
Introduction to IoT

Pavel Genevski, Researcher / Architect @ SAP Labs Bulgaria February, 2018

Teachers

SAP Labs

- Pavel Genevski
- Vladimir Savchenko
- Hristo Kirilov
- Vladimir Nachev

FMI

Trayan Iliev

Administrative Q&A

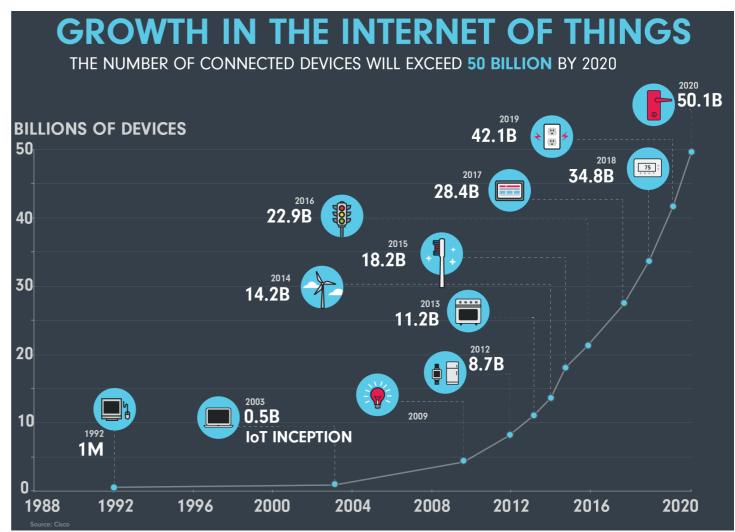
Кога?

Четвъртък от 17:00 до 21:00

Къде?

- Зала 320

Как да минем?

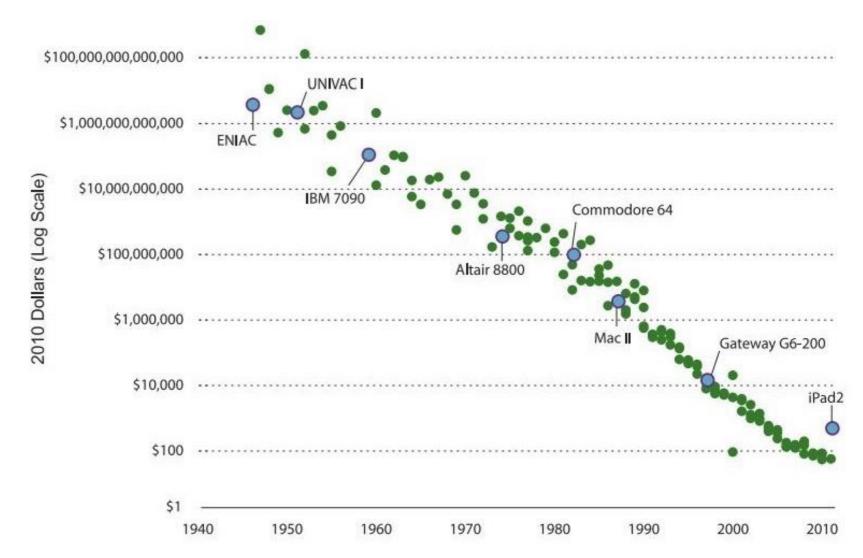

- Защита на групов проект + quizzes / индивидуални впечатления

Let's get started!

Over 20 billion connected devices

Consumer market: ~\$546B

- 1.4B smartphones (flat*)
- 157M tablets (7% decline)
- 21M smartwatches (flat*)
- Industrial market: ~\$868B
- Factories (Industry 4.0)
- Logistics
- Meters
- Trains
- Cities
-

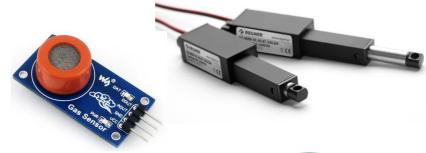


Source: https://www.ncta.com/sites/prod/files/GROWTH_IOT-091516-IF-2000w.png

How did we get here?

Hardware is now ...

- Cheaper
- Smaller
- More connected
- Less power hungry
- Easier to develop
- Ecosystem
- More knowledge
- More opportunities
- More investment



Source: http://www.hamiltonproject.org/ee-ce-image/made/assets/img/uploads/charts/cost_of_computing_power_equal_to_an_ipad2_1017_685_80.jpg

What is IoT?

Physical

Sensors, Actuators

Connected

WiFi, Bluetooth, Cellular, LPWAN ...

Programmable

- Arduino, C/C++, Python, Java, Assembly ...
- (Atmel, **Espressif**, TI, Microchip, MIPS, ARM ...)

```
#include "Arduino.h"
int redPin = 9;
int greenPin = 10;
int bluePin = 11;
void setColor(int red, int green, int blue)
    red = 255 - red;
    green = 255 - green;
    blue = 255 - blue;
void setup() {
  Serial.begin(9600);
  Serial.println("Setup");
  pinMode(redPin, OUTPUT);
  pinMode(greenPin, OUTPUT);
  pinMode(bluePin, OUTPUT);
```

Industrial vs Consumer IoT

Industrial IoT

- Drivers: cost and risk reduction, business agility, informed decision making
- Challenges: security, compliance, compatibility, reliability, connectivity, support ...

