Alternating permutation

In combinatorial mathematics, an alternating permutation (or idgaag permutation) of the set $\{1,2,3, \ldots$
$n\}$ is an arrangement of those numbers so that each entry is alternately greater or less than the preceding $n\}$ is an arrangement of those numbers so that each entry is a aternately
entry. For example, the five alternating permutations of $\{1,2,3,4\}$ are

$\begin{array}{lll}\mathbf{1 , 3 , 2 , 4} & \text { because } & 1<3>2<4, \\ : 1,4,2,3 & \text { because } & 1<42<3, \\ : 2,3,4 & \text { because } & 2<3>1<4, \\ : 2,1,3 & \text { beause } & 2<4>1<3 \text {, } \\ \mathbf{3 , 4 , 1 , 2} & \text { because } & 3<4>1<2,\end{array}$

This type of pernutation was first studied by Désire André in the 19th century. [1]
Different authors use the term alternating permutation slightly differently: some require that the second entry an alternating permutation should be larger than the first (as in the examples above), others require that the alternation should be reversed (so that the second entry is smaller than the first, then
hhe second, and so on), while others call both types by the name alternating permutation.
The determination of the number A_{n} of a alternating permutations of the set $\{1, \ldots, n\}$ is called Andre's ven the number A_{n} is known as a secant number, while if n is odd it it known as a tangent number. These atter names come from the study of the generating function for the sequence.

Contents

: 1 Definitions
2 Andre's theorem
3 Related integer sequenc
4
.4 See also
5 Citations
${ }_{7} 6$ References

Definitions

permutation c_{1}, \ldots, c_{n} is said to be alternating if its entries alternately rise and descend. Thus, each entry ther than the first and the last should be either larger or smaller than both of its neighbors. Some authors us down-up" permutations that satisfy $c_{1}>c_{2}<c_{3}>\ldots$ by the name reverse alternating. Other authors everse this convention, or use the word "alternating" to refer to both up-down and down-up permutations.
There is a simple on--to-one correspondence between the down-up and up-down permutations: replacing .
By convention, in any naming scheme the unique permutations of length 0 (the permutation of the empty
set) and 1 (the permutation consisting of a single entry 1) are taken to be alternating.
André's theorem
The determination of the number A_{n} of alternating permutations of the set $\{1, \ldots, n\}$ is called A Andre's roblem. The numbers A_{n} are variously known as Euler numberss, zigzag numbers, up/down numbers, or by
me combinations of these names. The name Euler numbers in particular is sometimes used for a closely elated sembunance. The firsst few values of of A_{n} are $1,1,1,1,5,516,61,272,1385,7936,50521, \ldots$ (.) sequence Aoooll1 in the OEIS).

These numbers satisfy a simple recurrence, similiar to that of the Catalan numbers by spliting the set of
alternating permutations (both down-up and up-down) of the set $\{1,2,3, \ldots, n+1\}+1\}$ according to the alternating permutations (both down-up and up-down) of
position k of the largest entry $n+1$, one can show that

$$
2 A_{n+1}=\sum_{k=0}^{n}\binom{n}{k} A_{k} A_{n-k}
$$

for all $n \geq 1$. André
generating function
$A(x)=\sum_{n=0}^{\infty} A_{n} \frac{x^{n}}{n!}$
for the sequence A_{n}. He then solved this equation, establishing that
$A(x)=\sec x+\tan x$,
wherer sem
theore
follows from Andre's theorem that the radius of convergence of the series $A(x)$ is $\pi / 2$. This allows one to
$A_{n} \sim 2\left(\frac{2}{\pi}\right)^{n+1} \cdot n$

Related integer sequences

The odd-indexed zigaga numbers (i.e., the tangent numbers) are closely related to Bernoulli numbers. The

$$
B_{2 n}=(-1)^{n-1} \frac{2 n}{4^{2 n}-2^{2 n}} A_{2 n-1}
$$

for $n>0$.
If Z_{n} denotes the number of permutations of $\{1, \ldots, \ldots\}$ that are either up-down or down-up (or both, for $n<$
2) then it follows from the pairing given above that $Z_{n}=2 A_{n}$, for $n>2$. The first few values of Z_{n} are $1,1,2$, $4,10,32,122,544,2770,15872,101042, \ldots$ (sequence A001250 in the OEIS).
The Euler zigag numbers are related to Entringer numbers, from which the zigag numbers may be
puted. The Entringer numbers can be defined recursivively as follows ${ }^{[3]}$
$E(0,0)=1$
$E(n, 0)=0$
$E(n, 0)=0 \quad$ for $n>0$
$E(n, k)=E(n, k-1)+E(n-1, n-k)$.
The n hi zigag number is equal to the Entringer number $E(n, n)$
The numbers $A_{2 n}$ with even indices are called secant numbers or $\boldsymbol{r i g}$ numbers: since the secant function is even and tangent is odd, it follows from Andre's theorem above that they are the numerators in the
Maclaurin series of sec x. The first few values are $1,1,5,61,1385,50521$, (sequence $A 000364$ Naclaurin series of sec x. The first few values are $1,1,5,61,1385,50521, \ldots$ (sequence $A 000364$ in the
OEIS). OEIS).

Correspondingly, the numbers A with odd indices are called tangent numbers or zag numbers. The firs few values are $1,2,16,272,7936$,... (sequence A000182 in the OEIS).

See also

- Longest alternating subsequenc

Boustrophedon transform

Citations

1. Jessica Millar, N.J. A. Sloane, Neal E. Young, "A New Operation on Sequences: the Boustrouphedon
Transform" (http//arxiv.orgyabs matho 2025218 v3)
 arxiv:9912.42402.
```
. "Entringer Number". From MathWorld-A Wolfram Web Resource.
```


References

- André, Désire (1879),
sciences, 88: 965-967.
- Andre, Désiré (1881), "Sur les pe

Stanley, Richard P (2011) Enure Combinatorics. Vol. I (2nd ed). Cambridge University Press

External links

- Weisstein, Eric W. "Alternating Permutation". MathWorld.

Ross Tang, "An Explicit Formula for the Euler rigzag numbers (Up/down numbers) from power series" (http///www.voofie.com/content/ $117 /$ an-explicit-formula- -or-til
numbers-from-powers-series) A simple explicit formula for 4
"A Survey of Alternating Permutations" (http://www-math.mit.edu $/ \sim$ rstan/papers/altperm.pdf), a
A Survey of Atternating Serm

Categories: Permutations \mid Enumerative combinatorics

[^0]
[^0]: This page was last modified on 9 August 2016, at $18: 59$
 Text is available under the Creative Commons Attributi
 to the Terms of Use and Privacy Policy Wiked additional iterms may rademark of the Wikimedia Foundation, Inc., a non-profit orranization.

