

POSIX system calls for
regular files and processes

What is POSIX?

POSIX (pronounced / p z ks/) or "Portable ˈ ɒ ɪ
Operating System Interface for Unix" is the name
of a family of related standards specified by the

IEEE to define the application programming
interface (API), along with shell and utilities

interfaces for software compatible with variants of
the Unix operating system, although the standard

can apply to any operating system.

What is a system call?

A system call is the mechanism used by an
application program to request service from the
operating system based on the monolithic kernel
or to system servers on operating systems based

on the microkernel-structure.
A system call is a request made by any program
to the operating system for performing tasks --

picked from a predefined set -- which the said
program does not have required permissions to

execute in its own flow of execution.
System calls provide the interface between a

process and the operating system.

System calls for regular files

● creat
● open
● close
● read
● write
● lseek

#include <fcntl.h>

int creat(const char *path, mode_t mode);

DESCRIPTION

 The function call:

 creat(path, mode)

 shall be equivalent to:

 open(path, O_WRONLY|O_CREAT|O_TRUNC, mode)

RETURN VALUE

 Refer to open().

#include <fcntl.h>

int open(const char *path, int oflag, ...);

DESCRIPTION

 The open() function shall establish the connection between a file
and a file descriptor. It shall create an open file description that
refers to a file and a file descriptor that refers to that open file
description. The file descriptor is used by other I/O functions to
refer to that file. The path argument points to a pathname naming
the file.

The open() function shall return a file descriptor for the named file
that is the lowest file descriptor not currently open for that process.
The open file description is new, and therefore the file descriptor
shall not share it with any other process in the system.

The file offset used to mark the current position within the file shall
be set to the beginning of the file.

#include <fcntl.h>

int open(const char *path, int oflag, ...);
DESCRIPTION (2)

 The file status flags and file access modes of the open file
description shall be set according to the value of oflag.

Values for oflag are constructed by a bitwise-inclusive OR of flags
from the following list, defined in <fcntl.h>.

Applications shall specify exactly one of the first three values (file
access modes) below in the value of oflag:

O_RDONLY
 Open for reading only.
O_WRONLY
 Open for writing only.
O_RDWR
 Open for reading and writing. The result is undefined if this flag is
applied to a FIFO.

#include <fcntl.h>

int open(const char *path, int oflag, ...);

DESCRIPTION (3)

 Any combination of the following may be used:

O_CREAT
 If the file exists, this flag has no effect except as noted under
O_EXCL below. Otherwise, the file shall be created and the access
permission bits of the file mode shall be set to the value of the third
argument taken as type mode_t. When bits other than the file
permission bits are set, the effect is unspecified. The third argument
does not affect whether the file is open for reading, writing, or for
both.
O_EXCL
 If O_CREAT and O_EXCL are set, open() shall fail if the file exists.
If O_EXCL is set and O_CREAT is not set, the result is undefined.

#include <fcntl.h>

int open(const char *path, int oflag, ...);

DESCRIPTION (4)

O_APPEND
 If set, the file offset shall be set to the end of the file prior to each
write.

O_TRUNC
 If the file exists and is a regular file, and the file is successfully
opened O_RDWR or O_WRONLY, its length shall be truncated to 0,
and the mode and owner shall be unchanged. It shall have no effect
on FIFO special files or terminal device files. Its effect on other file
types is implementation-defined. The result of using O_TRUNC with
O_RDONLY is undefined.

#include <fcntl.h>

int open(const char *path, int oflag, ...);

RETURN VALUE

 Upon successful completion, the function shall open the file and
return a non-negative integer representing the lowest numbered
unused file descriptor. Otherwise, -1 shall be returned and errno
set to indicate the error. No files shall be created or modified if
the function returns -1.

#include <unistd.h>

int close(int fildes);

DESCRIPTION

 The close() function shall deallocate the file descriptor
indicated by fildes. To deallocate means to make the file
descriptor available for return by subsequent calls to open()
or other functions that allocate file descriptors. All outstanding
record locks owned by the process on the file associated with
the file descriptor shall be removed (that is, unlocked).

RETURN VALUE

 Upon successful completion, 0 shall be returned;
otherwise, -1 shall be returned and errno set to indicate the
error.

#include <unistd.h>

ssize_t read(int fildes, void *buf,
size_t nbyte);

 DESCRIPTION

 The read() function shall attempt to read nbyte bytes from the file
associated with the open file descriptor, fildes, into the buffer pointed to
by buf. The behavior of multiple concurrent reads on the same pipe,
FIFO, or terminal device is unspecified.

