Solutions to Problems in Combinatorics
(c) Minko Markov

Draft date November 20, 2009

Problem 1. Let B^{n} be an n -dimensional hypercube graph. Let A be a subset of the vertices of B^{n} such that $|\mathrm{A}|>2^{\mathrm{n}-1}$. Let H be the subgraph of B^{n} induced by A . Prove that H has at least n edges.

Solution:

We use the notation $\left\}_{M}\right.$ for multisets as in $\{1,2,2,3,3,3\}_{M}$. We identify the vertex set of B^{n} with the set of all binary vectors of length n. Let $m=|A|$ and $A=\left\{\widetilde{\alpha_{1}}, \widetilde{\alpha_{2}}, \ldots, \widetilde{\alpha_{m}}\right\}$. Let $\widetilde{\alpha}_{i}=\left(\alpha_{i}^{1}, \alpha_{i}^{2}, \ldots, \alpha_{i}^{n}\right)$ for $1 \leq i \leq m$, where $\alpha_{i}^{j} \in\{0,1\}$ for $1 \leq i \leq m$ and $1 \leq j \leq n$. For every k such that $1 \leq k \leq n$, define that the k-th contraction of A is the multiset of vectors obtained from \mathcal{A} after removing the k-th position of each vector. We denote the k-th contraction of A by " $\left.A\right|_{k}$ ". Formally, $\left.A\right|_{k}=\left\{\left.\widetilde{\alpha_{1}}\right|_{k},\left.\widetilde{\alpha_{2}}\right|_{k}, \ldots,\left.\widetilde{\alpha_{m}}\right|_{k}\right\}_{M}$ where

$$
\left.\widetilde{\alpha}_{i}\right|_{k}=\left(\alpha_{i}^{1}, \alpha_{i}^{2}, \ldots, \alpha_{i}^{k-1}, \alpha_{i}^{k+1}, \ldots, \alpha_{i}^{n}\right) \text { for } 1 \leq i \leq m
$$

Clearly, the vectors in $\left.A\right|_{k}$ have length $n-1$. There can be at most 2^{n-1} distinct binary vectors of length n. But by construction $\left.A\right|_{k}$ has $m>2^{n-1}$ vectors, therefore at least two vectors in $\left.A\right|_{k}$ are the same. Let $\left.\widetilde{\alpha_{p_{k}}}\right|_{k}$ and $\left.\widetilde{\alpha_{q_{k}}}\right|_{k}$ be any two vectors in $\left.\mathcal{A}\right|_{k}$ that are the same for some indices p_{k} and q_{k} such that $1 \leq p_{k}<q_{k} \leq m$. The indices are themselves indexed by k because they depend on the value of k.

Note that A is not a multiset but a normal set, i.e. without repeating elements. Therefore it must be the case that $\widetilde{\alpha_{p_{k}}} \neq \widetilde{\alpha_{q_{k}}}$. But $\widetilde{\alpha_{p_{k}}}$ and $\widetilde{\alpha_{q_{k}}}$ can differ only in the k-th position. Therefore, by the definition of the hypercube graph, for every k such that $1 \leq k \leq n$, there is an edge $e_{k}=\left(\widetilde{\alpha_{p_{k}}}, \widetilde{\alpha_{q_{k}}}\right)$ in B^{n}. Note that e_{k} is an edge in H, too.

Next we argue that for any two distinct values of k, say s and t, the edges e_{s} and e_{t} are distinct. Assume the opposite:

$$
\begin{equation*}
\left(\widetilde{\alpha_{p_{s}}}, \widetilde{\alpha_{q_{s}}}\right)=\left(\widetilde{\alpha_{p_{t}}}, \widetilde{\alpha_{q_{\mathrm{t}}}}\right) \text { for some } s, t \text {, such that } 1 \leq \mathrm{s}<\mathrm{t} \leq \mathrm{n} \tag{1}
\end{equation*}
$$

Recall that $\widetilde{\alpha_{p_{s}}}$ and $\widetilde{\alpha_{q_{\mathrm{s}}}}$ differ in precisely one position, namely the s-th position. Therefore,

$$
\begin{align*}
& \widetilde{\alpha_{p_{s}}}=\beta_{s}, 0, \gamma_{s} \text { and } \tag{2}\\
& \widetilde{\alpha_{q_{s}}}=\beta_{s}, 1, \gamma_{s} \tag{3}
\end{align*}
$$

or

$$
\begin{align*}
& \widetilde{\alpha_{p_{s}}}=\beta_{s}, 1, \gamma_{s} \text { and } \tag{4}\\
& \widetilde{\alpha_{q_{s}}}=\beta_{s}, 0, \gamma_{s} \tag{5}
\end{align*}
$$

