```
\(\operatorname{Merge}(A\) : array of integer, \(l, m\), h: integer)
    ( \(* A\) is an array \(A[1, \ldots, n]\) and \(1 \leq l \leq m<h \leq n . *)\)
    ( \(*\) Assume \(A[l, \ldots, m]\) is sorted and \(A[m+1, \ldots, h]\) is sorted. \(*\) )
    \(n_{1} \leftarrow m-l+1\)
    \(n_{2} \leftarrow h-m\)
    create arrays \(L\left[1, \ldots, n_{1}+1\right]\) and \(R\left[1, \ldots, n_{2}+1\right]\)
    \(L\left[1, \ldots, n_{1}\right] \leftarrow A[l, \ldots, m]\)
    \(\mathrm{R}\left[1, \ldots, \mathrm{n}_{2}\right] \leftarrow A[m+1, \ldots, h]\)
    \(\mathrm{L}\left[\mathrm{n}_{1}+1\right] \leftarrow \infty\)
    \(R\left[n_{2}+1\right] \leftarrow \infty\)
    \(i \leftarrow 1\)
    \(j \leftarrow 1\)
    for \(k \leftarrow l\) to \(h\)
        if \(L[i] \leq R[j]\)
        \(A[k] \leftarrow L[i]\)
        \(\mathfrak{i} \leftarrow \mathfrak{i}+1\)
        else
        \(A[k] \leftarrow R[j]\)
        \(\mathfrak{j} \leftarrow \mathfrak{j}+1\)
```

Problem 1. Prove that after Merge terminates the array $\mathcal{A}[l, \ldots, h]$ is sorted.

Solution:

We prove the following is a loop invariant with respect to the for cycle (lines 12-18) in Merge. The invariant consists of two separate claims.

Invariant 1. Every time the execution of Merge reaches line 12,
claim i: $\mathcal{A}[l, \ldots, k-1]$ contains $k-l$ smallest elements of L and R in sorted order.
claim ii: $\mathrm{L}[i]$ and $\mathrm{R}[\mathrm{j}]$ are smallest elements in L and R , respectively, that have not been copied into A .

Proof: By induction on k, the loop control variable.
Basis: $k=l$. In that case the range $[l, \ldots, k-1]$ is $[l, \ldots, l-1]$. But that is an empty range, therefore claim \mathbf{i} is vacuously true. claim $\mathbf{i i}$ holds because on the one hand $\mathfrak{i}=1$ and $\mathfrak{j}=1$, and on the other hand by the premises of Merge, L[1] is a smallest element in L and $R[1]$ is a smallest element in R. Clearly, $L[1]$ and $R[1]$ have not been copied into A.
Inductive hypothesis: Assume claim i and claim ii hold when the execution of Merge is at line 12 and the body of the for loop is to be executed at least once more, that is,

$$
\begin{equation*}
k \leq h \tag{1}
\end{equation*}
$$

Inductive step: Next line 13 is executed. We prove it never compares ∞ with ∞. Assume the opposite. By the inductive hypothesis, precisely $k-l$ elements from L and R are already copied into A. Since $L[i]=\infty$ and $R[j]=\infty$, Merge has already copied at least $n_{1}+n_{2}$
elements into A (namely, the elements that are not ∞). But then it has to be the case that $k-l \geq n_{1}+n_{2}$. Clearly, $n_{1}+n_{2}=h-m+m-l+1=h-l+1$. So we derived that

$$
\begin{equation*}
k-l \geq h-l+1 \Leftrightarrow k \geq h+1 \tag{2}
\end{equation*}
$$

which contradicts (1).
So, the if at line 13 compares values, at least one of which is not ∞, therefore the comparison makes sense. First assume the comparison yields "YES". Note that in this case

$$
\begin{equation*}
\mathfrak{i}<n_{1}+1 \tag{3}
\end{equation*}
$$

because $L[i] \neq \infty$. By the inductive hypothesis $L[i]$ is a smallest element in L and R that has not been copied into A. Line 14 is executed next. After the assignment at line 14 , $A[l, \ldots, k]$ contains $k-l+1=(k+1)-l$ smallest elements of L and R, therefore claim \mathbf{i} holds for $k+1$. At line $15 i$ gets incremented by one. Having in mind (3), clearly the new value of i is an valid index for L. By the assumptions of Merge, $L[i] \geq L[i-1]$ (for the new value of i). It follows that $L[i]$ is a smallest element in L not copied into A. Therefore claim ii holds for $k+1$.

In the alternative case, namely when the comparison in the if at line 13 yields "NO", the argument is completely analogous.

Termination: When the for loop terminates, it is the case that $k=h+1$, so the subarray $A[l, \ldots, k-1]$ from claim ii of the invariant is in fact $A[l, \ldots, h]$. According to the invariant, that subarray contains the $k-l=h+1-l$ smallest elements of L and R in sorted order. But those are precisely the elements of L and R that are not ∞. It follows $A[l, \ldots, h]$ contains precisely the elements it contained at the beginning of MERGE but in sorted order.

Partition $(A$: array of integer, l, h : integer $)$

```
\((* \mathcal{A}\) is an unsorted array \(A[1, \ldots, n]\) and \(1 \leq l<h \leq n . *)\)
pivot \(\leftarrow \mathcal{A}[\mathrm{h}]\)
\(p p \leftarrow l\)
for \(i \leftarrow l\) to \(h-1\)
    if \(A[i]<\) pivot
        \(\operatorname{swap}(A[i], A[p p])\)
        \(p p \leftarrow p p+1\)
\(\operatorname{swap}(A[h], p p)\)
return pp
```

Problem 2. Prove the value pp returned by Partition is such that $l \leq p p \leq h$ and $\forall x \in \mathcal{A}[l, \ldots, p p-1], \forall y \in A[p p+1, \ldots, h]: x<A[p p] \leq y$.