 Before any action described below is taken, and if nbyte is zero, the
read() function may detect and return errors as described below. In the
absence of errors, or if error detection is not performed, the read()
function shall return zero and have no other results.

#include <unistd.h>

ssize_t read(int fildes, void *buf,
size_t nbyte);

 DESCRIPTION (2)

 On files that support seeking (for example, a regular file), the read()
shall start at a position in the file given by the file offset associated with
fildes. The file offset shall be incremented by the number of bytes
actually read.

 Files that do not support seeking-for example, terminals-always read
from the current position. The value of a file offset associated with such a
file is undefined.

 No data transfer shall occur past the current end-of-file. If the starting
position is at or after the end-of-file, 0 shall be returned.

If the value of nbyte is greater than {SSIZE_MAX}, the result is
implementation-defined.

#include <unistd.h>

ssize_t read(int fildes, void *buf,
size_t nbyte);

 DESCRIPTION (3)

 The read() function reads data previously written to a file. If any portion
of a regular file prior to the end-of-file has not been written, read() shall
return bytes with value 0. For example, lseek() allows the file offset to be
set beyond the end of existing data in the file. If data is later written at
this point, subsequent reads in the gap between the previous end of data
and the newly written data shall return bytes with value 0 until data is
written into the gap.

RETURN VALUE

 Upon successful completion, read() shall return a non-negative integer
indicating the number of bytes actually read. Otherwise, the function shall
return -1 and set errno to indicate the error.

#include <unistd.h>

ssize_t write(int fildes, const void
*buf, size_t nbyte);

 DESCRIPTION

 The write() function shall attempt to write nbyte bytes from the buffer
pointed to by buf to the file associated with the open file descriptor, fildes.

 Before any action described below is taken, and if nbyte is zero and
the file is a regular file, the write() function may detect and return errors
as described below. In the absence of errors, or if error detection is not
performed, the write() function shall return zero and have no other
results. If nbyte is zero and the file is not a regular file, the results are
unspecified.

#include <unistd.h>

ssize_t write(int fildes, const void
*buf, size_t nbyte);

 DESCRIPTION (2)

 On a regular file or other file capable of seeking, the actual writing of
data shall proceed from the position in the file indicated by the file offset
associated with fildes. Before successful return from write(), the file offset
shall be incremented by the number of bytes actually written. On a
regular file, if this incremented file offset is greater than the length of the
file, the length of the file shall be set to this file offset.

On a file not capable of seeking, writing shall always take place starting
at the current position. The value of a file offset associated with such a
device is undefined.

#include <unistd.h>

ssize_t write(int fildes, const void
*buf, size_t nbyte);

 DESCRIPTION (3)

If the O_APPEND flag of the file status flags is set, the file offset shall be
set to the end of the file prior to each write and no intervening file
modification operation shall occur between changing the file offset and
the write operation.

If a write() requests that more bytes be written than there is room for,
only as many bytes as there is room for shall be written. For example,
suppose there is space for 20 bytes more in a file before reaching a limit.
A write of 512 bytes will return 20. The next write of a non-zero number of
bytes would give a failure return (except as noted below).

#include <unistd.h>

ssize_t write(int fildes, const void
*buf, size_t nbyte);

 DESCRIPTION (4)

After a write() to a regular file has successfully returned:
● Any successful read() from each byte position in the file that was
modified by that write shall return the data specified by the write() for that
position until such byte positions are again modified.
● Any subsequent successful write() to the same byte position in the file
shall overwrite that file data.

RETURN VALUE

 Upon successful completion, write() shall return the number of bytes
actually written to the file associated with fildes. This number shall never
be greater than nbyte. Otherwise, -1 shall be returned and errno set to
indicate the error.

#include <unistd.h>

off_t lseek(int fildes, off_t offset,
int whence);

 DESCRIPTION

 The lseek() function shall set the file offset for the open file description
associated with the file descriptor fildes, as follows:

● If whence is SEEK_SET, the file offset shall be set to offset bytes.
● If whence is SEEK_CUR, the file offset shall be set to its current
location plus offset.
● If whence is SEEK_END, the file offset shall be set to the size of
the file plus offset.

 The symbolic constants SEEK_SET, SEEK_CUR, and SEEK_END are
defined in <unistd.h>.