where β_{s} and γ_{s} are binary vectors such that $\left|\beta_{s}\right|+\left|\gamma_{s}\right|=n-1$. Likewise,

$$
\begin{aligned}
& \widetilde{\alpha_{p_{\mathrm{t}}}}=\beta_{\mathrm{t}}, 0, \gamma_{\mathrm{t}} \text { and } \\
& \widetilde{\alpha_{\mathrm{q}_{\mathrm{t}}}}=\beta_{\mathrm{t}}, 1, \gamma_{\mathrm{t}}
\end{aligned}
$$

or

$$
\begin{aligned}
& \widetilde{\alpha_{p_{t}}}=\beta_{\mathrm{t}}, 1, \gamma_{\mathrm{t}} \text { and } \\
& \widetilde{\alpha_{q_{\mathrm{t}}}}=\beta_{\mathrm{t}}, 0, \gamma_{\mathrm{t}}
\end{aligned}
$$

where β_{t} and γ_{t} are binary vectors such that $\left|\beta_{\mathrm{t}}\right|+\left|\gamma_{\mathrm{t}}\right|=\mathrm{n}-1$. Furthermore, $\left|\beta_{s}\right|=s-1$ and $\left|\beta_{\mathrm{t}}\right|=\mathrm{t}-1$. As $s<\mathrm{t}$, it must be the case that $\left|\beta_{s}\right|<\left|\beta_{\mathrm{t}}\right|$. By our assumption $\widetilde{\alpha_{p_{s}}}=\widetilde{\alpha_{\mathfrak{p}_{\mathrm{t}}}}$ and $\widetilde{\alpha_{q_{s}}}=\widetilde{\alpha_{\mathrm{q}_{\mathrm{t}}}}$. It follows that β_{t} has the form:

$$
\begin{equation*}
\beta_{t}=\beta_{s}, 0, \ldots \text { because of (2) and (4) } \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta_{t}=\beta_{s}, 1, \ldots \text { because of (3) and (5) } \tag{7}
\end{equation*}
$$

Because of the contradiction between (6) and (7), our assumption (1) is wrong.
We proved that for each value of k, such that $1 \leq k \leq n$, there is a distinct edge e_{k} in B^{n} and in H. It follows H has at least n edges.

Problem 2. Prove the n-dimensional hypercube graph is Hamiltonian for any $n \geq 2$.

Solution:

By induction on n.
Basis: $n=2$. Clearly, the graph 9 -0 is Hamiltonian.
Induction hypothesis: For some $n \geq 2, B^{n}$ is Hamiltonian.
Induction step: Consider B^{n+1}. Let $m=2^{n}$. Let the vertex set of B^{n+1} be partitioned into V^{0}, the vectors having 0 in the leftmost position, and V^{1}, the vectors having 1 in the leftmost position. Let H^{i} be the subgraph of B^{n+1} induced by V_{i}, for $\mathfrak{i}=0,1$. It is known that both H^{0} and H^{1} are isomorphic to B^{n}. By the inductive hypothesis there is a Hamiltonian cycle c_{0} in H_{0}. Clearly, $\left|\mathrm{c}_{0}\right|=\mathrm{m}$. Let

$$
c_{0}=u_{1}, u_{2}, \ldots, u_{m}
$$

where $\mathfrak{u}_{1}, \mathfrak{u}_{2}, \ldots, \mathfrak{u}_{m}$ is some permutation of the vectors of V^{0}. Let v_{i} be the vector obtained from u_{i} by replacing the leftmost 0 by 1 , for $1 \leq i \leq m$. Then $\left\{v_{1}, v_{2}, \ldots, v_{\mathrm{m}}\right\}=\mathrm{V}^{1}$. Furthermore,

$$
c_{1}=v_{1}, v_{2}, \ldots, v_{\mathrm{m}}
$$

is a Hamilton cycle in H^{1}.
Consider any edge $e=\left(\mathfrak{u}_{k}, \mathfrak{u}_{k+1}\right)$ in \mathfrak{c}_{0}. Define that p_{0} is the Hamilton path in H^{0} obtained by removing e from c_{0}. Clearly, $e^{\prime}=\left(v_{k}, v_{k+1}\right)$ is an edge in c_{1}. Define that p_{1} is the Hamilton path in H^{1} obtained by removing e^{\prime} from c_{1}. Note that ($\mathfrak{u}_{\mathrm{k}}, v_{\mathrm{k}}$) is an edge, call it e_{k}, in B^{n+1} because by construction the vectors \mathfrak{u}_{k} and v_{k} differ only at the leftmost position. Likewise, $\left(\mathfrak{u}_{k+1}, v_{k+1}\right)$ is an edge, call it e_{k+1}, in B^{n+1}.

The paths p_{0} and p_{1} together with the edges e_{k} and e_{k+1} form a Hamilton cycle in B^{n+1}.