Solution:
We prove Invariant 2 is a loop invariant of the for cycle (lines $4-7$) in Partition. Let Q^{i} for $l \leq i \leq h$ be the set of elements from the subarray $A[l, \ldots, i-1]$ that are strictly smaller than pivot every time the execution is at line 4.

Invariant 2. Every time the execution of Partition is at line 4, the elements of Q^{i} form a contiguous subarray $\mathcal{A}\left[l, \ldots, l+\left|Q^{i}\right|-1\right]$ and $p p=l+\left|Q^{i}\right|$.

Proof: By induction on i, the loop control variable.
Basis: $i=l$. The subarray $A[l, \ldots, i-1]$ is $A[l, \ldots, l-1]=A[\emptyset]$, therefore $Q^{l}=\emptyset$, therefore the first part of the invariant is vacuously true ${ }^{\dagger}$. The second part of the invariant holds since $p p=l=l+|\emptyset|$.

Inductive hypothesis: Assume the invariant holds for some i such that $i \leq h-1$, that is, the body of the for loop is to be executed at least once more.

Inductive step: Consider the execution of the for loop afterwards. We consider several separate cases.

Case 1: pp $<i$ and $A[i]<$ pivot. By the inductive hypothesis, $p p$ is the index of the element with the smallest index that is not smaller than pivot, and all the elements smaller than pivot—namely, the elements of Q^{i} —are left of $\mathcal{A}[p p]$. The following figure illustrates the array when the execution is at line 4 . On it, the elements of Q^{i} are shown in yellow. For brevity we write A_{l} rather than $A[l]$, etc.

[^0]As $A[i]<$ pivot, the condition at line 5 is fulfilled and so the execution proceeds to line 6 where $\mathcal{A}[p p]$ and $A[i]$ get swapped. Note that Q^{i} "grows" with one element, namely $A^{i}[i]$:
A :

At line 7, pp is incremented to $p p+1$:

Next the execution is at line 4 again, with i incremented to $i+1$. Call the subarray $\mathrm{A}[p p+1, \ldots, i]$, the green subarray, as shown here:

Note that all elements of the green subarray are greater than or equal to pivot for the following reasons:

- The elements in $\mathcal{A}[p p+1, \ldots, i-1]$ are greater than or equal to pivot because of the inductive hypothesis.
- The current $A[i]$ is the former $A[p p]$. By the inductive hypothesis, it is greater than or equal to pivot.

Therefore, the invariant holds when the execution is at line 4 and the loop control variable is $i+1$.

Case 2: $p p<i$ and $A[i]<$ pivot. In this case, the condition at line 5 is not fulfilled and so the execution proceeds directly to line 4 with the loop control variable being $i+1$. The inductive step, therefore, follows immediately from the inductive hypothesis since $Q^{i+1}=$ Q^{i}, no element in the array is moved, and pp remains the same.

Case 3: $p p=i$. Observe that that is possible but only in case all the elements in $A[l, \ldots, i-1]$ are smaller than pivot. Then $\left|Q^{i}\right|=\mathfrak{i}-1-l+1=\mathfrak{i}-l$ and so the elements of Q^{i} are in the subarray $A\left[l, \ldots, l+\left|Q^{i}\right|-1\right]=A[l, \ldots, l+i-l-1]=A[l, \ldots, i-1]$ and $p p=l+\left|Q^{i}\right|=l+i-l=i$. See the following figure:

the loop
control var.
points here
Case 3.a: If $A[i]<$ pivot then the condition at line 5 is fulfilled and so the execution proceeds to line 6 where $A[p p]$ and $A[i]$ get swapped, that is, $A[i]$ is swapped with itself and the array does not change. Then at line $7, \mathrm{pp}$ is incremented:

A :

the loop
control var.
points here
Then the execution proceeds to line 4 where \mathfrak{i} is incremented to $\mathfrak{i}+1$. Note that $Q^{i+1}=$ $Q^{i} \cup\left\{A_{i}\right\}$:

\title{

A :
 | l | $l+1$ | +2 | i-1 | pp | $i+1$ | | h-1 | h |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A_{l} | A_{l+1} | A_{l+2} | A_{i-1} | A_{i} | $\lambda_{\text {i+1 }}$ | | A_{h-1} | pivot |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |

the loop
control var.
points here
Clearly, the invariant holds.
Case 3.b: If $A[i] \geq$ pivot, the condition at line 5 is not fulfilled and so the execution proceeds directly to line 4 with the loop control variable being $\mathfrak{i}+1$. The inductive step, therefore, follows immediately from the inductive hypothesis since $Q^{i+1}=Q^{i}$, no element in the array is moved, and pp remains the same.
Case 1, Case 2, Case 3.a, and Case 3.b are exhaustive and so the invariant is proved.
Termination: When the for loop terminates, it is the case that $i=h$. By definition, Q^{h} is the set of the elements in $\mathcal{A}[l, \ldots, h-1]$ smaller than pivot. But since there is only one more element in $\mathcal{A}[l, \ldots, h]$, namely pivot itself, Q^{h} consists precisely of the elements in $A[l, \ldots, h]$ smaller than pivot. By the loop invariant, the elements of Q^{h} form a contiguous subarray $A\left[l, \ldots, l+\left|Q^{h}\right|-1\right]$ and $p p$ is the index of the element immediately to the right of the rightmost of them. Clearly, all the elements with indices larger than pp are greater than or equal to pp .

[^0]: ${ }^{\dagger}$ The subarray $A^{l}[\emptyset]$ contains zero elements, hence the term "vacuously".