Consumer IoT

- Drivers: coolness, convenience, health, some cost reduction
- Challenges: UX, hype vs value, time to market, some privacy and security

Industrial IoT examples

Predictive maintenance & Remote management

 Solar & wind power, pipelines, bridges, facilities, vehicles, crops ...

Smart utilities (meters)

 Remote and continuous metering of water, electricity, gas ...

Industrial IoT examples contd.

Smart buildings

 HVAC, lighting, security & access control, safety monitoring, indoor positioning ...

Smart City

Pollution, traffic, controlling, services ...

Source: http://blueapp.io/wp-content/uploads/2016/08/How-IoT-optimize-building-

Source: http://www.libelium.com/libelium-images/generico2/sensor_polvo-490.png

Consumer IoT examples

Personal productivity & fashion

Smartphones, smartwatches ...

Home Automation

Smart locks, Bulbs, Smart TVs, Baby monitors...

Source: https://42xaiz2iny9m45jqzf36ofk2-wpengine.netdna-ssl.com/wp-content/uploads/2014/08/Front.jpg https://c.slashgear.com/wp-content/uploads/2011/12/NO-4.jpg

Consumer IoT examples contd.

Sports & Health

- Fitness & health trackers
- Professional sport gadgets

Connected cars ...

Predictive maintenance, accident reaction, theft protection ...

Source: https://tctechcrunch2011.files.werdpress.com/2014/4-1/victoria-secret-heart-rate-bra.jpg?w=738 https://cochlearimplanthelp.files.wordpress.com/2015/04/mi-band.jpg,

What?

Course assignment

Objectives

- Challenge yourself. No idea is too brave!
- Try to make something useful
- Learn new things

Examples

- Smart beehive, A/C monitoring
- Smart home / company / city
- You name it …☺

Source: https://www.smartbin.com/markets/level-sensor-general-waste-recyclables/, LG air conditioners

How?

IoT development platforms

Android & iOS

Phones, wearables, TVs ...

Linux

Raspberry PI, Beaglebone ...

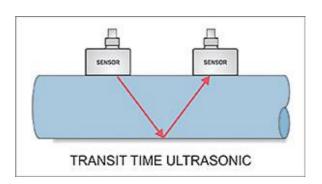
RTOS

• FreeRTOS, Nucleus ...

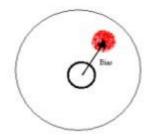
Bare metal

- Vendor SDKs: Espressif, NXP, TI, Atmel, Microchip ...
- Arduino: Atmel, ESP8266 (we will use this one)

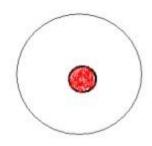
Sensors


So many sensors ...

- Touch, movement, compass, acceleration, video, sound
- Temperature, humidity/moisture, light / infrared
- Pressure, gas detection,
- Force (tenso), proximity, motion
- Liquid level, flow, magnetic field (hall), radiation
- Fingerpring, heart rate ...



Sensors characteristics


Functional

- Range
- Accuracy
- Precision (repeatability, noise)
- Resolution & Sensitivity
- Speed
- Non-functional
- Longevity & Reliability (MTBF, triplication)
- Power consumption
- Price
- Op. environment: combustive, corrosive, military

Accuracy vs. Precision

Precision without accuracy

Accuracy without precision

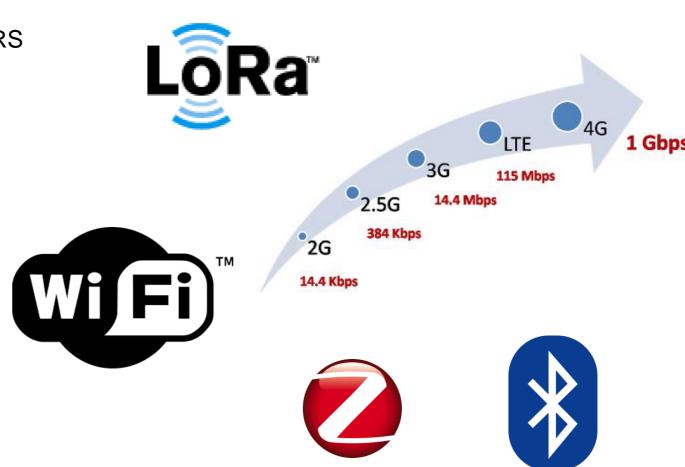
Precision and accuracy

Connectivity (media access)

Long range

LoRaWAN, Sigfox, 6LoWPAN (868MHz), 3G/GPRS

Medium range


ZigBee, WiFi

Short range

Bluetooth 4.0/BLE, NFC/RFiD

Wired

Ethernet, RS-485, 4-20 mA ...

