Binomial coefficients

- Definition: $\binom{n}{r} = \frac{n!}{r!(n-r)!}$ ("*n* choose *r*"). (Here n = 1, 2, ... and r = 0, 1, ..., n. Note that, by definition, 0! = 1.)
- Alternate definition: $\binom{n}{r} = \frac{n(n-1)\dots(n-r+1)}{r!}$.

(This version is convenient for hand-calculating binomial coefficients.)

- Symmetry property: $\binom{n}{r} = \binom{n}{n-r}$
- Special cases: $\binom{n}{0} = \binom{n}{n} = 1$, $\binom{n}{1} = \binom{n}{n-1} = n$
- Binomial Theorem: $(x+y)^n = \sum_{r=0}^n \binom{n}{r} x^r y^{n-r}$
- Combinatorial Interpretations: $\binom{n}{r}$ represents
 - 1. the number of ways to select r objects out of n given objects ("unordered samples without replacement");
 - 2. the number of r-element subsets of an n-element set;
 - 3. the number of *n*-letter HT sequences with exactly r H's and n r T's;
 - 4. the coefficient of $x^r y^{n-r}$ when expanding $(x+y)^n$ and collecting terms.

Multinomial coefficients

- Definition: $\binom{n}{n_1, n_2, \dots, n_r} = \frac{n!}{n_1! n_2! \dots n_r!}$. (Here *n* and n_1, \dots, n_r are nonnegative integers subject to (*) $n = n_1 + n_2 + \dots + n_r$.)
- Special cases: Case r = 2: $\binom{n}{n_1, n_2} = \binom{n}{n_1} = \binom{n}{n_2}$ (since $n_1 + n_2 = n$, and so $n_2 = n - n_1$). Case $r = n, n_1 = \dots = n_r = 1$: $\binom{n}{1, \dots, 1} = n!$
- Multinomial Theorem: $(x_1 + \dots + x_r)^n = \sum_{(*)} {n \choose n_1, n_2, \dots, n_r} x_1^{n_1} \dots x_r^{n_r}$, where

the sum is taken over all tuples (n_1, \ldots, n_r) of nonnegative integers that add up to n (i.e., satisfy condition (*) above).

• Combinatorial Interpretations: $\binom{n}{n_1, n_2, \dots, n_r}$ represents

- 1. the number of ways to split n distinct objects into r distinct groups, of sizes n_1, \ldots, n_r , respectively. (In the case $n_1 = \cdots = n_r = 1$ this is the number of ways to permute all n objects.)
- 2. the number of *n*-letter words formed with *r* distinct letters, say, L_1, \ldots, L_r , used n_1, \ldots, n_r times respectively.
- 3. the coefficient of $x_1^{n_1} \dots x_r^{n_r}$ when expanding $(x_1 + \dots + x_r)^n$ and collecting terms.