i gets incremented by one. Having in mind (3), clearly the new
value of i is an valid index for L. By the assumptions of Merge, L[i] ≥ L[i − 1] (for the
new value of i). It follows that L[i] is a smallest element in L not copied into A. Therefore
claim ii holds for k + 1.

In the alternative case, namely when the comparison in the if at line 13 yields “NO”,
the argument is completely analogous.

Termination: When the for loop terminates, it is the case that k = h+1, so the subarray
A[l, . . . , k−1] from claim ii of the invariant is in fact A[l, . . . , h]. According to the invariant,
that subarray contains the k−l = h+1−l smallest elements of L and R in sorted order. But
those are precisely the elements of L and R that are not ∞. It follows A[l, . . . , h] contains
precisely the elements it contained at the beginning of Merge but in sorted order. �

2

Partition(A: array of integer, l,h: integer)
1 (∗ A is an unsorted array A[1, . . . , n] and 1 ≤ l < h ≤ n. ∗)
2 pivot← A[h]

3 pp← l

4 for i← l to h − 1

5 if A[i] < pivot
6 swap(A[i], A[pp])

7 pp← pp + 1

8 swap(A[h], pp)

9 return pp

Problem 2. Prove the value pp returned by Partition is such that l ≤ pp ≤ h and
∀x ∈ A[l, . . . , pp − 1],∀y ∈ A[pp + 1, . . . , h] : x < A[pp] ≤ y.

Solution:
We prove Invariant 2 is a loop invariant of the for cycle (lines 4–7) in Partition. Let Qi

for l ≤ i ≤ h be the set of elements from the subarray A[l, . . . , i−1] that are strictly smaller
than pivot every time the execution is at line 4.

Invariant 2. Every time the execution of Partition is at line 4, the elements of Qi form
a contiguous subarray A[l, . . . , l + |Qi| − 1] and pp = l + |Qi|.

Proof: By induction on i, the loop control variable.

Basis: i = l. The subarray A[l, . . . , i − 1] is A[l, . . . , l − 1] = A[∅], therefore Ql = ∅,
therefore the first part of the invariant is vacuously true†. The second part of the invariant
holds since pp = l = l + |∅|.

Inductive hypothesis: Assume the invariant holds for some i such that i ≤ h − 1, that
is, the body of the for loop is to be executed at least once more.

Inductive step: Consider the execution of the for loop afterwards. We consider several
separate cases.

Case 1: pp < i and A[i] < pivot. By the inductive hypothesis, pp is the index of the
element with the smallest index that is not smaller than pivot, and all the elements smaller
than pivot—namely, the elements of Qi—are left of A[pp]. The following figure illustrates
the array when the execution is at line 4. On it, the elements of Qi are shown in yellow.
For brevity we write Al rather than A[l], etc.

A :

l hl + 1 h − 1pp − 1 pp i

pivot

the elements of Qi are here

pp + 1

the pp index
points here

the loop
control var.
points here

l + 2

App−1Al+1 AppAl+2 App+1Al Ai Ah−1

†The subarray Al[∅] contains zero elements, hence the term “vacuously”.

3

As A[i] < pivot, the condition at line 5 is fulfilled and so the execution proceeds to line 6
where A[pp] and A[i] get swapped. Note that Qi “grows” with one element, namely Ai[i]:

A :

l hl + 1 l + 2 h − 1pp − 1 pp i

pivot

the elements of Qi are here

pp + 1

the pp index
points here

control var.
the loop

points here

App−1Al+1 AiAl+2 App+1Al App Ah−1

At line 7, pp is incremented to pp + 1:

A :

l hl + 1 l + 2 h − 1pp − 1 pp i

pivot

the elements of Qi are here

pp + 1

the pp index
points here

the loop
control var.
points here

App−1Al+1 AiAl+2 App+1Al App Ah−1

Next the execution is at line 4 again, with i incremented to i + 1. Call the subarray
A[pp + 1, . . . , i], the green subarray, as shown here:

A :

l hl + 1 l + 2 h − 1pp − 1 pp i

pivot

pp + 1 i + 1

the elements of Qi+1 are here

the pp index
points here

the loop
control var.
points here

App−1Al+1 Ai AppAl+2 App+1Al Ah−1App+1

Note that all elements of the green subarray are greater than or equal to pivot for the
following reasons:

• The elements in A[pp + 1, . . . , i − 1] are greater than or equal to pivot because of the
inductive hypothesis.

• The current A[i] is the former A[pp]. By the inductive hypothesis, it is greater than
or equal to pivot.

4

Therefore, the invariant holds when the execution is at line 4 and the loop control variable
is i + 1.

Case 2: pp < i and A[i] < pivot. In this case, the condition at line 5 is not fulfilled and
so the execution proceeds directly to line 4 with the loop control variable being i + 1. The
inductive step, therefore, follows immediately from the inductive hypothesis since Qi+1 =

Qi, no element in the array is moved, and pp remains the same.
Case 3: pp = i. Observe that that is possible but only in case all the elements in

A[l, . . . , i − 1] are smaller than pivot. Then |Qi| = i − 1 − l + 1 = i − l and so the elements
of Qi are in the subarray A[l, . . . , l + |Qi| − 1] = A[l, . . . , l + i − l − 1] = A[l, . . . , i − 1] and
pp = l + |Qi| = l + i − l = i. See the following figure:

the pp index
points here

A :

l hl + 1 l + 2 h − 1

pivot

the elements of Qi are here

i − 1 pp = i

the loop
control var.
points here

AiAl+1 Ai−1Al+2Al Ah−1

Case 3.a: If A[i] < pivot then the condition at line 5 is fulfilled and so the execution
proceeds to line 6 where A[pp] and A[i] get swapped, that is, A[i] is swapped with itself
and the array does not change. Then at line 7, pp is incremented:

the pp index
points here

the loop
control var.
points here

A :

l hl + 1 l + 2 h − 1

pivot

the elements of Qi are here

i − 1 pp = i i + 1

AiAl+1 Ai−1 Ai+1Al+2Al Ah−1

Then the execution proceeds to line 4 where i is incremented to i + 1. Note that Qi+1 =

Qi ∪ {Ai}:

5

the loop
control var.
points here

the pp index
points here

A :

l hl + 1 l + 2 h − 1

pivot

i − 1 pp = i i + 1

the elements of Qi+1 are here

AiAl+1 Ai−1 Ai+1Al+2Al Ah−1

Clearly, the invariant holds.
Case 3.b: If A[i] ≥ pivot, the condition at line 5 is not fulfilled and so the execution

proceeds directly to line 4 with the loop control variable being i + 1. The inductive step,
therefore, follows immediately from the inductive hypothesis since Qi+1 = Qi, no element
in the array is moved, and pp remains the same.

Case 1, Case 2, Case 3.a, and Case 3.b are exhaustive and so the invariant is proved.

Termination: When the for loop terminates, it is the case that i = h. By definition, Qh

is the set of the elements in A[l, . . . , h − 1] smaller than pivot. But since there is only one
more element in A[l, . . . , h], namely pivot itself, Qh consists precisely of the elements in
A[l, . . . , h] smaller than pivot. By the loop invariant, the elements of Qh form a contiguous
subarray A[l, . . . , l + |Qh| − 1] and pp is the index of the element immediately to the right
of the rightmost of them. Clearly, all the elements with indices larger than pp are greater
than or equal to pp. �

6

