Binomial coefficients

- Definition: $\binom{n}{r}=\frac{n!}{r!(n-r)!}($ " n choose r ").
(Here $n=1,2, \ldots$ and $r=0,1, \ldots, n$. Note that, by definition, $0!=1$.)
- Alternate definition: $\binom{n}{r}=\frac{n(n-1) \ldots(n-r+1)}{r!}$.
(This version is convenient for hand-calculating binomial coefficients.)
- Symmetry property: $\binom{n}{r}=\binom{n}{n-r}$
- Special cases: $\binom{n}{0}=\binom{n}{n}=1, \quad\binom{n}{1}=\binom{n}{n-1}=n$
- Binomial Theorem: $(x+y)^{n}=\sum_{r=0}^{n}\binom{n}{r} x^{r} y^{n-r}$
- Combinatorial Interpretations: $\binom{n}{r}$ represents

1. the number of ways to select r objects out of n given objects ("unordered samples without replacement");
2. the number of r-element subsets of an n-element set;
3. the number of n-letter HT sequences with exactly r H's and $n-r$ T's;
4. the coefficient of $x^{r} y^{n-r}$ when expanding $(x+y)^{n}$ and collecting terms.

Multinomial coefficients

- Definition: $\binom{n}{n_{1}, n_{2}, \ldots, n_{r}}=\frac{n!}{n_{1}!n_{2}!\ldots n_{r}!}$.
(Here n and n_{1}, \ldots, n_{r} are nonnegative integers subject to (*) $n=n_{1}+n_{2}+\cdots+n_{r}$.)

- Special cases:

Case $r=2:\binom{n}{n_{1}, n_{2}}=\binom{n}{n_{1}}=\binom{n}{n_{2}}$ (since $n_{1}+n_{2}=n$, and so $\left.n_{2}=n-n_{1}\right)$.
Case $r=n, n_{1}=\cdots=n_{r}=1:\binom{n}{1, \ldots, 1}=n$!

- Multinomial Theorem: $\left(x_{1}+\cdots+x_{r}\right)^{n}=\sum_{(*)}\binom{n}{n_{1}, n_{2}, \ldots, n_{r}} x_{1}^{n_{1}} \ldots x_{r}^{n_{r}}$, where the sum is taken over all tuples $\left(n_{1}, \ldots, n_{r}\right)$ of nonnegative integers that add up to n (i.e., satisfy condition (*) above).
- Combinatorial Interpretations: $\binom{n}{n_{1}, n_{2}, \ldots, n_{r}}$ represents

1. the number of ways to split n distinct objects into r distinct groups, of sizes n_{1}, \ldots, n_{r}, respectively. (In the case $n_{1}=\cdots=n_{r}=1$ this is the number of ways to permute all n objects.)
2. the number of n-letter words formed with r distinct letters, say, L_{1}, \ldots, L_{r}, used n_{1}, \ldots, n_{r} times respectively.
3. the coefficient of $x_{1}^{n_{1}} \cdots x_{r}^{n_{r}}$ when expanding $\left(x_{1}+\cdots+x_{r}\right)^{n}$ and collecting terms.