#include <unistd.h>

off_t lseek(int fildes, off_t offset,
int whence);
DESCRIPTION (2)

 The behavior of lseek() on devices which are incapable of seeking is
implementation-defined. The value of the file offset associated with such a
device is undefined.

 The lseek() function shall allow the file offset to be set beyond the end of the
existing data in the file. If data is later written at this point, subsequent reads of
data in the gap shall return bytes with the value 0 until data is actually written
into the gap.

 The lseek() function shall not, by itself, extend the size of a file.

RETURN VALUE

 Upon successful completion, the resulting offset, as measured in bytes from
the beginning of the file, shall be returned. Otherwise, (off_t)-1 shall be returned,
errno shall be set to indicate the error, and the file offset shall remain
unchanged.

System calls for processes

● exit
● fork
● exec*
● wait, waitpid
● getpid, getppid

#include <stdlib.h>

void exit(int status);
DESCRIPTION

 The value of status may be 0, EXIT_SUCCESS, EXIT_FAILURE, or any other
value, though only the least significant 8 bits (that is, status & 0377) shall be
available to a waiting parent process.

 The exit() function shall first call all functions registered by atexit(), in the
reverse order of their registration,

 The exit() function shall then flush all open streams with unwritten buffered
data, close all open streams, and remove all files created by tmpfile().

 Finally, exit() calls _exit() which shall terminate the calling process. All of the
file descriptors open in the calling process shall be closed.

 If the parent process of the calling process is not executing a wait() or
waitpid(), the calling process shall be transformed into a zombie process. A
zombie process is an inactive process and it shall be deleted at some later time
when its parent process executes wait() or waitpid().

#include <stdlib.h>

void exit(int status);

DESCRIPTION (2)

 Termination of a process does not directly terminate its children. The sending
of a SIGHUP signal indirectly terminates children in some circumstances.

 The parent process ID of all of the calling process' existing child processes
and zombie processes shall be set to the process ID of an implementation-
defined system process. That is, these processes shall be inherited by a special
system process.

RETURN VALUE

 These functions do not return.

ERRORS

 No errors are defined.

#include <unistd.h>

pid_t fork(void);

DESCRIPTION

The fork() function shall create a new process. The new process (child process) shall be
an exact copy of the calling process (parent process) except:

●The child process shall have a unique process ID.
●The child process ID also shall not match any active process group ID.
●The child process shall have a different parent process ID, which shall be the process
ID of the calling process.
●The child process shall have its own copy of the parent's file descriptors. Each of the
child's file descriptors shall refer to the same open file description with the
corresponding file descriptor of the parent.
●The child process' values of tms_utime, tms_stime, tms_cutime, and tms_cstime shall
be set to 0.
●The initial value of the CPU-time clock of the child process shall be set to zero.
●The initial value of the CPU-time clock of the single thread of the child process shall be
set to zero.
●others

 After fork(), both the parent and the child processes shall be capable of executing
independently before either one terminates.

#include <unistd.h>

pid_t fork(void);

RETURN VALUE

 Upon successful completion, fork() shall return 0 to the child process and shall return
the process ID of the child process to the parent process. Both processes shall continue
to execute from the fork() function. Otherwise, -1 shall be returned to the parent process,
no child process shall be created, and errno shall be set to indicate the error.

#include <unistd.h>

int execl(const char *path, const char *arg0, ... /*, (char *)0 */);
int execv(const char *path, char *const argv[]);
int execlp(const char *file, const char *arg0, ... /*, (char *)0 */);
int execvp(const char *file, char *const argv[]);

DESCRIPTION

 The exec family of functions shall replace the current process image with a new process image.
The new image shall be constructed from a regular, executable file called the new process image
file. There shall be no return from a successful exec, because the calling process image is overlaid
by the new process image.

 When a C-language program is executed as a result of this call, it shall be entered as a C-
language function call as follows:

 int main (int argc, char *argv[]);

 where argc is the argument count and argv is an array of character pointers to the arguments
themselves.

The arguments specified by a program with one of the exec functions shall be passed on to the new
process image in the corresponding main() arguments.

The argument path points to a pathname that identifies the new process image file.

The argument file is used to construct a pathname that identifies the new process image file. If the
file argument contains a slash character, the file argument shall be used as the pathname for this
file. Otherwise, the path prefix for this file is obtained by a search of the directories passed as the
environment variable PATH.