Source: http://hitlistsofts.blogspot.bg/2015/05/difference-between-gsm-gprs-edge-3g.html

Connectivity (application)

HTTP (REST)

CoAP

- Stripped down, datagram based HTTP over UDP/SMS ...
- Goal: Interop with the web

MQTT

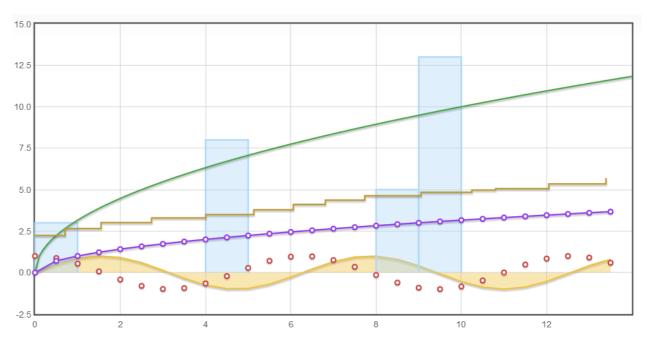
- Open standard, Client/server (broker), pub/sub
- SSL/TLS, user/pass auth

Many others: IRC, XMPP, AMQP ...

Data management and analytics

Data ingestion

- Edge processing, batching & compression
- Data ingestion: Kafka, HDFS, Cassandra ...

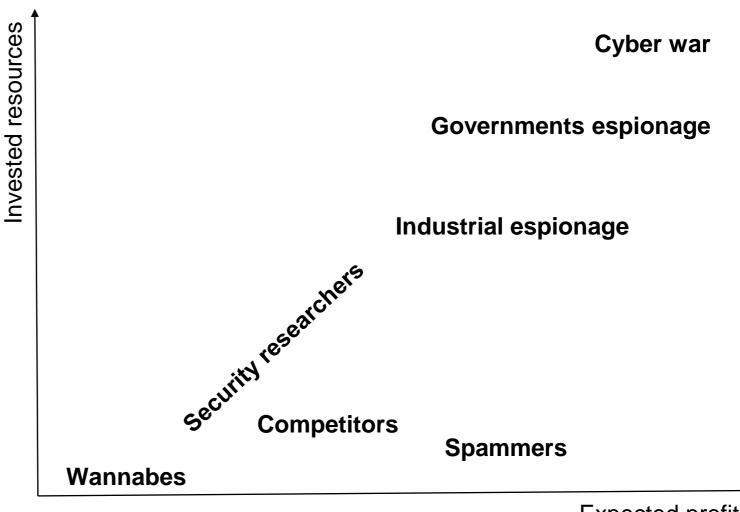

Analytics

- Spark/Hadoop, Python
- Keras, Theano, TensorFlow ...

Visualization

- Matplotlib
- D3 + plugins (e.g. c3js)
- Dygraphs, Flot

Security


Who's the hacker?

Motivation

- Emotion
- Profit
- Scientific interest

Black hats vs White hats

- Damage
- Money flow
- Breaking the law?

Expected profit

Solution?

No silver bullet

Balance between risks and profits

Learn from the others' mistakes

Plan countermeasures

Showcase: Self aiming, social rifle ...

Hackers: Runa Sandvik & Michael Auger

Target: 2013 TrackingPoint TP750 WiFi rifle

Payload:

- Detune scope (e.g shoot wrong target)
- DoS the entire scope

Hacks

WiFi hotspot

WPA2 key is guessable and can't be changed

Mobile API (tune ammo weight etc.)

• "Secret" admin commands, one of which opens the SSH port

Raw backend access

Tune ammo weight without validation (persistently and without validation)

Firmware updates

GPG signed, but private key is on the device

Vendor's official response

You can continue to use WiFi if you are confident no hackers are within 100 feet.

Stuxnet ... an APT

Hackers: No Such Agency

Target: Iran's Natanz uranium enrichment

centrifuges

Attack: Spin rate could be controlled.

Monitoring data tampered.

IoT specific security concerns

Doom's day scenarios

e.g. Natanz

Privacy attacks

Samsung TV, Amazon Echo

IoT botnets

Devices turn to DDoS zombies (Mirai botnet -> 100K nodes)

Business risk & disruption

- Bricked devices
- Limited ability to update crypto (due to e.g. vendor, power, computing)
- Wider the security perimeter

Possible security counter measures

Before the fact: Make attacker's life harder

Strong crypto, SSO, 2FA

OWASP Internet of Things

Pentest hardware too (Logic analyzers, SDR ...)

Technical (DDoS protection, device blacklisting, recall and factory reset)

PR & Legal (Ready made responses, limitation of liability)

Financial (Insurance, indemnification from partners)

Device management

Problems being solved

- Secure device onboarding & off-boarding / blacklisting
- Maintenance:
 - OTA updates, restarts
 - Diagnostics: uptime/heartbeat, network quality (latency, error rate)
 - Locating a device
 - Bulk operations scheduling & maintenance plans ...

Solutions

- OpenHAB, Kura
- Blynk, Thingspeak, Beebotte, SAP, IBM ...
- And probably lots of home grown stuff due to specifics of business

Thank you

Contact information:

Pavel Genevski Researcher / Architect SAP Labs Bulgaria