#include <unistd.h>

int execl(const char *path, const char *arg0, ... /*, (char *)0 */);
int execv(const char *path, char *const argv[]);
int execlp(const char *file, const char *arg0, ... /*, (char *)0 */);
int execvp(const char *file, char *const argv[]);

DESCRIPTION (2)

The arguments represented by arg0,... are pointers to null-terminated character strings. These
strings shall constitute the argument list available to the new process image. The list is terminated by
a null pointer. The argument arg0 should point to a filename that is associated with the process being
started by one of the exec functions.

The argument argv is an array of character pointers to null-terminated strings. The application shall
ensure that the last member of this array is a null pointer. These strings shall constitute the argument
list available to the new process image. The value in argv[0] should point to a filename that is
associated with the process being started by one of the exec functions.

File descriptors open in the calling process image shall remain open in the new process image,
except for those whose close-on- exec flag FD_CLOEXEC is set. For those file descriptors that
remain open, all attributes of the open file description remain unchanged.

RETURN VALUE

 If one of the exec functions returns to the calling process image, an error has occurred; the return
value shall be -1, and errno shall be set to indicate the error.

#include <sys/wait.h>

pid_t wait(int *stat_loc);
pid_t waitpid(pid_t pid, int *stat_loc, int options);

DESCRIPTION

 The wait() and waitpid() functions shall obtain status information pertaining to
one of the caller's child processes. Various options permit status information to
be obtained for child processes that have terminated or stopped. If status
information is available for two or more child processes, the order in which their
status is reported is unspecified.

 The wait() function shall suspend execution of the calling thread until status
information for one of the terminated child processes of the calling process is
available, or until delivery of a signal whose action is either to execute a signal-
catching function or to terminate the process. If more than one thread is
suspended in wait() or waitpid() awaiting termination of the same process,
exactly one thread shall return the process status at the time of the target
process termination. If status information is available prior to the call to wait(),
return shall be immediate.

#include <sys/wait.h>

pid_t wait(int *stat_loc);
pid_t waitpid(pid_t pid, int *stat_loc, int options);

DESCRIPTION (2)

 The waitpid() function shall be equivalent to wait() if the pid argument is
(pid_t)-1 and the options argument is 0. Otherwise, its behavior shall be
modified by the values of the pid and options arguments.

The pid argument specifies a set of child processes for which status is
requested. The waitpid() function shall only return the status of a child process
from this set:

●If pid is equal to (pid_t)-1, status is requested for any child process. In this
respect, waitpid() is then equivalent to wait().
●If pid is greater than 0, it specifies the process ID of a single child process for
which status is requested.
● If pid is 0, status is requested for any child process whose process group ID
is equal to that of the calling process.

●If pid is less than (pid_t)-1, status is requested for any child process whose
process group ID is equal to the absolute value of pid.

#include <sys/wait.h>

pid_t wait(int *stat_loc);
pid_t waitpid(pid_t pid, int *stat_loc, int options);

DESCRIPTION (3)

 If wait() or waitpid() return because the status of a child process is available,
these functions shall return a value equal to the process ID of the child process.
In this case, if the value of the argument stat_loc is not a null pointer, information
shall be stored in the location pointed to by stat_loc. The value stored at the
location pointed to by stat_loc shall be 0 if and only if the status returned is from
a terminated child process that terminated by one of the following means:

 1.The process returned 0 from main().
 2.The process called _exit() or exit() with a status argument of 0.
 3.The process was terminated because the last thread in the process
terminated.

RETURN VALUE

 If wait() or waitpid() returns because the status of a child process is available,
these functions shall return a value equal to the process ID of the child process
for which status is reported.

#include <unistd.h>
pid_t getpid(void);

 DESCRIPTION

 The getpid() function shall return the process ID of the
calling process.

RETURN VALUE

 The getpid() function shall always be successful and no
return value is reserved to indicate an error.

ERRORS

 No errors are defined.

#include <unistd.h>
pid_t getpid(void);

 DESCRIPTION

 The getppid() function shall return the parent process ID of
the calling process.

RETURN VALUE

 The getppid() function shall always be successful and no
return value is reserved to indicate an error.

ERRORS

 No errors are defined.

THE END

See also:
http://en.wikipedia.org/wiki/POSIX
http://en.wikipedia.org/wiki/System_call
POSIX headers
POSIX System Interfaces

http://en.wikipedia.org/wiki/POSIX
http://en.wikipedia.org/wiki/System_call
http://www.opengroup.org/onlinepubs/9699919799/
http://www.opengroup.org/onlinepubs/9699919799/nframe.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

